1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's and llvm's instrumentation based 10 // code coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMapping.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallBitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Object/BuildID.h" 23 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 24 #include "llvm/ProfileData/InstrProfReader.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/Errc.h" 27 #include "llvm/Support/Error.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MemoryBuffer.h" 30 #include "llvm/Support/VirtualFileSystem.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cmath> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <memory> 39 #include <optional> 40 #include <string> 41 #include <system_error> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 using namespace coverage; 47 48 #define DEBUG_TYPE "coverage-mapping" 49 50 Counter CounterExpressionBuilder::get(const CounterExpression &E) { 51 auto It = ExpressionIndices.find(E); 52 if (It != ExpressionIndices.end()) 53 return Counter::getExpression(It->second); 54 unsigned I = Expressions.size(); 55 Expressions.push_back(E); 56 ExpressionIndices[E] = I; 57 return Counter::getExpression(I); 58 } 59 60 void CounterExpressionBuilder::extractTerms(Counter C, int Factor, 61 SmallVectorImpl<Term> &Terms) { 62 switch (C.getKind()) { 63 case Counter::Zero: 64 break; 65 case Counter::CounterValueReference: 66 Terms.emplace_back(C.getCounterID(), Factor); 67 break; 68 case Counter::Expression: 69 const auto &E = Expressions[C.getExpressionID()]; 70 extractTerms(E.LHS, Factor, Terms); 71 extractTerms( 72 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); 73 break; 74 } 75 } 76 77 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { 78 // Gather constant terms. 79 SmallVector<Term, 32> Terms; 80 extractTerms(ExpressionTree, +1, Terms); 81 82 // If there are no terms, this is just a zero. The algorithm below assumes at 83 // least one term. 84 if (Terms.size() == 0) 85 return Counter::getZero(); 86 87 // Group the terms by counter ID. 88 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { 89 return LHS.CounterID < RHS.CounterID; 90 }); 91 92 // Combine terms by counter ID to eliminate counters that sum to zero. 93 auto Prev = Terms.begin(); 94 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { 95 if (I->CounterID == Prev->CounterID) { 96 Prev->Factor += I->Factor; 97 continue; 98 } 99 ++Prev; 100 *Prev = *I; 101 } 102 Terms.erase(++Prev, Terms.end()); 103 104 Counter C; 105 // Create additions. We do this before subtractions to avoid constructs like 106 // ((0 - X) + Y), as opposed to (Y - X). 107 for (auto T : Terms) { 108 if (T.Factor <= 0) 109 continue; 110 for (int I = 0; I < T.Factor; ++I) 111 if (C.isZero()) 112 C = Counter::getCounter(T.CounterID); 113 else 114 C = get(CounterExpression(CounterExpression::Add, C, 115 Counter::getCounter(T.CounterID))); 116 } 117 118 // Create subtractions. 119 for (auto T : Terms) { 120 if (T.Factor >= 0) 121 continue; 122 for (int I = 0; I < -T.Factor; ++I) 123 C = get(CounterExpression(CounterExpression::Subtract, C, 124 Counter::getCounter(T.CounterID))); 125 } 126 return C; 127 } 128 129 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { 130 auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS)); 131 return Simplify ? simplify(Cnt) : Cnt; 132 } 133 134 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, 135 bool Simplify) { 136 auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS)); 137 return Simplify ? simplify(Cnt) : Cnt; 138 } 139 140 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { 141 switch (C.getKind()) { 142 case Counter::Zero: 143 OS << '0'; 144 return; 145 case Counter::CounterValueReference: 146 OS << '#' << C.getCounterID(); 147 break; 148 case Counter::Expression: { 149 if (C.getExpressionID() >= Expressions.size()) 150 return; 151 const auto &E = Expressions[C.getExpressionID()]; 152 OS << '('; 153 dump(E.LHS, OS); 154 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); 155 dump(E.RHS, OS); 156 OS << ')'; 157 break; 158 } 159 } 160 if (CounterValues.empty()) 161 return; 162 Expected<int64_t> Value = evaluate(C); 163 if (auto E = Value.takeError()) { 164 consumeError(std::move(E)); 165 return; 166 } 167 OS << '[' << *Value << ']'; 168 } 169 170 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { 171 struct StackElem { 172 Counter ICounter; 173 int64_t LHS = 0; 174 enum { 175 KNeverVisited = 0, 176 KVisitedOnce = 1, 177 KVisitedTwice = 2, 178 } VisitCount = KNeverVisited; 179 }; 180 181 std::stack<StackElem> CounterStack; 182 CounterStack.push({C}); 183 184 int64_t LastPoppedValue; 185 186 while (!CounterStack.empty()) { 187 StackElem &Current = CounterStack.top(); 188 189 switch (Current.ICounter.getKind()) { 190 case Counter::Zero: 191 LastPoppedValue = 0; 192 CounterStack.pop(); 193 break; 194 case Counter::CounterValueReference: 195 if (Current.ICounter.getCounterID() >= CounterValues.size()) 196 return errorCodeToError(errc::argument_out_of_domain); 197 LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; 198 CounterStack.pop(); 199 break; 200 case Counter::Expression: { 201 if (Current.ICounter.getExpressionID() >= Expressions.size()) 202 return errorCodeToError(errc::argument_out_of_domain); 203 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 204 if (Current.VisitCount == StackElem::KNeverVisited) { 205 CounterStack.push(StackElem{E.LHS}); 206 Current.VisitCount = StackElem::KVisitedOnce; 207 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 208 Current.LHS = LastPoppedValue; 209 CounterStack.push(StackElem{E.RHS}); 210 Current.VisitCount = StackElem::KVisitedTwice; 211 } else { 212 int64_t LHS = Current.LHS; 213 int64_t RHS = LastPoppedValue; 214 LastPoppedValue = 215 E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; 216 CounterStack.pop(); 217 } 218 break; 219 } 220 } 221 } 222 223 return LastPoppedValue; 224 } 225 226 mcdc::TVIdxBuilder::TVIdxBuilder(const SmallVectorImpl<ConditionIDs> &NextIDs, 227 int Offset) 228 : Indices(NextIDs.size()) { 229 // Construct Nodes and set up each InCount 230 auto N = NextIDs.size(); 231 SmallVector<MCDCNode> Nodes(N); 232 for (unsigned ID = 0; ID < N; ++ID) { 233 for (unsigned C = 0; C < 2; ++C) { 234 #ifndef NDEBUG 235 Indices[ID][C] = INT_MIN; 236 #endif 237 auto NextID = NextIDs[ID][C]; 238 Nodes[ID].NextIDs[C] = NextID; 239 if (NextID >= 0) 240 ++Nodes[NextID].InCount; 241 } 242 } 243 244 // Sort key ordered by <-Width, Ord> 245 SmallVector<std::tuple<int, /// -Width 246 unsigned, /// Ord 247 int, /// ID 248 unsigned /// Cond (0 or 1) 249 >> 250 Decisions; 251 252 // Traverse Nodes to assign Idx 253 SmallVector<int> Q; 254 assert(Nodes[0].InCount == 0); 255 Nodes[0].Width = 1; 256 Q.push_back(0); 257 258 unsigned Ord = 0; 259 while (!Q.empty()) { 260 auto IID = Q.begin(); 261 int ID = *IID; 262 Q.erase(IID); 263 auto &Node = Nodes[ID]; 264 assert(Node.Width > 0); 265 266 for (unsigned I = 0; I < 2; ++I) { 267 auto NextID = Node.NextIDs[I]; 268 assert(NextID != 0 && "NextID should not point to the top"); 269 if (NextID < 0) { 270 // Decision 271 Decisions.emplace_back(-Node.Width, Ord++, ID, I); 272 assert(Ord == Decisions.size()); 273 continue; 274 } 275 276 // Inter Node 277 auto &NextNode = Nodes[NextID]; 278 assert(NextNode.InCount > 0); 279 280 // Assign Idx 281 assert(Indices[ID][I] == INT_MIN); 282 Indices[ID][I] = NextNode.Width; 283 auto NextWidth = int64_t(NextNode.Width) + Node.Width; 284 if (NextWidth > HardMaxTVs) { 285 NumTestVectors = HardMaxTVs; // Overflow 286 return; 287 } 288 NextNode.Width = NextWidth; 289 290 // Ready if all incomings are processed. 