1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's and llvm's instrumentation based 10 // code coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMapping.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallBitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Object/BuildID.h" 23 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 24 #include "llvm/ProfileData/InstrProfReader.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/Errc.h" 27 #include "llvm/Support/Error.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MemoryBuffer.h" 30 #include "llvm/Support/VirtualFileSystem.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cmath> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <memory> 39 #include <optional> 40 #include <string> 41 #include <system_error> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 using namespace coverage; 47 48 #define DEBUG_TYPE "coverage-mapping" 49 50 Counter CounterExpressionBuilder::get(const CounterExpression &E) { 51 auto It = ExpressionIndices.find(E); 52 if (It != ExpressionIndices.end()) 53 return Counter::getExpression(It->second); 54 unsigned I = Expressions.size(); 55 Expressions.push_back(E); 56 ExpressionIndices[E] = I; 57 return Counter::getExpression(I); 58 } 59 60 void CounterExpressionBuilder::extractTerms(Counter C, int Factor, 61 SmallVectorImpl<Term> &Terms) { 62 switch (C.getKind()) { 63 case Counter::Zero: 64 break; 65 case Counter::CounterValueReference: 66 Terms.emplace_back(C.getCounterID(), Factor); 67 break; 68 case Counter::Expression: 69 const auto &E = Expressions[C.getExpressionID()]; 70 extractTerms(E.LHS, Factor, Terms); 71 extractTerms( 72 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); 73 break; 74 } 75 } 76 77 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { 78 // Gather constant terms. 79 SmallVector<Term, 32> Terms; 80 extractTerms(ExpressionTree, +1, Terms); 81 82 // If there are no terms, this is just a zero. The algorithm below assumes at 83 // least one term. 84 if (Terms.size() == 0) 85 return Counter::getZero(); 86 87 // Group the terms by counter ID. 88 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { 89 return LHS.CounterID < RHS.CounterID; 90 }); 91 92 // Combine terms by counter ID to eliminate counters that sum to zero. 93 auto Prev = Terms.begin(); 94 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { 95 if (I->CounterID == Prev->CounterID) { 96 Prev->Factor += I->Factor; 97 continue; 98 } 99 ++Prev; 100 *Prev = *I; 101 } 102 Terms.erase(++Prev, Terms.end()); 103 104 Counter C; 105 // Create additions. We do this before subtractions to avoid constructs like 106 // ((0 - X) + Y), as opposed to (Y - X). 107 for (auto T : Terms) { 108 if (T.Factor <= 0) 109 continue; 110 for (int I = 0; I < T.Factor; ++I) 111 if (C.isZero()) 112 C = Counter::getCounter(T.CounterID); 113 else 114 C = get(CounterExpression(CounterExpression::Add, C, 115 Counter::getCounter(T.CounterID))); 116 } 117 118 // Create subtractions. 119 for (auto T : Terms) { 120 if (T.Factor >= 0) 121 continue; 122 for (int I = 0; I < -T.Factor; ++I) 123 C = get(CounterExpression(CounterExpression::Subtract, C, 124 Counter::getCounter(T.CounterID))); 125 } 126 return C; 127 } 128 129 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { 130 auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS)); 131 return Simplify ? simplify(Cnt) : Cnt; 132 } 133 134 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, 135 bool Simplify) { 136 auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS)); 137 return Simplify ? simplify(Cnt) : Cnt; 138 } 139 140 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { 141 switch (C.getKind()) { 142 case Counter::Zero: 143 OS << '0'; 144 return; 145 case Counter::CounterValueReference: 146 OS << '#' << C.getCounterID(); 147 break; 148 case Counter::Expression: { 149 if (C.getExpressionID() >= Expressions.size()) 150 return; 151 const auto &E = Expressions[C.getExpressionID()]; 152 OS << '('; 153 dump(E.LHS, OS); 154 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); 155 dump(E.RHS, OS); 156 OS << ')'; 157 break; 158 } 159 } 160 if (CounterValues.empty()) 161 return; 162 Expected<int64_t> Value = evaluate(C); 163 if (auto E = Value.takeError()) { 164 consumeError(std::move(E)); 165 return; 166 } 167 OS << '[' << *Value << ']'; 168 } 169 170 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { 171 struct StackElem { 172 Counter ICounter; 173 int64_t LHS = 0; 174 enum { 175 KNeverVisited = 0, 176 KVisitedOnce = 1, 177 KVisitedTwice = 2, 178 } VisitCount = KNeverVisited; 179 }; 180 181 std::stack<StackElem> CounterStack; 182 CounterStack.push({C}); 183 184 int64_t LastPoppedValue; 185 186 while (!CounterStack.empty()) { 187 StackElem &Current = CounterStack.top(); 188 189 switch (Current.ICounter.getKind()) { 190 case Counter::Zero: 191 LastPoppedValue = 0; 192 CounterStack.pop(); 193 break; 194 case Counter::CounterValueReference: 195 if (Current.ICounter.getCounterID() >= CounterValues.size()) 196 return errorCodeToError(errc::argument_out_of_domain); 197 LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; 198 CounterStack.pop(); 199 break; 200 case Counter::Expression: { 201 if (Current.ICounter.getExpressionID() >= Expressions.size()) 202 return errorCodeToError(errc::argument_out_of_domain); 203 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 204 if (Current.VisitCount == StackElem::KNeverVisited) { 205 CounterStack.push(StackElem{E.LHS}); 206 Current.VisitCount = StackElem::KVisitedOnce; 207 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 208 Current.LHS = LastPoppedValue; 209 CounterStack.push(StackElem{E.RHS}); 210 Current.VisitCount = StackElem::KVisitedTwice; 211 } else { 212 int64_t LHS = Current.LHS; 213 int64_t RHS = LastPoppedValue; 214 LastPoppedValue = 215 E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; 216 CounterStack.pop(); 217 } 218 break; 219 } 220 } 221 } 222 223 return LastPoppedValue; 224 } 225 226 namespace { 227 228 class MCDCRecordProcessor { 229 /// A bitmap representing the executed test vectors for a boolean expression. 230 /// Each index of the bitmap corresponds to a possible test vector. An index 231 /// with a bit value of '1' indicates that the corresponding Test Vector 232 /// identified by that index was executed. 233 const BitVector &Bitmap; 234 235 /// Decision Region to which the ExecutedTestVectorBitmap applies. 236 const CounterMappingRegion &Region; 237 const mcdc::DecisionParameters &DecisionParams; 238 239 /// Array of branch regions corresponding each conditions in the boolean 240 /// expression. 241 ArrayRef<const CounterMappingRegion *> Branches; 242 243 /// Total number of conditions in the boolean expression. 