1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's and llvm's instrumentation based 10 // code coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMapping.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallBitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Object/BuildID.h" 23 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 24 #include "llvm/ProfileData/InstrProfReader.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/Errc.h" 27 #include "llvm/Support/Error.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MemoryBuffer.h" 30 #include "llvm/Support/VirtualFileSystem.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cmath> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <memory> 39 #include <optional> 40 #include <string> 41 #include <system_error> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 using namespace coverage; 47 48 #define DEBUG_TYPE "coverage-mapping" 49 50 Counter CounterExpressionBuilder::get(const CounterExpression &E) { 51 auto It = ExpressionIndices.find(E); 52 if (It != ExpressionIndices.end()) 53 return Counter::getExpression(It->second); 54 unsigned I = Expressions.size(); 55 Expressions.push_back(E); 56 ExpressionIndices[E] = I; 57 return Counter::getExpression(I); 58 } 59 60 void CounterExpressionBuilder::extractTerms(Counter C, int Factor, 61 SmallVectorImpl<Term> &Terms) { 62 switch (C.getKind()) { 63 case Counter::Zero: 64 break; 65 case Counter::CounterValueReference: 66 Terms.emplace_back(C.getCounterID(), Factor); 67 break; 68 case Counter::Expression: 69 const auto &E = Expressions[C.getExpressionID()]; 70 extractTerms(E.LHS, Factor, Terms); 71 extractTerms( 72 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); 73 break; 74 } 75 } 76 77 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { 78 // Gather constant terms. 79 SmallVector<Term, 32> Terms; 80 extractTerms(ExpressionTree, +1, Terms); 81 82 // If there are no terms, this is just a zero. The algorithm below assumes at 83 // least one term. 84 if (Terms.size() == 0) 85 return Counter::getZero(); 86 87 // Group the terms by counter ID. 88 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { 89 return LHS.CounterID < RHS.CounterID; 90 }); 91 92 // Combine terms by counter ID to eliminate counters that sum to zero. 93 auto Prev = Terms.begin(); 94 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { 95 if (I->CounterID == Prev->CounterID) { 96 Prev->Factor += I->Factor; 97 continue; 98 } 99 ++Prev; 100 *Prev = *I; 101 } 102 Terms.erase(++Prev, Terms.end()); 103 104 Counter C; 105 // Create additions. We do this before subtractions to avoid constructs like 106 // ((0 - X) + Y), as opposed to (Y - X). 107 for (auto T : Terms) { 108 if (T.Factor <= 0) 109 continue; 110 for (int I = 0; I < T.Factor; ++I) 111 if (C.isZero()) 112 C = Counter::getCounter(T.CounterID); 113 else 114 C = get(CounterExpression(CounterExpression::Add, C, 115 Counter::getCounter(T.CounterID))); 116 } 117 118 // Create subtractions. 119 for (auto T : Terms) { 120 if (T.Factor >= 0) 121 continue; 122 for (int I = 0; I < -T.Factor; ++I) 123 C = get(CounterExpression(CounterExpression::Subtract, C, 124 Counter::getCounter(T.CounterID))); 125 } 126 return C; 127 } 128 129 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { 130 auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS)); 131 return Simplify ? simplify(Cnt) : Cnt; 132 } 133 134 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, 135 bool Simplify) { 136 auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS)); 137 return Simplify ? simplify(Cnt) : Cnt; 138 } 139 140 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { 141 switch (C.getKind()) { 142 case Counter::Zero: 143 OS << '0'; 144 return; 145 case Counter::CounterValueReference: 146 OS << '#' << C.getCounterID(); 147 break; 148 case Counter::Expression: { 149 if (C.getExpressionID() >= Expressions.size()) 150 return; 151 const auto &E = Expressions[C.getExpressionID()]; 152 OS << '('; 153 dump(E.LHS, OS); 154 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); 155 dump(E.RHS, OS); 156 OS << ')'; 157 break; 158 } 159 } 160 if (CounterValues.empty()) 161 return; 162 Expected<int64_t> Value = evaluate(C); 163 if (auto E = Value.takeError()) { 164 consumeError(std::move(E)); 165 return; 166 } 167 OS << '[' << *Value << ']'; 168 } 169 170 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { 171 struct StackElem { 172 Counter ICounter; 173 int64_t LHS = 0; 174 enum { 175 KNeverVisited = 0, 176 KVisitedOnce = 1, 177 KVisitedTwice = 2, 178 } VisitCount = KNeverVisited; 179 }; 180 181 std::stack<StackElem> CounterStack; 182 CounterStack.push({C}); 183 184 int64_t LastPoppedValue; 185 186 while (!CounterStack.empty()) { 187 StackElem &Current = CounterStack.top(); 188 189 switch (Current.ICounter.getKind()) { 190 case Counter::Zero: 191 LastPoppedValue = 0; 192 CounterStack.pop(); 193 break; 194 case Counter::CounterValueReference: 195 if (Current.ICounter.getCounterID() >= CounterValues.size()) 196 return errorCodeToError(errc::argument_out_of_domain); 197 LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; 198 CounterStack.pop(); 199 break; 200 case Counter::Expression: { 201 if (Current.ICounter.getExpressionID() >= Expressions.size()) 202 return errorCodeToError(errc::argument_out_of_domain); 203 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 204 if (Current.VisitCount == StackElem::KNeverVisited) { 205 CounterStack.push(StackElem{E.LHS}); 206 Current.VisitCount = StackElem::KVisitedOnce; 207 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 208 Current.LHS = LastPoppedValue; 209 CounterStack.push(StackElem{E.RHS}); 210 Current.VisitCount = StackElem::KVisitedTwice; 211 } else { 212 int64_t LHS = Current.LHS; 213 int64_t RHS = LastPoppedValue; 214 LastPoppedValue = 215 E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; 216 CounterStack.pop(); 217 } 218 break; 219 } 220 } 221 } 222 223 return LastPoppedValue; 224 } 225 226 namespace { 227 228 class MCDCRecordProcessor { 229 /// A bitmap representing the executed test vectors for a boolean expression. 230 /// Each index of the bitmap corresponds to a possible test vector. An index 231 /// with a bit value of '1' indicates that the corresponding Test Vector 232 /// identified by that index was executed. 233 const BitVector &Bitmap; 234 235 /// Decision Region to which the ExecutedTestVectorBitmap applies. 236 const CounterMappingRegion &Region; 237 const mcdc::DecisionParameters &DecisionParams; 238 239 /// Array of branch regions corresponding each conditions in the boolean 240 /// expression. 241 ArrayRef<const CounterMappingRegion *> Branches; 242 243 /// Total number of conditions in the boolean expression. 