xref: /llvm-project/llvm/lib/Object/WasmObjectFile.cpp (revision d02c1676d75a6bab1252b48da9a955fc7dc1251f)
1 //===- WasmObjectFile.cpp - Wasm object file implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/ArrayRef.h"
10 #include "llvm/ADT/DenseSet.h"
11 #include "llvm/ADT/SmallSet.h"
12 #include "llvm/ADT/StringRef.h"
13 #include "llvm/ADT/StringSet.h"
14 #include "llvm/ADT/StringSwitch.h"
15 #include "llvm/BinaryFormat/Wasm.h"
16 #include "llvm/Object/Binary.h"
17 #include "llvm/Object/Error.h"
18 #include "llvm/Object/ObjectFile.h"
19 #include "llvm/Object/SymbolicFile.h"
20 #include "llvm/Object/Wasm.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/Error.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/LEB128.h"
25 #include "llvm/Support/ScopedPrinter.h"
26 #include "llvm/TargetParser/SubtargetFeature.h"
27 #include "llvm/TargetParser/Triple.h"
28 #include <cassert>
29 #include <cstdint>
30 #include <cstring>
31 
32 #define DEBUG_TYPE "wasm-object"
33 
34 using namespace llvm;
35 using namespace object;
36 
37 void WasmSymbol::print(raw_ostream &Out) const {
38   Out << "Name=" << Info.Name
39       << ", Kind=" << toString(wasm::WasmSymbolType(Info.Kind)) << ", Flags=0x"
40       << Twine::utohexstr(Info.Flags) << " [";
41   switch (getBinding()) {
42     case wasm::WASM_SYMBOL_BINDING_GLOBAL: Out << "global"; break;
43     case wasm::WASM_SYMBOL_BINDING_LOCAL: Out << "local"; break;
44     case wasm::WASM_SYMBOL_BINDING_WEAK: Out << "weak"; break;
45   }
46   if (isHidden()) {
47     Out << ", hidden";
48   } else {
49     Out << ", default";
50   }
51   Out << "]";
52   if (!isTypeData()) {
53     Out << ", ElemIndex=" << Info.ElementIndex;
54   } else if (isDefined()) {
55     Out << ", Segment=" << Info.DataRef.Segment;
56     Out << ", Offset=" << Info.DataRef.Offset;
57     Out << ", Size=" << Info.DataRef.Size;
58   }
59 }
60 
61 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
62 LLVM_DUMP_METHOD void WasmSymbol::dump() const { print(dbgs()); }
63 #endif
64 
65 Expected<std::unique_ptr<WasmObjectFile>>
66 ObjectFile::createWasmObjectFile(MemoryBufferRef Buffer) {
67   Error Err = Error::success();
68   auto ObjectFile = std::make_unique<WasmObjectFile>(Buffer, Err);
69   if (Err)
70     return std::move(Err);
71 
72   return std::move(ObjectFile);
73 }
74 
75 #define VARINT7_MAX ((1 << 7) - 1)
76 #define VARINT7_MIN (-(1 << 7))
77 #define VARUINT7_MAX (1 << 7)
78 #define VARUINT1_MAX (1)
79 
80 static uint8_t readUint8(WasmObjectFile::ReadContext &Ctx) {
81   if (Ctx.Ptr == Ctx.End)
82     report_fatal_error("EOF while reading uint8");
83   return *Ctx.Ptr++;
84 }
85 
86 static uint32_t readUint32(WasmObjectFile::ReadContext &Ctx) {
87   if (Ctx.Ptr + 4 > Ctx.End)
88     report_fatal_error("EOF while reading uint32");
89   uint32_t Result = support::endian::read32le(Ctx.Ptr);
90   Ctx.Ptr += 4;
91   return Result;
92 }
93 
94 static int32_t readFloat32(WasmObjectFile::ReadContext &Ctx) {
95   if (Ctx.Ptr + 4 > Ctx.End)
96     report_fatal_error("EOF while reading float64");
97   int32_t Result = 0;
98   memcpy(&Result, Ctx.Ptr, sizeof(Result));
99   Ctx.Ptr += sizeof(Result);
100   return Result;
101 }
102 
103 static int64_t readFloat64(WasmObjectFile::ReadContext &Ctx) {
104   if (Ctx.Ptr + 8 > Ctx.End)
105     report_fatal_error("EOF while reading float64");
106   int64_t Result = 0;
107   memcpy(&Result, Ctx.Ptr, sizeof(Result));
108   Ctx.Ptr += sizeof(Result);
109   return Result;
110 }
111 
112 static uint64_t readULEB128(WasmObjectFile::ReadContext &Ctx) {
113   unsigned Count;
114   const char *Error = nullptr;
115   uint64_t Result = decodeULEB128(Ctx.Ptr, &Count, Ctx.End, &Error);
116   if (Error)
117     report_fatal_error(Error);
118   Ctx.Ptr += Count;
119   return Result;
120 }
121 
122 static StringRef readString(WasmObjectFile::ReadContext &Ctx) {
123   uint32_t StringLen = readULEB128(Ctx);
124   if (Ctx.Ptr + StringLen > Ctx.End)
125     report_fatal_error("EOF while reading string");
126   StringRef Return =
127       StringRef(reinterpret_cast<const char *>(Ctx.Ptr), StringLen);
128   Ctx.Ptr += StringLen;
129   return Return;
130 }
131 
132 static int64_t readLEB128(WasmObjectFile::ReadContext &Ctx) {
133   unsigned Count;
134   const char *Error = nullptr;
135   uint64_t Result = decodeSLEB128(Ctx.Ptr, &Count, Ctx.End, &Error);
136   if (Error)
137     report_fatal_error(Error);
138   Ctx.Ptr += Count;
139   return Result;
140 }
141 
142 static uint8_t readVaruint1(WasmObjectFile::ReadContext &Ctx) {
143   int64_t Result = readLEB128(Ctx);
144   if (Result > VARUINT1_MAX || Result < 0)
145     report_fatal_error("LEB is outside Varuint1 range");
146   return Result;
147 }
148 
149 static int32_t readVarint32(WasmObjectFile::ReadContext &Ctx) {
150   int64_t Result = readLEB128(Ctx);
151   if (Result > INT32_MAX || Result < INT32_MIN)
152     report_fatal_error("LEB is outside Varint32 range");
153   return Result;
154 }
155 
156 static uint32_t readVaruint32(WasmObjectFile::ReadContext &Ctx) {
157   uint64_t Result = readULEB128(Ctx);
158   if (Result > UINT32_MAX)
159     report_fatal_error("LEB is outside Varuint32 range");
160   return Result;
161 }
162 
163 static int64_t readVarint64(WasmObjectFile::ReadContext &Ctx) {
164   return readLEB128(Ctx);
165 }
166 
167 static uint64_t readVaruint64(WasmObjectFile::ReadContext &Ctx) {
168   return readULEB128(Ctx);
169 }
170 
171 static uint8_t readOpcode(WasmObjectFile::ReadContext &Ctx) {
172   return readUint8(Ctx);
173 }
174 
175 static wasm::ValType parseValType(WasmObjectFile::ReadContext &Ctx,
176                                   uint32_t Code) {
177   // only directly encoded FUNCREF/EXTERNREF/EXNREF are supported
178   // (not ref null func, ref null extern, or ref null exn)
179   switch (Code) {
180   case wasm::WASM_TYPE_I32:
181   case wasm::WASM_TYPE_I64:
182   case wasm::WASM_TYPE_F32:
183   case wasm::WASM_TYPE_F64:
184   case wasm::WASM_TYPE_V128:
185   case wasm::WASM_TYPE_FUNCREF:
186   case wasm::WASM_TYPE_EXTERNREF:
187   case wasm::WASM_TYPE_EXNREF:
188     return wasm::ValType(Code);
189   }
190   if (Code == wasm::WASM_TYPE_NULLABLE || Code == wasm::WASM_TYPE_NONNULLABLE) {
191     /* Discard HeapType */ readVarint64(Ctx);
192   }
193   return wasm::ValType(wasm::ValType::OTHERREF);
194 }
195 
196 static Error readInitExpr(wasm::WasmInitExpr &Expr,
197                           WasmObjectFile::ReadContext &Ctx) {
198   auto Start = Ctx.Ptr;
199 
200   Expr.Extended = false;
201   Expr.Inst.Opcode = readOpcode(Ctx);
202   switch (Expr.Inst.Opcode) {
203   case wasm::WASM_OPCODE_I32_CONST:
204     Expr.Inst.Value.Int32 = readVarint32(Ctx);
205     break;
206   case wasm::WASM_OPCODE_I64_CONST:
207     Expr.Inst.Value.Int64 = readVarint64(Ctx);
208     break;
209   case wasm::WASM_OPCODE_F32_CONST:
210     Expr.Inst.Value.Float32 = readFloat32(Ctx);
211     break;
212   case wasm::WASM_OPCODE_F64_CONST:
213     Expr.Inst.Value.Float64 = readFloat64(Ctx);
214     break;
215   case wasm::WASM_OPCODE_GLOBAL_GET:
216     Expr.Inst.Value.Global = readULEB128(Ctx);
217     break;
218   case wasm::WASM_OPCODE_REF_NULL: {
219     /* Discard type */ parseValType(Ctx, readVaruint32(Ctx));
220     break;
221   }
222   default:
223     Expr.Extended = true;
224   }
225 
226   if (!Expr.Extended) {
227     uint8_t EndOpcode = readOpcode(Ctx);
228     if (EndOpcode != wasm::WASM_OPCODE_END)
229       Expr.Extended = true;
230   }
231 
232   if (Expr.Extended) {
233     Ctx.Ptr = Start;
234     while (true) {
235       uint8_t Opcode = readOpcode(Ctx);
236       switch (Opcode) {
237       case wasm::WASM_OPCODE_I32_CONST:
238       case wasm::WASM_OPCODE_GLOBAL_GET:
239       case wasm::WASM_OPCODE_REF_NULL:
240       case wasm::WASM_OPCODE_REF_FUNC:
241       case wasm::WASM_OPCODE_I64_CONST:
242         readULEB128(Ctx);
243         break;
244       case wasm::WASM_OPCODE_F32_CONST:
245         readFloat32(Ctx);
246         break;
247       case wasm::WASM_OPCODE_F64_CONST:
248         readFloat64(Ctx);
249         break;
250       case wasm::WASM_OPCODE_I32_ADD:
251       case wasm::WASM_OPCODE_I32_SUB:
252       case wasm::WASM_OPCODE_I32_MUL:
253       case wasm::WASM_OPCODE_I64_ADD:
254       case wasm::WASM_OPCODE_I64_SUB:
255       case wasm::WASM_OPCODE_I64_MUL:
256         break;
257       case wasm::WASM_OPCODE_GC_PREFIX:
258         break;
259       // The GC opcodes are in a separate (prefixed space). This flat switch
260       // structure works as long as there is no overlap between the GC and
261       // general opcodes used in init exprs.