244 unsigned NumConditions; 245 246 unsigned BitmapIdx; 247 248 /// Mapping of a condition ID to its corresponding branch params. 249 llvm::DenseMap<unsigned, mcdc::ConditionIDs> CondsMap; 250 251 /// Vector used to track whether a condition is constant folded. 252 MCDCRecord::BoolVector Folded; 253 254 /// Mapping of calculated MC/DC Independence Pairs for each condition. 255 MCDCRecord::TVPairMap IndependencePairs; 256 257 /// Actual executed Test Vectors for the boolean expression, based on 258 /// ExecutedTestVectorBitmap. 259 MCDCRecord::TestVectors ExecVectors; 260 261 public: 262 MCDCRecordProcessor(const BitVector &Bitmap, 263 const CounterMappingRegion &Region, 264 ArrayRef<const CounterMappingRegion *> Branches) 265 : Bitmap(Bitmap), Region(Region), 266 DecisionParams(Region.getDecisionParams()), Branches(Branches), 267 NumConditions(DecisionParams.NumConditions), 268 BitmapIdx(DecisionParams.BitmapIdx * CHAR_BIT), 269 Folded(NumConditions, false), IndependencePairs(NumConditions) {} 270 271 private: 272 // Walk the binary decision diagram and try assigning both false and true to 273 // each node. When a terminal node (ID == 0) is reached, fill in the value in 274 // the truth table. 275 void buildTestVector(MCDCRecord::TestVector &TV, unsigned ID, 276 unsigned Index) { 277 assert((Index & (1 << (ID - 1))) == 0); 278 279 for (auto MCDCCond : {MCDCRecord::MCDC_False, MCDCRecord::MCDC_True}) { 280 static_assert(MCDCRecord::MCDC_False == 0); 281 static_assert(MCDCRecord::MCDC_True == 1); 282 Index |= MCDCCond << (ID - 1); 283 TV[ID - 1] = MCDCCond; 284 auto NextID = CondsMap[ID][MCDCCond]; 285 if (NextID > 0) { 286 buildTestVector(TV, NextID, Index); 287 continue; 288 } 289 290 if (!Bitmap[BitmapIdx + Index]) 291 continue; 292 293 // Copy the completed test vector to the vector of testvectors. 294 ExecVectors.push_back(TV); 295 296 // The final value (T,F) is equal to the last non-dontcare state on the 297 // path (in a short-circuiting system). 298 ExecVectors.back().push_back(MCDCCond); 299 } 300 301 // Reset back to DontCare. 302 TV[ID - 1] = MCDCRecord::MCDC_DontCare; 303 } 304 305 /// Walk the bits in the bitmap. A bit set to '1' indicates that the test 306 /// vector at the corresponding index was executed during a test run. 307 void findExecutedTestVectors() { 308 // Walk the binary decision diagram to enumerate all possible test vectors. 309 // We start at the root node (ID == 1) with all values being DontCare. 310 // `Index` encodes the bitmask of true values and is initially 0. 311 MCDCRecord::TestVector TV(NumConditions, MCDCRecord::MCDC_DontCare); 312 buildTestVector(TV, 1, 0); 313 } 314 315 // Find an independence pair for each condition: 316 // - The condition is true in one test and false in the other. 317 // - The decision outcome is true one test and false in the other. 318 // - All other conditions' values must be equal or marked as "don't care". 319 void findIndependencePairs() { 320 unsigned NumTVs = ExecVectors.size(); 321 for (unsigned I = 1; I < NumTVs; ++I) { 322 const MCDCRecord::TestVector &A = ExecVectors[I]; 323 for (unsigned J = 0; J < I; ++J) { 324 const MCDCRecord::TestVector &B = ExecVectors[J]; 325 // Enumerate two execution vectors whose outcomes are different. 326 if (A[NumConditions] == B[NumConditions]) 327 continue; 328 unsigned Flip = NumConditions, Idx; 329 for (Idx = 0; Idx < NumConditions; ++Idx) { 330 MCDCRecord::CondState ACond = A[Idx], BCond = B[Idx]; 331 if (ACond == BCond || ACond == MCDCRecord::MCDC_DontCare || 332 BCond == MCDCRecord::MCDC_DontCare) 333 continue; 334 if (Flip != NumConditions) 335 break; 336 Flip = Idx; 337 } 338 // If the two vectors differ in exactly one condition, ignoring DontCare 339 // conditions, we have found an independence pair. 340 if (Idx == NumConditions && Flip != NumConditions) 341 IndependencePairs.insert({Flip, std::make_pair(J + 1, I + 1)}); 342 } 343 } 344 } 345 346 public: 347 /// Process the MC/DC Record in order to produce a result for a boolean 348 /// expression. This process includes tracking the conditions that comprise 349 /// the decision region, calculating the list of all possible test vectors, 350 /// marking the executed test vectors, and then finding an Independence Pair 351 /// out of the executed test vectors for each condition in the boolean 352 /// expression. A condition is tracked to ensure that its ID can be mapped to 353 /// its ordinal position in the boolean expression. The condition's source 354 /// location is also tracked, as well as whether it is constant folded (in 355 /// which case it is excuded from the metric). 356 MCDCRecord processMCDCRecord() { 357 unsigned I = 0; 358 MCDCRecord::CondIDMap PosToID; 359 MCDCRecord::LineColPairMap CondLoc; 360 361 // Walk the Record's BranchRegions (representing Conditions) in order to: 362 // - Hash the condition based on its corresponding ID. This will be used to 363 // calculate the test vectors. 364 // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its 365 // actual ID. This will be used to visualize the conditions in the 366 // correct order. 367 // - Keep track of the condition source location. This will be used to 368 // visualize where the condition is. 369 // - Record whether the condition is constant folded so that we exclude it 370 // from being measured. 371 for (const auto *B : Branches) { 372 const auto &BranchParams = B->getBranchParams(); 373 CondsMap[BranchParams.ID] = BranchParams.Conds; 374 PosToID[I] = BranchParams.ID - 1; 375 CondLoc[I] = B->startLoc(); 376 Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero()); 377 } 378 379 // Using Profile Bitmap from runtime, mark the executed test vectors. 380 findExecutedTestVectors(); 381 382 // Compare executed test vectors against each other to find an independence 383 // pairs for each condition. This processing takes the most time. 384 findIndependencePairs(); 385 386 // Record Test vectors, executed vectors, and independence pairs. 