244 unsigned NumConditions; 245 246 /// Mapping of a condition ID to its corresponding branch params. 247 llvm::DenseMap<unsigned, mcdc::ConditionIDs> CondsMap; 248 249 /// Vector used to track whether a condition is constant folded. 250 MCDCRecord::BoolVector Folded; 251 252 /// Mapping of calculated MC/DC Independence Pairs for each condition. 253 MCDCRecord::TVPairMap IndependencePairs; 254 255 /// Actual executed Test Vectors for the boolean expression, based on 256 /// ExecutedTestVectorBitmap. 257 MCDCRecord::TestVectors ExecVectors; 258 259 public: 260 MCDCRecordProcessor(const BitVector &Bitmap, 261 const CounterMappingRegion &Region, 262 ArrayRef<const CounterMappingRegion *> Branches) 263 : Bitmap(Bitmap), Region(Region), 264 DecisionParams(Region.getDecisionParams()), Branches(Branches), 265 NumConditions(DecisionParams.NumConditions), 266 Folded(NumConditions, false), IndependencePairs(NumConditions) {} 267 268 private: 269 // Walk the binary decision diagram and try assigning both false and true to 270 // each node. When a terminal node (ID == 0) is reached, fill in the value in 271 // the truth table. 272 void buildTestVector(MCDCRecord::TestVector &TV, mcdc::ConditionID ID, 273 unsigned Index) { 274 assert((Index & (1 << ID)) == 0); 275 276 for (auto MCDCCond : {MCDCRecord::MCDC_False, MCDCRecord::MCDC_True}) { 277 static_assert(MCDCRecord::MCDC_False == 0); 278 static_assert(MCDCRecord::MCDC_True == 1); 279 Index |= MCDCCond << ID; 280 TV[ID] = MCDCCond; 281 auto NextID = CondsMap[ID][MCDCCond]; 282 if (NextID >= 0) { 283 buildTestVector(TV, NextID, Index); 284 continue; 285 } 286 287 if (!Bitmap[DecisionParams.BitmapIdx * CHAR_BIT + Index]) 288 continue; 289 290 // Copy the completed test vector to the vector of testvectors. 291 ExecVectors.push_back(TV); 292 293 // The final value (T,F) is equal to the last non-dontcare state on the 294 // path (in a short-circuiting system). 295 ExecVectors.back().push_back(MCDCCond); 296 } 297 298 // Reset back to DontCare. 299 TV[ID] = MCDCRecord::MCDC_DontCare; 300 } 301 302 /// Walk the bits in the bitmap. A bit set to '1' indicates that the test 303 /// vector at the corresponding index was executed during a test run. 304 void findExecutedTestVectors() { 305 // Walk the binary decision diagram to enumerate all possible test vectors. 306 // We start at the root node (ID == 0) with all values being DontCare. 307 // `Index` encodes the bitmask of true values and is initially 0. 308 MCDCRecord::TestVector TV(NumConditions, MCDCRecord::MCDC_DontCare); 309 buildTestVector(TV, 0, 0); 310 } 311 312 // Find an independence pair for each condition: 313 // - The condition is true in one test and false in the other. 314 // - The decision outcome is true one test and false in the other. 315 // - All other conditions' values must be equal or marked as "don't care". 316 void findIndependencePairs() { 317 unsigned NumTVs = ExecVectors.size(); 318 for (unsigned I = 1; I < NumTVs; ++I) { 319 const MCDCRecord::TestVector &A = ExecVectors[I]; 320 for (unsigned J = 0; J < I; ++J) { 321 const MCDCRecord::TestVector &B = ExecVectors[J]; 322 // Enumerate two execution vectors whose outcomes are different. 323 if (A[NumConditions] == B[NumConditions]) 324 continue; 325 unsigned Flip = NumConditions, Idx; 326 for (Idx = 0; Idx < NumConditions; ++Idx) { 327 MCDCRecord::CondState ACond = A[Idx], BCond = B[Idx]; 328 if (ACond == BCond || ACond == MCDCRecord::MCDC_DontCare || 329 BCond == MCDCRecord::MCDC_DontCare) 330 continue; 331 if (Flip != NumConditions) 332 break; 333 Flip = Idx; 334 } 335 // If the two vectors differ in exactly one condition, ignoring DontCare 336 // conditions, we have found an independence pair. 337 if (Idx == NumConditions && Flip != NumConditions) 338 IndependencePairs.insert({Flip, std::make_pair(J + 1, I + 1)}); 339 } 340 } 341 } 342 343 public: 344 /// Process the MC/DC Record in order to produce a result for a boolean 345 /// expression. This process includes tracking the conditions that comprise 346 /// the decision region, calculating the list of all possible test vectors, 347 /// marking the executed test vectors, and then finding an Independence Pair 348 /// out of the executed test vectors for each condition in the boolean 349 /// expression. A condition is tracked to ensure that its ID can be mapped to 350 /// its ordinal position in the boolean expression. The condition's source 351 /// location is also tracked, as well as whether it is constant folded (in 352 /// which case it is excuded from the metric). 353 MCDCRecord processMCDCRecord() { 354 unsigned I = 0; 355 MCDCRecord::CondIDMap PosToID; 356 MCDCRecord::LineColPairMap CondLoc; 357 358 // Walk the Record's BranchRegions (representing Conditions) in order to: 359 // - Hash the condition based on its corresponding ID. This will be used to 360 // calculate the test vectors. 361 // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its 362 // actual ID. This will be used to visualize the conditions in the 363 // correct order. 364 // - Keep track of the condition source location. This will be used to 365 // visualize where the condition is. 366 // - Record whether the condition is constant folded so that we exclude it 367 // from being measured. 368 for (const auto *B : Branches) { 369 const auto &BranchParams = B->getBranchParams(); 370 CondsMap[BranchParams.ID] = BranchParams.Conds; 371 PosToID[I] = BranchParams.ID; 372 CondLoc[I] = B->startLoc(); 373 Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero()); 374 } 375 376 // Using Profile Bitmap from runtime, mark the executed test vectors. 377 findExecutedTestVectors(); 378 379 // Compare executed test vectors against each other to find an independence 380 // pairs for each condition. This processing takes the most time. 381 findIndependencePairs(); 382 383 // Record Test vectors, executed vectors, and independence pairs. 