xref: /llvm-project/llvm/lib/ProfileData/Coverage/CoverageMapping.cpp (revision 0ed61db6fdf683f8def06e6a6d206d02b821cd81)
1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for clang's and llvm's instrumentation based
10 // code coverage.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ProfileData/Coverage/CoverageMapping.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallBitVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/Object/BuildID.h"
23 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
24 #include "llvm/ProfileData/InstrProfReader.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/Errc.h"
27 #include "llvm/Support/Error.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/MemoryBuffer.h"
30 #include "llvm/Support/VirtualFileSystem.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cmath>
35 #include <cstdint>
36 #include <iterator>
37 #include <map>
38 #include <memory>
39 #include <optional>
40 #include <string>
41 #include <system_error>
42 #include <utility>
43 #include <vector>
44 
45 using namespace llvm;
46 using namespace coverage;
47 
48 #define DEBUG_TYPE "coverage-mapping"
49 
50 Counter CounterExpressionBuilder::get(const CounterExpression &E) {
51   auto It = ExpressionIndices.find(E);
52   if (It != ExpressionIndices.end())
53     return Counter::getExpression(It->second);
54   unsigned I = Expressions.size();
55   Expressions.push_back(E);
56   ExpressionIndices[E] = I;
57   return Counter::getExpression(I);
58 }
59 
60 void CounterExpressionBuilder::extractTerms(Counter C, int Factor,
61                                             SmallVectorImpl<Term> &Terms) {
62   switch (C.getKind()) {
63   case Counter::Zero:
64     break;
65   case Counter::CounterValueReference:
66     Terms.emplace_back(C.getCounterID(), Factor);
67     break;
68   case Counter::Expression:
69     const auto &E = Expressions[C.getExpressionID()];
70     extractTerms(E.LHS, Factor, Terms);
71     extractTerms(
72         E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms);
73     break;
74   }
75 }
76 
77 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
78   // Gather constant terms.
79   SmallVector<Term, 32> Terms;
80   extractTerms(ExpressionTree, +1, Terms);
81 
82   // If there are no terms, this is just a zero. The algorithm below assumes at
83   // least one term.
84   if (Terms.size() == 0)
85     return Counter::getZero();
86 
87   // Group the terms by counter ID.
88   llvm::sort(Terms, [](const Term &LHS, const Term &RHS) {
89     return LHS.CounterID < RHS.CounterID;
90   });
91 
92   // Combine terms by counter ID to eliminate counters that sum to zero.
93   auto Prev = Terms.begin();
94   for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
95     if (I->CounterID == Prev->CounterID) {
96       Prev->Factor += I->Factor;
97       continue;
98     }
99     ++Prev;
100     *Prev = *I;
101   }
102   Terms.erase(++Prev, Terms.end());
103 
104   Counter C;
105   // Create additions. We do this before subtractions to avoid constructs like
106   // ((0 - X) + Y), as opposed to (Y - X).
107   for (auto T : Terms) {
108     if (T.Factor <= 0)
109       continue;
110     for (int I = 0; I < T.Factor; ++I)
111       if (C.isZero())
112         C = Counter::getCounter(T.CounterID);
113       else
114         C = get(CounterExpression(CounterExpression::Add, C,
115                                   Counter::getCounter(T.CounterID)));
116   }
117 
118   // Create subtractions.
119   for (auto T : Terms) {
120     if (T.Factor >= 0)
121       continue;
122     for (int I = 0; I < -T.Factor; ++I)
123       C = get(CounterExpression(CounterExpression::Subtract, C,
124                                 Counter::getCounter(T.CounterID)));
125   }
126   return C;
127 }
128 
129 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) {
130   auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS));
131   return Simplify ? simplify(Cnt) : Cnt;
132 }
133 
134 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS,
135                                            bool Simplify) {
136   auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS));
137   return Simplify ? simplify(Cnt) : Cnt;
138 }
139 
140 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const {
141   switch (C.getKind()) {
142   case Counter::Zero:
143     OS << '0';
144     return;
145   case Counter::CounterValueReference:
146     OS << '#' << C.getCounterID();
147     break;
148   case Counter::Expression: {
149     if (C.getExpressionID() >= Expressions.size())
150       return;
151     const auto &E = Expressions[C.getExpressionID()];
152     OS << '(';
153     dump(E.LHS, OS);
154     OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
155     dump(E.RHS, OS);
156     OS << ')';
157     break;
158   }
159   }
160   if (CounterValues.empty())
161     return;
162   Expected<int64_t> Value = evaluate(C);
163   if (auto E = Value.takeError()) {
164     consumeError(std::move(E));
165     return;
166   }
167   OS << '[' << *Value << ']';
168 }
169 
170 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
171   struct StackElem {
172     Counter ICounter;
173     int64_t LHS = 0;
174     enum {
175       KNeverVisited = 0,
176       KVisitedOnce = 1,
177       KVisitedTwice = 2,
178     } VisitCount = KNeverVisited;
179   };
180 
181   std::stack<StackElem> CounterStack;
182   CounterStack.push({C});
183 
184   int64_t LastPoppedValue;
185 
186   while (!CounterStack.empty()) {
187     StackElem &Current = CounterStack.top();
188 
189     switch (Current.ICounter.getKind()) {
190     case Counter::Zero:
191       LastPoppedValue = 0;
192       CounterStack.pop();
193       break;
194     case Counter::CounterValueReference:
195       if (Current.ICounter.getCounterID() >= CounterValues.size())
196         return errorCodeToError(errc::argument_out_of_domain);
197       LastPoppedValue = CounterValues[Current.ICounter.getCounterID()];
198       CounterStack.pop();
199       break;
200     case Counter::Expression: {
201       if (Current.ICounter.getExpressionID() >= Expressions.size())
202         return errorCodeToError(errc::argument_out_of_domain);
203       const auto &E = Expressions[Current.ICounter.getExpressionID()];
204       if (Current.VisitCount == StackElem::KNeverVisited) {
205         CounterStack.push(StackElem{E.LHS});
206         Current.VisitCount = StackElem::KVisitedOnce;
207       } else if (Current.VisitCount == StackElem::KVisitedOnce) {
208         Current.LHS = LastPoppedValue;
209         CounterStack.push(StackElem{E.RHS});
210         Current.VisitCount = StackElem::KVisitedTwice;
211       } else {
212         int64_t LHS = Current.LHS;
213         int64_t RHS = LastPoppedValue;
214         LastPoppedValue =
215             E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS;
216         CounterStack.pop();
217       }
218       break;
219     }
220     }
221   }
222 
223   return LastPoppedValue;
224 }
225 
226 mcdc::TVIdxBuilder::TVIdxBuilder(const SmallVectorImpl<ConditionIDs> &NextIDs,
227                                  int Offset)
228     : Indices(NextIDs.size()) {
229   // Construct Nodes and set up each InCount
230   auto N = NextIDs.size();
231   SmallVector<MCDCNode> Nodes(N);
232   for (unsigned ID = 0; ID < N; ++ID) {
233     for (unsigned C = 0; C < 2; ++C) {
234 #ifndef NDEBUG
235       Indices[ID][C] = INT_MIN;
236 #endif
237       auto NextID = NextIDs[ID][C];
238       Nodes[ID].NextIDs[C] = NextID;
239       if (NextID >= 0)
240         ++Nodes[NextID].InCount;
241     }
242   }
243 
244   // Sort key ordered by <-Width, Ord>
245   SmallVector<std::tuple<int,      /// -Width
246                          unsigned, /// Ord
247                          int,      /// ID
248                          unsigned  /// Cond (0 or 1)
249                          >>
250       Decisions;
251 
252   // Traverse Nodes to assign Idx
253   SmallVector<int> Q;
254   assert(Nodes[0].InCount == 0);
255   Nodes[0].Width = 1;
256   Q.push_back(0);
257 
258   unsigned Ord = 0;
259   while (!Q.empty()) {
260     auto IID = Q.begin();
261     int ID = *IID;
262     Q.erase(IID);
263     auto &Node = Nodes[ID];
264     assert(Node.Width > 0);
265 
266     for (unsigned I = 0; I < 2; ++I) {
267       auto NextID = Node.NextIDs[I];
268       assert(NextID != 0 && "NextID should not point to the top");
269       if (NextID < 0) {
270         // Decision
271         Decisions.emplace_back(-Node.Width, Ord++, ID, I);
272         assert(Ord == Decisions.size());
273         continue;
274       }
275 
276       // Inter Node
277       auto &NextNode = Nodes[NextID];
278       assert(NextNode.InCount > 0);
279 
280       // Assign Idx
281       assert(Indices[ID][I] == INT_MIN);
282       Indices[ID][I] = NextNode.Width;
283       auto NextWidth = int64_t(NextNode.Width) + Node.Width;
284       if (NextWidth > HardMaxTVs) {
285         NumTestVectors = HardMaxTVs; // Overflow
286         return;
287       }
288       NextNode.Width = NextWidth;
289 
290       // Ready if all incomings are processed.