291 // Or NextNode.Width hasn't been confirmed yet. 292 if (--NextNode.InCount == 0) 293 Q.push_back(NextID); 294 } 295 } 296 297 llvm::sort(Decisions); 298 299 // Assign TestVector Indices in Decision Nodes 300 int64_t CurIdx = 0; 301 for (auto [NegWidth, Ord, ID, C] : Decisions) { 302 int Width = -NegWidth; 303 assert(Nodes[ID].Width == Width); 304 assert(Nodes[ID].NextIDs[C] < 0); 305 assert(Indices[ID][C] == INT_MIN); 306 Indices[ID][C] = Offset + CurIdx; 307 CurIdx += Width; 308 if (CurIdx > HardMaxTVs) { 309 NumTestVectors = HardMaxTVs; // Overflow 310 return; 311 } 312 } 313 314 assert(CurIdx < HardMaxTVs); 315 NumTestVectors = CurIdx; 316 317 #ifndef NDEBUG 318 for (const auto &Idxs : Indices) 319 for (auto Idx : Idxs) 320 assert(Idx != INT_MIN); 321 SavedNodes = std::move(Nodes); 322 #endif 323 } 324 325 namespace { 326 327 /// Construct this->NextIDs with Branches for TVIdxBuilder to use it 328 /// before MCDCRecordProcessor(). 329 class NextIDsBuilder { 330 protected: 331 SmallVector<mcdc::ConditionIDs> NextIDs; 332 333 public: 334 NextIDsBuilder(const ArrayRef<const CounterMappingRegion *> Branches) 335 : NextIDs(Branches.size()) { 336 #ifndef NDEBUG 337 DenseSet<mcdc::ConditionID> SeenIDs; 338 #endif 339 for (const auto *Branch : Branches) { 340 const auto &BranchParams = Branch->getBranchParams(); 341 assert(BranchParams.ID >= 0 && "CondID isn't set"); 342 assert(SeenIDs.insert(BranchParams.ID).second && "Duplicate CondID"); 343 NextIDs[BranchParams.ID] = BranchParams.Conds; 344 } 345 assert(SeenIDs.size() == Branches.size()); 346 } 347 }; 348 349 class MCDCRecordProcessor : NextIDsBuilder, mcdc::TVIdxBuilder { 350 /// A bitmap representing the executed test vectors for a boolean expression. 351 /// Each index of the bitmap corresponds to a possible test vector. An index 352 /// with a bit value of '1' indicates that the corresponding Test Vector 353 /// identified by that index was executed. 354 const BitVector &Bitmap; 355 356 /// Decision Region to which the ExecutedTestVectorBitmap applies. 357 const CounterMappingRegion &Region; 358 const mcdc::DecisionParameters &DecisionParams; 359 360 /// Array of branch regions corresponding each conditions in the boolean 361 /// expression. 362 ArrayRef<const CounterMappingRegion *> Branches; 363 364 /// Total number of conditions in the boolean expression. 365 unsigned NumConditions; 366 367 /// Vector used to track whether a condition is constant folded. 368 MCDCRecord::BoolVector Folded; 369 370 /// Mapping of calculated MC/DC Independence Pairs for each condition. 371 MCDCRecord::TVPairMap IndependencePairs; 372 373 /// Storage for ExecVectors 374 /// ExecVectors is the alias of its 0th element. 375 std::array<MCDCRecord::TestVectors, 2> ExecVectorsByCond; 376 377 /// Actual executed Test Vectors for the boolean expression, based on 378 /// ExecutedTestVectorBitmap. 379 MCDCRecord::TestVectors &ExecVectors; 380 381 /// Number of False items in ExecVectors 382 unsigned NumExecVectorsF; 383 384 #ifndef NDEBUG 385 DenseSet<unsigned> TVIdxs; 386 #endif 387 388 public: 389 MCDCRecordProcessor(const BitVector &Bitmap, 390 const CounterMappingRegion &Region, 391 ArrayRef<const CounterMappingRegion *> Branches) 392 : NextIDsBuilder(Branches), TVIdxBuilder(this->NextIDs), Bitmap(Bitmap), 393 Region(Region), DecisionParams(Region.getDecisionParams()), 394 Branches(Branches), NumConditions(DecisionParams.NumConditions), 395 Folded(NumConditions, false), IndependencePairs(NumConditions), 396 ExecVectors(ExecVectorsByCond[false]) {} 397 398 private: 399 // Walk the binary decision diagram and try assigning both false and true to 400 // each node. When a terminal node (ID == 0) is reached, fill in the value in 401 // the truth table. 402 void buildTestVector(MCDCRecord::TestVector &TV, mcdc::ConditionID ID, 403 int TVIdx, unsigned Index) { 404 assert((Index & (1 << ID)) == 0); 405 406 for (auto MCDCCond : {MCDCRecord::MCDC_False, MCDCRecord::MCDC_True}) { 407 static_assert(MCDCRecord::MCDC_False == 0); 408 static_assert(MCDCRecord::MCDC_True == 1); 409 Index |= MCDCCond << ID; 410 TV[ID] = MCDCCond; 411 auto NextID = NextIDs[ID][MCDCCond]; 412 auto NextTVIdx = TVIdx + Indices[ID][MCDCCond]; 413 assert(NextID == SavedNodes[ID].NextIDs[MCDCCond]); 414 if (NextID >= 0) { 415 buildTestVector(TV, NextID, NextTVIdx, Index); 416 continue; 417 } 418 419 assert(TVIdx < SavedNodes[ID].Width); 420 assert(TVIdxs.insert(NextTVIdx).second && "Duplicate TVIdx"); 421 422 if (!Bitmap[DecisionParams.BitmapIdx * CHAR_BIT + Index]) 423 continue; 424 425 // Copy the completed test vector to the vector of testvectors. 426 // The final value (T,F) is equal to the last non-dontcare state on the 427 // path (in a short-circuiting system). 428 ExecVectorsByCond[MCDCCond].push_back({TV, MCDCCond}); 429 } 430 431 // Reset back to DontCare. 432 TV[ID] = MCDCRecord::MCDC_DontCare; 433 } 434 435 /// Walk the bits in the bitmap. A bit set to '1' indicates that the test 436 /// vector at the corresponding index was executed during a test run. 437 void findExecutedTestVectors() { 438 // Walk the binary decision diagram to enumerate all possible test vectors. 439 // We start at the root node (ID == 0) with all values being DontCare. 440 // `TVIdx` starts with 0 and is in the traversal. 441 // `Index` encodes the bitmask of true values and is initially 0. 442 MCDCRecord::TestVector TV(NumConditions, MCDCRecord::MCDC_DontCare); 443 buildTestVector(TV, 0, 0, 0); 444 assert(TVIdxs.size() == unsigned(NumTestVectors) && 445 "TVIdxs wasn't fulfilled"); 446 447 // Fill ExecVectors order by False items and True items. 448 // ExecVectors is the alias of ExecVectorsByCond[false], so 449 // Append ExecVectorsByCond[true] on it. 450 NumExecVectorsF = ExecVectors.size(); 451 auto &ExecVectorsT = ExecVectorsByCond[true]; 452 ExecVectors.append(std::make_move_iterator(ExecVectorsT.begin()), 453 std::make_move_iterator(ExecVectorsT.end())); 454 } 455 456 // Find an independence pair for each condition: 457 // - The condition is true in one test and false in the other. 458 // - The decision outcome is true one test and false in the other. 459 // - All other conditions' values must be equal or marked as "don't care". 