384 return MCDCRecord(Region, std::move(ExecVectors), 385 std::move(IndependencePairs), std::move(Folded), 386 std::move(PosToID), std::move(CondLoc)); 387 } 388 }; 389 390 } // namespace 391 392 Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( 393 const CounterMappingRegion &Region, 394 ArrayRef<const CounterMappingRegion *> Branches) { 395 396 MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches); 397 return MCDCProcessor.processMCDCRecord(); 398 } 399 400 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { 401 struct StackElem { 402 Counter ICounter; 403 int64_t LHS = 0; 404 enum { 405 KNeverVisited = 0, 406 KVisitedOnce = 1, 407 KVisitedTwice = 2, 408 } VisitCount = KNeverVisited; 409 }; 410 411 std::stack<StackElem> CounterStack; 412 CounterStack.push({C}); 413 414 int64_t LastPoppedValue; 415 416 while (!CounterStack.empty()) { 417 StackElem &Current = CounterStack.top(); 418 419 switch (Current.ICounter.getKind()) { 420 case Counter::Zero: 421 LastPoppedValue = 0; 422 CounterStack.pop(); 423 break; 424 case Counter::CounterValueReference: 425 LastPoppedValue = Current.ICounter.getCounterID(); 426 CounterStack.pop(); 427 break; 428 case Counter::Expression: { 429 if (Current.ICounter.getExpressionID() >= Expressions.size()) { 430 LastPoppedValue = 0; 431 CounterStack.pop(); 432 } else { 433 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 434 if (Current.VisitCount == StackElem::KNeverVisited) { 435 CounterStack.push(StackElem{E.LHS}); 436 Current.VisitCount = StackElem::KVisitedOnce; 437 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 438 Current.LHS = LastPoppedValue; 439 CounterStack.push(StackElem{E.RHS}); 440 Current.VisitCount = StackElem::KVisitedTwice; 441 } else { 442 int64_t LHS = Current.LHS; 443 int64_t RHS = LastPoppedValue; 444 LastPoppedValue = std::max(LHS, RHS); 445 CounterStack.pop(); 446 } 447 } 448 break; 449 } 450 } 451 } 452 453 return LastPoppedValue; 454 } 455 456 void FunctionRecordIterator::skipOtherFiles() { 457 while (Current != Records.end() && !Filename.empty() && 458 Filename != Current->Filenames[0]) 459 ++Current; 460 if (Current == Records.end()) 461 *this = FunctionRecordIterator(); 462 } 463 464 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( 465 StringRef Filename) const { 466 size_t FilenameHash = hash_value(Filename); 467 auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); 468 if (RecordIt == FilenameHash2RecordIndices.end()) 469 return {}; 470 return RecordIt->second; 471 } 472 473 static unsigned getMaxCounterID(const CounterMappingContext &Ctx, 474 const CoverageMappingRecord &Record) { 475 unsigned MaxCounterID = 0; 476 for (const auto &Region : Record.MappingRegions) { 477 MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); 478 } 479 return MaxCounterID; 480 } 481 482 /// Returns the bit count 483 static unsigned getMaxBitmapSize(const CounterMappingContext &Ctx, 484 const CoverageMappingRecord &Record) { 485 unsigned MaxBitmapIdx = 0; 486 unsigned NumConditions = 0; 487 // Scan max(BitmapIdx). 488 // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid 489 // and `MaxBitmapIdx is `unsigned`. `BitmapIdx` is unique in the record. 490 for (const auto &Region : reverse(Record.MappingRegions)) { 491 if (Region.Kind != CounterMappingRegion::MCDCDecisionRegion) 492 continue; 493 const auto &DecisionParams = Region.getDecisionParams(); 494 if (MaxBitmapIdx <= DecisionParams.BitmapIdx) { 495 MaxBitmapIdx = DecisionParams.BitmapIdx; 496 NumConditions = DecisionParams.NumConditions; 497 } 498 } 499 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT); 500 return MaxBitmapIdx * CHAR_BIT + SizeInBits; 501 } 502 503 namespace { 504 505 /// Collect Decisions, Branchs, and Expansions and associate them. 506 class MCDCDecisionRecorder { 507 private: 508 /// This holds the DecisionRegion and MCDCBranches under it. 509 /// Also traverses Expansion(s). 510 /// The Decision has the number of MCDCBranches and will complete 511 /// when it is filled with unique ConditionID of MCDCBranches. 512 struct DecisionRecord { 513 const CounterMappingRegion *DecisionRegion; 514 515 /// They are reflected from DecisionRegion for convenience. 516 mcdc::DecisionParameters DecisionParams; 517 LineColPair DecisionStartLoc; 518 LineColPair DecisionEndLoc; 519 520 /// This is passed to `MCDCRecordProcessor`, so this should be compatible 521 /// to`ArrayRef<const CounterMappingRegion *>`. 522 SmallVector<const CounterMappingRegion *> MCDCBranches; 523 524 /// IDs that are stored in MCDCBranches 525 /// Complete when all IDs (1 to NumConditions) are met. 526 DenseSet<mcdc::ConditionID> ConditionIDs; 527 528 /// Set of IDs of Expansion(s) that are relevant to DecisionRegion 529 /// and its children (via expansions). 530 /// FileID pointed by ExpandedFileID is dedicated to the expansion, so 531 /// the location in the expansion doesn't matter. 532 DenseSet<unsigned> ExpandedFileIDs; 533 534 DecisionRecord(const CounterMappingRegion &Decision) 535 : DecisionRegion(&Decision), 536 DecisionParams(Decision.getDecisionParams()), 537 DecisionStartLoc(Decision.startLoc()), 538 DecisionEndLoc(Decision.endLoc()) { 539 assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion); 540 } 541 542 /// Determine whether DecisionRecord dominates `R`. 543 bool dominates(const CounterMappingRegion &R) const { 544 // Determine whether `R` is included in `DecisionRegion`. 545 if (R.FileID == DecisionRegion->FileID && 546 R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc) 547 return true; 548 549 // Determine whether `R` is pointed by any of Expansions. 550 return ExpandedFileIDs.contains(R.FileID); 551 } 552 553 enum Result { 554 NotProcessed = 0, /// Irrelevant to this Decision 555 Processed, /// Added to this Decision 556 Completed, /// Added and filled this Decision 557 }; 558 559 /// Add Branch into the Decision 560 /// \param Branch expects MCDCBranchRegion 561 /// \returns NotProcessed/Processed/Completed 562 Result addBranch(const CounterMappingRegion &Branch) { 563 assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion); 564 565 auto ConditionID = Branch.getBranchParams().ID; 566 assert(ConditionID >= 0 && "ConditionID should be positive"); 567 568 if (ConditionIDs.contains(ConditionID) || 569 ConditionID >= DecisionParams.NumConditions) 570 return NotProcessed; 571 572 if (!this->dominates(Branch)) 573 return NotProcessed; 574 575 assert(MCDCBranches.size() < DecisionParams.NumConditions); 576 577 // Put `ID=0` in front of `MCDCBranches` for convenience 578 // even if `MCDCBranches` is not topological. 579 if (ConditionID == 0) 580 MCDCBranches.insert(MCDCBranches.begin(), &Branch); 581 else 582 MCDCBranches.push_back(&Branch); 583 584 // Mark `ID` as `assigned`. 585 ConditionIDs.insert(ConditionID); 586 587 // `Completed` when `MCDCBranches` is full 588 return (MCDCBranches.size() == DecisionParams.NumConditions ? Completed 589 : Processed); 590 } 591 592 /// Record Expansion if it is relevant to this Decision. 593 /// Each `Expansion` may nest. 594 /// \returns true if recorded. 595 bool recordExpansion(const CounterMappingRegion &Expansion) { 596 if (!this->dominates(Expansion)) 597 return false; 598 599 ExpandedFileIDs.insert(Expansion.ExpandedFileID); 600 return true; 601 } 602 }; 603 604 private: 605 /// Decisions in progress 606 /// DecisionRecord is added for each MCDCDecisionRegion. 