291       // Or NextNode.Width hasn't been confirmed yet.
292       if (--NextNode.InCount == 0)
293         Q.push_back(NextID);
294     }
295   }
296 
297   llvm::sort(Decisions);
298 
299   // Assign TestVector Indices in Decision Nodes
300   int64_t CurIdx = 0;
301   for (auto [NegWidth, Ord, ID, C] : Decisions) {
302     int Width = -NegWidth;
303     assert(Nodes[ID].Width == Width);
304     assert(Nodes[ID].NextIDs[C] < 0);
305     assert(Indices[ID][C] == INT_MIN);
306     Indices[ID][C] = Offset + CurIdx;
307     CurIdx += Width;
308     if (CurIdx > HardMaxTVs) {
309       NumTestVectors = HardMaxTVs; // Overflow
310       return;
311     }
312   }
313 
314   assert(CurIdx < HardMaxTVs);
315   NumTestVectors = CurIdx;
316 
317 #ifndef NDEBUG
318   for (const auto &Idxs : Indices)
319     for (auto Idx : Idxs)
320       assert(Idx != INT_MIN);
321   SavedNodes = std::move(Nodes);
322 #endif
323 }
324 
325 namespace {
326 
327 /// Construct this->NextIDs with Branches for TVIdxBuilder to use it
328 /// before MCDCRecordProcessor().
329 class NextIDsBuilder {
330 protected:
331   SmallVector<mcdc::ConditionIDs> NextIDs;
332 
333 public:
334   NextIDsBuilder(const ArrayRef<const CounterMappingRegion *> Branches)
335       : NextIDs(Branches.size()) {
336 #ifndef NDEBUG
337     DenseSet<mcdc::ConditionID> SeenIDs;
338 #endif
339     for (const auto *Branch : Branches) {
340       const auto &BranchParams = Branch->getBranchParams();
341       assert(BranchParams.ID >= 0 && "CondID isn't set");
342       assert(SeenIDs.insert(BranchParams.ID).second && "Duplicate CondID");
343       NextIDs[BranchParams.ID] = BranchParams.Conds;
344     }
345     assert(SeenIDs.size() == Branches.size());
346   }
347 };
348 
349 class MCDCRecordProcessor : NextIDsBuilder, mcdc::TVIdxBuilder {
350   /// A bitmap representing the executed test vectors for a boolean expression.
351   /// Each index of the bitmap corresponds to a possible test vector. An index
352   /// with a bit value of '1' indicates that the corresponding Test Vector
353   /// identified by that index was executed.
354   const BitVector &Bitmap;
355 
356   /// Decision Region to which the ExecutedTestVectorBitmap applies.
357   const CounterMappingRegion &Region;
358   const mcdc::DecisionParameters &DecisionParams;
359 
360   /// Array of branch regions corresponding each conditions in the boolean
361   /// expression.
362   ArrayRef<const CounterMappingRegion *> Branches;
363 
364   /// Total number of conditions in the boolean expression.
365   unsigned NumConditions;
366 
367   /// Vector used to track whether a condition is constant folded.
368   MCDCRecord::BoolVector Folded;
369 
370   /// Mapping of calculated MC/DC Independence Pairs for each condition.
371   MCDCRecord::TVPairMap IndependencePairs;
372 
373   /// Storage for ExecVectors
374   /// ExecVectors is the alias of its 0th element.
375   std::array<MCDCRecord::TestVectors, 2> ExecVectorsByCond;
376 
377   /// Actual executed Test Vectors for the boolean expression, based on
378   /// ExecutedTestVectorBitmap.
379   MCDCRecord::TestVectors &ExecVectors;
380 
381   /// Number of False items in ExecVectors
382   unsigned NumExecVectorsF;
383 
384 #ifndef NDEBUG
385   DenseSet<unsigned> TVIdxs;
386 #endif
387 
388 public:
389   MCDCRecordProcessor(const BitVector &Bitmap,
390                       const CounterMappingRegion &Region,
391                       ArrayRef<const CounterMappingRegion *> Branches)
392       : NextIDsBuilder(Branches), TVIdxBuilder(this->NextIDs), Bitmap(Bitmap),
393         Region(Region), DecisionParams(Region.getDecisionParams()),
394         Branches(Branches), NumConditions(DecisionParams.NumConditions),
395         Folded(NumConditions, false), IndependencePairs(NumConditions),
396         ExecVectors(ExecVectorsByCond[false]) {}
397 
398 private:
399   // Walk the binary decision diagram and try assigning both false and true to
400   // each node. When a terminal node (ID == 0) is reached, fill in the value in
401   // the truth table.
402   void buildTestVector(MCDCRecord::TestVector &TV, mcdc::ConditionID ID,
403                        int TVIdx, unsigned Index) {
404     assert((Index & (1 << ID)) == 0);
405 
406     for (auto MCDCCond : {MCDCRecord::MCDC_False, MCDCRecord::MCDC_True}) {
407       static_assert(MCDCRecord::MCDC_False == 0);
408       static_assert(MCDCRecord::MCDC_True == 1);
409       Index |= MCDCCond << ID;
410       TV[ID] = MCDCCond;
411       auto NextID = NextIDs[ID][MCDCCond];
412       auto NextTVIdx = TVIdx + Indices[ID][MCDCCond];
413       assert(NextID == SavedNodes[ID].NextIDs[MCDCCond]);
414       if (NextID >= 0) {
415         buildTestVector(TV, NextID, NextTVIdx, Index);
416         continue;
417       }
418 
419       assert(TVIdx < SavedNodes[ID].Width);
420       assert(TVIdxs.insert(NextTVIdx).second && "Duplicate TVIdx");
421 
422       if (!Bitmap[DecisionParams.BitmapIdx * CHAR_BIT + Index])
423         continue;
424 
425       // Copy the completed test vector to the vector of testvectors.
426       // The final value (T,F) is equal to the last non-dontcare state on the
427       // path (in a short-circuiting system).
428       ExecVectorsByCond[MCDCCond].push_back({TV, MCDCCond});
429     }
430 
431     // Reset back to DontCare.
432     TV[ID] = MCDCRecord::MCDC_DontCare;
433   }
434 
435   /// Walk the bits in the bitmap.  A bit set to '1' indicates that the test
436   /// vector at the corresponding index was executed during a test run.
437   void findExecutedTestVectors() {
438     // Walk the binary decision diagram to enumerate all possible test vectors.
439     // We start at the root node (ID == 0) with all values being DontCare.
440     // `TVIdx` starts with 0 and is in the traversal.
441     // `Index` encodes the bitmask of true values and is initially 0.