387 return MCDCRecord(Region, std::move(ExecVectors), 388 std::move(IndependencePairs), std::move(Folded), 389 std::move(PosToID), std::move(CondLoc)); 390 } 391 }; 392 393 } // namespace 394 395 Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( 396 const CounterMappingRegion &Region, 397 ArrayRef<const CounterMappingRegion *> Branches) { 398 399 MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches); 400 return MCDCProcessor.processMCDCRecord(); 401 } 402 403 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { 404 struct StackElem { 405 Counter ICounter; 406 int64_t LHS = 0; 407 enum { 408 KNeverVisited = 0, 409 KVisitedOnce = 1, 410 KVisitedTwice = 2, 411 } VisitCount = KNeverVisited; 412 }; 413 414 std::stack<StackElem> CounterStack; 415 CounterStack.push({C}); 416 417 int64_t LastPoppedValue; 418 419 while (!CounterStack.empty()) { 420 StackElem &Current = CounterStack.top(); 421 422 switch (Current.ICounter.getKind()) { 423 case Counter::Zero: 424 LastPoppedValue = 0; 425 CounterStack.pop(); 426 break; 427 case Counter::CounterValueReference: 428 LastPoppedValue = Current.ICounter.getCounterID(); 429 CounterStack.pop(); 430 break; 431 case Counter::Expression: { 432 if (Current.ICounter.getExpressionID() >= Expressions.size()) { 433 LastPoppedValue = 0; 434 CounterStack.pop(); 435 } else { 436 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 437 if (Current.VisitCount == StackElem::KNeverVisited) { 438 CounterStack.push(StackElem{E.LHS}); 439 Current.VisitCount = StackElem::KVisitedOnce; 440 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 441 Current.LHS = LastPoppedValue; 442 CounterStack.push(StackElem{E.RHS}); 443 Current.VisitCount = StackElem::KVisitedTwice; 444 } else { 445 int64_t LHS = Current.LHS; 446 int64_t RHS = LastPoppedValue; 447 LastPoppedValue = std::max(LHS, RHS); 448 CounterStack.pop(); 449 } 450 } 451 break; 452 } 453 } 454 } 455 456 return LastPoppedValue; 457 } 458 459 void FunctionRecordIterator::skipOtherFiles() { 460 while (Current != Records.end() && !Filename.empty() && 461 Filename != Current->Filenames[0]) 462 ++Current; 463 if (Current == Records.end()) 464 *this = FunctionRecordIterator(); 465 } 466 467 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( 468 StringRef Filename) const { 469 size_t FilenameHash = hash_value(Filename); 470 auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); 471 if (RecordIt == FilenameHash2RecordIndices.end()) 472 return {}; 473 return RecordIt->second; 474 } 475 476 static unsigned getMaxCounterID(const CounterMappingContext &Ctx, 477 const CoverageMappingRecord &Record) { 478 unsigned MaxCounterID = 0; 479 for (const auto &Region : Record.MappingRegions) { 480 MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); 481 } 482 return MaxCounterID; 483 } 484 485 /// Returns the bit count 486 static unsigned getMaxBitmapSize(const CounterMappingContext &Ctx, 487 const CoverageMappingRecord &Record) { 488 unsigned MaxBitmapIdx = 0; 489 unsigned NumConditions = 0; 490 // Scan max(BitmapIdx). 491 // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid 492 // and `MaxBitmapIdx is `unsigned`. `BitmapIdx` is unique in the record. 493 for (const auto &Region : reverse(Record.MappingRegions)) { 494 if (Region.Kind != CounterMappingRegion::MCDCDecisionRegion) 495 continue; 496 const auto &DecisionParams = Region.getDecisionParams(); 497 if (MaxBitmapIdx <= DecisionParams.BitmapIdx) { 498 MaxBitmapIdx = DecisionParams.BitmapIdx; 499 NumConditions = DecisionParams.NumConditions; 500 } 501 } 502 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT); 503 return MaxBitmapIdx * CHAR_BIT + SizeInBits; 504 } 505 506 namespace { 507 508 /// Collect Decisions, Branchs, and Expansions and associate them. 509 class MCDCDecisionRecorder { 510 private: 511 /// This holds the DecisionRegion and MCDCBranches under it. 512 /// Also traverses Expansion(s). 513 /// The Decision has the number of MCDCBranches and will complete 514 /// when it is filled with unique ConditionID of MCDCBranches. 515 struct DecisionRecord { 516 const CounterMappingRegion *DecisionRegion; 517 518 /// They are reflected from DecisionRegion for convenience. 519 mcdc::DecisionParameters DecisionParams; 520 LineColPair DecisionStartLoc; 521 LineColPair DecisionEndLoc; 522 523 /// This is passed to `MCDCRecordProcessor`, so this should be compatible 524 /// to`ArrayRef<const CounterMappingRegion *>`. 525 SmallVector<const CounterMappingRegion *> MCDCBranches; 526 527 /// IDs that are stored in MCDCBranches 528 /// Complete when all IDs (1 to NumConditions) are met. 529 DenseSet<mcdc::ConditionID> ConditionIDs; 530 531 /// Set of IDs of Expansion(s) that are relevant to DecisionRegion 532 /// and its children (via expansions). 533 /// FileID pointed by ExpandedFileID is dedicated to the expansion, so 534 /// the location in the expansion doesn't matter. 535 DenseSet<unsigned> ExpandedFileIDs; 536 537 DecisionRecord(const CounterMappingRegion &Decision) 538 : DecisionRegion(&Decision), 539 DecisionParams(Decision.getDecisionParams()), 540 DecisionStartLoc(Decision.startLoc()), 541 DecisionEndLoc(Decision.endLoc()) { 542 assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion); 543 } 544 545 /// Determine whether DecisionRecord dominates `R`. 546 bool dominates(const CounterMappingRegion &R) const { 547 // Determine whether `R` is included in `DecisionRegion`. 548 if (R.FileID == DecisionRegion->FileID && 549 R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc) 550 return true; 551 552 // Determine whether `R` is pointed by any of Expansions. 553 return ExpandedFileIDs.contains(R.FileID); 554 } 555 556 enum Result { 557 NotProcessed = 0, /// Irrelevant to this Decision 558 Processed, /// Added to this Decision 559 Completed, /// Added and filled this Decision 560 }; 561 562 /// Add Branch into the Decision 563 /// \param Branch expects MCDCBranchRegion 564 /// \returns NotProcessed/Processed/Completed 565 Result addBranch(const CounterMappingRegion &Branch) { 566 assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion); 567 568 auto ConditionID = Branch.getBranchParams().ID; 569 assert(ConditionID > 0 && "ConditionID should begin with 1"); 570 571 if (ConditionIDs.contains(ConditionID) || 572 ConditionID > DecisionParams.NumConditions) 573 return NotProcessed; 574 575 if (!this->dominates(Branch)) 576 return NotProcessed; 577 578 assert(MCDCBranches.size() < DecisionParams.NumConditions); 579 580 // Put `ID=1` in front of `MCDCBranches` for convenience 581 // even if `MCDCBranches` is not topological. 582 if (ConditionID == 1) 583 MCDCBranches.insert(MCDCBranches.begin(), &Branch); 584 else 585 MCDCBranches.push_back(&Branch); 586 587 // Mark `ID` as `assigned`. 588 ConditionIDs.insert(ConditionID); 589 590 // `Completed` when `MCDCBranches` is full 591 return (MCDCBranches.size() == DecisionParams.NumConditions ? Completed 592 : Processed); 593 } 594 595 /// Record Expansion if it is relevant to this Decision. 596 /// Each `Expansion` may nest. 597 /// \returns true if recorded. 598 bool recordExpansion(const CounterMappingRegion &Expansion) { 599 if (!this->dominates(Expansion)) 600 return false; 601 602 ExpandedFileIDs.insert(Expansion.ExpandedFileID); 603 return true; 604 } 605 }; 606 607 private: 608 /// Decisions in progress 609 /// DecisionRecord is added for each MCDCDecisionRegion. 