607 /// DecisionRecord is removed when Decision is completed. 608 SmallVector<DecisionRecord> Decisions; 609 610 public: 611 ~MCDCDecisionRecorder() { 612 assert(Decisions.empty() && "All Decisions have not been resolved"); 613 } 614 615 /// Register Region and start recording. 616 void registerDecision(const CounterMappingRegion &Decision) { 617 Decisions.emplace_back(Decision); 618 } 619 620 void recordExpansion(const CounterMappingRegion &Expansion) { 621 any_of(Decisions, [&Expansion](auto &Decision) { 622 return Decision.recordExpansion(Expansion); 623 }); 624 } 625 626 using DecisionAndBranches = 627 std::pair<const CounterMappingRegion *, /// Decision 628 SmallVector<const CounterMappingRegion *> /// Branches 629 >; 630 631 /// Add MCDCBranchRegion to DecisionRecord. 632 /// \param Branch to be processed 633 /// \returns DecisionsAndBranches if DecisionRecord completed. 634 /// Or returns nullopt. 635 std::optional<DecisionAndBranches> 636 processBranch(const CounterMappingRegion &Branch) { 637 // Seek each Decision and apply Region to it. 638 for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end(); 639 DecisionIter != DecisionEnd; ++DecisionIter) 640 switch (DecisionIter->addBranch(Branch)) { 641 case DecisionRecord::NotProcessed: 642 continue; 643 case DecisionRecord::Processed: 644 return std::nullopt; 645 case DecisionRecord::Completed: 646 DecisionAndBranches Result = 647 std::make_pair(DecisionIter->DecisionRegion, 648 std::move(DecisionIter->MCDCBranches)); 649 Decisions.erase(DecisionIter); // No longer used. 650 return Result; 651 } 652 653 llvm_unreachable("Branch not found in Decisions"); 654 } 655 }; 656 657 } // namespace 658 659 Error CoverageMapping::loadFunctionRecord( 660 const CoverageMappingRecord &Record, 661 IndexedInstrProfReader &ProfileReader) { 662 StringRef OrigFuncName = Record.FunctionName; 663 if (OrigFuncName.empty()) 664 return make_error<CoverageMapError>(coveragemap_error::malformed, 665 "record function name is empty"); 666 667 if (Record.Filenames.empty()) 668 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); 669 else 670 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); 671 672 CounterMappingContext Ctx(Record.Expressions); 673 674 std::vector<uint64_t> Counts; 675 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, 676 Record.FunctionHash, Counts)) { 677 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 678 if (IPE == instrprof_error::hash_mismatch) { 679 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 680 Record.FunctionHash); 681 return Error::success(); 682 } 683 if (IPE != instrprof_error::unknown_function) 684 return make_error<InstrProfError>(IPE); 685 Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); 686 } 687 Ctx.setCounts(Counts); 688 689 BitVector Bitmap; 690 if (Error E = ProfileReader.getFunctionBitmap(Record.FunctionName, 691 Record.FunctionHash, Bitmap)) { 692 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 693 if (IPE == instrprof_error::hash_mismatch) { 694 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 695 Record.FunctionHash); 696 return Error::success(); 697 } 698 if (IPE != instrprof_error::unknown_function) 699 return make_error<InstrProfError>(IPE); 700 Bitmap = BitVector(getMaxBitmapSize(Ctx, Record)); 701 } 702 Ctx.setBitmap(std::move(Bitmap)); 703 704 assert(!Record.MappingRegions.empty() && "Function has no regions"); 705 706 // This coverage record is a zero region for a function that's unused in 707 // some TU, but used in a different TU. Ignore it. The coverage maps from the 708 // the other TU will either be loaded (providing full region counts) or they 709 // won't (in which case we don't unintuitively report functions as uncovered 710 // when they have non-zero counts in the profile). 711 if (Record.MappingRegions.size() == 1 && 712 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) 713 return Error::success(); 714 715 MCDCDecisionRecorder MCDCDecisions; 716 FunctionRecord Function(OrigFuncName, Record.Filenames); 717 for (const auto &Region : Record.MappingRegions) { 718 // MCDCDecisionRegion should be handled first since it overlaps with 719 // others inside. 720 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { 721 MCDCDecisions.registerDecision(Region); 722 continue; 723 } 724 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); 725 if (auto E = ExecutionCount.takeError()) { 726 consumeError(std::move(E)); 727 return Error::success(); 728 } 729 Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount); 730 if (auto E = AltExecutionCount.takeError()) { 731 consumeError(std::move(E)); 732 return Error::success(); 733 } 734 Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount); 735 736 // Record ExpansionRegion. 737 if (Region.Kind == CounterMappingRegion::ExpansionRegion) { 738 MCDCDecisions.recordExpansion(Region); 739 continue; 740 } 741 742 // Do nothing unless MCDCBranchRegion. 743 if (Region.Kind != CounterMappingRegion::MCDCBranchRegion) 744 continue; 745 746 auto Result = MCDCDecisions.processBranch(Region); 747 if (!Result) // Any Decision doesn't complete. 748 continue; 749 750 auto MCDCDecision = Result->first; 751 auto &MCDCBranches = Result->second; 752 753 // Since the bitmap identifies the executed test vectors for an MC/DC 754 // DecisionRegion, all of the information is now available to process. 755 // This is where the bulk of the MC/DC progressing takes place. 756 Expected<MCDCRecord> Record = 757 Ctx.evaluateMCDCRegion(*MCDCDecision, MCDCBranches); 758 if (auto E = Record.takeError()) { 759 consumeError(std::move(E)); 760 return Error::success(); 761 } 762 763 // Save the MC/DC Record so that it can be visualized later. 764 Function.pushMCDCRecord(std::move(*Record)); 765 } 766 767 // Don't create records for (filenames, function) pairs we've already seen. 768 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), 769 Record.Filenames.end()); 770 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) 771 return Error::success(); 772 773 Functions.push_back(std::move(Function)); 774 775 // Performance optimization: keep track of the indices of the function records 776 // which correspond to each filename. This can be used to substantially speed 777 // up queries for coverage info in a file. 778 unsigned RecordIndex = Functions.size() - 1; 779 for (StringRef Filename : Record.Filenames) { 780 auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; 781 // Note that there may be duplicates in the filename set for a function 782 // record, because of e.g. macro expansions in the function in which both 783 // the macro and the function are defined in the same file. 784 if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) 785 RecordIndices.push_back(RecordIndex); 786 } 787 788 return Error::success(); 789 } 790 791 // This function is for memory optimization by shortening the lifetimes 792 // of CoverageMappingReader instances. 