442     MCDCRecord::TestVector TV(NumConditions, MCDCRecord::MCDC_DontCare);
443     buildTestVector(TV, 0, 0, 0);
444     assert(TVIdxs.size() == unsigned(NumTestVectors) &&
445            "TVIdxs wasn't fulfilled");
446 
447     // Fill ExecVectors order by False items and True items.
448     // ExecVectors is the alias of ExecVectorsByCond[false], so
449     // Append ExecVectorsByCond[true] on it.
450     NumExecVectorsF = ExecVectors.size();
451     auto &ExecVectorsT = ExecVectorsByCond[true];
452     ExecVectors.append(std::make_move_iterator(ExecVectorsT.begin()),
453                        std::make_move_iterator(ExecVectorsT.end()));
454   }
455 
456   // Find an independence pair for each condition:
457   // - The condition is true in one test and false in the other.
458   // - The decision outcome is true one test and false in the other.
459   // - All other conditions' values must be equal or marked as "don't care".
460   void findIndependencePairs() {
461     unsigned NumTVs = ExecVectors.size();
462     for (unsigned I = NumExecVectorsF; I < NumTVs; ++I) {
463       const auto &[A, ACond] = ExecVectors[I];
464       assert(ACond == MCDCRecord::MCDC_True);
465       for (unsigned J = 0; J < NumExecVectorsF; ++J) {
466         const auto &[B, BCond] = ExecVectors[J];
467         assert(BCond == MCDCRecord::MCDC_False);
468         unsigned Flip = NumConditions, Idx;
469         for (Idx = 0; Idx < NumConditions; ++Idx) {
470           MCDCRecord::CondState ACond = A[Idx], BCond = B[Idx];
471           if (ACond == BCond || ACond == MCDCRecord::MCDC_DontCare ||
472               BCond == MCDCRecord::MCDC_DontCare)
473             continue;
474           if (Flip != NumConditions)
475             break;
476           Flip = Idx;
477         }
478         // If the two vectors differ in exactly one condition, ignoring DontCare
479         // conditions, we have found an independence pair.
480         if (Idx == NumConditions && Flip != NumConditions)
481           IndependencePairs.insert({Flip, std::make_pair(J + 1, I + 1)});
482       }
483     }
484   }
485 
486 public:
487   /// Process the MC/DC Record in order to produce a result for a boolean
488   /// expression. This process includes tracking the conditions that comprise
489   /// the decision region, calculating the list of all possible test vectors,
490   /// marking the executed test vectors, and then finding an Independence Pair
491   /// out of the executed test vectors for each condition in the boolean
492   /// expression. A condition is tracked to ensure that its ID can be mapped to
493   /// its ordinal position in the boolean expression. The condition's source
494   /// location is also tracked, as well as whether it is constant folded (in
495   /// which case it is excuded from the metric).
496   MCDCRecord processMCDCRecord() {
497     unsigned I = 0;
498     MCDCRecord::CondIDMap PosToID;
499     MCDCRecord::LineColPairMap CondLoc;
500 
501     // Walk the Record's BranchRegions (representing Conditions) in order to:
502     // - Hash the condition based on its corresponding ID. This will be used to
503     //   calculate the test vectors.
504     // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its
505     //   actual ID.  This will be used to visualize the conditions in the
506     //   correct order.
507     // - Keep track of the condition source location. This will be used to
508     //   visualize where the condition is.
509     // - Record whether the condition is constant folded so that we exclude it
510     //   from being measured.
511     for (const auto *B : Branches) {
512       const auto &BranchParams = B->getBranchParams();
513       PosToID[I] = BranchParams.ID;
514       CondLoc[I] = B->startLoc();
515       Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero());
516     }
517 
518     // Using Profile Bitmap from runtime, mark the executed test vectors.
519     findExecutedTestVectors();
520 
521     // Compare executed test vectors against each other to find an independence
522     // pairs for each condition.  This processing takes the most time.
523     findIndependencePairs();
524 
525     // Record Test vectors, executed vectors, and independence pairs.
526     return MCDCRecord(Region, std::move(ExecVectors),
527                       std::move(IndependencePairs), std::move(Folded),
528                       std::move(PosToID), std::move(CondLoc));
529   }
530 };
531 
532 } // namespace
533 
534 Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion(
535     const CounterMappingRegion &Region,
536     ArrayRef<const CounterMappingRegion *> Branches) {
537 
538   MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches);
539   return MCDCProcessor.processMCDCRecord();
540 }
541 
542 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const {
543   struct StackElem {
544     Counter ICounter;
545     int64_t LHS = 0;
546     enum {
547       KNeverVisited = 0,
548       KVisitedOnce = 1,
549       KVisitedTwice = 2,
550     } VisitCount = KNeverVisited;
551   };
552 
553   std::stack<StackElem> CounterStack;
554   CounterStack.push({C});
555 
556   int64_t LastPoppedValue;
557 
558   while (!CounterStack.empty()) {
559     StackElem &Current = CounterStack.top();
560 
561     switch (Current.ICounter.getKind()) {
562     case Counter::Zero:
563       LastPoppedValue = 0;
564       CounterStack.pop();
565       break;
566     case Counter::CounterValueReference:
567       LastPoppedValue = Current.ICounter.getCounterID();
568       CounterStack.pop();
569       break;
570     case Counter::Expression: {
571       if (Current.ICounter.getExpressionID() >= Expressions.size()) {
572         LastPoppedValue = 0;
573         CounterStack.pop();
574       } else {
575         const auto &E = Expressions[Current.ICounter.getExpressionID()];
576         if (Current.VisitCount == StackElem::KNeverVisited) {
577           CounterStack.push(StackElem{E.LHS});
578           Current.VisitCount = StackElem::KVisitedOnce;
579         } else if (Current.VisitCount == StackElem::KVisitedOnce) {
580           Current.LHS = LastPoppedValue;
581           CounterStack.push(StackElem{E.RHS});
582           Current.VisitCount = StackElem::KVisitedTwice;
583         } else {
584           int64_t LHS = Current.LHS;
585           int64_t RHS = LastPoppedValue;
586           LastPoppedValue = std::max(LHS, RHS);
587           CounterStack.pop();
588         }
589       }
590       break;
591     }
592     }
593   }
594 
595   return LastPoppedValue;
596 }
597 
598 void FunctionRecordIterator::skipOtherFiles() {
599   while (Current != Records.end() && !Filename.empty() &&
600          Filename != Current->Filenames[0])
601     ++Current;
602   if (Current == Records.end())
603     *this = FunctionRecordIterator();
604 }
605 
606 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename(
607     StringRef Filename) const {
608   size_t FilenameHash = hash_value(Filename);
609   auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash);
610   if (RecordIt == FilenameHash2RecordIndices.end())
611     return {};
612   return RecordIt->second;
613 }
614 
615 static unsigned getMaxCounterID(const CounterMappingContext &Ctx,
616                                 const CoverageMappingRecord &Record) {
617   unsigned MaxCounterID = 0;
618   for (const auto &Region : Record.MappingRegions) {
619     MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count));
620   }
621   return MaxCounterID;
622 }
623 
624 /// Returns the bit count
625 static unsigned getMaxBitmapSize(const CounterMappingContext &Ctx,
626                                  const CoverageMappingRecord &Record) {
627   unsigned MaxBitmapIdx = 0;
628   unsigned NumConditions = 0;
629   // Scan max(BitmapIdx).
630   // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid
631   // and `MaxBitmapIdx is `unsigned`. `BitmapIdx` is unique in the record.