460 void findIndependencePairs() { 461 unsigned NumTVs = ExecVectors.size(); 462 for (unsigned I = NumExecVectorsF; I < NumTVs; ++I) { 463 const auto &[A, ACond] = ExecVectors[I]; 464 assert(ACond == MCDCRecord::MCDC_True); 465 for (unsigned J = 0; J < NumExecVectorsF; ++J) { 466 const auto &[B, BCond] = ExecVectors[J]; 467 assert(BCond == MCDCRecord::MCDC_False); 468 unsigned Flip = NumConditions, Idx; 469 for (Idx = 0; Idx < NumConditions; ++Idx) { 470 MCDCRecord::CondState ACond = A[Idx], BCond = B[Idx]; 471 if (ACond == BCond || ACond == MCDCRecord::MCDC_DontCare || 472 BCond == MCDCRecord::MCDC_DontCare) 473 continue; 474 if (Flip != NumConditions) 475 break; 476 Flip = Idx; 477 } 478 // If the two vectors differ in exactly one condition, ignoring DontCare 479 // conditions, we have found an independence pair. 480 if (Idx == NumConditions && Flip != NumConditions) 481 IndependencePairs.insert({Flip, std::make_pair(J + 1, I + 1)}); 482 } 483 } 484 } 485 486 public: 487 /// Process the MC/DC Record in order to produce a result for a boolean 488 /// expression. This process includes tracking the conditions that comprise 489 /// the decision region, calculating the list of all possible test vectors, 490 /// marking the executed test vectors, and then finding an Independence Pair 491 /// out of the executed test vectors for each condition in the boolean 492 /// expression. A condition is tracked to ensure that its ID can be mapped to 493 /// its ordinal position in the boolean expression. The condition's source 494 /// location is also tracked, as well as whether it is constant folded (in 495 /// which case it is excuded from the metric). 496 MCDCRecord processMCDCRecord() { 497 unsigned I = 0; 498 MCDCRecord::CondIDMap PosToID; 499 MCDCRecord::LineColPairMap CondLoc; 500 501 // Walk the Record's BranchRegions (representing Conditions) in order to: 502 // - Hash the condition based on its corresponding ID. This will be used to 503 // calculate the test vectors. 504 // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its 505 // actual ID. This will be used to visualize the conditions in the 506 // correct order. 507 // - Keep track of the condition source location. This will be used to 508 // visualize where the condition is. 509 // - Record whether the condition is constant folded so that we exclude it 510 // from being measured. 511 for (const auto *B : Branches) { 512 const auto &BranchParams = B->getBranchParams(); 513 PosToID[I] = BranchParams.ID; 514 CondLoc[I] = B->startLoc(); 515 Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero()); 516 } 517 518 // Using Profile Bitmap from runtime, mark the executed test vectors. 519 findExecutedTestVectors(); 520 521 // Compare executed test vectors against each other to find an independence 522 // pairs for each condition. This processing takes the most time. 523 findIndependencePairs(); 524 525 // Record Test vectors, executed vectors, and independence pairs. 526 return MCDCRecord(Region, std::move(ExecVectors), 527 std::move(IndependencePairs), std::move(Folded), 528 std::move(PosToID), std::move(CondLoc)); 529 } 530 }; 531 532 } // namespace 533 534 Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( 535 const CounterMappingRegion &Region, 536 ArrayRef<const CounterMappingRegion *> Branches) { 537 538 MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches); 539 return MCDCProcessor.processMCDCRecord(); 540 } 541 542 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { 543 struct StackElem { 544 Counter ICounter; 545 int64_t LHS = 0; 546 enum { 547 KNeverVisited = 0, 548 KVisitedOnce = 1, 549 KVisitedTwice = 2, 550 } VisitCount = KNeverVisited; 551 }; 552 553 std::stack<StackElem> CounterStack; 554 CounterStack.push({C}); 555 556 int64_t LastPoppedValue; 557 558 while (!CounterStack.empty()) { 559 StackElem &Current = CounterStack.top(); 560 561 switch (Current.ICounter.getKind()) { 562 case Counter::Zero: 563 LastPoppedValue = 0; 564 CounterStack.pop(); 565 break; 566 case Counter::CounterValueReference: 567 LastPoppedValue = Current.ICounter.getCounterID(); 568 CounterStack.pop(); 569 break; 570 case Counter::Expression: { 571 if (Current.ICounter.getExpressionID() >= Expressions.size()) { 572 LastPoppedValue = 0; 573 CounterStack.pop(); 574 } else { 575 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 576 if (Current.VisitCount == StackElem::KNeverVisited) { 577 CounterStack.push(StackElem{E.LHS}); 578 Current.VisitCount = StackElem::KVisitedOnce; 579 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 580 Current.LHS = LastPoppedValue; 581 CounterStack.push(StackElem{E.RHS}); 582 Current.VisitCount = StackElem::KVisitedTwice; 583 } else { 584 int64_t LHS = Current.LHS; 585 int64_t RHS = LastPoppedValue; 586 LastPoppedValue = std::max(LHS, RHS); 587 CounterStack.pop(); 588 } 589 } 590 break; 591 } 592 } 593 } 594 595 return LastPoppedValue; 596 } 597 598 void FunctionRecordIterator::skipOtherFiles() { 599 while (Current != Records.end() && !Filename.empty() && 600 Filename != Current->Filenames[0]) 601 ++Current; 602 if (Current == Records.end()) 603 *this = FunctionRecordIterator(); 604 } 605 606 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( 607 StringRef Filename) const { 608 size_t FilenameHash = hash_value(Filename); 609 auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); 610 if (RecordIt == FilenameHash2RecordIndices.end()) 611 return {}; 612 return RecordIt->second; 613 } 614 615 static unsigned getMaxCounterID(const CounterMappingContext &Ctx, 616 const CoverageMappingRecord &Record) { 617 unsigned MaxCounterID = 0; 618 for (const auto &Region : Record.MappingRegions) { 619 MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); 620 } 621 return MaxCounterID; 622 } 623 624 /// Returns the bit count 625 static unsigned getMaxBitmapSize(const CounterMappingContext &Ctx, 626 const CoverageMappingRecord &Record) { 627 unsigned MaxBitmapIdx = 0; 628 unsigned NumConditions = 0; 629 // Scan max(BitmapIdx). 630 // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid 631 // and `MaxBitmapIdx is `unsigned`. `BitmapIdx` is unique in the record. 632 for (const auto &Region : reverse(Record.MappingRegions)) { 633 if (Region.Kind != CounterMappingRegion::MCDCDecisionRegion) 634 continue; 635 const auto &DecisionParams = Region.getDecisionParams(); 636 if (MaxBitmapIdx <= DecisionParams.BitmapIdx) { 637 MaxBitmapIdx = DecisionParams.BitmapIdx; 638 NumConditions = DecisionParams.NumConditions; 639 } 640 } 641 unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT); 642 return MaxBitmapIdx * CHAR_BIT + SizeInBits; 643 } 644 645 namespace { 646 647 /// Collect Decisions, Branchs, and Expansions and associate them. 648 class MCDCDecisionRecorder { 649 private: 650 /// This holds the DecisionRegion and MCDCBranches under it. 651 /// Also traverses Expansion(s). 652 /// The Decision has the number of MCDCBranches and will complete 653 /// when it is filled with unique ConditionID of MCDCBranches. 654 struct DecisionRecord { 655 const CounterMappingRegion *DecisionRegion; 656 657 /// They are reflected from DecisionRegion for convenience. 658 mcdc::DecisionParameters DecisionParams; 659 LineColPair DecisionStartLoc; 660 LineColPair DecisionEndLoc; 661 662 /// This is passed to `MCDCRecordProcessor`, so this should be compatible 663 /// to`ArrayRef<const CounterMappingRegion *>`. 664 SmallVector<const CounterMappingRegion *> MCDCBranches; 665 666 /// IDs that are stored in MCDCBranches 667 /// Complete when all IDs (1 to NumConditions) are met. 668 DenseSet<mcdc::ConditionID> ConditionIDs; 669 670 /// Set of IDs of Expansion(s) that are relevant to DecisionRegion 671 /// and its children (via expansions). 672 /// FileID pointed by ExpandedFileID is dedicated to the expansion, so 673 /// the location in the expansion doesn't matter. 