793 Error CoverageMapping::loadFromReaders( 794 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 795 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { 796 for (const auto &CoverageReader : CoverageReaders) { 797 for (auto RecordOrErr : *CoverageReader) { 798 if (Error E = RecordOrErr.takeError()) 799 return E; 800 const auto &Record = *RecordOrErr; 801 if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) 802 return E; 803 } 804 } 805 return Error::success(); 806 } 807 808 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 809 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 810 IndexedInstrProfReader &ProfileReader) { 811 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 812 if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) 813 return std::move(E); 814 return std::move(Coverage); 815 } 816 817 // If E is a no_data_found error, returns success. Otherwise returns E. 818 static Error handleMaybeNoDataFoundError(Error E) { 819 return handleErrors( 820 std::move(E), [](const CoverageMapError &CME) { 821 if (CME.get() == coveragemap_error::no_data_found) 822 return static_cast<Error>(Error::success()); 823 return make_error<CoverageMapError>(CME.get(), CME.getMessage()); 824 }); 825 } 826 827 Error CoverageMapping::loadFromFile( 828 StringRef Filename, StringRef Arch, StringRef CompilationDir, 829 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, 830 bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { 831 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( 832 Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); 833 if (std::error_code EC = CovMappingBufOrErr.getError()) 834 return createFileError(Filename, errorCodeToError(EC)); 835 MemoryBufferRef CovMappingBufRef = 836 CovMappingBufOrErr.get()->getMemBufferRef(); 837 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; 838 839 SmallVector<object::BuildIDRef> BinaryIDs; 840 auto CoverageReadersOrErr = BinaryCoverageReader::create( 841 CovMappingBufRef, Arch, Buffers, CompilationDir, 842 FoundBinaryIDs ? &BinaryIDs : nullptr); 843 if (Error E = CoverageReadersOrErr.takeError()) { 844 E = handleMaybeNoDataFoundError(std::move(E)); 845 if (E) 846 return createFileError(Filename, std::move(E)); 847 return E; 848 } 849 850 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; 851 for (auto &Reader : CoverageReadersOrErr.get()) 852 Readers.push_back(std::move(Reader)); 853 if (FoundBinaryIDs && !Readers.empty()) { 854 llvm::append_range(*FoundBinaryIDs, 855 llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) { 856 return object::BuildID(BID); 857 })); 858 } 859 DataFound |= !Readers.empty(); 860 if (Error E = loadFromReaders(Readers, ProfileReader, Coverage)) 861 return createFileError(Filename, std::move(E)); 862 return Error::success(); 863 } 864 865 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 866 ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename, 867 vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir, 868 const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { 869 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS); 870 if (Error E = ProfileReaderOrErr.takeError()) 871 return createFileError(ProfileFilename, std::move(E)); 872 auto ProfileReader = std::move(ProfileReaderOrErr.get()); 873 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 874 bool DataFound = false; 875 876 auto GetArch = [&](size_t Idx) { 877 if (Arches.empty()) 878 return StringRef(); 879 if (Arches.size() == 1) 880 return Arches.front(); 881 return Arches[Idx]; 882 }; 883 884 SmallVector<object::BuildID> FoundBinaryIDs; 885 for (const auto &File : llvm::enumerate(ObjectFilenames)) { 886 if (Error E = 887 loadFromFile(File.value(), GetArch(File.index()), CompilationDir, 888 *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs)) 889 return std::move(E); 890 } 891 892 if (BIDFetcher) { 893 std::vector<object::BuildID> ProfileBinaryIDs; 894 if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs)) 895 return createFileError(ProfileFilename, std::move(E)); 896 897 SmallVector<object::BuildIDRef> BinaryIDsToFetch; 898 if (!ProfileBinaryIDs.empty()) { 899 const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { 900 return std::lexicographical_compare(A.begin(), A.end(), B.begin(), 901 B.end()); 902 }; 903 llvm::sort(FoundBinaryIDs, Compare); 904 std::set_difference( 905 ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(), 906 FoundBinaryIDs.begin(), FoundBinaryIDs.end(), 907 std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare); 908 } 909 910 for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { 911 std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID); 912 if (PathOpt) { 913 std::string Path = std::move(*PathOpt); 914 StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); 915 if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader, 916 *Coverage, DataFound)) 917 return std::move(E); 918 } else if (CheckBinaryIDs) { 919 return createFileError( 920 ProfileFilename, 921 createStringError(errc::no_such_file_or_directory, 922 "Missing binary ID: " + 923 llvm::toHex(BinaryID, /*LowerCase=*/true))); 924 } 925 } 926 } 927 928 if (!DataFound) 929 return createFileError( 930 join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "), 931 make_error<CoverageMapError>(coveragemap_error::no_data_found)); 932 return std::move(Coverage); 933 } 934 935 namespace { 936 937 /// Distributes functions into instantiation sets. 938 /// 939 /// An instantiation set is a collection of functions that have the same source 940 /// code, ie, template functions specializations. 941 class FunctionInstantiationSetCollector { 942 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; 943 MapT InstantiatedFunctions; 944 945 public: 946 void insert(const FunctionRecord &Function, unsigned FileID) { 947 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); 948 while (I != E && I->FileID != FileID) 949 ++I; 950 assert(I != E && "function does not cover the given file"); 951 auto &Functions = InstantiatedFunctions[I->startLoc()]; 952 Functions.push_back(&Function); 953 } 954 955 MapT::iterator begin() { return InstantiatedFunctions.begin(); } 956 MapT::iterator end() { return InstantiatedFunctions.end(); } 957 }; 958 959 class SegmentBuilder { 960 std::vector<CoverageSegment> &Segments; 961 SmallVector<const CountedRegion *, 8> ActiveRegions; 962 963 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} 964 965 /// Emit a segment with the count from \p Region starting at \p StartLoc. 