632   for (const auto &Region : reverse(Record.MappingRegions)) {
633     if (Region.Kind != CounterMappingRegion::MCDCDecisionRegion)
634       continue;
635     const auto &DecisionParams = Region.getDecisionParams();
636     if (MaxBitmapIdx <= DecisionParams.BitmapIdx) {
637       MaxBitmapIdx = DecisionParams.BitmapIdx;
638       NumConditions = DecisionParams.NumConditions;
639     }
640   }
641   unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT);
642   return MaxBitmapIdx * CHAR_BIT + SizeInBits;
643 }
644 
645 namespace {
646 
647 /// Collect Decisions, Branchs, and Expansions and associate them.
648 class MCDCDecisionRecorder {
649 private:
650   /// This holds the DecisionRegion and MCDCBranches under it.
651   /// Also traverses Expansion(s).
652   /// The Decision has the number of MCDCBranches and will complete
653   /// when it is filled with unique ConditionID of MCDCBranches.
654   struct DecisionRecord {
655     const CounterMappingRegion *DecisionRegion;
656 
657     /// They are reflected from DecisionRegion for convenience.
658     mcdc::DecisionParameters DecisionParams;
659     LineColPair DecisionStartLoc;
660     LineColPair DecisionEndLoc;
661 
662     /// This is passed to `MCDCRecordProcessor`, so this should be compatible
663     /// to`ArrayRef<const CounterMappingRegion *>`.
664     SmallVector<const CounterMappingRegion *> MCDCBranches;
665 
666     /// IDs that are stored in MCDCBranches
667     /// Complete when all IDs (1 to NumConditions) are met.
668     DenseSet<mcdc::ConditionID> ConditionIDs;
669 
670     /// Set of IDs of Expansion(s) that are relevant to DecisionRegion
671     /// and its children (via expansions).
672     /// FileID  pointed by ExpandedFileID is dedicated to the expansion, so
673     /// the location in the expansion doesn't matter.
674     DenseSet<unsigned> ExpandedFileIDs;
675 
676     DecisionRecord(const CounterMappingRegion &Decision)
677         : DecisionRegion(&Decision),
678           DecisionParams(Decision.getDecisionParams()),
679           DecisionStartLoc(Decision.startLoc()),
680           DecisionEndLoc(Decision.endLoc()) {
681       assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion);
682     }
683 
684     /// Determine whether DecisionRecord dominates `R`.
685     bool dominates(const CounterMappingRegion &R) const {
686       // Determine whether `R` is included in `DecisionRegion`.
687       if (R.FileID == DecisionRegion->FileID &&
688           R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc)
689         return true;
690 
691       // Determine whether `R` is pointed by any of Expansions.
692       return ExpandedFileIDs.contains(R.FileID);
693     }
694 
695     enum Result {
696       NotProcessed = 0, /// Irrelevant to this Decision
697       Processed,        /// Added to this Decision
698       Completed,        /// Added and filled this Decision
699     };
700 
701     /// Add Branch into the Decision
702     /// \param Branch expects MCDCBranchRegion
703     /// \returns NotProcessed/Processed/Completed
704     Result addBranch(const CounterMappingRegion &Branch) {
705       assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion);
706 
707       auto ConditionID = Branch.getBranchParams().ID;
708       assert(ConditionID >= 0 && "ConditionID should be positive");
709 
710       if (ConditionIDs.contains(ConditionID) ||
711           ConditionID >= DecisionParams.NumConditions)
712         return NotProcessed;
713 
714       if (!this->dominates(Branch))
715         return NotProcessed;
716 
717       assert(MCDCBranches.size() < DecisionParams.NumConditions);
718 
719       // Put `ID=0` in front of `MCDCBranches` for convenience
720       // even if `MCDCBranches` is not topological.
721       if (ConditionID == 0)
722         MCDCBranches.insert(MCDCBranches.begin(), &Branch);
723       else
724         MCDCBranches.push_back(&Branch);
725 
726       // Mark `ID` as `assigned`.
727       ConditionIDs.insert(ConditionID);
728 
729       // `Completed` when `MCDCBranches` is full
730       return (MCDCBranches.size() == DecisionParams.NumConditions ? Completed
731                                                                   : Processed);
732     }
733 
734     /// Record Expansion if it is relevant to this Decision.
735     /// Each `Expansion` may nest.
736     /// \returns true if recorded.
737     bool recordExpansion(const CounterMappingRegion &Expansion) {
738       if (!this->dominates(Expansion))
739         return false;
740 
741       ExpandedFileIDs.insert(Expansion.ExpandedFileID);
742       return true;
743     }
744   };
745 
746 private:
747   /// Decisions in progress
748   /// DecisionRecord is added for each MCDCDecisionRegion.
749   /// DecisionRecord is removed when Decision is completed.
750   SmallVector<DecisionRecord> Decisions;
751 
752 public:
753   ~MCDCDecisionRecorder() {
754     assert(Decisions.empty() && "All Decisions have not been resolved");
755   }
756 
757   /// Register Region and start recording.
758   void registerDecision(const CounterMappingRegion &Decision) {
759     Decisions.emplace_back(Decision);
760   }
761 
762   void recordExpansion(const CounterMappingRegion &Expansion) {
763     any_of(Decisions, [&Expansion](auto &Decision) {
764       return Decision.recordExpansion(Expansion);
765     });
766   }
767 
768   using DecisionAndBranches =
769       std::pair<const CounterMappingRegion *,             /// Decision
770                 SmallVector<const CounterMappingRegion *> /// Branches
771                 >;
772 
773   /// Add MCDCBranchRegion to DecisionRecord.
774   /// \param Branch to be processed
775   /// \returns DecisionsAndBranches if DecisionRecord completed.
776   ///     Or returns nullopt.
777   std::optional<DecisionAndBranches>
778   processBranch(const CounterMappingRegion &Branch) {
779     // Seek each Decision and apply Region to it.
780     for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end();
781          DecisionIter != DecisionEnd; ++DecisionIter)
782       switch (DecisionIter->addBranch(Branch)) {
783       case DecisionRecord::NotProcessed:
784         continue;
785       case DecisionRecord::Processed:
786         return std::nullopt;
787       case DecisionRecord::Completed:
788         DecisionAndBranches Result =
789             std::make_pair(DecisionIter->DecisionRegion,
790                            std::move(DecisionIter->MCDCBranches));
791         Decisions.erase(DecisionIter); // No longer used.
792         return Result;
793       }
794 
795     llvm_unreachable("Branch not found in Decisions");
796   }
797 };
798 
799 } // namespace
800 
801 Error CoverageMapping::loadFunctionRecord(
802     const CoverageMappingRecord &Record,
803     IndexedInstrProfReader &ProfileReader) {
804   StringRef OrigFuncName = Record.FunctionName;
805   if (OrigFuncName.empty())
806     return make_error<CoverageMapError>(coveragemap_error::malformed,
807                                         "record function name is empty");
808 
809   if (Record.Filenames.empty())
810     OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
811   else
812     OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);
813 
814   CounterMappingContext Ctx(Record.Expressions);
815 
816   std::vector<uint64_t> Counts;
817   if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName,
818                                                 Record.FunctionHash, Counts)) {
819     instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E)));
820     if (IPE == instrprof_error::hash_mismatch) {
821       FuncHashMismatches.emplace_back(std::string(Record.FunctionName),
822                                       Record.FunctionHash);
823       return Error::success();
824     }
825     if (IPE != instrprof_error::unknown_function)
826       return make_error<InstrProfError>(IPE);
827     Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0);
828   }
829   Ctx.setCounts(Counts);
830 
831   BitVector Bitmap;
832   if (Error E = ProfileReader.getFunctionBitmap(Record.FunctionName,
833                                                 Record.FunctionHash, Bitmap)) {
834     instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E)));
835     if (IPE == instrprof_error::hash_mismatch) {
836       FuncHashMismatches.emplace_back(std::string(Record.FunctionName),
837                                       Record.FunctionHash);
838       return Error::success();
839     }
840     if (IPE != instrprof_error::unknown_function)
841       return make_error<InstrProfError>(IPE);
842     Bitmap = BitVector(getMaxBitmapSize(Ctx, Record));
843   }
844   Ctx.setBitmap(std::move(Bitmap));
845 
846   assert(!Record.MappingRegions.empty() && "Function has no regions");
847 
848   // This coverage record is a zero region for a function that's unused in
849   // some TU, but used in a different TU. Ignore it. The coverage maps from the
850   // the other TU will either be loaded (providing full region counts) or they
851   // won't (in which case we don't unintuitively report functions as uncovered
852   // when they have non-zero counts in the profile).