262       case wasm::WASM_OPCODE_STRUCT_NEW:
263       case wasm::WASM_OPCODE_STRUCT_NEW_DEFAULT:
264       case wasm::WASM_OPCODE_ARRAY_NEW:
265       case wasm::WASM_OPCODE_ARRAY_NEW_DEFAULT:
266         readULEB128(Ctx); // heap type index
267         break;
268       case wasm::WASM_OPCODE_ARRAY_NEW_FIXED:
269         readULEB128(Ctx); // heap type index
270         readULEB128(Ctx); // array size
271         break;
272       case wasm::WASM_OPCODE_REF_I31:
273         break;
274       case wasm::WASM_OPCODE_END:
275         Expr.Body = ArrayRef<uint8_t>(Start, Ctx.Ptr - Start);
276         return Error::success();
277       default:
278         return make_error<GenericBinaryError>(
279             Twine("invalid opcode in init_expr: ") + Twine(unsigned(Opcode)),
280             object_error::parse_failed);
281       }
282     }
283   }
284 
285   return Error::success();
286 }
287 
288 static wasm::WasmLimits readLimits(WasmObjectFile::ReadContext &Ctx) {
289   wasm::WasmLimits Result;
290   Result.Flags = readVaruint32(Ctx);
291   Result.Minimum = readVaruint64(Ctx);
292   if (Result.Flags & wasm::WASM_LIMITS_FLAG_HAS_MAX)
293     Result.Maximum = readVaruint64(Ctx);
294   return Result;
295 }
296 
297 static wasm::WasmTableType readTableType(WasmObjectFile::ReadContext &Ctx) {
298   wasm::WasmTableType TableType;
299   auto ElemType = parseValType(Ctx, readVaruint32(Ctx));
300   TableType.ElemType = ElemType;
301   TableType.Limits = readLimits(Ctx);
302   return TableType;
303 }
304 
305 static Error readSection(WasmSection &Section, WasmObjectFile::ReadContext &Ctx,
306                          WasmSectionOrderChecker &Checker) {
307   Section.Type = readUint8(Ctx);
308   LLVM_DEBUG(dbgs() << "readSection type=" << Section.Type << "\n");
309   // When reading the section's size, store the size of the LEB used to encode
310   // it. This allows objcopy/strip to reproduce the binary identically.
311   const uint8_t *PreSizePtr = Ctx.Ptr;
312   uint32_t Size = readVaruint32(Ctx);
313   Section.HeaderSecSizeEncodingLen = Ctx.Ptr - PreSizePtr;
314   Section.Offset = Ctx.Ptr - Ctx.Start;
315   if (Size == 0)
316     return make_error<StringError>("zero length section",
317                                    object_error::parse_failed);
318   if (Ctx.Ptr + Size > Ctx.End)
319     return make_error<StringError>("section too large",
320                                    object_error::parse_failed);
321   if (Section.Type == wasm::WASM_SEC_CUSTOM) {
322     WasmObjectFile::ReadContext SectionCtx;
323     SectionCtx.Start = Ctx.Ptr;
324     SectionCtx.Ptr = Ctx.Ptr;
325     SectionCtx.End = Ctx.Ptr + Size;
326 
327     Section.Name = readString(SectionCtx);
328 
329     uint32_t SectionNameSize = SectionCtx.Ptr - SectionCtx.Start;
330     Ctx.Ptr += SectionNameSize;
331     Size -= SectionNameSize;
332   }
333 
334   if (!Checker.isValidSectionOrder(Section.Type, Section.Name)) {
335     return make_error<StringError>("out of order section type: " +
336                                        llvm::to_string(Section.Type),
337                                    object_error::parse_failed);
338   }
339 
340   Section.Content = ArrayRef<uint8_t>(Ctx.Ptr, Size);
341   Ctx.Ptr += Size;
342   return Error::success();
343 }
344 
345 WasmObjectFile::WasmObjectFile(MemoryBufferRef Buffer, Error &Err)
346     : ObjectFile(Binary::ID_Wasm, Buffer) {
347   ErrorAsOutParameter ErrAsOutParam(Err);
348   Header.Magic = getData().substr(0, 4);
349   if (Header.Magic != StringRef("\0asm", 4)) {
350     Err = make_error<StringError>("invalid magic number",
351                                   object_error::parse_failed);
352     return;
353   }
354 
355   ReadContext Ctx;
356   Ctx.Start = getData().bytes_begin();
357   Ctx.Ptr = Ctx.Start + 4;
358   Ctx.End = Ctx.Start + getData().size();
359 
360   if (Ctx.Ptr + 4 > Ctx.End) {
361     Err = make_error<StringError>("missing version number",
362                                   object_error::parse_failed);
363     return;
364   }
365 
366   Header.Version = readUint32(Ctx);
367   if (Header.Version != wasm::WasmVersion) {
368     Err = make_error<StringError>("invalid version number: " +
369                                       Twine(Header.Version),
370                                   object_error::parse_failed);
371     return;
372   }
373 
374   WasmSectionOrderChecker Checker;
375   while (Ctx.Ptr < Ctx.End) {
376     WasmSection Sec;
377     if ((Err = readSection(Sec, Ctx, Checker)))
378       return;
379     if ((Err = parseSection(Sec)))
380       return;
381 
382     Sections.push_back(Sec);
383   }
384 }
385 
386 Error WasmObjectFile::parseSection(WasmSection &Sec) {
387   ReadContext Ctx;
388   Ctx.Start = Sec.Content.data();
389   Ctx.End = Ctx.Start + Sec.Content.size();
390   Ctx.Ptr = Ctx.Start;
391   switch (Sec.Type) {
392   case wasm::WASM_SEC_CUSTOM:
393     return parseCustomSection(Sec, Ctx);
394   case wasm::WASM_SEC_TYPE:
395     return parseTypeSection(Ctx);
396   case wasm::WASM_SEC_IMPORT:
397     return parseImportSection(Ctx);
398   case wasm::WASM_SEC_FUNCTION:
399     return parseFunctionSection(Ctx);
400   case wasm::WASM_SEC_TABLE:
401     return parseTableSection(Ctx);
402   case wasm::WASM_SEC_MEMORY:
403     return parseMemorySection(Ctx);
404   case wasm::WASM_SEC_TAG:
405     return parseTagSection(Ctx);
406   case wasm::WASM_SEC_GLOBAL:
407     return parseGlobalSection(Ctx);
408   case wasm::WASM_SEC_EXPORT:
409     return parseExportSection(Ctx);
410   case wasm::WASM_SEC_START:
411     return parseStartSection(Ctx);
412   case wasm::WASM_SEC_ELEM:
413     return parseElemSection(Ctx);
414   case wasm::WASM_SEC_CODE:
415     return parseCodeSection(Ctx);
416   case wasm::WASM_SEC_DATA:
417     return parseDataSection(Ctx);
418   case wasm::WASM_SEC_DATACOUNT:
419     return parseDataCountSection(Ctx);
420   default:
421     return make_error<GenericBinaryError>(
422         "invalid section type: " + Twine(Sec.Type), object_error::parse_failed);
423   }
424 }
425 
426 Error WasmObjectFile::parseDylinkSection(ReadContext &Ctx) {
427   // Legacy "dylink" section support.