966 // 967 /// \p IsRegionEntry: The segment is at the start of a new non-gap region. 968 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. 969 void startSegment(const CountedRegion &Region, LineColPair StartLoc, 970 bool IsRegionEntry, bool EmitSkippedRegion = false) { 971 bool HasCount = !EmitSkippedRegion && 972 (Region.Kind != CounterMappingRegion::SkippedRegion); 973 974 // If the new segment wouldn't affect coverage rendering, skip it. 975 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { 976 const auto &Last = Segments.back(); 977 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && 978 !Last.IsRegionEntry) 979 return; 980 } 981 982 if (HasCount) 983 Segments.emplace_back(StartLoc.first, StartLoc.second, 984 Region.ExecutionCount, IsRegionEntry, 985 Region.Kind == CounterMappingRegion::GapRegion); 986 else 987 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); 988 989 LLVM_DEBUG({ 990 const auto &Last = Segments.back(); 991 dbgs() << "Segment at " << Last.Line << ":" << Last.Col 992 << " (count = " << Last.Count << ")" 993 << (Last.IsRegionEntry ? ", RegionEntry" : "") 994 << (!Last.HasCount ? ", Skipped" : "") 995 << (Last.IsGapRegion ? ", Gap" : "") << "\n"; 996 }); 997 } 998 999 /// Emit segments for active regions which end before \p Loc. 1000 /// 1001 /// \p Loc: The start location of the next region. If std::nullopt, all active 1002 /// regions are completed. 1003 /// \p FirstCompletedRegion: Index of the first completed region. 1004 void completeRegionsUntil(std::optional<LineColPair> Loc, 1005 unsigned FirstCompletedRegion) { 1006 // Sort the completed regions by end location. This makes it simple to 1007 // emit closing segments in sorted order. 1008 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; 1009 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), 1010 [](const CountedRegion *L, const CountedRegion *R) { 1011 return L->endLoc() < R->endLoc(); 1012 }); 1013 1014 // Emit segments for all completed regions. 1015 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; 1016 ++I) { 1017 const auto *CompletedRegion = ActiveRegions[I]; 1018 assert((!Loc || CompletedRegion->endLoc() <= *Loc) && 1019 "Completed region ends after start of new region"); 1020 1021 const auto *PrevCompletedRegion = ActiveRegions[I - 1]; 1022 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); 1023 1024 // Don't emit any more segments if they start where the new region begins. 1025 if (Loc && CompletedSegmentLoc == *Loc) 1026 break; 1027 1028 // Don't emit a segment if the next completed region ends at the same 1029 // location as this one. 1030 if (CompletedSegmentLoc == CompletedRegion->endLoc()) 1031 continue; 1032 1033 // Use the count from the last completed region which ends at this loc. 1034 for (unsigned J = I + 1; J < E; ++J) 1035 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) 1036 CompletedRegion = ActiveRegions[J]; 1037 1038 startSegment(*CompletedRegion, CompletedSegmentLoc, false); 1039 } 1040 1041 auto Last = ActiveRegions.back(); 1042 if (FirstCompletedRegion && Last->endLoc() != *Loc) { 1043 // If there's a gap after the end of the last completed region and the 1044 // start of the new region, use the last active region to fill the gap. 1045 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), 1046 false); 1047 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { 1048 // Emit a skipped segment if there are no more active regions. This 1049 // ensures that gaps between functions are marked correctly. 1050 startSegment(*Last, Last->endLoc(), false, true); 1051 } 1052 1053 // Pop the completed regions. 1054 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); 1055 } 1056 1057 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { 1058 for (const auto &CR : enumerate(Regions)) { 1059 auto CurStartLoc = CR.value().startLoc(); 1060 1061 // Active regions which end before the current region need to be popped. 1062 auto CompletedRegions = 1063 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), 1064 [&](const CountedRegion *Region) { 1065 return !(Region->endLoc() <= CurStartLoc); 1066 }); 1067 if (CompletedRegions != ActiveRegions.end()) { 1068 unsigned FirstCompletedRegion = 1069 std::distance(ActiveRegions.begin(), CompletedRegions); 1070 completeRegionsUntil(CurStartLoc, FirstCompletedRegion); 1071 } 1072 1073 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; 1074 1075 // Try to emit a segment for the current region. 1076 if (CurStartLoc == CR.value().endLoc()) { 1077 // Avoid making zero-length regions active. If it's the last region, 1078 // emit a skipped segment. Otherwise use its predecessor's count. 1079 const bool Skipped = 1080 (CR.index() + 1) == Regions.size() || 1081 CR.value().Kind == CounterMappingRegion::SkippedRegion; 1082 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), 1083 CurStartLoc, !GapRegion, Skipped); 1084 // If it is skipped segment, create a segment with last pushed 1085 // regions's count at CurStartLoc. 1086 if (Skipped && !ActiveRegions.empty()) 1087 startSegment(*ActiveRegions.back(), CurStartLoc, false); 1088 continue; 1089 } 1090 if (CR.index() + 1 == Regions.size() || 1091 CurStartLoc != Regions[CR.index() + 1].startLoc()) { 1092 // Emit a segment if the next region doesn't start at the same location 1093 // as this one. 1094 startSegment(CR.value(), CurStartLoc, !GapRegion); 1095 } 1096 1097 // This region is active (i.e not completed). 1098 ActiveRegions.push_back(&CR.value()); 1099 } 1100 1101 // Complete any remaining active regions. 1102 if (!ActiveRegions.empty()) 1103 completeRegionsUntil(std::nullopt, 0); 1104 } 1105 1106 /// Sort a nested sequence of regions from a single file. 1107 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { 1108 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { 1109 if (LHS.startLoc() != RHS.startLoc()) 1110 return LHS.startLoc() < RHS.startLoc(); 1111 if (LHS.endLoc() != RHS.endLoc()) 1112 // When LHS completely contains RHS, we sort LHS first. 1113 return RHS.endLoc() < LHS.endLoc(); 1114 // If LHS and RHS cover the same area, we need to sort them according 1115 // to their kinds so that the most suitable region will become "active" 1116 // in combineRegions(). Because we accumulate counter values only from 1117 // regions of the same kind as the first region of the area, prefer 1118 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. 