853   if (Record.MappingRegions.size() == 1 &&
854       Record.MappingRegions[0].Count.isZero() && Counts[0] > 0)
855     return Error::success();
856 
857   MCDCDecisionRecorder MCDCDecisions;
858   FunctionRecord Function(OrigFuncName, Record.Filenames);
859   for (const auto &Region : Record.MappingRegions) {
860     // MCDCDecisionRegion should be handled first since it overlaps with
861     // others inside.
862     if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) {
863       MCDCDecisions.registerDecision(Region);
864       continue;
865     }
866     Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
867     if (auto E = ExecutionCount.takeError()) {
868       consumeError(std::move(E));
869       return Error::success();
870     }
871     Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount);
872     if (auto E = AltExecutionCount.takeError()) {
873       consumeError(std::move(E));
874       return Error::success();
875     }
876     Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount,
877                         ProfileReader.hasSingleByteCoverage());
878 
879     // Record ExpansionRegion.
880     if (Region.Kind == CounterMappingRegion::ExpansionRegion) {
881       MCDCDecisions.recordExpansion(Region);
882       continue;
883     }
884 
885     // Do nothing unless MCDCBranchRegion.
886     if (Region.Kind != CounterMappingRegion::MCDCBranchRegion)
887       continue;
888 
889     auto Result = MCDCDecisions.processBranch(Region);
890     if (!Result) // Any Decision doesn't complete.
891       continue;
892 
893     auto MCDCDecision = Result->first;
894     auto &MCDCBranches = Result->second;
895 
896     // Since the bitmap identifies the executed test vectors for an MC/DC
897     // DecisionRegion, all of the information is now available to process.
898     // This is where the bulk of the MC/DC progressing takes place.
899     Expected<MCDCRecord> Record =
900         Ctx.evaluateMCDCRegion(*MCDCDecision, MCDCBranches);
901     if (auto E = Record.takeError()) {
902       consumeError(std::move(E));
903       return Error::success();
904     }
905 
906     // Save the MC/DC Record so that it can be visualized later.
907     Function.pushMCDCRecord(std::move(*Record));
908   }
909 
910   // Don't create records for (filenames, function) pairs we've already seen.
911   auto FilenamesHash = hash_combine_range(Record.Filenames.begin(),
912                                           Record.Filenames.end());
913   if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second)
914     return Error::success();
915 
916   Functions.push_back(std::move(Function));
917 
918   // Performance optimization: keep track of the indices of the function records
919   // which correspond to each filename. This can be used to substantially speed
920   // up queries for coverage info in a file.
921   unsigned RecordIndex = Functions.size() - 1;
922   for (StringRef Filename : Record.Filenames) {
923     auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)];
924     // Note that there may be duplicates in the filename set for a function
925     // record, because of e.g. macro expansions in the function in which both
926     // the macro and the function are defined in the same file.
927     if (RecordIndices.empty() || RecordIndices.back() != RecordIndex)
928       RecordIndices.push_back(RecordIndex);
929   }
930 
931   return Error::success();
932 }
933 
934 // This function is for memory optimization by shortening the lifetimes
935 // of CoverageMappingReader instances.
936 Error CoverageMapping::loadFromReaders(
937     ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
938     IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) {
939   for (const auto &CoverageReader : CoverageReaders) {
940     for (auto RecordOrErr : *CoverageReader) {
941       if (Error E = RecordOrErr.takeError())
942         return E;
943       const auto &Record = *RecordOrErr;
944       if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader))
945         return E;
946     }
947   }
948   return Error::success();
949 }
950 
951 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
952     ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
953     IndexedInstrProfReader &ProfileReader) {
954   auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
955   if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage))
956     return std::move(E);
957   return std::move(Coverage);
958 }
959 
960 // If E is a no_data_found error, returns success. Otherwise returns E.
961 static Error handleMaybeNoDataFoundError(Error E) {
962   return handleErrors(
963       std::move(E), [](const CoverageMapError &CME) {
964         if (CME.get() == coveragemap_error::no_data_found)
965           return static_cast<Error>(Error::success());
966         return make_error<CoverageMapError>(CME.get(), CME.getMessage());
967       });
968 }
969 
970 Error CoverageMapping::loadFromFile(
971     StringRef Filename, StringRef Arch, StringRef CompilationDir,
972     IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage,
973     bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) {
974   auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(
975       Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false);
976   if (std::error_code EC = CovMappingBufOrErr.getError())
977     return createFileError(Filename, errorCodeToError(EC));
978   MemoryBufferRef CovMappingBufRef =
979       CovMappingBufOrErr.get()->getMemBufferRef();
980   SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers;
981 
982   SmallVector<object::BuildIDRef> BinaryIDs;
983   auto CoverageReadersOrErr = BinaryCoverageReader::create(
984       CovMappingBufRef, Arch, Buffers, CompilationDir,
985       FoundBinaryIDs ? &BinaryIDs : nullptr);
986   if (Error E = CoverageReadersOrErr.takeError()) {
987     E = handleMaybeNoDataFoundError(std::move(E));
988     if (E)
989       return createFileError(Filename, std::move(E));
990     return E;
991   }
992 
993   SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers;
994   for (auto &Reader : CoverageReadersOrErr.get())
995     Readers.push_back(std::move(Reader));
996   if (FoundBinaryIDs && !Readers.empty()) {
997     llvm::append_range(*FoundBinaryIDs,
998                        llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) {
999                          return object::BuildID(BID);
1000                        }));
1001   }
1002   DataFound |= !Readers.empty();
1003   if (Error E = loadFromReaders(Readers, ProfileReader, Coverage))
1004     return createFileError(Filename, std::move(E));
1005   return Error::success();
1006 }
1007 
1008 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
1009     ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename,
1010     vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir,
1011     const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) {
1012   auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS);
1013   if (Error E = ProfileReaderOrErr.takeError())
1014     return createFileError(ProfileFilename, std::move(E));
1015   auto ProfileReader = std::move(ProfileReaderOrErr.get());
1016   auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
1017   bool DataFound = false;
1018 
1019   auto GetArch = [&](size_t Idx) {
1020     if (Arches.empty())
1021       return StringRef();
1022     if (Arches.size() == 1)
1023       return Arches.front();
1024     return Arches[Idx];
1025   };
1026 
1027   SmallVector<object::BuildID> FoundBinaryIDs;
1028   for (const auto &File : llvm::enumerate(ObjectFilenames)) {
1029     if (Error E =
1030             loadFromFile(File.value(), GetArch(File.index()), CompilationDir,
1031                          *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs))
1032       return std::move(E);
1033   }
1034 
1035   if (BIDFetcher) {
1036     std::vector<object::BuildID> ProfileBinaryIDs;
1037     if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs))
1038       return createFileError(ProfileFilename, std::move(E));
1039 
1040     SmallVector<object::BuildIDRef> BinaryIDsToFetch;
1041     if (!ProfileBinaryIDs.empty()) {
1042       const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) {
1043         return std::lexicographical_compare(A.begin(), A.end(), B.begin(),
1044                                             B.end());
1045       };
1046       llvm::sort(FoundBinaryIDs, Compare);
1047       std::set_difference(
1048           ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(),
1049           FoundBinaryIDs.begin(), FoundBinaryIDs.end(),
1050           std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare);
1051     }
1052 
1053     for (object::BuildIDRef BinaryID : BinaryIDsToFetch) {
1054       std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID);
1055       if (PathOpt) {
1056         std::string Path = std::move(*PathOpt);
1057         StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef();
1058         if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader,
1059                                   *Coverage, DataFound))
1060           return std::move(E);
1061       } else if (CheckBinaryIDs) {
1062         return createFileError(
1063             ProfileFilename,
1064             createStringError(errc::no_such_file_or_directory,
1065                               "Missing binary ID: " +
1066                                   llvm::toHex(BinaryID, /*LowerCase=*/true)));
1067       }
1068     }
1069   }
1070 
1071   if (!DataFound)
1072     return createFileError(
1073         join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "),
1074         make_error<CoverageMapError>(coveragemap_error::no_data_found));
1075   return std::move(Coverage);
1076 }
1077 
1078 namespace {
1079 
1080 /// Distributes functions into instantiation sets.