428   // See parseDylink0Section for the current "dylink.0" section parsing.
429   HasDylinkSection = true;
430   DylinkInfo.MemorySize = readVaruint32(Ctx);
431   DylinkInfo.MemoryAlignment = readVaruint32(Ctx);
432   DylinkInfo.TableSize = readVaruint32(Ctx);
433   DylinkInfo.TableAlignment = readVaruint32(Ctx);
434   uint32_t Count = readVaruint32(Ctx);
435   while (Count--) {
436     DylinkInfo.Needed.push_back(readString(Ctx));
437   }
438 
439   if (Ctx.Ptr != Ctx.End)
440     return make_error<GenericBinaryError>("dylink section ended prematurely",
441                                           object_error::parse_failed);
442   return Error::success();
443 }
444 
445 Error WasmObjectFile::parseDylink0Section(ReadContext &Ctx) {
446   // See
447   // https://github.com/WebAssembly/tool-conventions/blob/main/DynamicLinking.md
448   HasDylinkSection = true;
449 
450   const uint8_t *OrigEnd = Ctx.End;
451   while (Ctx.Ptr < OrigEnd) {
452     Ctx.End = OrigEnd;
453     uint8_t Type = readUint8(Ctx);
454     uint32_t Size = readVaruint32(Ctx);
455     LLVM_DEBUG(dbgs() << "readSubsection type=" << int(Type) << " size=" << Size
456                       << "\n");
457     Ctx.End = Ctx.Ptr + Size;
458     uint32_t Count;
459     switch (Type) {
460     case wasm::WASM_DYLINK_MEM_INFO:
461       DylinkInfo.MemorySize = readVaruint32(Ctx);
462       DylinkInfo.MemoryAlignment = readVaruint32(Ctx);
463       DylinkInfo.TableSize = readVaruint32(Ctx);
464       DylinkInfo.TableAlignment = readVaruint32(Ctx);
465       break;
466     case wasm::WASM_DYLINK_NEEDED:
467       Count = readVaruint32(Ctx);
468       while (Count--) {
469         DylinkInfo.Needed.push_back(readString(Ctx));
470       }
471       break;
472     case wasm::WASM_DYLINK_EXPORT_INFO: {
473       uint32_t Count = readVaruint32(Ctx);
474       while (Count--) {
475         DylinkInfo.ExportInfo.push_back({readString(Ctx), readVaruint32(Ctx)});
476       }
477       break;
478     }
479     case wasm::WASM_DYLINK_IMPORT_INFO: {
480       uint32_t Count = readVaruint32(Ctx);
481       while (Count--) {
482         DylinkInfo.ImportInfo.push_back(
483             {readString(Ctx), readString(Ctx), readVaruint32(Ctx)});
484       }
485       break;
486     }
487     default:
488       LLVM_DEBUG(dbgs() << "unknown dylink.0 sub-section: " << Type << "\n");
489       Ctx.Ptr += Size;
490       break;
491     }
492     if (Ctx.Ptr != Ctx.End) {
493       return make_error<GenericBinaryError>(
494           "dylink.0 sub-section ended prematurely", object_error::parse_failed);
495     }
496   }
497 
498   if (Ctx.Ptr != Ctx.End)
499     return make_error<GenericBinaryError>("dylink.0 section ended prematurely",
500                                           object_error::parse_failed);
501   return Error::success();
502 }
503 
504 Error WasmObjectFile::parseNameSection(ReadContext &Ctx) {
505   llvm::DenseSet<uint64_t> SeenFunctions;
506   llvm::DenseSet<uint64_t> SeenGlobals;
507   llvm::DenseSet<uint64_t> SeenSegments;
508 
509   // If we have linking section (symbol table) or if we are parsing a DSO
510   // then we don't use the name section for symbol information.
511   bool PopulateSymbolTable = !HasLinkingSection && !HasDylinkSection;
512 
513   // If we are using the name section for symbol information then it will
514   // supersede any symbols created by the export section.
515   if (PopulateSymbolTable)
516     Symbols.clear();
517 
518   while (Ctx.Ptr < Ctx.End) {
519     uint8_t Type = readUint8(Ctx);
520     uint32_t Size = readVaruint32(Ctx);
521     const uint8_t *SubSectionEnd = Ctx.Ptr + Size;
522 
523     switch (Type) {
524     case wasm::WASM_NAMES_FUNCTION:
525     case wasm::WASM_NAMES_GLOBAL:
526     case wasm::WASM_NAMES_DATA_SEGMENT: {
527       uint32_t Count = readVaruint32(Ctx);
528       while (Count--) {
529         uint32_t Index = readVaruint32(Ctx);
530         StringRef Name = readString(Ctx);
531         wasm::NameType nameType = wasm::NameType::FUNCTION;
532         wasm::WasmSymbolInfo Info{Name,
533                                   /*Kind */ wasm::WASM_SYMBOL_TYPE_FUNCTION,
534                                   /* Flags */ 0,
535                                   /* ImportModule */ std::nullopt,
536                                   /* ImportName */ std::nullopt,
537                                   /* ExportName */ std::nullopt,
538                                   {/* ElementIndex */ Index}};
539         const wasm::WasmSignature *Signature = nullptr;
540         const wasm::WasmGlobalType *GlobalType = nullptr;
541         const wasm::WasmTableType *TableType = nullptr;
542         if (Type == wasm::WASM_NAMES_FUNCTION) {
543           if (!SeenFunctions.insert(Index).second)
544             return make_error<GenericBinaryError>(
545                 "function named more than once", object_error::parse_failed);
546           if (!isValidFunctionIndex(Index) || Name.empty())
547             return make_error<GenericBinaryError>("invalid function name entry",
548                                                   object_error::parse_failed);
549 
550           if (isDefinedFunctionIndex(Index)) {
551             wasm::WasmFunction &F = getDefinedFunction(Index);
552             F.DebugName = Name;
553             Signature = &Signatures[F.SigIndex];
554             if (F.ExportName) {
555               Info.ExportName = F.ExportName;
556               Info.Flags |= wasm::WASM_SYMBOL_BINDING_GLOBAL;
557             } else {
558               Info.Flags |= wasm::WASM_SYMBOL_BINDING_LOCAL;
559             }
560           } else {
561             Info.Flags |= wasm::WASM_SYMBOL_UNDEFINED;
562           }
563         } else if (Type == wasm::WASM_NAMES_GLOBAL) {
564           if (!SeenGlobals.insert(Index).second)
565             return make_error<GenericBinaryError>("global named more than once",
566                                                   object_error::parse_failed);
567           if (!isValidGlobalIndex(Index) || Name.empty())
568             return make_error<GenericBinaryError>("invalid global name entry",
569                                                   object_error::parse_failed);
570           nameType = wasm::NameType::GLOBAL;
571           Info.Kind = wasm::WASM_SYMBOL_TYPE_GLOBAL;
572           if (isDefinedGlobalIndex(Index)) {
573             GlobalType = &getDefinedGlobal(Index).Type;
574           } else {
575             Info.Flags |= wasm::WASM_SYMBOL_UNDEFINED;
576           }
577         } else {
578           if (!SeenSegments.insert(Index).second)
579             return make_error<GenericBinaryError>(
580                 "segment named more than once", object_error::parse_failed);
581           if (Index > DataSegments.size())
582             return make_error<GenericBinaryError>("invalid data segment name entry",
583                                                   object_error::parse_failed);
584           nameType = wasm::NameType::DATA_SEGMENT;
585           Info.Kind = wasm::WASM_SYMBOL_TYPE_DATA;
586           Info.Flags |= wasm::WASM_SYMBOL_BINDING_LOCAL;
587           assert(Index < DataSegments.size());
588           Info.DataRef = wasm::WasmDataReference{
589               Index, 0, DataSegments[Index].Data.Content.size()};
590         }
591         DebugNames.push_back(wasm::WasmDebugName{nameType, Index, Name});
592         if (PopulateSymbolTable)
593           Symbols.emplace_back(Info, GlobalType, TableType, Signature);
594       }
595       break;
596     }
597     // Ignore local names for now
598     case wasm::WASM_NAMES_LOCAL:
599     default:
600       Ctx.Ptr += Size;
601       break;
602     }
603     if (Ctx.Ptr != SubSectionEnd)
604       return make_error<GenericBinaryError>(
605           "name sub-section ended prematurely", object_error::parse_failed);
606   }
607 
608   if (Ctx.Ptr != Ctx.End)
609     return make_error<GenericBinaryError>("name section ended prematurely",
610                                           object_error::parse_failed);
611   return Error::success();
612 }
613 
614 Error WasmObjectFile::parseLinkingSection(ReadContext &Ctx) {
615   HasLinkingSection = true;
616 
617   LinkingData.Version = readVaruint32(Ctx);
618   if (LinkingData.Version != wasm::WasmMetadataVersion) {
619     return make_error<GenericBinaryError>(
620         "unexpected metadata version: " + Twine(LinkingData.Version) +
621             " (Expected: " + Twine(wasm::WasmMetadataVersion) + ")",
622         object_error::parse_failed);
623   }
624 
625   const uint8_t *OrigEnd = Ctx.End;
626   while (Ctx.Ptr < OrigEnd) {
627     Ctx.End = OrigEnd;
628     uint8_t Type = readUint8(Ctx);
629     uint32_t Size = readVaruint32(Ctx);
630     LLVM_DEBUG(dbgs() << "readSubsection type=" << int(Type) << " size=" << Size
631                       << "\n");
632     Ctx.End = Ctx.Ptr + Size;
633     switch (Type) {
634     case wasm::WASM_SYMBOL_TABLE:
635       if (Error Err = parseLinkingSectionSymtab(Ctx))
636         return Err;
637       break;
638     case wasm::WASM_SEGMENT_INFO: {