1119 static_assert(CounterMappingRegion::CodeRegion < 1120 CounterMappingRegion::ExpansionRegion && 1121 CounterMappingRegion::ExpansionRegion < 1122 CounterMappingRegion::SkippedRegion, 1123 "Unexpected order of region kind values"); 1124 return LHS.Kind < RHS.Kind; 1125 }); 1126 } 1127 1128 /// Combine counts of regions which cover the same area. 1129 static ArrayRef<CountedRegion> 1130 combineRegions(MutableArrayRef<CountedRegion> Regions) { 1131 if (Regions.empty()) 1132 return Regions; 1133 auto Active = Regions.begin(); 1134 auto End = Regions.end(); 1135 for (auto I = Regions.begin() + 1; I != End; ++I) { 1136 if (Active->startLoc() != I->startLoc() || 1137 Active->endLoc() != I->endLoc()) { 1138 // Shift to the next region. 1139 ++Active; 1140 if (Active != I) 1141 *Active = *I; 1142 continue; 1143 } 1144 // Merge duplicate region. 1145 // If CodeRegions and ExpansionRegions cover the same area, it's probably 1146 // a macro which is fully expanded to another macro. In that case, we need 1147 // to accumulate counts only from CodeRegions, or else the area will be 1148 // counted twice. 1149 // On the other hand, a macro may have a nested macro in its body. If the 1150 // outer macro is used several times, the ExpansionRegion for the nested 1151 // macro will also be added several times. These ExpansionRegions cover 1152 // the same source locations and have to be combined to reach the correct 1153 // value for that area. 1154 // We add counts of the regions of the same kind as the active region 1155 // to handle the both situations. 1156 if (I->Kind == Active->Kind) 1157 Active->ExecutionCount += I->ExecutionCount; 1158 } 1159 return Regions.drop_back(std::distance(++Active, End)); 1160 } 1161 1162 public: 1163 /// Build a sorted list of CoverageSegments from a list of Regions. 1164 static std::vector<CoverageSegment> 1165 buildSegments(MutableArrayRef<CountedRegion> Regions) { 1166 std::vector<CoverageSegment> Segments; 1167 SegmentBuilder Builder(Segments); 1168 1169 sortNestedRegions(Regions); 1170 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); 1171 1172 LLVM_DEBUG({ 1173 dbgs() << "Combined regions:\n"; 1174 for (const auto &CR : CombinedRegions) 1175 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " 1176 << CR.LineEnd << ":" << CR.ColumnEnd 1177 << " (count=" << CR.ExecutionCount << ")\n"; 1178 }); 1179 1180 Builder.buildSegmentsImpl(CombinedRegions); 1181 1182 #ifndef NDEBUG 1183 for (unsigned I = 1, E = Segments.size(); I < E; ++I) { 1184 const auto &L = Segments[I - 1]; 1185 const auto &R = Segments[I]; 1186 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { 1187 if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) 1188 continue; 1189 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col 1190 << " followed by " << R.Line << ":" << R.Col << "\n"); 1191 assert(false && "Coverage segments not unique or sorted"); 1192 } 1193 } 1194 #endif 1195 1196 return Segments; 1197 } 1198 }; 1199 1200 } // end anonymous namespace 1201 1202 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { 1203 std::vector<StringRef> Filenames; 1204 for (const auto &Function : getCoveredFunctions()) 1205 llvm::append_range(Filenames, Function.Filenames); 1206 llvm::sort(Filenames); 1207 auto Last = std::unique(Filenames.begin(), Filenames.end()); 1208 Filenames.erase(Last, Filenames.end()); 1209 return Filenames; 1210 } 1211 1212 static SmallBitVector gatherFileIDs(StringRef SourceFile, 1213 const FunctionRecord &Function) { 1214 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); 1215 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) 1216 if (SourceFile == Function.Filenames[I]) 1217 FilenameEquivalence[I] = true; 1218 return FilenameEquivalence; 1219 } 1220 1221 /// Return the ID of the file where the definition of the function is located. 1222 static std::optional<unsigned> 1223 findMainViewFileID(const FunctionRecord &Function) { 1224 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); 1225 for (const auto &CR : Function.CountedRegions) 1226 if (CR.Kind == CounterMappingRegion::ExpansionRegion) 1227 IsNotExpandedFile[CR.ExpandedFileID] = false; 1228 int I = IsNotExpandedFile.find_first(); 1229 if (I == -1) 1230 return std::nullopt; 1231 return I; 1232 } 1233 1234 /// Check if SourceFile is the file that contains the definition of 1235 /// the Function. Return the ID of the file in that case or std::nullopt 1236 /// otherwise. 1237 static std::optional<unsigned> 1238 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { 1239 std::optional<unsigned> I = findMainViewFileID(Function); 1240 if (I && SourceFile == Function.Filenames[*I]) 1241 return I; 1242 return std::nullopt; 1243 } 1244 1245 static bool isExpansion(const CountedRegion &R, unsigned FileID) { 1246 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; 1247 } 1248 1249 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { 1250 CoverageData FileCoverage(Filename); 1251 std::vector<CountedRegion> Regions; 1252 1253 // Look up the function records in the given file. Due to hash collisions on 1254 // the filename, we may get back some records that are not in the file. 1255 ArrayRef<unsigned> RecordIndices = 1256 getImpreciseRecordIndicesForFilename(Filename); 1257 for (unsigned RecordIndex : RecordIndices) { 1258 const FunctionRecord &Function = Functions[RecordIndex]; 1259 auto MainFileID = findMainViewFileID(Filename, Function); 1260 auto FileIDs = gatherFileIDs(Filename, Function); 1261 for (const auto &CR : Function.CountedRegions) 1262 if (FileIDs.test(CR.FileID)) { 1263 Regions.push_back(CR); 1264 if (MainFileID && isExpansion(CR, *MainFileID)) 1265 FileCoverage.Expansions.emplace_back(CR, Function); 1266 } 1267 // Capture branch regions specific to the function (excluding expansions). 1268 for (const auto &CR : Function.CountedBranchRegions) 1269 if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID)) 1270 FileCoverage.BranchRegions.push_back(CR); 1271 // Capture MCDC records specific to the function. 