610 /// DecisionRecord is removed when Decision is completed. 611 SmallVector<DecisionRecord> Decisions; 612 613 public: 614 ~MCDCDecisionRecorder() { 615 assert(Decisions.empty() && "All Decisions have not been resolved"); 616 } 617 618 /// Register Region and start recording. 619 void registerDecision(const CounterMappingRegion &Decision) { 620 Decisions.emplace_back(Decision); 621 } 622 623 void recordExpansion(const CounterMappingRegion &Expansion) { 624 any_of(Decisions, [&Expansion](auto &Decision) { 625 return Decision.recordExpansion(Expansion); 626 }); 627 } 628 629 using DecisionAndBranches = 630 std::pair<const CounterMappingRegion *, /// Decision 631 SmallVector<const CounterMappingRegion *> /// Branches 632 >; 633 634 /// Add MCDCBranchRegion to DecisionRecord. 635 /// \param Branch to be processed 636 /// \returns DecisionsAndBranches if DecisionRecord completed. 637 /// Or returns nullopt. 638 std::optional<DecisionAndBranches> 639 processBranch(const CounterMappingRegion &Branch) { 640 // Seek each Decision and apply Region to it. 641 for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end(); 642 DecisionIter != DecisionEnd; ++DecisionIter) 643 switch (DecisionIter->addBranch(Branch)) { 644 case DecisionRecord::NotProcessed: 645 continue; 646 case DecisionRecord::Processed: 647 return std::nullopt; 648 case DecisionRecord::Completed: 649 DecisionAndBranches Result = 650 std::make_pair(DecisionIter->DecisionRegion, 651 std::move(DecisionIter->MCDCBranches)); 652 Decisions.erase(DecisionIter); // No longer used. 653 return Result; 654 } 655 656 llvm_unreachable("Branch not found in Decisions"); 657 } 658 }; 659 660 } // namespace 661 662 Error CoverageMapping::loadFunctionRecord( 663 const CoverageMappingRecord &Record, 664 IndexedInstrProfReader &ProfileReader) { 665 StringRef OrigFuncName = Record.FunctionName; 666 if (OrigFuncName.empty()) 667 return make_error<CoverageMapError>(coveragemap_error::malformed, 668 "record function name is empty"); 669 670 if (Record.Filenames.empty()) 671 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); 672 else 673 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); 674 675 CounterMappingContext Ctx(Record.Expressions); 676 677 std::vector<uint64_t> Counts; 678 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, 679 Record.FunctionHash, Counts)) { 680 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 681 if (IPE == instrprof_error::hash_mismatch) { 682 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 683 Record.FunctionHash); 684 return Error::success(); 685 } 686 if (IPE != instrprof_error::unknown_function) 687 return make_error<InstrProfError>(IPE); 688 Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); 689 } 690 Ctx.setCounts(Counts); 691 692 BitVector Bitmap; 693 if (Error E = ProfileReader.getFunctionBitmap(Record.FunctionName, 694 Record.FunctionHash, Bitmap)) { 695 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 696 if (IPE == instrprof_error::hash_mismatch) { 697 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 698 Record.FunctionHash); 699 return Error::success(); 700 } 701 if (IPE != instrprof_error::unknown_function) 702 return make_error<InstrProfError>(IPE); 703 Bitmap = BitVector(getMaxBitmapSize(Ctx, Record)); 704 } 705 Ctx.setBitmap(std::move(Bitmap)); 706 707 assert(!Record.MappingRegions.empty() && "Function has no regions"); 708 709 // This coverage record is a zero region for a function that's unused in 710 // some TU, but used in a different TU. Ignore it. The coverage maps from the 711 // the other TU will either be loaded (providing full region counts) or they 712 // won't (in which case we don't unintuitively report functions as uncovered 713 // when they have non-zero counts in the profile). 714 if (Record.MappingRegions.size() == 1 && 715 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) 716 return Error::success(); 717 718 MCDCDecisionRecorder MCDCDecisions; 719 FunctionRecord Function(OrigFuncName, Record.Filenames); 720 for (const auto &Region : Record.MappingRegions) { 721 // MCDCDecisionRegion should be handled first since it overlaps with 722 // others inside. 723 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { 724 MCDCDecisions.registerDecision(Region); 725 continue; 726 } 727 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); 728 if (auto E = ExecutionCount.takeError()) { 729 consumeError(std::move(E)); 730 return Error::success(); 731 } 732 Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount); 733 if (auto E = AltExecutionCount.takeError()) { 734 consumeError(std::move(E)); 735 return Error::success(); 736 } 737 Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount); 738 739 // Record ExpansionRegion. 740 if (Region.Kind == CounterMappingRegion::ExpansionRegion) { 741 MCDCDecisions.recordExpansion(Region); 742 continue; 743 } 744 745 // Do nothing unless MCDCBranchRegion. 746 if (Region.Kind != CounterMappingRegion::MCDCBranchRegion) 747 continue; 748 749 auto Result = MCDCDecisions.processBranch(Region); 750 if (!Result) // Any Decision doesn't complete. 751 continue; 752 753 auto MCDCDecision = Result->first; 754 auto &MCDCBranches = Result->second; 755 756 // Since the bitmap identifies the executed test vectors for an MC/DC 757 // DecisionRegion, all of the information is now available to process. 758 // This is where the bulk of the MC/DC progressing takes place. 759 Expected<MCDCRecord> Record = 760 Ctx.evaluateMCDCRegion(*MCDCDecision, MCDCBranches); 761 if (auto E = Record.takeError()) { 762 consumeError(std::move(E)); 763 return Error::success(); 764 } 765 766 // Save the MC/DC Record so that it can be visualized later. 767 Function.pushMCDCRecord(std::move(*Record)); 768 } 769 770 // Don't create records for (filenames, function) pairs we've already seen. 771 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), 772 Record.Filenames.end()); 773 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) 774 return Error::success(); 775 776 Functions.push_back(std::move(Function)); 777 778 // Performance optimization: keep track of the indices of the function records 779 // which correspond to each filename. This can be used to substantially speed 780 // up queries for coverage info in a file. 781 unsigned RecordIndex = Functions.size() - 1; 782 for (StringRef Filename : Record.Filenames) { 783 auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; 784 // Note that there may be duplicates in the filename set for a function 785 // record, because of e.g. macro expansions in the function in which both 786 // the macro and the function are defined in the same file. 787 if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) 788 RecordIndices.push_back(RecordIndex); 789 } 790 791 return Error::success(); 792 } 793 794 // This function is for memory optimization by shortening the lifetimes 795 // of CoverageMappingReader instances. 