639       uint32_t Count = readVaruint32(Ctx);
640       if (Count > DataSegments.size())
641         return make_error<GenericBinaryError>("too many segment names",
642                                               object_error::parse_failed);
643       for (uint32_t I = 0; I < Count; I++) {
644         DataSegments[I].Data.Name = readString(Ctx);
645         DataSegments[I].Data.Alignment = readVaruint32(Ctx);
646         DataSegments[I].Data.LinkingFlags = readVaruint32(Ctx);
647       }
648       break;
649     }
650     case wasm::WASM_INIT_FUNCS: {
651       uint32_t Count = readVaruint32(Ctx);
652       LinkingData.InitFunctions.reserve(Count);
653       for (uint32_t I = 0; I < Count; I++) {
654         wasm::WasmInitFunc Init;
655         Init.Priority = readVaruint32(Ctx);
656         Init.Symbol = readVaruint32(Ctx);
657         if (!isValidFunctionSymbol(Init.Symbol))
658           return make_error<GenericBinaryError>("invalid function symbol: " +
659                                                     Twine(Init.Symbol),
660                                                 object_error::parse_failed);
661         LinkingData.InitFunctions.emplace_back(Init);
662       }
663       break;
664     }
665     case wasm::WASM_COMDAT_INFO:
666       if (Error Err = parseLinkingSectionComdat(Ctx))
667         return Err;
668       break;
669     default:
670       Ctx.Ptr += Size;
671       break;
672     }
673     if (Ctx.Ptr != Ctx.End)
674       return make_error<GenericBinaryError>(
675           "linking sub-section ended prematurely", object_error::parse_failed);
676   }
677   if (Ctx.Ptr != OrigEnd)
678     return make_error<GenericBinaryError>("linking section ended prematurely",
679                                           object_error::parse_failed);
680   return Error::success();
681 }
682 
683 Error WasmObjectFile::parseLinkingSectionSymtab(ReadContext &Ctx) {
684   uint32_t Count = readVaruint32(Ctx);
685   // Clear out any symbol information that was derived from the exports
686   // section.
687   Symbols.clear();
688   Symbols.reserve(Count);
689   StringSet<> SymbolNames;
690 
691   std::vector<wasm::WasmImport *> ImportedGlobals;
692   std::vector<wasm::WasmImport *> ImportedFunctions;
693   std::vector<wasm::WasmImport *> ImportedTags;
694   std::vector<wasm::WasmImport *> ImportedTables;
695   ImportedGlobals.reserve(Imports.size());
696   ImportedFunctions.reserve(Imports.size());
697   ImportedTags.reserve(Imports.size());
698   ImportedTables.reserve(Imports.size());
699   for (auto &I : Imports) {
700     if (I.Kind == wasm::WASM_EXTERNAL_FUNCTION)
701       ImportedFunctions.emplace_back(&I);
702     else if (I.Kind == wasm::WASM_EXTERNAL_GLOBAL)
703       ImportedGlobals.emplace_back(&I);
704     else if (I.Kind == wasm::WASM_EXTERNAL_TAG)
705       ImportedTags.emplace_back(&I);
706     else if (I.Kind == wasm::WASM_EXTERNAL_TABLE)
707       ImportedTables.emplace_back(&I);
708   }
709 
710   while (Count--) {
711     wasm::WasmSymbolInfo Info;
712     const wasm::WasmSignature *Signature = nullptr;
713     const wasm::WasmGlobalType *GlobalType = nullptr;
714     const wasm::WasmTableType *TableType = nullptr;
715 
716     Info.Kind = readUint8(Ctx);
717     Info.Flags = readVaruint32(Ctx);
718     bool IsDefined = (Info.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0;
719 
720     switch (Info.Kind) {
721     case wasm::WASM_SYMBOL_TYPE_FUNCTION:
722       Info.ElementIndex = readVaruint32(Ctx);
723       if (!isValidFunctionIndex(Info.ElementIndex) ||
724           IsDefined != isDefinedFunctionIndex(Info.ElementIndex))
725         return make_error<GenericBinaryError>("invalid function symbol index",
726                                               object_error::parse_failed);
727       if (IsDefined) {
728         Info.Name = readString(Ctx);
729         unsigned FuncIndex = Info.ElementIndex - NumImportedFunctions;
730         wasm::WasmFunction &Function = Functions[FuncIndex];
731         Signature = &Signatures[Function.SigIndex];
732         if (Function.SymbolName.empty())
733           Function.SymbolName = Info.Name;
734       } else {
735         wasm::WasmImport &Import = *ImportedFunctions[Info.ElementIndex];
736         if ((Info.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) {
737           Info.Name = readString(Ctx);
738           Info.ImportName = Import.Field;
739         } else {
740           Info.Name = Import.Field;
741         }
742         Signature = &Signatures[Import.SigIndex];
743         Info.ImportModule = Import.Module;
744       }
745       break;
746 
747     case wasm::WASM_SYMBOL_TYPE_GLOBAL:
748       Info.ElementIndex = readVaruint32(Ctx);
749       if (!isValidGlobalIndex(Info.ElementIndex) ||
750           IsDefined != isDefinedGlobalIndex(Info.ElementIndex))
751         return make_error<GenericBinaryError>("invalid global symbol index",
752                                               object_error::parse_failed);
753       if (!IsDefined && (Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) ==
754                             wasm::WASM_SYMBOL_BINDING_WEAK)
755         return make_error<GenericBinaryError>("undefined weak global symbol",
756                                               object_error::parse_failed);
757       if (IsDefined) {
758         Info.Name = readString(Ctx);
759         unsigned GlobalIndex = Info.ElementIndex - NumImportedGlobals;
760         wasm::WasmGlobal &Global = Globals[GlobalIndex];
761         GlobalType = &Global.Type;
762         if (Global.SymbolName.empty())
763           Global.SymbolName = Info.Name;
764       } else {
765         wasm::WasmImport &Import = *ImportedGlobals[Info.ElementIndex];
766         if ((Info.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) {
767           Info.Name = readString(Ctx);
768           Info.ImportName = Import.Field;
769         } else {
770           Info.Name = Import.Field;
771         }
772         GlobalType = &Import.Global;
773         Info.ImportModule = Import.Module;
774       }
775       break;
776 
777     case wasm::WASM_SYMBOL_TYPE_TABLE:
778       Info.ElementIndex = readVaruint32(Ctx);
779       if (!isValidTableNumber(Info.ElementIndex) ||
780           IsDefined != isDefinedTableNumber(Info.ElementIndex))
781         return make_error<GenericBinaryError>("invalid table symbol index",
782                                               object_error::parse_failed);
783       if (!IsDefined && (Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) ==
784                             wasm::WASM_SYMBOL_BINDING_WEAK)
785         return make_error<GenericBinaryError>("undefined weak table symbol",
786                                               object_error::parse_failed);
787       if (IsDefined) {
788         Info.Name = readString(Ctx);
789         unsigned TableNumber = Info.ElementIndex - NumImportedTables;
790         wasm::WasmTable &Table = Tables[TableNumber];
791         TableType = &Table.Type;
792         if (Table.SymbolName.empty())
793           Table.SymbolName = Info.Name;
794       } else {
795         wasm::WasmImport &Import = *ImportedTables[Info.ElementIndex];
796         if ((Info.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) {
797           Info.Name = readString(Ctx);
798           Info.ImportName = Import.Field;
799         } else {
800           Info.Name = Import.Field;
801         }
802         TableType = &Import.Table;
803         Info.ImportModule = Import.Module;
804       }
805       break;
806 
807     case wasm::WASM_SYMBOL_TYPE_DATA:
808       Info.Name = readString(Ctx);
809       if (IsDefined) {
810         auto Index = readVaruint32(Ctx);
811         auto Offset = readVaruint64(Ctx);
812         auto Size = readVaruint64(Ctx);
813         if (!(Info.Flags & wasm::WASM_SYMBOL_ABSOLUTE)) {
814           if (static_cast<size_t>(Index) >= DataSegments.size())
815             return make_error<GenericBinaryError>(
816                 "invalid data segment index: " + Twine(Index),
817                 object_error::parse_failed);
818           size_t SegmentSize = DataSegments[Index].Data.Content.size();
819           if (Offset > SegmentSize)
820             return make_error<GenericBinaryError>(
821                 "invalid data symbol offset: `" + Info.Name +
822                     "` (offset: " + Twine(Offset) +
823                     " segment size: " + Twine(SegmentSize) + ")",
824                 object_error::parse_failed);
825         }
826         Info.DataRef = wasm::WasmDataReference{Index, Offset, Size};
827       }
828       break;
829 
830     case wasm::WASM_SYMBOL_TYPE_SECTION: {
831       if ((Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) !=
832           wasm::WASM_SYMBOL_BINDING_LOCAL)
833         return make_error<GenericBinaryError>(
834             "section symbols must have local binding",
835             object_error::parse_failed);
836       Info.ElementIndex = readVaruint32(Ctx);
837       // Use somewhat unique section name as symbol name.