674 DenseSet<unsigned> ExpandedFileIDs; 675 676 DecisionRecord(const CounterMappingRegion &Decision) 677 : DecisionRegion(&Decision), 678 DecisionParams(Decision.getDecisionParams()), 679 DecisionStartLoc(Decision.startLoc()), 680 DecisionEndLoc(Decision.endLoc()) { 681 assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion); 682 } 683 684 /// Determine whether DecisionRecord dominates `R`. 685 bool dominates(const CounterMappingRegion &R) const { 686 // Determine whether `R` is included in `DecisionRegion`. 687 if (R.FileID == DecisionRegion->FileID && 688 R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc) 689 return true; 690 691 // Determine whether `R` is pointed by any of Expansions. 692 return ExpandedFileIDs.contains(R.FileID); 693 } 694 695 enum Result { 696 NotProcessed = 0, /// Irrelevant to this Decision 697 Processed, /// Added to this Decision 698 Completed, /// Added and filled this Decision 699 }; 700 701 /// Add Branch into the Decision 702 /// \param Branch expects MCDCBranchRegion 703 /// \returns NotProcessed/Processed/Completed 704 Result addBranch(const CounterMappingRegion &Branch) { 705 assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion); 706 707 auto ConditionID = Branch.getBranchParams().ID; 708 assert(ConditionID >= 0 && "ConditionID should be positive"); 709 710 if (ConditionIDs.contains(ConditionID) || 711 ConditionID >= DecisionParams.NumConditions) 712 return NotProcessed; 713 714 if (!this->dominates(Branch)) 715 return NotProcessed; 716 717 assert(MCDCBranches.size() < DecisionParams.NumConditions); 718 719 // Put `ID=0` in front of `MCDCBranches` for convenience 720 // even if `MCDCBranches` is not topological. 721 if (ConditionID == 0) 722 MCDCBranches.insert(MCDCBranches.begin(), &Branch); 723 else 724 MCDCBranches.push_back(&Branch); 725 726 // Mark `ID` as `assigned`. 727 ConditionIDs.insert(ConditionID); 728 729 // `Completed` when `MCDCBranches` is full 730 return (MCDCBranches.size() == DecisionParams.NumConditions ? Completed 731 : Processed); 732 } 733 734 /// Record Expansion if it is relevant to this Decision. 735 /// Each `Expansion` may nest. 736 /// \returns true if recorded. 737 bool recordExpansion(const CounterMappingRegion &Expansion) { 738 if (!this->dominates(Expansion)) 739 return false; 740 741 ExpandedFileIDs.insert(Expansion.ExpandedFileID); 742 return true; 743 } 744 }; 745 746 private: 747 /// Decisions in progress 748 /// DecisionRecord is added for each MCDCDecisionRegion. 749 /// DecisionRecord is removed when Decision is completed. 750 SmallVector<DecisionRecord> Decisions; 751 752 public: 753 ~MCDCDecisionRecorder() { 754 assert(Decisions.empty() && "All Decisions have not been resolved"); 755 } 756 757 /// Register Region and start recording. 758 void registerDecision(const CounterMappingRegion &Decision) { 759 Decisions.emplace_back(Decision); 760 } 761 762 void recordExpansion(const CounterMappingRegion &Expansion) { 763 any_of(Decisions, [&Expansion](auto &Decision) { 764 return Decision.recordExpansion(Expansion); 765 }); 766 } 767 768 using DecisionAndBranches = 769 std::pair<const CounterMappingRegion *, /// Decision 770 SmallVector<const CounterMappingRegion *> /// Branches 771 >; 772 773 /// Add MCDCBranchRegion to DecisionRecord. 774 /// \param Branch to be processed 775 /// \returns DecisionsAndBranches if DecisionRecord completed. 776 /// Or returns nullopt. 777 std::optional<DecisionAndBranches> 778 processBranch(const CounterMappingRegion &Branch) { 779 // Seek each Decision and apply Region to it. 780 for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end(); 781 DecisionIter != DecisionEnd; ++DecisionIter) 782 switch (DecisionIter->addBranch(Branch)) { 783 case DecisionRecord::NotProcessed: 784 continue; 785 case DecisionRecord::Processed: 786 return std::nullopt; 787 case DecisionRecord::Completed: 788 DecisionAndBranches Result = 789 std::make_pair(DecisionIter->DecisionRegion, 790 std::move(DecisionIter->MCDCBranches)); 791 Decisions.erase(DecisionIter); // No longer used. 792 return Result; 793 } 794 795 llvm_unreachable("Branch not found in Decisions"); 796 } 797 }; 798 799 } // namespace 800 801 Error CoverageMapping::loadFunctionRecord( 802 const CoverageMappingRecord &Record, 803 IndexedInstrProfReader &ProfileReader) { 804 StringRef OrigFuncName = Record.FunctionName; 805 if (OrigFuncName.empty()) 806 return make_error<CoverageMapError>(coveragemap_error::malformed, 807 "record function name is empty"); 808 809 if (Record.Filenames.empty()) 810 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); 811 else 812 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); 813 814 CounterMappingContext Ctx(Record.Expressions); 815 816 std::vector<uint64_t> Counts; 817 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, 818 Record.FunctionHash, Counts)) { 819 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 820 if (IPE == instrprof_error::hash_mismatch) { 821 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 822 Record.FunctionHash); 823 return Error::success(); 824 } 825 if (IPE != instrprof_error::unknown_function) 826 return make_error<InstrProfError>(IPE); 827 Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); 828 } 829 Ctx.setCounts(Counts); 830 831 BitVector Bitmap; 832 if (Error E = ProfileReader.getFunctionBitmap(Record.FunctionName, 833 Record.FunctionHash, Bitmap)) { 834 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 835 if (IPE == instrprof_error::hash_mismatch) { 836 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 837 Record.FunctionHash); 838 return Error::success(); 839 } 840 if (IPE != instrprof_error::unknown_function) 841 return make_error<InstrProfError>(IPE); 842 Bitmap = BitVector(getMaxBitmapSize(Ctx, Record)); 843 } 844 Ctx.setBitmap(std::move(Bitmap)); 845 846 assert(!Record.MappingRegions.empty() && "Function has no regions"); 847 848 // This coverage record is a zero region for a function that's unused in 849 // some TU, but used in a different TU. Ignore it. The coverage maps from the 850 // the other TU will either be loaded (providing full region counts) or they 851 // won't (in which case we don't unintuitively report functions as uncovered 852 // when they have non-zero counts in the profile). 853 if (Record.MappingRegions.size() == 1 && 854 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) 855 return Error::success(); 856 857 MCDCDecisionRecorder MCDCDecisions; 858 FunctionRecord Function(OrigFuncName, Record.Filenames); 859 for (const auto &Region : Record.MappingRegions) { 860 // MCDCDecisionRegion should be handled first since it overlaps with 861 // others inside. 862 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { 863 MCDCDecisions.registerDecision(Region); 864 continue; 865 } 866 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); 867 if (auto E = ExecutionCount.takeError()) { 868 consumeError(std::move(E)); 869 return Error::success(); 870 } 871 Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount); 872 if (auto E = AltExecutionCount.takeError()) { 873 consumeError(std::move(E)); 874 return Error::success(); 875 } 876 Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount, 877 ProfileReader.hasSingleByteCoverage()); 878 879 // Record ExpansionRegion. 