1081 ///
1082 /// An instantiation set is a collection of functions that have the same source
1083 /// code, ie, template functions specializations.
1084 class FunctionInstantiationSetCollector {
1085   using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>;
1086   MapT InstantiatedFunctions;
1087 
1088 public:
1089   void insert(const FunctionRecord &Function, unsigned FileID) {
1090     auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
1091     while (I != E && I->FileID != FileID)
1092       ++I;
1093     assert(I != E && "function does not cover the given file");
1094     auto &Functions = InstantiatedFunctions[I->startLoc()];
1095     Functions.push_back(&Function);
1096   }
1097 
1098   MapT::iterator begin() { return InstantiatedFunctions.begin(); }
1099   MapT::iterator end() { return InstantiatedFunctions.end(); }
1100 };
1101 
1102 class SegmentBuilder {
1103   std::vector<CoverageSegment> &Segments;
1104   SmallVector<const CountedRegion *, 8> ActiveRegions;
1105 
1106   SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {}
1107 
1108   /// Emit a segment with the count from \p Region starting at \p StartLoc.
1109   //
1110   /// \p IsRegionEntry: The segment is at the start of a new non-gap region.
1111   /// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
1112   void startSegment(const CountedRegion &Region, LineColPair StartLoc,
1113                     bool IsRegionEntry, bool EmitSkippedRegion = false) {
1114     bool HasCount = !EmitSkippedRegion &&
1115                     (Region.Kind != CounterMappingRegion::SkippedRegion);
1116 
1117     // If the new segment wouldn't affect coverage rendering, skip it.
1118     if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) {
1119       const auto &Last = Segments.back();
1120       if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount &&
1121           !Last.IsRegionEntry)
1122         return;
1123     }
1124 
1125     if (HasCount)
1126       Segments.emplace_back(StartLoc.first, StartLoc.second,
1127                             Region.ExecutionCount, IsRegionEntry,
1128                             Region.Kind == CounterMappingRegion::GapRegion);
1129     else
1130       Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry);
1131 
1132     LLVM_DEBUG({
1133       const auto &Last = Segments.back();
1134       dbgs() << "Segment at " << Last.Line << ":" << Last.Col
1135              << " (count = " << Last.Count << ")"
1136              << (Last.IsRegionEntry ? ", RegionEntry" : "")
1137              << (!Last.HasCount ? ", Skipped" : "")
1138              << (Last.IsGapRegion ? ", Gap" : "") << "\n";
1139     });
1140   }
1141 
1142   /// Emit segments for active regions which end before \p Loc.
1143   ///
1144   /// \p Loc: The start location of the next region. If std::nullopt, all active
1145   /// regions are completed.
1146   /// \p FirstCompletedRegion: Index of the first completed region.
1147   void completeRegionsUntil(std::optional<LineColPair> Loc,
1148                             unsigned FirstCompletedRegion) {
1149     // Sort the completed regions by end location. This makes it simple to
1150     // emit closing segments in sorted order.
1151     auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion;
1152     std::stable_sort(CompletedRegionsIt, ActiveRegions.end(),
1153                       [](const CountedRegion *L, const CountedRegion *R) {
1154                         return L->endLoc() < R->endLoc();
1155                       });
1156 
1157     // Emit segments for all completed regions.
1158     for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E;
1159          ++I) {
1160       const auto *CompletedRegion = ActiveRegions[I];
1161       assert((!Loc || CompletedRegion->endLoc() <= *Loc) &&
1162              "Completed region ends after start of new region");
1163 
1164       const auto *PrevCompletedRegion = ActiveRegions[I - 1];
1165       auto CompletedSegmentLoc = PrevCompletedRegion->endLoc();
1166 
1167       // Don't emit any more segments if they start where the new region begins.
1168       if (Loc && CompletedSegmentLoc == *Loc)
1169         break;
1170 
1171       // Don't emit a segment if the next completed region ends at the same
1172       // location as this one.
1173       if (CompletedSegmentLoc == CompletedRegion->endLoc())
1174         continue;
1175 
1176       // Use the count from the last completed region which ends at this loc.
1177       for (unsigned J = I + 1; J < E; ++J)
1178         if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc())
1179           CompletedRegion = ActiveRegions[J];
1180 
1181       startSegment(*CompletedRegion, CompletedSegmentLoc, false);
1182     }
1183 
1184     auto Last = ActiveRegions.back();
1185     if (FirstCompletedRegion && Last->endLoc() != *Loc) {
1186       // If there's a gap after the end of the last completed region and the
1187       // start of the new region, use the last active region to fill the gap.
1188       startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(),
1189                    false);
1190     } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) {
1191       // Emit a skipped segment if there are no more active regions. This
1192       // ensures that gaps between functions are marked correctly.
1193       startSegment(*Last, Last->endLoc(), false, true);
1194     }
1195 
1196     // Pop the completed regions.
1197     ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end());
1198   }
1199 
1200   void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) {
1201     for (const auto &CR : enumerate(Regions)) {
1202       auto CurStartLoc = CR.value().startLoc();
1203 
1204       // Active regions which end before the current region need to be popped.
1205       auto CompletedRegions =
1206           std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(),
1207                                 [&](const CountedRegion *Region) {
1208                                   return !(Region->endLoc() <= CurStartLoc);
1209                                 });
1210       if (CompletedRegions != ActiveRegions.end()) {
1211         unsigned FirstCompletedRegion =
1212             std::distance(ActiveRegions.begin(), CompletedRegions);
1213         completeRegionsUntil(CurStartLoc, FirstCompletedRegion);
1214       }
1215 
1216       bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion;
1217 
1218       // Try to emit a segment for the current region.
1219       if (CurStartLoc == CR.value().endLoc()) {
1220         // Avoid making zero-length regions active. If it's the last region,
1221         // emit a skipped segment. Otherwise use its predecessor's count.
1222         const bool Skipped =
1223             (CR.index() + 1) == Regions.size() ||
1224             CR.value().Kind == CounterMappingRegion::SkippedRegion;
1225         startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(),
1226                      CurStartLoc, !GapRegion, Skipped);
1227         // If it is skipped segment, create a segment with last pushed
1228         // regions's count at CurStartLoc.
1229         if (Skipped && !ActiveRegions.empty())
1230           startSegment(*ActiveRegions.back(), CurStartLoc, false);
1231         continue;
1232       }
1233       if (CR.index() + 1 == Regions.size() ||
1234           CurStartLoc != Regions[CR.index() + 1].startLoc()) {
1235         // Emit a segment if the next region doesn't start at the same location
1236         // as this one.
1237         startSegment(CR.value(), CurStartLoc, !GapRegion);
1238       }
1239 
1240       // This region is active (i.e not completed).
1241       ActiveRegions.push_back(&CR.value());
1242     }
1243 
1244     // Complete any remaining active regions.