838       StringRef SectionName = Sections[Info.ElementIndex].Name;
839       Info.Name = SectionName;
840       break;
841     }
842 
843     case wasm::WASM_SYMBOL_TYPE_TAG: {
844       Info.ElementIndex = readVaruint32(Ctx);
845       if (!isValidTagIndex(Info.ElementIndex) ||
846           IsDefined != isDefinedTagIndex(Info.ElementIndex))
847         return make_error<GenericBinaryError>("invalid tag symbol index",
848                                               object_error::parse_failed);
849       if (!IsDefined && (Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) ==
850                             wasm::WASM_SYMBOL_BINDING_WEAK)
851         return make_error<GenericBinaryError>("undefined weak global symbol",
852                                               object_error::parse_failed);
853       if (IsDefined) {
854         Info.Name = readString(Ctx);
855         unsigned TagIndex = Info.ElementIndex - NumImportedTags;
856         wasm::WasmTag &Tag = Tags[TagIndex];
857         Signature = &Signatures[Tag.SigIndex];
858         if (Tag.SymbolName.empty())
859           Tag.SymbolName = Info.Name;
860 
861       } else {
862         wasm::WasmImport &Import = *ImportedTags[Info.ElementIndex];
863         if ((Info.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) {
864           Info.Name = readString(Ctx);
865           Info.ImportName = Import.Field;
866         } else {
867           Info.Name = Import.Field;
868         }
869         Signature = &Signatures[Import.SigIndex];
870         Info.ImportModule = Import.Module;
871       }
872       break;
873     }
874 
875     default:
876       return make_error<GenericBinaryError>("invalid symbol type: " +
877                                                 Twine(unsigned(Info.Kind)),
878                                             object_error::parse_failed);
879     }
880 
881     if ((Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) !=
882             wasm::WASM_SYMBOL_BINDING_LOCAL &&
883         !SymbolNames.insert(Info.Name).second)
884       return make_error<GenericBinaryError>("duplicate symbol name " +
885                                                 Twine(Info.Name),
886                                             object_error::parse_failed);
887     Symbols.emplace_back(Info, GlobalType, TableType, Signature);
888     LLVM_DEBUG(dbgs() << "Adding symbol: " << Symbols.back() << "\n");
889   }
890 
891   return Error::success();
892 }
893 
894 Error WasmObjectFile::parseLinkingSectionComdat(ReadContext &Ctx) {
895   uint32_t ComdatCount = readVaruint32(Ctx);
896   StringSet<> ComdatSet;
897   for (unsigned ComdatIndex = 0; ComdatIndex < ComdatCount; ++ComdatIndex) {
898     StringRef Name = readString(Ctx);
899     if (Name.empty() || !ComdatSet.insert(Name).second)
900       return make_error<GenericBinaryError>("bad/duplicate COMDAT name " +
901                                                 Twine(Name),
902                                             object_error::parse_failed);
903     LinkingData.Comdats.emplace_back(Name);
904     uint32_t Flags = readVaruint32(Ctx);
905     if (Flags != 0)
906       return make_error<GenericBinaryError>("unsupported COMDAT flags",
907                                             object_error::parse_failed);
908 
909     uint32_t EntryCount = readVaruint32(Ctx);
910     while (EntryCount--) {
911       unsigned Kind = readVaruint32(Ctx);
912       unsigned Index = readVaruint32(Ctx);
913       switch (Kind) {
914       default:
915         return make_error<GenericBinaryError>("invalid COMDAT entry type",
916                                               object_error::parse_failed);
917       case wasm::WASM_COMDAT_DATA:
918         if (Index >= DataSegments.size())
919           return make_error<GenericBinaryError>(
920               "COMDAT data index out of range", object_error::parse_failed);
921         if (DataSegments[Index].Data.Comdat != UINT32_MAX)
922           return make_error<GenericBinaryError>("data segment in two COMDATs",
923                                                 object_error::parse_failed);
924         DataSegments[Index].Data.Comdat = ComdatIndex;
925         break;
926       case wasm::WASM_COMDAT_FUNCTION:
927         if (!isDefinedFunctionIndex(Index))
928           return make_error<GenericBinaryError>(
929               "COMDAT function index out of range", object_error::parse_failed);
930         if (getDefinedFunction(Index).Comdat != UINT32_MAX)
931           return make_error<GenericBinaryError>("function in two COMDATs",
932                                                 object_error::parse_failed);
933         getDefinedFunction(Index).Comdat = ComdatIndex;
934         break;
935       case wasm::WASM_COMDAT_SECTION:
936         if (Index >= Sections.size())
937           return make_error<GenericBinaryError>(
938               "COMDAT section index out of range", object_error::parse_failed);
939         if (Sections[Index].Type != wasm::WASM_SEC_CUSTOM)
940           return make_error<GenericBinaryError>(
941               "non-custom section in a COMDAT", object_error::parse_failed);
942         Sections[Index].Comdat = ComdatIndex;
943         break;
944       }
945     }
946   }
947   return Error::success();
948 }
949 
950 Error WasmObjectFile::parseProducersSection(ReadContext &Ctx) {
951   llvm::SmallSet<StringRef, 3> FieldsSeen;
952   uint32_t Fields = readVaruint32(Ctx);
953   for (size_t I = 0; I < Fields; ++I) {
954     StringRef FieldName = readString(Ctx);
955     if (!FieldsSeen.insert(FieldName).second)
956       return make_error<GenericBinaryError>(
957           "producers section does not have unique fields",
958           object_error::parse_failed);
959     std::vector<std::pair<std::string, std::string>> *ProducerVec = nullptr;
960     if (FieldName == "language") {
961       ProducerVec = &ProducerInfo.Languages;
962     } else if (FieldName == "processed-by") {
963       ProducerVec = &ProducerInfo.Tools;
964     } else if (FieldName == "sdk") {
965       ProducerVec = &ProducerInfo.SDKs;
966     } else {
967       return make_error<GenericBinaryError>(
968           "producers section field is not named one of language, processed-by, "
969           "or sdk",
970           object_error::parse_failed);
971     }
972     uint32_t ValueCount = readVaruint32(Ctx);
973     llvm::SmallSet<StringRef, 8> ProducersSeen;
974     for (size_t J = 0; J < ValueCount; ++J) {
975       StringRef Name = readString(Ctx);
976       StringRef Version = readString(Ctx);
977       if (!ProducersSeen.insert(Name).second) {