880 if (Region.Kind == CounterMappingRegion::ExpansionRegion) { 881 MCDCDecisions.recordExpansion(Region); 882 continue; 883 } 884 885 // Do nothing unless MCDCBranchRegion. 886 if (Region.Kind != CounterMappingRegion::MCDCBranchRegion) 887 continue; 888 889 auto Result = MCDCDecisions.processBranch(Region); 890 if (!Result) // Any Decision doesn't complete. 891 continue; 892 893 auto MCDCDecision = Result->first; 894 auto &MCDCBranches = Result->second; 895 896 // Since the bitmap identifies the executed test vectors for an MC/DC 897 // DecisionRegion, all of the information is now available to process. 898 // This is where the bulk of the MC/DC progressing takes place. 899 Expected<MCDCRecord> Record = 900 Ctx.evaluateMCDCRegion(*MCDCDecision, MCDCBranches); 901 if (auto E = Record.takeError()) { 902 consumeError(std::move(E)); 903 return Error::success(); 904 } 905 906 // Save the MC/DC Record so that it can be visualized later. 907 Function.pushMCDCRecord(std::move(*Record)); 908 } 909 910 // Don't create records for (filenames, function) pairs we've already seen. 911 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), 912 Record.Filenames.end()); 913 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) 914 return Error::success(); 915 916 Functions.push_back(std::move(Function)); 917 918 // Performance optimization: keep track of the indices of the function records 919 // which correspond to each filename. This can be used to substantially speed 920 // up queries for coverage info in a file. 921 unsigned RecordIndex = Functions.size() - 1; 922 for (StringRef Filename : Record.Filenames) { 923 auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; 924 // Note that there may be duplicates in the filename set for a function 925 // record, because of e.g. macro expansions in the function in which both 926 // the macro and the function are defined in the same file. 927 if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) 928 RecordIndices.push_back(RecordIndex); 929 } 930 931 return Error::success(); 932 } 933 934 // This function is for memory optimization by shortening the lifetimes 935 // of CoverageMappingReader instances. 936 Error CoverageMapping::loadFromReaders( 937 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 938 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { 939 for (const auto &CoverageReader : CoverageReaders) { 940 for (auto RecordOrErr : *CoverageReader) { 941 if (Error E = RecordOrErr.takeError()) 942 return E; 943 const auto &Record = *RecordOrErr; 944 if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) 945 return E; 946 } 947 } 948 return Error::success(); 949 } 950 951 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 952 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 953 IndexedInstrProfReader &ProfileReader) { 954 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 955 if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) 956 return std::move(E); 957 return std::move(Coverage); 958 } 959 960 // If E is a no_data_found error, returns success. Otherwise returns E. 961 static Error handleMaybeNoDataFoundError(Error E) { 962 return handleErrors( 963 std::move(E), [](const CoverageMapError &CME) { 964 if (CME.get() == coveragemap_error::no_data_found) 965 return static_cast<Error>(Error::success()); 966 return make_error<CoverageMapError>(CME.get(), CME.getMessage()); 967 }); 968 } 969 970 Error CoverageMapping::loadFromFile( 971 StringRef Filename, StringRef Arch, StringRef CompilationDir, 972 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, 973 bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { 974 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( 975 Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); 976 if (std::error_code EC = CovMappingBufOrErr.getError()) 977 return createFileError(Filename, errorCodeToError(EC)); 978 MemoryBufferRef CovMappingBufRef = 979 CovMappingBufOrErr.get()->getMemBufferRef(); 980 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; 981 982 SmallVector<object::BuildIDRef> BinaryIDs; 983 auto CoverageReadersOrErr = BinaryCoverageReader::create( 984 CovMappingBufRef, Arch, Buffers, CompilationDir, 985 FoundBinaryIDs ? &BinaryIDs : nullptr); 986 if (Error E = CoverageReadersOrErr.takeError()) { 987 E = handleMaybeNoDataFoundError(std::move(E)); 988 if (E) 989 return createFileError(Filename, std::move(E)); 990 return E; 991 } 992 993 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; 994 for (auto &Reader : CoverageReadersOrErr.get()) 995 Readers.push_back(std::move(Reader)); 996 if (FoundBinaryIDs && !Readers.empty()) { 997 llvm::append_range(*FoundBinaryIDs, 998 llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) { 999 return object::BuildID(BID); 1000 })); 1001 } 1002 DataFound |= !Readers.empty(); 1003 if (Error E = loadFromReaders(Readers, ProfileReader, Coverage)) 1004 return createFileError(Filename, std::move(E)); 1005 return Error::success(); 1006 } 1007 1008 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 1009 ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename, 1010 vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir, 1011 const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { 1012 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS); 1013 if (Error E = ProfileReaderOrErr.takeError()) 1014 return createFileError(ProfileFilename, std::move(E)); 1015 auto ProfileReader = std::move(ProfileReaderOrErr.get()); 1016 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 1017 bool DataFound = false; 1018 1019 auto GetArch = [&](size_t Idx) { 1020 if (Arches.empty()) 1021 return StringRef(); 1022 if (Arches.size() == 1) 1023 return Arches.front(); 1024 return Arches[Idx]; 1025 }; 1026 1027 SmallVector<object::BuildID> FoundBinaryIDs; 1028 for (const auto &File : llvm::enumerate(ObjectFilenames)) { 1029 if (Error E = 1030 loadFromFile(File.value(), GetArch(File.index()), CompilationDir, 1031 *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs)) 1032 return std::move(E); 1033 } 1034 1035 if (BIDFetcher) { 1036 std::vector<object::BuildID> ProfileBinaryIDs; 1037 if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs)) 1038 return createFileError(ProfileFilename, std::move(E)); 1039 1040 SmallVector<object::BuildIDRef> BinaryIDsToFetch; 1041 if (!ProfileBinaryIDs.empty()) { 1042 const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { 1043 return std::lexicographical_compare(A.begin(), A.end(), B.begin(), 1044 B.end()); 1045 }; 1046 llvm::sort(FoundBinaryIDs, Compare); 1047 std::set_difference( 1048 ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(), 1049 FoundBinaryIDs.begin(), FoundBinaryIDs.end(), 1050 std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare); 1051 } 1052 1053 for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { 1054 std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID); 1055 if (PathOpt) { 1056 std::string Path = std::move(*PathOpt); 1057 StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); 1058 if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader, 1059 *Coverage, DataFound)) 1060 return std::move(E); 1061 } else if (CheckBinaryIDs) { 1062 return createFileError( 1063 ProfileFilename, 1064 createStringError(errc::no_such_file_or_directory, 1065 "Missing binary ID: " + 1066 llvm::toHex(BinaryID, /*LowerCase=*/true))); 1067 } 1068 } 1069 } 1070 1071 if (!DataFound) 1072 return createFileError( 1073 join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "), 1074 make_error<CoverageMapError>(coveragemap_error::no_data_found)); 1075 return std::move(Coverage); 1076 } 1077 1078 namespace { 1079 1080 /// Distributes functions into instantiation sets. 1081 /// 1082 /// An instantiation set is a collection of functions that have the same source 1083 /// code, ie, template functions specializations. 