1245     if (!ActiveRegions.empty())
1246       completeRegionsUntil(std::nullopt, 0);
1247   }
1248 
1249   /// Sort a nested sequence of regions from a single file.
1250   static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) {
1251     llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) {
1252       if (LHS.startLoc() != RHS.startLoc())
1253         return LHS.startLoc() < RHS.startLoc();
1254       if (LHS.endLoc() != RHS.endLoc())
1255         // When LHS completely contains RHS, we sort LHS first.
1256         return RHS.endLoc() < LHS.endLoc();
1257       // If LHS and RHS cover the same area, we need to sort them according
1258       // to their kinds so that the most suitable region will become "active"
1259       // in combineRegions(). Because we accumulate counter values only from
1260       // regions of the same kind as the first region of the area, prefer
1261       // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
1262       static_assert(CounterMappingRegion::CodeRegion <
1263                             CounterMappingRegion::ExpansionRegion &&
1264                         CounterMappingRegion::ExpansionRegion <
1265                             CounterMappingRegion::SkippedRegion,
1266                     "Unexpected order of region kind values");
1267       return LHS.Kind < RHS.Kind;
1268     });
1269   }
1270 
1271   /// Combine counts of regions which cover the same area.
1272   static ArrayRef<CountedRegion>
1273   combineRegions(MutableArrayRef<CountedRegion> Regions) {
1274     if (Regions.empty())
1275       return Regions;
1276     auto Active = Regions.begin();
1277     auto End = Regions.end();
1278     for (auto I = Regions.begin() + 1; I != End; ++I) {
1279       if (Active->startLoc() != I->startLoc() ||
1280           Active->endLoc() != I->endLoc()) {
1281         // Shift to the next region.
1282         ++Active;
1283         if (Active != I)
1284           *Active = *I;
1285         continue;
1286       }
1287       // Merge duplicate region.
1288       // If CodeRegions and ExpansionRegions cover the same area, it's probably
1289       // a macro which is fully expanded to another macro. In that case, we need
1290       // to accumulate counts only from CodeRegions, or else the area will be
1291       // counted twice.
1292       // On the other hand, a macro may have a nested macro in its body. If the
1293       // outer macro is used several times, the ExpansionRegion for the nested
1294       // macro will also be added several times. These ExpansionRegions cover
1295       // the same source locations and have to be combined to reach the correct
1296       // value for that area.
1297       // We add counts of the regions of the same kind as the active region
1298       // to handle the both situations.
1299       if (I->Kind == Active->Kind) {
1300         assert(I->HasSingleByteCoverage == Active->HasSingleByteCoverage &&
1301                "Regions are generated in different coverage modes");
1302         if (I->HasSingleByteCoverage)
1303           Active->ExecutionCount = Active->ExecutionCount || I->ExecutionCount;
1304         else
1305           Active->ExecutionCount += I->ExecutionCount;
1306       }
1307     }
1308     return Regions.drop_back(std::distance(++Active, End));
1309   }
1310 
1311 public:
1312   /// Build a sorted list of CoverageSegments from a list of Regions.
1313   static std::vector<CoverageSegment>
1314   buildSegments(MutableArrayRef<CountedRegion> Regions) {
1315     std::vector<CoverageSegment> Segments;
1316     SegmentBuilder Builder(Segments);
1317 
1318     sortNestedRegions(Regions);
1319     ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions);
1320 
1321     LLVM_DEBUG({
1322       dbgs() << "Combined regions:\n";
1323       for (const auto &CR : CombinedRegions)
1324         dbgs() << "  " << CR.LineStart << ":" << CR.ColumnStart << " -> "
1325                << CR.LineEnd << ":" << CR.ColumnEnd
1326                << " (count=" << CR.ExecutionCount << ")\n";
1327     });
1328 
1329     Builder.buildSegmentsImpl(CombinedRegions);
1330 
1331 #ifndef NDEBUG
1332     for (unsigned I = 1, E = Segments.size(); I < E; ++I) {
1333       const auto &L = Segments[I - 1];
1334       const auto &R = Segments[I];
1335       if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) {
1336         if (L.Line == R.Line && L.Col == R.Col && !L.HasCount)
1337           continue;
1338         LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col
1339                           << " followed by " << R.Line << ":" << R.Col << "\n");
1340         assert(false && "Coverage segments not unique or sorted");
1341       }
1342     }
1343 #endif
1344 
1345     return Segments;
1346   }
1347 };
1348 
1349 } // end anonymous namespace
1350 
1351 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
1352   std::vector<StringRef> Filenames;
1353   for (const auto &Function : getCoveredFunctions())
1354     llvm::append_range(Filenames, Function.Filenames);
1355   llvm::sort(Filenames);
1356   auto Last = std::unique(Filenames.begin(), Filenames.end());
1357   Filenames.erase(Last, Filenames.end());
1358   return Filenames;
1359 }
1360 
1361 static SmallBitVector gatherFileIDs(StringRef SourceFile,
1362                                     const FunctionRecord &Function) {
1363   SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
1364   for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
1365     if (SourceFile == Function.Filenames[I])
1366       FilenameEquivalence[I] = true;
1367   return FilenameEquivalence;
1368 }
1369 
1370 /// Return the ID of the file where the definition of the function is located.
1371 static std::optional<unsigned>
1372 findMainViewFileID(const FunctionRecord &Function) {
1373   SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
1374   for (const auto &CR : Function.CountedRegions)
1375     if (CR.Kind == CounterMappingRegion::ExpansionRegion)
1376       IsNotExpandedFile[CR.ExpandedFileID] = false;
1377   int I = IsNotExpandedFile.find_first();
1378   if (I == -1)
1379     return std::nullopt;
1380   return I;
1381 }
1382 
1383 /// Check if SourceFile is the file that contains the definition of
1384 /// the Function. Return the ID of the file in that case or std::nullopt
1385 /// otherwise.
1386 static std::optional<unsigned>
1387 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) {
1388   std::optional<unsigned> I = findMainViewFileID(Function);
1389   if (I && SourceFile == Function.Filenames[*I])
1390     return I;
1391   return std::nullopt;
1392 }
1393 
1394 static bool isExpansion(const CountedRegion &R, unsigned FileID) {
1395   return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
1396 }
1397 
1398 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const {
1399   CoverageData FileCoverage(Filename);
1400   std::vector<CountedRegion> Regions;
1401 
1402   // Look up the function records in the given file. Due to hash collisions on
1403   // the filename, we may get back some records that are not in the file.
1404   ArrayRef<unsigned> RecordIndices =
1405       getImpreciseRecordIndicesForFilename(Filename);
1406   for (unsigned RecordIndex : RecordIndices) {
1407     const FunctionRecord &Function = Functions[RecordIndex];
1408     auto MainFileID = findMainViewFileID(Filename, Function);
1409     auto FileIDs = gatherFileIDs(Filename, Function);
1410     for (const auto &CR : Function.CountedRegions)
1411       if (FileIDs.test(CR.FileID)) {
1412         Regions.push_back(CR);
1413         if (MainFileID && isExpansion(CR, *MainFileID))
1414           FileCoverage.Expansions.emplace_back(CR, Function);
1415       }
1416     // Capture branch regions specific to the function (excluding expansions).
1417     for (const auto &CR : Function.CountedBranchRegions)
1418       if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID))
1419         FileCoverage.BranchRegions.push_back(CR);
1420     // Capture MCDC records specific to the function.
1421     for (const auto &MR : Function.MCDCRecords)
1422       if (FileIDs.test(MR.getDecisionRegion().FileID))
1423         FileCoverage.MCDCRecords.push_back(MR);
1424   }
1425 
1426   LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
1427   FileCoverage.Segments = SegmentBuilder::buildSegments(Regions);
1428 
1429   return FileCoverage;
1430 }
1431 
1432 std::vector<InstantiationGroup>
1433 CoverageMapping::getInstantiationGroups(StringRef Filename) const {
1434   FunctionInstantiationSetCollector InstantiationSetCollector;
1435   // Look up the function records in the given file. Due to hash collisions on
1436   // the filename, we may get back some records that are not in the file.