978         return make_error<GenericBinaryError>(
979             "producers section contains repeated producer",
980             object_error::parse_failed);
981       }
982       ProducerVec->emplace_back(std::string(Name), std::string(Version));
983     }
984   }
985   if (Ctx.Ptr != Ctx.End)
986     return make_error<GenericBinaryError>("producers section ended prematurely",
987                                           object_error::parse_failed);
988   return Error::success();
989 }
990 
991 Error WasmObjectFile::parseTargetFeaturesSection(ReadContext &Ctx) {
992   llvm::SmallSet<std::string, 8> FeaturesSeen;
993   uint32_t FeatureCount = readVaruint32(Ctx);
994   for (size_t I = 0; I < FeatureCount; ++I) {
995     wasm::WasmFeatureEntry Feature;
996     Feature.Prefix = readUint8(Ctx);
997     switch (Feature.Prefix) {
998     case wasm::WASM_FEATURE_PREFIX_USED:
999     case wasm::WASM_FEATURE_PREFIX_DISALLOWED:
1000       break;
1001     default:
1002       return make_error<GenericBinaryError>("unknown feature policy prefix",
1003                                             object_error::parse_failed);
1004     }
1005     Feature.Name = std::string(readString(Ctx));
1006     if (!FeaturesSeen.insert(Feature.Name).second)
1007       return make_error<GenericBinaryError>(
1008           "target features section contains repeated feature \"" +
1009               Feature.Name + "\"",
1010           object_error::parse_failed);
1011     TargetFeatures.push_back(Feature);
1012   }
1013   if (Ctx.Ptr != Ctx.End)
1014     return make_error<GenericBinaryError>(
1015         "target features section ended prematurely",
1016         object_error::parse_failed);
1017   return Error::success();
1018 }
1019 
1020 Error WasmObjectFile::parseRelocSection(StringRef Name, ReadContext &Ctx) {
1021   uint32_t SectionIndex = readVaruint32(Ctx);
1022   if (SectionIndex >= Sections.size())
1023     return make_error<GenericBinaryError>("invalid section index",
1024                                           object_error::parse_failed);
1025   WasmSection &Section = Sections[SectionIndex];
1026   uint32_t RelocCount = readVaruint32(Ctx);
1027   uint32_t EndOffset = Section.Content.size();
1028   uint32_t PreviousOffset = 0;
1029   while (RelocCount--) {
1030     wasm::WasmRelocation Reloc = {};
1031     uint32_t type = readVaruint32(Ctx);
1032     Reloc.Type = type;
1033     Reloc.Offset = readVaruint32(Ctx);
1034     if (Reloc.Offset < PreviousOffset)
1035       return make_error<GenericBinaryError>("relocations not in offset order",
1036                                             object_error::parse_failed);
1037 
1038     auto badReloc = [&](StringRef msg) {
1039       return make_error<GenericBinaryError>(
1040           msg + ": " + Twine(Symbols[Reloc.Index].Info.Name),
1041           object_error::parse_failed);
1042     };
1043 
1044     PreviousOffset = Reloc.Offset;
1045     Reloc.Index = readVaruint32(Ctx);
1046     switch (type) {
1047     case wasm::R_WASM_FUNCTION_INDEX_LEB:
1048     case wasm::R_WASM_FUNCTION_INDEX_I32:
1049     case wasm::R_WASM_TABLE_INDEX_SLEB:
1050     case wasm::R_WASM_TABLE_INDEX_SLEB64:
1051     case wasm::R_WASM_TABLE_INDEX_I32:
1052     case wasm::R_WASM_TABLE_INDEX_I64:
1053     case wasm::R_WASM_TABLE_INDEX_REL_SLEB:
1054     case wasm::R_WASM_TABLE_INDEX_REL_SLEB64:
1055       if (!isValidFunctionSymbol(Reloc.Index))
1056         return badReloc("invalid function relocation");
1057       break;
1058     case wasm::R_WASM_TABLE_NUMBER_LEB:
1059       if (!isValidTableSymbol(Reloc.Index))
1060         return badReloc("invalid table relocation");
1061       break;
1062     case wasm::R_WASM_TYPE_INDEX_LEB:
1063       if (Reloc.Index >= Signatures.size())
1064         return badReloc("invalid relocation type index");
1065       break;
1066     case wasm::R_WASM_GLOBAL_INDEX_LEB:
1067       // R_WASM_GLOBAL_INDEX_LEB are can be used against function and data
1068       // symbols to refer to their GOT entries.
1069       if (!isValidGlobalSymbol(Reloc.Index) &&
1070           !isValidDataSymbol(Reloc.Index) &&
1071           !isValidFunctionSymbol(Reloc.Index))
1072         return badReloc("invalid global relocation");
1073       break;
1074     case wasm::R_WASM_GLOBAL_INDEX_I32:
1075       if (!isValidGlobalSymbol(Reloc.Index))
1076         return badReloc("invalid global relocation");
1077       break;
1078     case wasm::R_WASM_TAG_INDEX_LEB:
1079       if (!isValidTagSymbol(Reloc.Index))
1080         return badReloc("invalid tag relocation");
1081       break;
1082     case wasm::R_WASM_MEMORY_ADDR_LEB:
1083     case wasm::R_WASM_MEMORY_ADDR_SLEB:
1084     case wasm::R_WASM_MEMORY_ADDR_I32:
1085     case wasm::R_WASM_MEMORY_ADDR_REL_SLEB:
1086     case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB:
1087     case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32:
1088       if (!isValidDataSymbol(Reloc.Index))
1089         return badReloc("invalid data relocation");
1090       Reloc.Addend = readVarint32(Ctx);
1091       break;
1092     case wasm::R_WASM_MEMORY_ADDR_LEB64:
1093     case wasm::R_WASM_MEMORY_ADDR_SLEB64:
1094     case wasm::R_WASM_MEMORY_ADDR_I64:
1095     case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64:
1096     case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB64:
1097       if (!isValidDataSymbol(Reloc.Index))
1098         return badReloc("invalid data relocation");
1099       Reloc.Addend = readVarint64(Ctx);
1100       break;
1101     case wasm::R_WASM_FUNCTION_OFFSET_I32:
1102       if (!isValidFunctionSymbol(Reloc.Index))
1103         return badReloc("invalid function relocation");
1104       Reloc.Addend = readVarint32(Ctx);
1105       break;
1106     case wasm::R_WASM_FUNCTION_OFFSET_I64:
1107       if (!isValidFunctionSymbol(Reloc.Index))
1108         return badReloc("invalid function relocation");
1109       Reloc.Addend = readVarint64(Ctx);
1110       break;
1111     case wasm::R_WASM_SECTION_OFFSET_I32:
1112       if (!isValidSectionSymbol(Reloc.Index))
1113         return badReloc("invalid section relocation");
1114       Reloc.Addend = readVarint32(Ctx);
1115       break;
1116     default:
1117       return make_error<GenericBinaryError>("invalid relocation type: " +
1118                                                 Twine(type),
1119                                             object_error::parse_failed);
1120     }
1121 
1122     // Relocations must fit inside the section, and must appear in order.  They
1123     // also shouldn't overlap a function/element boundary, but we don't bother
1124     // to check that.