1084 class FunctionInstantiationSetCollector { 1085 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; 1086 MapT InstantiatedFunctions; 1087 1088 public: 1089 void insert(const FunctionRecord &Function, unsigned FileID) { 1090 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); 1091 while (I != E && I->FileID != FileID) 1092 ++I; 1093 assert(I != E && "function does not cover the given file"); 1094 auto &Functions = InstantiatedFunctions[I->startLoc()]; 1095 Functions.push_back(&Function); 1096 } 1097 1098 MapT::iterator begin() { return InstantiatedFunctions.begin(); } 1099 MapT::iterator end() { return InstantiatedFunctions.end(); } 1100 }; 1101 1102 class SegmentBuilder { 1103 std::vector<CoverageSegment> &Segments; 1104 SmallVector<const CountedRegion *, 8> ActiveRegions; 1105 1106 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} 1107 1108 /// Emit a segment with the count from \p Region starting at \p StartLoc. 1109 // 1110 /// \p IsRegionEntry: The segment is at the start of a new non-gap region. 1111 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. 1112 void startSegment(const CountedRegion &Region, LineColPair StartLoc, 1113 bool IsRegionEntry, bool EmitSkippedRegion = false) { 1114 bool HasCount = !EmitSkippedRegion && 1115 (Region.Kind != CounterMappingRegion::SkippedRegion); 1116 1117 // If the new segment wouldn't affect coverage rendering, skip it. 1118 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { 1119 const auto &Last = Segments.back(); 1120 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && 1121 !Last.IsRegionEntry) 1122 return; 1123 } 1124 1125 if (HasCount) 1126 Segments.emplace_back(StartLoc.first, StartLoc.second, 1127 Region.ExecutionCount, IsRegionEntry, 1128 Region.Kind == CounterMappingRegion::GapRegion); 1129 else 1130 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); 1131 1132 LLVM_DEBUG({ 1133 const auto &Last = Segments.back(); 1134 dbgs() << "Segment at " << Last.Line << ":" << Last.Col 1135 << " (count = " << Last.Count << ")" 1136 << (Last.IsRegionEntry ? ", RegionEntry" : "") 1137 << (!Last.HasCount ? ", Skipped" : "") 1138 << (Last.IsGapRegion ? ", Gap" : "") << "\n"; 1139 }); 1140 } 1141 1142 /// Emit segments for active regions which end before \p Loc. 1143 /// 1144 /// \p Loc: The start location of the next region. If std::nullopt, all active 1145 /// regions are completed. 1146 /// \p FirstCompletedRegion: Index of the first completed region. 1147 void completeRegionsUntil(std::optional<LineColPair> Loc, 1148 unsigned FirstCompletedRegion) { 1149 // Sort the completed regions by end location. This makes it simple to 1150 // emit closing segments in sorted order. 1151 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; 1152 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), 1153 [](const CountedRegion *L, const CountedRegion *R) { 1154 return L->endLoc() < R->endLoc(); 1155 }); 1156 1157 // Emit segments for all completed regions. 1158 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; 1159 ++I) { 1160 const auto *CompletedRegion = ActiveRegions[I]; 1161 assert((!Loc || CompletedRegion->endLoc() <= *Loc) && 1162 "Completed region ends after start of new region"); 1163 1164 const auto *PrevCompletedRegion = ActiveRegions[I - 1]; 1165 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); 1166 1167 // Don't emit any more segments if they start where the new region begins. 1168 if (Loc && CompletedSegmentLoc == *Loc) 1169 break; 1170 1171 // Don't emit a segment if the next completed region ends at the same 1172 // location as this one. 1173 if (CompletedSegmentLoc == CompletedRegion->endLoc()) 1174 continue; 1175 1176 // Use the count from the last completed region which ends at this loc. 1177 for (unsigned J = I + 1; J < E; ++J) 1178 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) 1179 CompletedRegion = ActiveRegions[J]; 1180 1181 startSegment(*CompletedRegion, CompletedSegmentLoc, false); 1182 } 1183 1184 auto Last = ActiveRegions.back(); 1185 if (FirstCompletedRegion && Last->endLoc() != *Loc) { 1186 // If there's a gap after the end of the last completed region and the 1187 // start of the new region, use the last active region to fill the gap. 1188 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), 1189 false); 1190 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { 1191 // Emit a skipped segment if there are no more active regions. This 1192 // ensures that gaps between functions are marked correctly. 1193 startSegment(*Last, Last->endLoc(), false, true); 1194 } 1195 1196 // Pop the completed regions. 1197 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); 1198 } 1199 1200 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { 1201 for (const auto &CR : enumerate(Regions)) { 1202 auto CurStartLoc = CR.value().startLoc(); 1203 1204 // Active regions which end before the current region need to be popped. 1205 auto CompletedRegions = 1206 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), 1207 [&](const CountedRegion *Region) { 1208 return !(Region->endLoc() <= CurStartLoc); 1209 }); 1210 if (CompletedRegions != ActiveRegions.end()) { 1211 unsigned FirstCompletedRegion = 1212 std::distance(ActiveRegions.begin(), CompletedRegions); 1213 completeRegionsUntil(CurStartLoc, FirstCompletedRegion); 1214 } 1215 1216 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; 1217 1218 // Try to emit a segment for the current region. 1219 if (CurStartLoc == CR.value().endLoc()) { 1220 // Avoid making zero-length regions active. If it's the last region, 1221 // emit a skipped segment. Otherwise use its predecessor's count. 1222 const bool Skipped = 1223 (CR.index() + 1) == Regions.size() || 1224 CR.value().Kind == CounterMappingRegion::SkippedRegion; 1225 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), 1226 CurStartLoc, !GapRegion, Skipped); 1227 // If it is skipped segment, create a segment with last pushed 1228 // regions's count at CurStartLoc. 1229 if (Skipped && !ActiveRegions.empty()) 1230 startSegment(*ActiveRegions.back(), CurStartLoc, false); 1231 continue; 1232 } 1233 if (CR.index() + 1 == Regions.size() || 1234 CurStartLoc != Regions[CR.index() + 1].startLoc()) { 1235 // Emit a segment if the next region doesn't start at the same location 1236 // as this one. 1237 startSegment(CR.value(), CurStartLoc, !GapRegion); 1238 } 1239 1240 // This region is active (i.e not completed). 1241 ActiveRegions.push_back(&CR.value()); 1242 } 1243 1244 // Complete any remaining active regions. 