1437   ArrayRef<unsigned> RecordIndices =
1438       getImpreciseRecordIndicesForFilename(Filename);
1439   for (unsigned RecordIndex : RecordIndices) {
1440     const FunctionRecord &Function = Functions[RecordIndex];
1441     auto MainFileID = findMainViewFileID(Filename, Function);
1442     if (!MainFileID)
1443       continue;
1444     InstantiationSetCollector.insert(Function, *MainFileID);
1445   }
1446 
1447   std::vector<InstantiationGroup> Result;
1448   for (auto &InstantiationSet : InstantiationSetCollector) {
1449     InstantiationGroup IG{InstantiationSet.first.first,
1450                           InstantiationSet.first.second,
1451                           std::move(InstantiationSet.second)};
1452     Result.emplace_back(std::move(IG));
1453   }
1454   return Result;
1455 }
1456 
1457 CoverageData
1458 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const {
1459   auto MainFileID = findMainViewFileID(Function);
1460   if (!MainFileID)
1461     return CoverageData();
1462 
1463   CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
1464   std::vector<CountedRegion> Regions;
1465   for (const auto &CR : Function.CountedRegions)
1466     if (CR.FileID == *MainFileID) {
1467       Regions.push_back(CR);
1468       if (isExpansion(CR, *MainFileID))
1469         FunctionCoverage.Expansions.emplace_back(CR, Function);
1470     }
1471   // Capture branch regions specific to the function (excluding expansions).
1472   for (const auto &CR : Function.CountedBranchRegions)
1473     if (CR.FileID == *MainFileID)
1474       FunctionCoverage.BranchRegions.push_back(CR);
1475 
1476   // Capture MCDC records specific to the function.
1477   for (const auto &MR : Function.MCDCRecords)
1478     if (MR.getDecisionRegion().FileID == *MainFileID)
1479       FunctionCoverage.MCDCRecords.push_back(MR);
1480 
1481   LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name
1482                     << "\n");
1483   FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
1484 
1485   return FunctionCoverage;
1486 }
1487 
1488 CoverageData CoverageMapping::getCoverageForExpansion(
1489     const ExpansionRecord &Expansion) const {
1490   CoverageData ExpansionCoverage(
1491       Expansion.Function.Filenames[Expansion.FileID]);
1492   std::vector<CountedRegion> Regions;
1493   for (const auto &CR : Expansion.Function.CountedRegions)
1494     if (CR.FileID == Expansion.FileID) {
1495       Regions.push_back(CR);
1496       if (isExpansion(CR, Expansion.FileID))
1497         ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
1498     }
1499   for (const auto &CR : Expansion.Function.CountedBranchRegions)
1500     // Capture branch regions that only pertain to the corresponding expansion.
1501     if (CR.FileID == Expansion.FileID)
1502       ExpansionCoverage.BranchRegions.push_back(CR);
1503 
1504   LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "
1505                     << Expansion.FileID << "\n");
1506   ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
1507 
1508   return ExpansionCoverage;
1509 }
1510 
1511 LineCoverageStats::LineCoverageStats(
1512     ArrayRef<const CoverageSegment *> LineSegments,
1513     const CoverageSegment *WrappedSegment, unsigned Line)
1514     : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line),
1515       LineSegments(LineSegments), WrappedSegment(WrappedSegment) {
1516   // Find the minimum number of regions which start in this line.
1517   unsigned MinRegionCount = 0;
1518   auto isStartOfRegion = [](const CoverageSegment *S) {
1519     return !S->IsGapRegion && S->HasCount && S->IsRegionEntry;
1520   };
1521   for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I)
1522     if (isStartOfRegion(LineSegments[I]))
1523       ++MinRegionCount;
1524 
1525   bool StartOfSkippedRegion = !LineSegments.empty() &&
1526                               !LineSegments.front()->HasCount &&
1527                               LineSegments.front()->IsRegionEntry;
1528 
1529   HasMultipleRegions = MinRegionCount > 1;
1530   Mapped =
1531       !StartOfSkippedRegion &&
1532       ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0));
1533 
1534   // if there is any starting segment at this line with a counter, it must be
1535   // mapped
1536   Mapped |= std::any_of(
1537       LineSegments.begin(), LineSegments.end(),
1538       [](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; });
1539 
1540   if (!Mapped) {
1541     return;
1542   }
1543 
1544   // Pick the max count from the non-gap, region entry segments and the
1545   // wrapped count.
1546   if (WrappedSegment)
1547     ExecutionCount = WrappedSegment->Count;
1548   if (!MinRegionCount)
1549     return;
1550   for (const auto *LS : LineSegments)
1551     if (isStartOfRegion(LS))
1552       ExecutionCount = std::max(ExecutionCount, LS->Count);
1553 }
1554 
1555 LineCoverageIterator &LineCoverageIterator::operator++() {
1556   if (Next == CD.end()) {
1557     Stats = LineCoverageStats();
1558     Ended = true;
1559     return *this;
1560   }
1561   if (Segments.size())
1562     WrappedSegment = Segments.back();
1563   Segments.clear();
1564   while (Next != CD.end() && Next->Line == Line)
1565     Segments.push_back(&*Next++);
1566   Stats = LineCoverageStats(Segments, WrappedSegment, Line);
1567   ++Line;
1568   return *this;
1569 }
1570 
1571 static std::string getCoverageMapErrString(coveragemap_error Err,
1572                                            const std::string &ErrMsg = "") {
1573   std::string Msg;
1574   raw_string_ostream OS(Msg);
1575 
1576   switch (Err) {
1577   case coveragemap_error::success:
1578     OS << "success";
1579     break;
1580   case coveragemap_error::eof:
1581     OS << "end of File";
1582     break;
1583   case coveragemap_error::no_data_found:
1584     OS << "no coverage data found";
1585     break;
1586   case coveragemap_error::unsupported_version:
1587     OS << "unsupported coverage format version";
1588     break;
1589   case coveragemap_error::truncated:
1590     OS << "truncated coverage data";
1591     break;
1592   case coveragemap_error::malformed:
1593     OS << "malformed coverage data";
1594     break;
1595   case coveragemap_error::decompression_failed:
1596     OS << "failed to decompress coverage data (zlib)";
1597     break;
1598   case coveragemap_error::invalid_or_missing_arch_specifier:
1599     OS << "`-arch` specifier is invalid or missing for universal binary";
1600     break;
1601   }
1602 
1603   // If optional error message is not empty, append it to the message.
1604   if (!ErrMsg.empty())
1605     OS << ": " << ErrMsg;
1606 
1607   return Msg;
1608 }
1609 
1610 namespace {
1611 
1612 // FIXME: This class is only here to support the transition to llvm::Error. It
1613 // will be removed once this transition is complete. Clients should prefer to
1614 // deal with the Error value directly, rather than converting to error_code.
1615 class CoverageMappingErrorCategoryType : public std::error_category {
1616   const char *name() const noexcept override { return "llvm.coveragemap"; }
1617   std::string message(int IE) const override {
1618     return getCoverageMapErrString(static_cast<coveragemap_error>(IE));
1619   }
1620 };
1621 
1622 } // end anonymous namespace
1623 
1624 std::string CoverageMapError::message() const {
1625   return getCoverageMapErrString(Err, Msg);
1626 }
1627 
1628 const std::error_category &llvm::coverage::coveragemap_category() {
1629   static CoverageMappingErrorCategoryType ErrorCategory;
1630   return ErrorCategory;
1631 }
1632 
1633 char CoverageMapError::ID = 0;
1634