1272 for (const auto &MR : Function.MCDCRecords) 1273 if (FileIDs.test(MR.getDecisionRegion().FileID)) 1274 FileCoverage.MCDCRecords.push_back(MR); 1275 } 1276 1277 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); 1278 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1279 1280 return FileCoverage; 1281 } 1282 1283 std::vector<InstantiationGroup> 1284 CoverageMapping::getInstantiationGroups(StringRef Filename) const { 1285 FunctionInstantiationSetCollector InstantiationSetCollector; 1286 // Look up the function records in the given file. Due to hash collisions on 1287 // the filename, we may get back some records that are not in the file. 1288 ArrayRef<unsigned> RecordIndices = 1289 getImpreciseRecordIndicesForFilename(Filename); 1290 for (unsigned RecordIndex : RecordIndices) { 1291 const FunctionRecord &Function = Functions[RecordIndex]; 1292 auto MainFileID = findMainViewFileID(Filename, Function); 1293 if (!MainFileID) 1294 continue; 1295 InstantiationSetCollector.insert(Function, *MainFileID); 1296 } 1297 1298 std::vector<InstantiationGroup> Result; 1299 for (auto &InstantiationSet : InstantiationSetCollector) { 1300 InstantiationGroup IG{InstantiationSet.first.first, 1301 InstantiationSet.first.second, 1302 std::move(InstantiationSet.second)}; 1303 Result.emplace_back(std::move(IG)); 1304 } 1305 return Result; 1306 } 1307 1308 CoverageData 1309 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { 1310 auto MainFileID = findMainViewFileID(Function); 1311 if (!MainFileID) 1312 return CoverageData(); 1313 1314 CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); 1315 std::vector<CountedRegion> Regions; 1316 for (const auto &CR : Function.CountedRegions) 1317 if (CR.FileID == *MainFileID) { 1318 Regions.push_back(CR); 1319 if (isExpansion(CR, *MainFileID)) 1320 FunctionCoverage.Expansions.emplace_back(CR, Function); 1321 } 1322 // Capture branch regions specific to the function (excluding expansions). 1323 for (const auto &CR : Function.CountedBranchRegions) 1324 if (CR.FileID == *MainFileID) 1325 FunctionCoverage.BranchRegions.push_back(CR); 1326 1327 // Capture MCDC records specific to the function. 1328 for (const auto &MR : Function.MCDCRecords) 1329 if (MR.getDecisionRegion().FileID == *MainFileID) 1330 FunctionCoverage.MCDCRecords.push_back(MR); 1331 1332 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name 1333 << "\n"); 1334 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1335 1336 return FunctionCoverage; 1337 } 1338 1339 CoverageData CoverageMapping::getCoverageForExpansion( 1340 const ExpansionRecord &Expansion) const { 1341 CoverageData ExpansionCoverage( 1342 Expansion.Function.Filenames[Expansion.FileID]); 1343 std::vector<CountedRegion> Regions; 1344 for (const auto &CR : Expansion.Function.CountedRegions) 1345 if (CR.FileID == Expansion.FileID) { 1346 Regions.push_back(CR); 1347 if (isExpansion(CR, Expansion.FileID)) 1348 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); 1349 } 1350 for (const auto &CR : Expansion.Function.CountedBranchRegions) 1351 // Capture branch regions that only pertain to the corresponding expansion. 1352 if (CR.FileID == Expansion.FileID) 1353 ExpansionCoverage.BranchRegions.push_back(CR); 1354 1355 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " 1356 << Expansion.FileID << "\n"); 1357 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1358 1359 return ExpansionCoverage; 1360 } 1361 1362 LineCoverageStats::LineCoverageStats( 1363 ArrayRef<const CoverageSegment *> LineSegments, 1364 const CoverageSegment *WrappedSegment, unsigned Line) 1365 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), 1366 LineSegments(LineSegments), WrappedSegment(WrappedSegment) { 1367 // Find the minimum number of regions which start in this line. 1368 unsigned MinRegionCount = 0; 1369 auto isStartOfRegion = [](const CoverageSegment *S) { 1370 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; 1371 }; 1372 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) 1373 if (isStartOfRegion(LineSegments[I])) 1374 ++MinRegionCount; 1375 1376 bool StartOfSkippedRegion = !LineSegments.empty() && 1377 !LineSegments.front()->HasCount && 1378 LineSegments.front()->IsRegionEntry; 1379 1380 HasMultipleRegions = MinRegionCount > 1; 1381 Mapped = 1382 !StartOfSkippedRegion && 1383 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); 1384 1385 // if there is any starting segment at this line with a counter, it must be 1386 // mapped 1387 Mapped |= std::any_of( 1388 LineSegments.begin(), LineSegments.end(), 1389 [](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; }); 1390 1391 if (!Mapped) { 1392 return; 1393 } 1394 1395 // Pick the max count from the non-gap, region entry segments and the 1396 // wrapped count. 1397 if (WrappedSegment) 1398 ExecutionCount = WrappedSegment->Count; 1399 if (!MinRegionCount) 1400 return; 1401 for (const auto *LS : LineSegments) 1402 if (isStartOfRegion(LS)) 1403 ExecutionCount = std::max(ExecutionCount, LS->Count); 1404 } 1405 1406 LineCoverageIterator &LineCoverageIterator::operator++() { 1407 if (Next == CD.end()) { 1408 Stats = LineCoverageStats(); 1409 Ended = true; 1410 return *this; 1411 } 1412 if (Segments.size()) 1413 WrappedSegment = Segments.back(); 1414 Segments.clear(); 1415 while (Next != CD.end() && Next->Line == Line) 1416 Segments.push_back(&*Next++); 1417 Stats = LineCoverageStats(Segments, WrappedSegment, Line); 1418 ++Line; 1419 return *this; 1420 } 1421 1422 static std::string getCoverageMapErrString(coveragemap_error Err, 1423 const std::string &ErrMsg = "") { 1424 std::string Msg; 1425 raw_string_ostream OS(Msg); 1426 1427 switch (Err) { 1428 case coveragemap_error::success: 1429 OS << "success"; 1430 break; 1431 case coveragemap_error::eof: 1432 OS << "end of File"; 1433 break; 1434 case coveragemap_error::no_data_found: 1435 OS << "no coverage data found"; 1436 break; 1437 case coveragemap_error::unsupported_version: 1438 OS << "unsupported coverage format version"; 1439 break; 1440 case coveragemap_error::truncated: 1441 OS << "truncated coverage data"; 1442 break; 1443 case coveragemap_error::malformed: 1444 OS << "malformed coverage data"; 1445 break; 1446 case coveragemap_error::decompression_failed: 1447 OS << "failed to decompress coverage data (zlib)"; 1448 break; 1449 case coveragemap_error::invalid_or_missing_arch_specifier: 1450 OS << "`-arch` specifier is invalid or missing for universal binary"; 1451 break; 1452 } 1453 1454 // If optional error message is not empty, append it to the message. 1455 if (!ErrMsg.empty()) 1456 OS << ": " << ErrMsg; 1457 1458 return Msg; 1459 } 1460 1461 namespace { 1462 1463 // FIXME: This class is only here to support the transition to llvm::Error. It 1464 // will be removed once this transition is complete. Clients should prefer to 1465 // deal with the Error value directly, rather than converting to error_code. 1466 class CoverageMappingErrorCategoryType : public std::error_category { 1467 const char *name() const noexcept override { return "llvm.coveragemap"; } 1468 std::string message(int IE) const override { 1469 return getCoverageMapErrString(static_cast<coveragemap_error>(IE)); 1470 } 1471 }; 1472 1473 } // end anonymous namespace 1474 1475 std::string CoverageMapError::message() const { 1476 return getCoverageMapErrString(Err, Msg); 1477 } 1478 1479 const std::error_category &llvm::coverage::coveragemap_category() { 1480 static CoverageMappingErrorCategoryType ErrorCategory; 1481 return ErrorCategory; 1482 } 1483 1484 char CoverageMapError::ID = 0; 1485