1125     uint64_t Size = 5;
1126     if (Reloc.Type == wasm::R_WASM_MEMORY_ADDR_LEB64 ||
1127         Reloc.Type == wasm::R_WASM_MEMORY_ADDR_SLEB64 ||
1128         Reloc.Type == wasm::R_WASM_MEMORY_ADDR_REL_SLEB64)
1129       Size = 10;
1130     if (Reloc.Type == wasm::R_WASM_TABLE_INDEX_I32 ||
1131         Reloc.Type == wasm::R_WASM_MEMORY_ADDR_I32 ||
1132         Reloc.Type == wasm::R_WASM_MEMORY_ADDR_LOCREL_I32 ||
1133         Reloc.Type == wasm::R_WASM_SECTION_OFFSET_I32 ||
1134         Reloc.Type == wasm::R_WASM_FUNCTION_OFFSET_I32 ||
1135         Reloc.Type == wasm::R_WASM_FUNCTION_INDEX_I32 ||
1136         Reloc.Type == wasm::R_WASM_GLOBAL_INDEX_I32)
1137       Size = 4;
1138     if (Reloc.Type == wasm::R_WASM_TABLE_INDEX_I64 ||
1139         Reloc.Type == wasm::R_WASM_MEMORY_ADDR_I64 ||
1140         Reloc.Type == wasm::R_WASM_FUNCTION_OFFSET_I64)
1141       Size = 8;
1142     if (Reloc.Offset + Size > EndOffset)
1143       return make_error<GenericBinaryError>("invalid relocation offset",
1144                                             object_error::parse_failed);
1145 
1146     Section.Relocations.push_back(Reloc);
1147   }
1148   if (Ctx.Ptr != Ctx.End)
1149     return make_error<GenericBinaryError>("reloc section ended prematurely",
1150                                           object_error::parse_failed);
1151   return Error::success();
1152 }
1153 
1154 Error WasmObjectFile::parseCustomSection(WasmSection &Sec, ReadContext &Ctx) {
1155   if (Sec.Name == "dylink") {
1156     if (Error Err = parseDylinkSection(Ctx))
1157       return Err;
1158   } else if (Sec.Name == "dylink.0") {
1159     if (Error Err = parseDylink0Section(Ctx))
1160       return Err;
1161   } else if (Sec.Name == "name") {
1162     if (Error Err = parseNameSection(Ctx))
1163       return Err;
1164   } else if (Sec.Name == "linking") {
1165     if (Error Err = parseLinkingSection(Ctx))
1166       return Err;
1167   } else if (Sec.Name == "producers") {
1168     if (Error Err = parseProducersSection(Ctx))
1169       return Err;
1170   } else if (Sec.Name == "target_features") {
1171     if (Error Err = parseTargetFeaturesSection(Ctx))
1172       return Err;
1173   } else if (Sec.Name.starts_with("reloc.")) {
1174     if (Error Err = parseRelocSection(Sec.Name, Ctx))
1175       return Err;
1176   }
1177   return Error::success();
1178 }
1179 
1180 Error WasmObjectFile::parseTypeSection(ReadContext &Ctx) {
1181   auto parseFieldDef = [&]() {
1182     uint32_t TypeCode = readVaruint32((Ctx));
1183     /* Discard StorageType */ parseValType(Ctx, TypeCode);
1184     /* Discard Mutability */ readVaruint32(Ctx);
1185   };
1186 
1187   uint32_t Count = readVaruint32(Ctx);
1188   Signatures.reserve(Count);
1189   while (Count--) {
1190     wasm::WasmSignature Sig;
1191     uint8_t Form = readUint8(Ctx);
1192     if (Form == wasm::WASM_TYPE_REC) {
1193       // Rec groups expand the type index space (beyond what was declared at
1194       // the top of the section, and also consume one element in that space.
1195       uint32_t RecSize = readVaruint32(Ctx);
1196       if (RecSize == 0)
1197         return make_error<GenericBinaryError>("Rec group size cannot be 0",
1198                                               object_error::parse_failed);
1199       Signatures.reserve(Signatures.size() + RecSize);
1200       Count += RecSize;
1201       Sig.Kind = wasm::WasmSignature::Placeholder;
1202       Signatures.push_back(std::move(Sig));
1203       HasUnmodeledTypes = true;
1204       continue;
1205     }
1206     if (Form != wasm::WASM_TYPE_FUNC) {
1207       // Currently LLVM only models function types, and not other composite
1208       // types. Here we parse the type declarations just enough to skip past
1209       // them in the binary.
1210       if (Form == wasm::WASM_TYPE_SUB || Form == wasm::WASM_TYPE_SUB_FINAL) {
1211         uint32_t Supers = readVaruint32(Ctx);
1212         if (Supers > 0) {
1213           if (Supers != 1)
1214             return make_error<GenericBinaryError>(
1215                 "Invalid number of supertypes", object_error::parse_failed);
1216           /* Discard SuperIndex */ readVaruint32(Ctx);
1217         }
1218         Form = readVaruint32(Ctx);
1219       }
1220       if (Form == wasm::WASM_TYPE_STRUCT) {
1221         uint32_t FieldCount = readVaruint32(Ctx);
1222         while (FieldCount--) {
1223           parseFieldDef();
1224         }
1225       } else if (Form == wasm::WASM_TYPE_ARRAY) {
1226         parseFieldDef();
1227       } else {
1228         return make_error<GenericBinaryError>("bad form",
1229                                               object_error::parse_failed);
1230       }
1231       Sig.Kind = wasm::WasmSignature::Placeholder;
1232       Signatures.push_back(std::move(Sig));
1233       HasUnmodeledTypes = true;
1234       continue;
1235     }
1236 
1237     uint32_t ParamCount = readVaruint32(Ctx);
1238     Sig.Params.reserve(ParamCount);
1239     while (ParamCount--) {
1240       uint32_t ParamType = readUint8(Ctx);
1241       Sig.Params.push_back(parseValType(Ctx, ParamType));
1242     }
1243     uint32_t ReturnCount = readVaruint32(Ctx);
1244     while (ReturnCount--) {
1245       uint32_t ReturnType = readUint8(Ctx);
1246       Sig.Returns.push_back(parseValType(Ctx, ReturnType));
1247     }
1248 
1249     Signatures.push_back(std::move(Sig));
1250   }
1251   if (Ctx.Ptr != Ctx.End)
1252     return make_error<GenericBinaryError>("type section ended prematurely",
1253                                           object_error::parse_failed);
1254   return Error::success();
1255 }
1256 
1257 Error WasmObjectFile::parseImportSection(ReadContext &Ctx) {
1258   uint32_t Count = readVaruint32(Ctx);
1259   uint32_t NumTypes = Signatures.size();
1260   Imports.reserve(Count);
1261   for (uint32_t I = 0; I < Count; I++) {
1262     wasm::WasmImport Im;
1263     Im.Module = readString(Ctx);
1264     Im.Field = readString(Ctx);
1265     Im.Kind = readUint8(Ctx);
1266     switch (Im.Kind) {
1267     case wasm::WASM_EXTERNAL_FUNCTION:
1268       NumImportedFunctions++;
1269       Im.SigIndex = readVaruint32(Ctx);
1270       if (Im.SigIndex >= NumTypes)
1271         return make_error<GenericBinaryError>("invalid function type",
1272                                               object_error::parse_failed);
1273       break;
1274     case wasm::WASM_EXTERNAL_GLOBAL:
1275       NumImportedGlobals++;
1276       Im.Global.Type = readUint8(Ctx);
1277       Im.Global.Mutable = readVaruint1(Ctx);
1278       break;
1279     case wasm::WASM_EXTERNAL_MEMORY:
1280       Im.Memory = readLimits(Ctx);
1281       if (Im.Memory.Flags & wasm::WASM_LIMITS_FLAG_IS_64)
1282         HasMemory64 = true;
1283       break;
1284     case wasm::WASM_EXTERNAL_TABLE: {
1285       Im.Table = readTableType(Ctx);
1286       NumImportedTables++;
1287       auto ElemType = Im.Table.ElemType;
1288       if (ElemType != wasm::ValType::FUNCREF &&
1289           ElemType != wasm::ValType::EXTERNREF &&
1290           ElemType != wasm::ValType::EXNREF &&
1291           ElemType != wasm::ValType::OTHERREF)
1292         return make_error<GenericBinaryError>("invalid table element type",
1293                                               object_error::parse_failed);
1294       break;
1295     }
1296     case wasm::WASM_EXTERNAL_TAG:
1297       NumImportedTags++;
1298       if (readUint8(Ctx) != 0) // Reserved 'attribute' field
1299         return make_error<GenericBinaryError>("invalid attribute",
1300                                               object_error::parse_failed);
1301       Im.SigIndex = readVaruint32(Ctx);
1302       if (Im.SigIndex >= NumTypes)
1303         return make_error<GenericBinaryError>("invalid tag type",
1304                                               object_error::parse_failed);
1305       break;
1306     default:
1307       return make_error<GenericBinaryError>("unexpected import kind",
1308                                             object_error::parse_failed);
1309     }
1310     Imports.push_back(Im);
1311   }
1312   if (Ctx.Ptr != Ctx.End)
1313     return make_error<GenericBinaryError>("import section ended prematurely",
1314                                           object_error::parse_failed);
1315   return Error::success();
1316 }
1317 
1318 Error WasmObjectFile::parseFunctionSection(ReadContext &Ctx) {
1319   uint32_t Count = readVaruint32(Ctx);