796 Error CoverageMapping::loadFromReaders( 797 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 798 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { 799 for (const auto &CoverageReader : CoverageReaders) { 800 for (auto RecordOrErr : *CoverageReader) { 801 if (Error E = RecordOrErr.takeError()) 802 return E; 803 const auto &Record = *RecordOrErr; 804 if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) 805 return E; 806 } 807 } 808 return Error::success(); 809 } 810 811 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 812 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 813 IndexedInstrProfReader &ProfileReader) { 814 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 815 if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) 816 return std::move(E); 817 return std::move(Coverage); 818 } 819 820 // If E is a no_data_found error, returns success. Otherwise returns E. 821 static Error handleMaybeNoDataFoundError(Error E) { 822 return handleErrors( 823 std::move(E), [](const CoverageMapError &CME) { 824 if (CME.get() == coveragemap_error::no_data_found) 825 return static_cast<Error>(Error::success()); 826 return make_error<CoverageMapError>(CME.get(), CME.getMessage()); 827 }); 828 } 829 830 Error CoverageMapping::loadFromFile( 831 StringRef Filename, StringRef Arch, StringRef CompilationDir, 832 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, 833 bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { 834 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( 835 Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); 836 if (std::error_code EC = CovMappingBufOrErr.getError()) 837 return createFileError(Filename, errorCodeToError(EC)); 838 MemoryBufferRef CovMappingBufRef = 839 CovMappingBufOrErr.get()->getMemBufferRef(); 840 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; 841 842 SmallVector<object::BuildIDRef> BinaryIDs; 843 auto CoverageReadersOrErr = BinaryCoverageReader::create( 844 CovMappingBufRef, Arch, Buffers, CompilationDir, 845 FoundBinaryIDs ? &BinaryIDs : nullptr); 846 if (Error E = CoverageReadersOrErr.takeError()) { 847 E = handleMaybeNoDataFoundError(std::move(E)); 848 if (E) 849 return createFileError(Filename, std::move(E)); 850 return E; 851 } 852 853 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; 854 for (auto &Reader : CoverageReadersOrErr.get()) 855 Readers.push_back(std::move(Reader)); 856 if (FoundBinaryIDs && !Readers.empty()) { 857 llvm::append_range(*FoundBinaryIDs, 858 llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) { 859 return object::BuildID(BID); 860 })); 861 } 862 DataFound |= !Readers.empty(); 863 if (Error E = loadFromReaders(Readers, ProfileReader, Coverage)) 864 return createFileError(Filename, std::move(E)); 865 return Error::success(); 866 } 867 868 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 869 ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename, 870 vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir, 871 const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { 872 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS); 873 if (Error E = ProfileReaderOrErr.takeError()) 874 return createFileError(ProfileFilename, std::move(E)); 875 auto ProfileReader = std::move(ProfileReaderOrErr.get()); 876 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 877 bool DataFound = false; 878 879 auto GetArch = [&](size_t Idx) { 880 if (Arches.empty()) 881 return StringRef(); 882 if (Arches.size() == 1) 883 return Arches.front(); 884 return Arches[Idx]; 885 }; 886 887 SmallVector<object::BuildID> FoundBinaryIDs; 888 for (const auto &File : llvm::enumerate(ObjectFilenames)) { 889 if (Error E = 890 loadFromFile(File.value(), GetArch(File.index()), CompilationDir, 891 *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs)) 892 return std::move(E); 893 } 894 895 if (BIDFetcher) { 896 std::vector<object::BuildID> ProfileBinaryIDs; 897 if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs)) 898 return createFileError(ProfileFilename, std::move(E)); 899 900 SmallVector<object::BuildIDRef> BinaryIDsToFetch; 901 if (!ProfileBinaryIDs.empty()) { 902 const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { 903 return std::lexicographical_compare(A.begin(), A.end(), B.begin(), 904 B.end()); 905 }; 906 llvm::sort(FoundBinaryIDs, Compare); 907 std::set_difference( 908 ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(), 909 FoundBinaryIDs.begin(), FoundBinaryIDs.end(), 910 std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare); 911 } 912 913 for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { 914 std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID); 915 if (PathOpt) { 916 std::string Path = std::move(*PathOpt); 917 StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); 918 if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader, 919 *Coverage, DataFound)) 920 return std::move(E); 921 } else if (CheckBinaryIDs) { 922 return createFileError( 923 ProfileFilename, 924 createStringError(errc::no_such_file_or_directory, 925 "Missing binary ID: " + 926 llvm::toHex(BinaryID, /*LowerCase=*/true))); 927 } 928 } 929 } 930 931 if (!DataFound) 932 return createFileError( 933 join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "), 934 make_error<CoverageMapError>(coveragemap_error::no_data_found)); 935 return std::move(Coverage); 936 } 937 938 namespace { 939 940 /// Distributes functions into instantiation sets. 941 /// 942 /// An instantiation set is a collection of functions that have the same source 943 /// code, ie, template functions specializations. 944 class FunctionInstantiationSetCollector { 945 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; 946 MapT InstantiatedFunctions; 947 948 public: 949 void insert(const FunctionRecord &Function, unsigned FileID) { 950 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); 951 while (I != E && I->FileID != FileID) 952 ++I; 953 assert(I != E && "function does not cover the given file"); 954 auto &Functions = InstantiatedFunctions[I->startLoc()]; 955 Functions.push_back(&Function); 956 } 957 958 MapT::iterator begin() { return InstantiatedFunctions.begin(); } 959 MapT::iterator end() { return InstantiatedFunctions.end(); } 960 }; 961 962 class SegmentBuilder { 963 std::vector<CoverageSegment> &Segments; 964 SmallVector<const CountedRegion *, 8> ActiveRegions; 965 966 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} 967 968 /// Emit a segment with the count from \p Region starting at \p StartLoc. 