1245 if (!ActiveRegions.empty()) 1246 completeRegionsUntil(std::nullopt, 0); 1247 } 1248 1249 /// Sort a nested sequence of regions from a single file. 1250 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { 1251 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { 1252 if (LHS.startLoc() != RHS.startLoc()) 1253 return LHS.startLoc() < RHS.startLoc(); 1254 if (LHS.endLoc() != RHS.endLoc()) 1255 // When LHS completely contains RHS, we sort LHS first. 1256 return RHS.endLoc() < LHS.endLoc(); 1257 // If LHS and RHS cover the same area, we need to sort them according 1258 // to their kinds so that the most suitable region will become "active" 1259 // in combineRegions(). Because we accumulate counter values only from 1260 // regions of the same kind as the first region of the area, prefer 1261 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. 1262 static_assert(CounterMappingRegion::CodeRegion < 1263 CounterMappingRegion::ExpansionRegion && 1264 CounterMappingRegion::ExpansionRegion < 1265 CounterMappingRegion::SkippedRegion, 1266 "Unexpected order of region kind values"); 1267 return LHS.Kind < RHS.Kind; 1268 }); 1269 } 1270 1271 /// Combine counts of regions which cover the same area. 1272 static ArrayRef<CountedRegion> 1273 combineRegions(MutableArrayRef<CountedRegion> Regions) { 1274 if (Regions.empty()) 1275 return Regions; 1276 auto Active = Regions.begin(); 1277 auto End = Regions.end(); 1278 for (auto I = Regions.begin() + 1; I != End; ++I) { 1279 if (Active->startLoc() != I->startLoc() || 1280 Active->endLoc() != I->endLoc()) { 1281 // Shift to the next region. 1282 ++Active; 1283 if (Active != I) 1284 *Active = *I; 1285 continue; 1286 } 1287 // Merge duplicate region. 1288 // If CodeRegions and ExpansionRegions cover the same area, it's probably 1289 // a macro which is fully expanded to another macro. In that case, we need 1290 // to accumulate counts only from CodeRegions, or else the area will be 1291 // counted twice. 1292 // On the other hand, a macro may have a nested macro in its body. If the 1293 // outer macro is used several times, the ExpansionRegion for the nested 1294 // macro will also be added several times. These ExpansionRegions cover 1295 // the same source locations and have to be combined to reach the correct 1296 // value for that area. 1297 // We add counts of the regions of the same kind as the active region 1298 // to handle the both situations. 1299 if (I->Kind == Active->Kind) { 1300 assert(I->HasSingleByteCoverage == Active->HasSingleByteCoverage && 1301 "Regions are generated in different coverage modes"); 1302 if (I->HasSingleByteCoverage) 1303 Active->ExecutionCount = Active->ExecutionCount || I->ExecutionCount; 1304 else 1305 Active->ExecutionCount += I->ExecutionCount; 1306 } 1307 } 1308 return Regions.drop_back(std::distance(++Active, End)); 1309 } 1310 1311 public: 1312 /// Build a sorted list of CoverageSegments from a list of Regions. 1313 static std::vector<CoverageSegment> 1314 buildSegments(MutableArrayRef<CountedRegion> Regions) { 1315 std::vector<CoverageSegment> Segments; 1316 SegmentBuilder Builder(Segments); 1317 1318 sortNestedRegions(Regions); 1319 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); 1320 1321 LLVM_DEBUG({ 1322 dbgs() << "Combined regions:\n"; 1323 for (const auto &CR : CombinedRegions) 1324 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " 1325 << CR.LineEnd << ":" << CR.ColumnEnd 1326 << " (count=" << CR.ExecutionCount << ")\n"; 1327 }); 1328 1329 Builder.buildSegmentsImpl(CombinedRegions); 1330 1331 #ifndef NDEBUG 1332 for (unsigned I = 1, E = Segments.size(); I < E; ++I) { 1333 const auto &L = Segments[I - 1]; 1334 const auto &R = Segments[I]; 1335 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { 1336 if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) 1337 continue; 1338 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col 1339 << " followed by " << R.Line << ":" << R.Col << "\n"); 1340 assert(false && "Coverage segments not unique or sorted"); 1341 } 1342 } 1343 #endif 1344 1345 return Segments; 1346 } 1347 }; 1348 1349 } // end anonymous namespace 1350 1351 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { 1352 std::vector<StringRef> Filenames; 1353 for (const auto &Function : getCoveredFunctions()) 1354 llvm::append_range(Filenames, Function.Filenames); 1355 llvm::sort(Filenames); 1356 auto Last = std::unique(Filenames.begin(), Filenames.end()); 1357 Filenames.erase(Last, Filenames.end()); 1358 return Filenames; 1359 } 1360 1361 static SmallBitVector gatherFileIDs(StringRef SourceFile, 1362 const FunctionRecord &Function) { 1363 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); 1364 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) 1365 if (SourceFile == Function.Filenames[I]) 1366 FilenameEquivalence[I] = true; 1367 return FilenameEquivalence; 1368 } 1369 1370 /// Return the ID of the file where the definition of the function is located. 1371 static std::optional<unsigned> 1372 findMainViewFileID(const FunctionRecord &Function) { 1373 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); 1374 for (const auto &CR : Function.CountedRegions) 1375 if (CR.Kind == CounterMappingRegion::ExpansionRegion) 1376 IsNotExpandedFile[CR.ExpandedFileID] = false; 1377 int I = IsNotExpandedFile.find_first(); 1378 if (I == -1) 1379 return std::nullopt; 1380 return I; 1381 } 1382 1383 /// Check if SourceFile is the file that contains the definition of 1384 /// the Function. Return the ID of the file in that case or std::nullopt 1385 /// otherwise. 1386 static std::optional<unsigned> 1387 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { 1388 std::optional<unsigned> I = findMainViewFileID(Function); 1389 if (I && SourceFile == Function.Filenames[*I]) 1390 return I; 1391 return std::nullopt; 1392 } 1393 1394 static bool isExpansion(const CountedRegion &R, unsigned FileID) { 1395 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; 1396 } 1397 1398 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { 1399 CoverageData FileCoverage(Filename); 1400 std::vector<CountedRegion> Regions; 1401 1402 // Look up the function records in the given file. Due to hash collisions on 1403 // the filename, we may get back some records that are not in the file. 1404 ArrayRef<unsigned> RecordIndices = 1405 getImpreciseRecordIndicesForFilename(Filename); 1406 for (unsigned RecordIndex : RecordIndices) { 1407 const FunctionRecord &Function = Functions[RecordIndex]; 1408 auto MainFileID = findMainViewFileID(Filename, Function); 1409 auto FileIDs = gatherFileIDs(Filename, Function); 1410 for (const auto &CR : Function.CountedRegions) 1411 if (FileIDs.test(CR.FileID)) { 1412 Regions.push_back(CR); 1413 if (MainFileID && isExpansion(CR, *MainFileID)) 1414 FileCoverage.Expansions.emplace_back(CR, Function); 1415 } 1416 // Capture branch regions specific to the function (excluding expansions). 1417 for (const auto &CR : Function.CountedBranchRegions) 1418 if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID)) 1419 FileCoverage.BranchRegions.push_back(CR); 1420 // Capture MCDC records specific to the function. 