969 // 970 /// \p IsRegionEntry: The segment is at the start of a new non-gap region. 971 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. 972 void startSegment(const CountedRegion &Region, LineColPair StartLoc, 973 bool IsRegionEntry, bool EmitSkippedRegion = false) { 974 bool HasCount = !EmitSkippedRegion && 975 (Region.Kind != CounterMappingRegion::SkippedRegion); 976 977 // If the new segment wouldn't affect coverage rendering, skip it. 978 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { 979 const auto &Last = Segments.back(); 980 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && 981 !Last.IsRegionEntry) 982 return; 983 } 984 985 if (HasCount) 986 Segments.emplace_back(StartLoc.first, StartLoc.second, 987 Region.ExecutionCount, IsRegionEntry, 988 Region.Kind == CounterMappingRegion::GapRegion); 989 else 990 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); 991 992 LLVM_DEBUG({ 993 const auto &Last = Segments.back(); 994 dbgs() << "Segment at " << Last.Line << ":" << Last.Col 995 << " (count = " << Last.Count << ")" 996 << (Last.IsRegionEntry ? ", RegionEntry" : "") 997 << (!Last.HasCount ? ", Skipped" : "") 998 << (Last.IsGapRegion ? ", Gap" : "") << "\n"; 999 }); 1000 } 1001 1002 /// Emit segments for active regions which end before \p Loc. 1003 /// 1004 /// \p Loc: The start location of the next region. If std::nullopt, all active 1005 /// regions are completed. 1006 /// \p FirstCompletedRegion: Index of the first completed region. 1007 void completeRegionsUntil(std::optional<LineColPair> Loc, 1008 unsigned FirstCompletedRegion) { 1009 // Sort the completed regions by end location. This makes it simple to 1010 // emit closing segments in sorted order. 1011 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; 1012 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), 1013 [](const CountedRegion *L, const CountedRegion *R) { 1014 return L->endLoc() < R->endLoc(); 1015 }); 1016 1017 // Emit segments for all completed regions. 1018 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; 1019 ++I) { 1020 const auto *CompletedRegion = ActiveRegions[I]; 1021 assert((!Loc || CompletedRegion->endLoc() <= *Loc) && 1022 "Completed region ends after start of new region"); 1023 1024 const auto *PrevCompletedRegion = ActiveRegions[I - 1]; 1025 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); 1026 1027 // Don't emit any more segments if they start where the new region begins. 1028 if (Loc && CompletedSegmentLoc == *Loc) 1029 break; 1030 1031 // Don't emit a segment if the next completed region ends at the same 1032 // location as this one. 1033 if (CompletedSegmentLoc == CompletedRegion->endLoc()) 1034 continue; 1035 1036 // Use the count from the last completed region which ends at this loc. 1037 for (unsigned J = I + 1; J < E; ++J) 1038 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) 1039 CompletedRegion = ActiveRegions[J]; 1040 1041 startSegment(*CompletedRegion, CompletedSegmentLoc, false); 1042 } 1043 1044 auto Last = ActiveRegions.back(); 1045 if (FirstCompletedRegion && Last->endLoc() != *Loc) { 1046 // If there's a gap after the end of the last completed region and the 1047 // start of the new region, use the last active region to fill the gap. 1048 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), 1049 false); 1050 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { 1051 // Emit a skipped segment if there are no more active regions. This 1052 // ensures that gaps between functions are marked correctly. 1053 startSegment(*Last, Last->endLoc(), false, true); 1054 } 1055 1056 // Pop the completed regions. 1057 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); 1058 } 1059 1060 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { 1061 for (const auto &CR : enumerate(Regions)) { 1062 auto CurStartLoc = CR.value().startLoc(); 1063 1064 // Active regions which end before the current region need to be popped. 1065 auto CompletedRegions = 1066 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), 1067 [&](const CountedRegion *Region) { 1068 return !(Region->endLoc() <= CurStartLoc); 1069 }); 1070 if (CompletedRegions != ActiveRegions.end()) { 1071 unsigned FirstCompletedRegion = 1072 std::distance(ActiveRegions.begin(), CompletedRegions); 1073 completeRegionsUntil(CurStartLoc, FirstCompletedRegion); 1074 } 1075 1076 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; 1077 1078 // Try to emit a segment for the current region. 1079 if (CurStartLoc == CR.value().endLoc()) { 1080 // Avoid making zero-length regions active. If it's the last region, 1081 // emit a skipped segment. Otherwise use its predecessor's count. 1082 const bool Skipped = 1083 (CR.index() + 1) == Regions.size() || 1084 CR.value().Kind == CounterMappingRegion::SkippedRegion; 1085 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), 1086 CurStartLoc, !GapRegion, Skipped); 1087 // If it is skipped segment, create a segment with last pushed 1088 // regions's count at CurStartLoc. 1089 if (Skipped && !ActiveRegions.empty()) 1090 startSegment(*ActiveRegions.back(), CurStartLoc, false); 1091 continue; 1092 } 1093 if (CR.index() + 1 == Regions.size() || 1094 CurStartLoc != Regions[CR.index() + 1].startLoc()) { 1095 // Emit a segment if the next region doesn't start at the same location 1096 // as this one. 1097 startSegment(CR.value(), CurStartLoc, !GapRegion); 1098 } 1099 1100 // This region is active (i.e not completed). 1101 ActiveRegions.push_back(&CR.value()); 1102 } 1103 1104 // Complete any remaining active regions. 1105 if (!ActiveRegions.empty()) 1106 completeRegionsUntil(std::nullopt, 0); 1107 } 1108 1109 /// Sort a nested sequence of regions from a single file. 1110 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { 1111 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { 1112 if (LHS.startLoc() != RHS.startLoc()) 1113 return LHS.startLoc() < RHS.startLoc(); 1114 if (LHS.endLoc() != RHS.endLoc()) 1115 // When LHS completely contains RHS, we sort LHS first. 1116 return RHS.endLoc() < LHS.endLoc(); 1117 // If LHS and RHS cover the same area, we need to sort them according 1118 // to their kinds so that the most suitable region will become "active" 1119 // in combineRegions(). Because we accumulate counter values only from 1120 // regions of the same kind as the first region of the area, prefer 1121 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. 1122 static_assert(CounterMappingRegion::CodeRegion < 1123 CounterMappingRegion::ExpansionRegion && 1124 CounterMappingRegion::ExpansionRegion < 1125 CounterMappingRegion::SkippedRegion, 1126 "Unexpected order of region kind values"); 1127 return LHS.Kind < RHS.Kind; 1128 }); 1129 } 1130 1131 /// Combine counts of regions which cover the same area. 1132 static ArrayRef<CountedRegion> 1133 combineRegions(MutableArrayRef<CountedRegion> Regions) { 1134 if (Regions.empty()) 1135 return Regions; 1136 auto Active = Regions.begin(); 1137 auto End = Regions.end(); 1138 for (auto I = Regions.begin() + 1; I != End; ++I) { 1139 if (Active->startLoc() != I->startLoc() || 1140 Active->endLoc() != I->endLoc()) { 1141 // Shift to the next region. 1142 ++Active; 1143 if (Active != I) 1144 *Active = *I; 1145 continue; 1146 } 1147 // Merge duplicate region. 1148 // If CodeRegions and ExpansionRegions cover the same area, it's probably 1149 // a macro which is fully expanded to another macro. In that case, we need 1150 // to accumulate counts only from CodeRegions, or else the area will be 1151 // counted twice. 1152 // On the other hand, a macro may have a nested macro in its body. If the 1153 // outer macro is used several times, the ExpansionRegion for the nested 1154 // macro will also be added several times. These ExpansionRegions cover 1155 // the same source locations and have to be combined to reach the correct 1156 // value for that area. 1157 // We add counts of the regions of the same kind as the active region 1158 // to handle the both situations. 1159 if (I->Kind == Active->Kind) 1160 Active->ExecutionCount += I->ExecutionCount; 1161 } 1162 return Regions.drop_back(std::distance(++Active, End)); 1163 } 1164 1165 public: 1166 /// Build a sorted list of CoverageSegments from a list of Regions. 1167 static std::vector<CoverageSegment> 1168 buildSegments(MutableArrayRef<CountedRegion> Regions) { 1169 std::vector<CoverageSegment> Segments; 1170 SegmentBuilder Builder(Segments); 1171 1172 sortNestedRegions(Regions); 1173 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); 1174 1175 LLVM_DEBUG({ 1176 dbgs() << "Combined regions:\n"; 1177 for (const auto &CR : CombinedRegions) 1178 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " 1179 << CR.LineEnd << ":" << CR.ColumnEnd 1180 << " (count=" << CR.ExecutionCount << ")\n"; 1181 }); 1182 1183 Builder.buildSegmentsImpl(CombinedRegions); 1184 1185 #ifndef NDEBUG 1186 for (unsigned I = 1, E = Segments.size(); I < E; ++I) { 1187 const auto &L = Segments[I - 1]; 1188 const auto &R = Segments[I]; 1189 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { 1190 if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) 1191 continue; 1192 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col 1193 << " followed by " << R.Line << ":" << R.Col << "\n"); 1194 assert(false && "Coverage segments not unique or sorted"); 1195 } 1196 } 1197 #endif 1198 1199 return Segments; 1200 } 1201 }; 1202 1203 } // end anonymous namespace 1204 1205 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { 1206 std::vector<StringRef> Filenames; 1207 for (const auto &Function : getCoveredFunctions()) 1208 llvm::append_range(Filenames, Function.Filenames); 1209 llvm::sort(Filenames); 1210 auto Last = std::unique(Filenames.begin(), Filenames.end()); 1211 Filenames.erase(Last, Filenames.end()); 1212 return Filenames; 1213 } 1214 1215 static SmallBitVector gatherFileIDs(StringRef SourceFile, 1216 const FunctionRecord &Function) { 1217 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); 1218 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) 1219 if (SourceFile == Function.Filenames[I]) 1220 FilenameEquivalence[I] = true; 1221 return FilenameEquivalence; 1222 } 1223 1224 /// Return the ID of the file where the definition of the function is located. 1225 static std::optional<unsigned> 1226 findMainViewFileID(const FunctionRecord &Function) { 1227 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); 1228 for (const auto &CR : Function.CountedRegions) 1229 if (CR.Kind == CounterMappingRegion::ExpansionRegion) 1230 IsNotExpandedFile[CR.ExpandedFileID] = false; 1231 int I = IsNotExpandedFile.find_first(); 1232 if (I == -1) 1233 return std::nullopt; 1234 return I; 1235 } 1236 1237 /// Check if SourceFile is the file that contains the definition of 1238 /// the Function. Return the ID of the file in that case or std::nullopt 1239 /// otherwise. 1240 static std::optional<unsigned> 1241 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { 1242 std::optional<unsigned> I = findMainViewFileID(Function); 1243 if (I && SourceFile == Function.Filenames[*I]) 1244 return I; 1245 return std::nullopt; 1246 } 1247 1248 static bool isExpansion(const CountedRegion &R, unsigned FileID) { 1249 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; 1250 } 1251 1252 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { 1253 CoverageData FileCoverage(Filename); 1254 std::vector<CountedRegion> Regions; 1255 1256 // Look up the function records in the given file. Due to hash collisions on 1257 // the filename, we may get back some records that are not in the file. 1258 ArrayRef<unsigned> RecordIndices = 1259 getImpreciseRecordIndicesForFilename(Filename); 1260 for (unsigned RecordIndex : RecordIndices) { 1261 const FunctionRecord &Function = Functions[RecordIndex]; 1262 auto MainFileID = findMainViewFileID(Filename, Function); 1263 auto FileIDs = gatherFileIDs(Filename, Function); 1264 for (const auto &CR : Function.CountedRegions) 1265 if (FileIDs.test(CR.FileID)) { 1266 Regions.push_back(CR); 1267 if (MainFileID && isExpansion(CR, *MainFileID)) 1268 FileCoverage.Expansions.emplace_back(CR, Function); 1269 } 1270 // Capture branch regions specific to the function (excluding expansions). 1271 for (const auto &CR : Function.CountedBranchRegions) 1272 if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID)) 1273 FileCoverage.BranchRegions.push_back(CR); 1274 // Capture MCDC records specific to the function. 