1421 for (const auto &MR : Function.MCDCRecords) 1422 if (FileIDs.test(MR.getDecisionRegion().FileID)) 1423 FileCoverage.MCDCRecords.push_back(MR); 1424 } 1425 1426 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); 1427 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1428 1429 return FileCoverage; 1430 } 1431 1432 std::vector<InstantiationGroup> 1433 CoverageMapping::getInstantiationGroups(StringRef Filename) const { 1434 FunctionInstantiationSetCollector InstantiationSetCollector; 1435 // Look up the function records in the given file. Due to hash collisions on 1436 // the filename, we may get back some records that are not in the file. 1437 ArrayRef<unsigned> RecordIndices = 1438 getImpreciseRecordIndicesForFilename(Filename); 1439 for (unsigned RecordIndex : RecordIndices) { 1440 const FunctionRecord &Function = Functions[RecordIndex]; 1441 auto MainFileID = findMainViewFileID(Filename, Function); 1442 if (!MainFileID) 1443 continue; 1444 InstantiationSetCollector.insert(Function, *MainFileID); 1445 } 1446 1447 std::vector<InstantiationGroup> Result; 1448 for (auto &InstantiationSet : InstantiationSetCollector) { 1449 InstantiationGroup IG{InstantiationSet.first.first, 1450 InstantiationSet.first.second, 1451 std::move(InstantiationSet.second)}; 1452 Result.emplace_back(std::move(IG)); 1453 } 1454 return Result; 1455 } 1456 1457 CoverageData 1458 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { 1459 auto MainFileID = findMainViewFileID(Function); 1460 if (!MainFileID) 1461 return CoverageData(); 1462 1463 CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); 1464 std::vector<CountedRegion> Regions; 1465 for (const auto &CR : Function.CountedRegions) 1466 if (CR.FileID == *MainFileID) { 1467 Regions.push_back(CR); 1468 if (isExpansion(CR, *MainFileID)) 1469 FunctionCoverage.Expansions.emplace_back(CR, Function); 1470 } 1471 // Capture branch regions specific to the function (excluding expansions). 1472 for (const auto &CR : Function.CountedBranchRegions) 1473 if (CR.FileID == *MainFileID) 1474 FunctionCoverage.BranchRegions.push_back(CR); 1475 1476 // Capture MCDC records specific to the function. 1477 for (const auto &MR : Function.MCDCRecords) 1478 if (MR.getDecisionRegion().FileID == *MainFileID) 1479 FunctionCoverage.MCDCRecords.push_back(MR); 1480 1481 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name 1482 << "\n"); 1483 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1484 1485 return FunctionCoverage; 1486 } 1487 1488 CoverageData CoverageMapping::getCoverageForExpansion( 1489 const ExpansionRecord &Expansion) const { 1490 CoverageData ExpansionCoverage( 1491 Expansion.Function.Filenames[Expansion.FileID]); 1492 std::vector<CountedRegion> Regions; 1493 for (const auto &CR : Expansion.Function.CountedRegions) 1494 if (CR.FileID == Expansion.FileID) { 1495 Regions.push_back(CR); 1496 if (isExpansion(CR, Expansion.FileID)) 1497 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); 1498 } 1499 for (const auto &CR : Expansion.Function.CountedBranchRegions) 1500 // Capture branch regions that only pertain to the corresponding expansion. 1501 if (CR.FileID == Expansion.FileID) 1502 ExpansionCoverage.BranchRegions.push_back(CR); 1503 1504 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " 1505 << Expansion.FileID << "\n"); 1506 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1507 1508 return ExpansionCoverage; 1509 } 1510 1511 LineCoverageStats::LineCoverageStats( 1512 ArrayRef<const CoverageSegment *> LineSegments, 1513 const CoverageSegment *WrappedSegment, unsigned Line) 1514 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), 1515 LineSegments(LineSegments), WrappedSegment(WrappedSegment) { 1516 // Find the minimum number of regions which start in this line. 1517 unsigned MinRegionCount = 0; 1518 auto isStartOfRegion = [](const CoverageSegment *S) { 1519 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; 1520 }; 1521 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) 1522 if (isStartOfRegion(LineSegments[I])) 1523 ++MinRegionCount; 1524 1525 bool StartOfSkippedRegion = !LineSegments.empty() && 1526 !LineSegments.front()->HasCount && 1527 LineSegments.front()->IsRegionEntry; 1528 1529 HasMultipleRegions = MinRegionCount > 1; 1530 Mapped = 1531 !StartOfSkippedRegion && 1532 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); 1533 1534 // if there is any starting segment at this line with a counter, it must be 1535 // mapped 1536 Mapped |= std::any_of( 1537 LineSegments.begin(), LineSegments.end(), 1538 [](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; }); 1539 1540 if (!Mapped) { 1541 return; 1542 } 1543 1544 // Pick the max count from the non-gap, region entry segments and the 1545 // wrapped count. 1546 if (WrappedSegment) 1547 ExecutionCount = WrappedSegment->Count; 1548 if (!MinRegionCount) 1549 return; 1550 for (const auto *LS : LineSegments) 1551 if (isStartOfRegion(LS)) 1552 ExecutionCount = std::max(ExecutionCount, LS->Count); 1553 } 1554 1555 LineCoverageIterator &LineCoverageIterator::operator++() { 1556 if (Next == CD.end()) { 1557 Stats = LineCoverageStats(); 1558 Ended = true; 1559 return *this; 1560 } 1561 if (Segments.size()) 1562 WrappedSegment = Segments.back(); 1563 Segments.clear(); 1564 while (Next != CD.end() && Next->Line == Line) 1565 Segments.push_back(&*Next++); 1566 Stats = LineCoverageStats(Segments, WrappedSegment, Line); 1567 ++Line; 1568 return *this; 1569 } 1570 1571 static std::string getCoverageMapErrString(coveragemap_error Err, 1572 const std::string &ErrMsg = "") { 1573 std::string Msg; 1574 raw_string_ostream OS(Msg); 1575 1576 switch (Err) { 1577 case coveragemap_error::success: 1578 OS << "success"; 1579 break; 1580 case coveragemap_error::eof: 1581 OS << "end of File"; 1582 break; 1583 case coveragemap_error::no_data_found: 1584 OS << "no coverage data found"; 1585 break; 1586 case coveragemap_error::unsupported_version: 1587 OS << "unsupported coverage format version"; 1588 break; 1589 case coveragemap_error::truncated: 1590 OS << "truncated coverage data"; 1591 break; 1592 case coveragemap_error::malformed: 1593 OS << "malformed coverage data"; 1594 break; 1595 case coveragemap_error::decompression_failed: 1596 OS << "failed to decompress coverage data (zlib)"; 1597 break; 1598 case coveragemap_error::invalid_or_missing_arch_specifier: 1599 OS << "`-arch` specifier is invalid or missing for universal binary"; 1600 break; 1601 } 1602 1603 // If optional error message is not empty, append it to the message. 1604 if (!ErrMsg.empty()) 1605 OS << ": " << ErrMsg; 1606 1607 return Msg; 1608 } 1609 1610 namespace { 1611 1612 // FIXME: This class is only here to support the transition to llvm::Error. It 1613 // will be removed once this transition is complete. Clients should prefer to 1614 // deal with the Error value directly, rather than converting to error_code. 1615 class CoverageMappingErrorCategoryType : public std::error_category { 1616 const char *name() const noexcept override { return "llvm.coveragemap"; } 1617 std::string message(int IE) const override { 1618 return getCoverageMapErrString(static_cast<coveragemap_error>(IE)); 1619 } 1620 }; 1621 1622 } // end anonymous namespace 1623 1624 std::string CoverageMapError::message() const { 1625 return getCoverageMapErrString(Err, Msg); 1626 } 1627 1628 const std::error_category &llvm::coverage::coveragemap_category() { 1629 static CoverageMappingErrorCategoryType ErrorCategory; 1630 return ErrorCategory; 1631 } 1632 1633 char CoverageMapError::ID = 0; 1634