1275 for (const auto &MR : Function.MCDCRecords) 1276 if (FileIDs.test(MR.getDecisionRegion().FileID)) 1277 FileCoverage.MCDCRecords.push_back(MR); 1278 } 1279 1280 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); 1281 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1282 1283 return FileCoverage; 1284 } 1285 1286 std::vector<InstantiationGroup> 1287 CoverageMapping::getInstantiationGroups(StringRef Filename) const { 1288 FunctionInstantiationSetCollector InstantiationSetCollector; 1289 // Look up the function records in the given file. Due to hash collisions on 1290 // the filename, we may get back some records that are not in the file. 1291 ArrayRef<unsigned> RecordIndices = 1292 getImpreciseRecordIndicesForFilename(Filename); 1293 for (unsigned RecordIndex : RecordIndices) { 1294 const FunctionRecord &Function = Functions[RecordIndex]; 1295 auto MainFileID = findMainViewFileID(Filename, Function); 1296 if (!MainFileID) 1297 continue; 1298 InstantiationSetCollector.insert(Function, *MainFileID); 1299 } 1300 1301 std::vector<InstantiationGroup> Result; 1302 for (auto &InstantiationSet : InstantiationSetCollector) { 1303 InstantiationGroup IG{InstantiationSet.first.first, 1304 InstantiationSet.first.second, 1305 std::move(InstantiationSet.second)}; 1306 Result.emplace_back(std::move(IG)); 1307 } 1308 return Result; 1309 } 1310 1311 CoverageData 1312 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { 1313 auto MainFileID = findMainViewFileID(Function); 1314 if (!MainFileID) 1315 return CoverageData(); 1316 1317 CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); 1318 std::vector<CountedRegion> Regions; 1319 for (const auto &CR : Function.CountedRegions) 1320 if (CR.FileID == *MainFileID) { 1321 Regions.push_back(CR); 1322 if (isExpansion(CR, *MainFileID)) 1323 FunctionCoverage.Expansions.emplace_back(CR, Function); 1324 } 1325 // Capture branch regions specific to the function (excluding expansions). 1326 for (const auto &CR : Function.CountedBranchRegions) 1327 if (CR.FileID == *MainFileID) 1328 FunctionCoverage.BranchRegions.push_back(CR); 1329 1330 // Capture MCDC records specific to the function. 1331 for (const auto &MR : Function.MCDCRecords) 1332 if (MR.getDecisionRegion().FileID == *MainFileID) 1333 FunctionCoverage.MCDCRecords.push_back(MR); 1334 1335 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name 1336 << "\n"); 1337 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1338 1339 return FunctionCoverage; 1340 } 1341 1342 CoverageData CoverageMapping::getCoverageForExpansion( 1343 const ExpansionRecord &Expansion) const { 1344 CoverageData ExpansionCoverage( 1345 Expansion.Function.Filenames[Expansion.FileID]); 1346 std::vector<CountedRegion> Regions; 1347 for (const auto &CR : Expansion.Function.CountedRegions) 1348 if (CR.FileID == Expansion.FileID) { 1349 Regions.push_back(CR); 1350 if (isExpansion(CR, Expansion.FileID)) 1351 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); 1352 } 1353 for (const auto &CR : Expansion.Function.CountedBranchRegions) 1354 // Capture branch regions that only pertain to the corresponding expansion. 1355 if (CR.FileID == Expansion.FileID) 1356 ExpansionCoverage.BranchRegions.push_back(CR); 1357 1358 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " 1359 << Expansion.FileID << "\n"); 1360 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1361 1362 return ExpansionCoverage; 1363 } 1364 1365 LineCoverageStats::LineCoverageStats( 1366 ArrayRef<const CoverageSegment *> LineSegments, 1367 const CoverageSegment *WrappedSegment, unsigned Line) 1368 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), 1369 LineSegments(LineSegments), WrappedSegment(WrappedSegment) { 1370 // Find the minimum number of regions which start in this line. 1371 unsigned MinRegionCount = 0; 1372 auto isStartOfRegion = [](const CoverageSegment *S) { 1373 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; 1374 }; 1375 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) 1376 if (isStartOfRegion(LineSegments[I])) 1377 ++MinRegionCount; 1378 1379 bool StartOfSkippedRegion = !LineSegments.empty() && 1380 !LineSegments.front()->HasCount && 1381 LineSegments.front()->IsRegionEntry; 1382 1383 HasMultipleRegions = MinRegionCount > 1; 1384 Mapped = 1385 !StartOfSkippedRegion && 1386 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); 1387 1388 // if there is any starting segment at this line with a counter, it must be 1389 // mapped 1390 Mapped |= std::any_of( 1391 LineSegments.begin(), LineSegments.end(), 1392 [](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; }); 1393 1394 if (!Mapped) { 1395 return; 1396 } 1397 1398 // Pick the max count from the non-gap, region entry segments and the 1399 // wrapped count. 1400 if (WrappedSegment) 1401 ExecutionCount = WrappedSegment->Count; 1402 if (!MinRegionCount) 1403 return; 1404 for (const auto *LS : LineSegments) 1405 if (isStartOfRegion(LS)) 1406 ExecutionCount = std::max(ExecutionCount, LS->Count); 1407 } 1408 1409 LineCoverageIterator &LineCoverageIterator::operator++() { 1410 if (Next == CD.end()) { 1411 Stats = LineCoverageStats(); 1412 Ended = true; 1413 return *this; 1414 } 1415 if (Segments.size()) 1416 WrappedSegment = Segments.back(); 1417 Segments.clear(); 1418 while (Next != CD.end() && Next->Line == Line) 1419 Segments.push_back(&*Next++); 1420 Stats = LineCoverageStats(Segments, WrappedSegment, Line); 1421 ++Line; 1422 return *this; 1423 } 1424 1425 static std::string getCoverageMapErrString(coveragemap_error Err, 1426 const std::string &ErrMsg = "") { 1427 std::string Msg; 1428 raw_string_ostream OS(Msg); 1429 1430 switch (Err) { 1431 case coveragemap_error::success: 1432 OS << "success"; 1433 break; 1434 case coveragemap_error::eof: 1435 OS << "end of File"; 1436 break; 1437 case coveragemap_error::no_data_found: 1438 OS << "no coverage data found"; 1439 break; 1440 case coveragemap_error::unsupported_version: 1441 OS << "unsupported coverage format version"; 1442 break; 1443 case coveragemap_error::truncated: 1444 OS << "truncated coverage data"; 1445 break; 1446 case coveragemap_error::malformed: 1447 OS << "malformed coverage data"; 1448 break; 1449 case coveragemap_error::decompression_failed: 1450 OS << "failed to decompress coverage data (zlib)"; 1451 break; 1452 case coveragemap_error::invalid_or_missing_arch_specifier: 1453 OS << "`-arch` specifier is invalid or missing for universal binary"; 1454 break; 1455 } 1456 1457 // If optional error message is not empty, append it to the message. 1458 if (!ErrMsg.empty()) 1459 OS << ": " << ErrMsg; 1460 1461 return Msg; 1462 } 1463 1464 namespace { 1465 1466 // FIXME: This class is only here to support the transition to llvm::Error. It 1467 // will be removed once this transition is complete. Clients should prefer to 1468 // deal with the Error value directly, rather than converting to error_code. 1469 class CoverageMappingErrorCategoryType : public std::error_category { 1470 const char *name() const noexcept override { return "llvm.coveragemap"; } 1471 std::string message(int IE) const override { 1472 return getCoverageMapErrString(static_cast<coveragemap_error>(IE)); 1473 } 1474 }; 1475 1476 } // end anonymous namespace 1477 1478 std::string CoverageMapError::message() const { 1479 return getCoverageMapErrString(Err, Msg); 1480 } 1481 1482 const std::error_category &llvm::coverage::coveragemap_category() { 1483 static CoverageMappingErrorCategoryType ErrorCategory; 1484 return ErrorCategory; 1485 } 1486 1487 char CoverageMapError::ID = 0; 1488