1320   Functions.reserve(Count);
1321   uint32_t NumTypes = Signatures.size();
1322   while (Count--) {
1323     uint32_t Type = readVaruint32(Ctx);
1324     if (Type >= NumTypes)
1325       return make_error<GenericBinaryError>("invalid function type",
1326                                             object_error::parse_failed);
1327     wasm::WasmFunction F;
1328     F.SigIndex = Type;
1329     Functions.push_back(F);
1330   }
1331   if (Ctx.Ptr != Ctx.End)
1332     return make_error<GenericBinaryError>("function section ended prematurely",
1333                                           object_error::parse_failed);
1334   return Error::success();
1335 }
1336 
1337 Error WasmObjectFile::parseTableSection(ReadContext &Ctx) {
1338   TableSection = Sections.size();
1339   uint32_t Count = readVaruint32(Ctx);
1340   Tables.reserve(Count);
1341   while (Count--) {
1342     wasm::WasmTable T;
1343     T.Type = readTableType(Ctx);
1344     T.Index = NumImportedTables + Tables.size();
1345     Tables.push_back(T);
1346     auto ElemType = Tables.back().Type.ElemType;
1347     if (ElemType != wasm::ValType::FUNCREF &&
1348         ElemType != wasm::ValType::EXTERNREF &&
1349         ElemType != wasm::ValType::EXNREF &&
1350         ElemType != wasm::ValType::OTHERREF) {
1351       return make_error<GenericBinaryError>("invalid table element type",
1352                                             object_error::parse_failed);
1353     }
1354   }
1355   if (Ctx.Ptr != Ctx.End)
1356     return make_error<GenericBinaryError>("table section ended prematurely",
1357                                           object_error::parse_failed);
1358   return Error::success();
1359 }
1360 
1361 Error WasmObjectFile::parseMemorySection(ReadContext &Ctx) {
1362   uint32_t Count = readVaruint32(Ctx);
1363   Memories.reserve(Count);
1364   while (Count--) {
1365     auto Limits = readLimits(Ctx);
1366     if (Limits.Flags & wasm::WASM_LIMITS_FLAG_IS_64)
1367       HasMemory64 = true;
1368     Memories.push_back(Limits);
1369   }
1370   if (Ctx.Ptr != Ctx.End)
1371     return make_error<GenericBinaryError>("memory section ended prematurely",
1372                                           object_error::parse_failed);
1373   return Error::success();
1374 }
1375 
1376 Error WasmObjectFile::parseTagSection(ReadContext &Ctx) {
1377   TagSection = Sections.size();
1378   uint32_t Count = readVaruint32(Ctx);
1379   Tags.reserve(Count);
1380   uint32_t NumTypes = Signatures.size();
1381   while (Count--) {
1382     if (readUint8(Ctx) != 0) // Reserved 'attribute' field
1383       return make_error<GenericBinaryError>("invalid attribute",
1384                                             object_error::parse_failed);
1385     uint32_t Type = readVaruint32(Ctx);
1386     if (Type >= NumTypes)
1387       return make_error<GenericBinaryError>("invalid tag type",
1388                                             object_error::parse_failed);
1389     wasm::WasmTag Tag;
1390     Tag.Index = NumImportedTags + Tags.size();
1391     Tag.SigIndex = Type;
1392     Signatures[Type].Kind = wasm::WasmSignature::Tag;
1393     Tags.push_back(Tag);
1394   }
1395 
1396   if (Ctx.Ptr != Ctx.End)
1397     return make_error<GenericBinaryError>("tag section ended prematurely",
1398                                           object_error::parse_failed);
1399   return Error::success();
1400 }
1401 
1402 Error WasmObjectFile::parseGlobalSection(ReadContext &Ctx) {
1403   GlobalSection = Sections.size();
1404   const uint8_t *SectionStart = Ctx.Ptr;
1405   uint32_t Count = readVaruint32(Ctx);
1406   Globals.reserve(Count);
1407   while (Count--) {
1408     wasm::WasmGlobal Global;
1409     Global.Index = NumImportedGlobals + Globals.size();
1410     const uint8_t *GlobalStart = Ctx.Ptr;
1411     Global.Offset = static_cast<uint32_t>(GlobalStart - SectionStart);
1412     auto GlobalOpcode = readVaruint32(Ctx);
1413     Global.Type.Type = (uint8_t)parseValType(Ctx, GlobalOpcode);
1414     Global.Type.Mutable = readVaruint1(Ctx);
1415     if (Error Err = readInitExpr(Global.InitExpr, Ctx))
1416       return Err;
1417     Global.Size = static_cast<uint32_t>(Ctx.Ptr - GlobalStart);
1418     Globals.push_back(Global);
1419   }
1420   if (Ctx.Ptr != Ctx.End)
1421     return make_error<GenericBinaryError>("global section ended prematurely",
1422                                           object_error::parse_failed);
1423   return Error::success();
1424 }
1425 
1426 Error WasmObjectFile::parseExportSection(ReadContext &Ctx) {
1427   uint32_t Count = readVaruint32(Ctx);
1428   Exports.reserve(Count);
1429   Symbols.reserve(Count);
1430   for (uint32_t I = 0; I < Count; I++) {
1431     wasm::WasmExport Ex;
1432     Ex.Name = readString(Ctx);
1433     Ex.Kind = readUint8(Ctx);
1434     Ex.Index = readVaruint32(Ctx);
1435     const wasm::WasmSignature *Signature = nullptr;
1436     const wasm::WasmGlobalType *GlobalType = nullptr;
1437     const wasm::WasmTableType *TableType = nullptr;
1438     wasm::WasmSymbolInfo Info;
1439     Info.Name = Ex.Name;
1440     Info.Flags = 0;
1441     switch (Ex.Kind) {
1442     case wasm::WASM_EXTERNAL_FUNCTION: {
1443       if (!isDefinedFunctionIndex(Ex.Index))
1444         return make_error<GenericBinaryError>("invalid function export",
1445                                               object_error::parse_failed);
1446       getDefinedFunction(Ex.Index).ExportName = Ex.Name;
1447       Info.Kind = wasm::WASM_SYMBOL_TYPE_FUNCTION;
1448       Info.ElementIndex = Ex.Index;
1449       unsigned FuncIndex = Info.ElementIndex - NumImportedFunctions;
1450       wasm::WasmFunction &Function = Functions[FuncIndex];
1451       Signature = &Signatures[Function.SigIndex];
1452       break;
1453     }
1454     case wasm::WASM_EXTERNAL_GLOBAL: {
1455       if (!isValidGlobalIndex(Ex.Index))
1456         return make_error<GenericBinaryError>("invalid global export",
1457                                               object_error::parse_failed);
1458       Info.Kind = wasm::WASM_SYMBOL_TYPE_DATA;
1459       uint64_t Offset = 0;
1460       if (isDefinedGlobalIndex(Ex.Index)) {
1461         auto Global = getDefinedGlobal(Ex.Index);
1462         if (!Global.InitExpr.Extended) {
1463           auto Inst = Global.InitExpr.Inst;
1464           if (Inst.Opcode == wasm::WASM_OPCODE_I32_CONST) {
1465             Offset = Inst.Value.Int32;
1466           } else if (Inst.Opcode == wasm::WASM_OPCODE_I64_CONST) {
1467             Offset = Inst.Value.Int64;
1468           }
1469         }
1470       }
1471       Info.DataRef = wasm::WasmDataReference{0, Offset, 0};
1472       break;
1473     }
1474     case wasm::WASM_EXTERNAL_TAG:
1475       if (!isValidTagIndex(Ex.Index))
1476         return make_error<GenericBinaryError>("invalid tag export",
1477                                               object_error::parse_failed);
1478       Info.Kind = wasm::WASM_SYMBOL_TYPE_TAG;
1479       Info.ElementIndex = Ex.Index;
1480       break;
1481     case wasm::WASM_EXTERNAL_MEMORY:
1482       break;
1483     case wasm::WASM_EXTERNAL_TABLE:
1484       Info.Kind = wasm::WASM_SYMBOL_TYPE_TABLE;
1485       Info.ElementIndex = Ex.Index;
1486       break;
1487     default:
1488       return make_error<GenericBinaryError>("unexpected export kind",
1489                                             object_error::parse_failed);
1490     }
1491     Exports.push_back(Ex);
1492     if (Ex.Kind != wasm::WASM_EXTERNAL_MEMORY) {
1493       Symbols.emplace_back(Info, GlobalType, TableType, Signature);
1494       LLVM_DEBUG(dbgs() << "Adding symbol: " << Symbols.back() << "\n");
1495     }
1496   }
1497   if (Ctx.Ptr != Ctx.End)
1498     return make_error<GenericBinaryError>("export section ended prematurely",
1499                                           object_error::parse_failed);
1500   return Error::success();
1501 }
1502 
1503 bool WasmObjectFile::isValidFunctionIndex(uint32_t Index) const {
1504   return Index < NumImportedFunctions + Functions.size();
1505 }
1506 
1507 bool WasmObjectFile::isDefinedFunctionIndex(uint32_t Index) const {
1508   return Index >= NumImportedFunctions && isValidFunctionIndex(Index);
1509 }
1510 
1511 bool WasmObjectFile::isValidGlobalIndex(uint32_t Index) const {
1512   return Index < NumImportedGlobals + Globals.size();
1513 }
1514 
1515 bool WasmObjectFile::isValidTableNumber(uint32_t Index) const {
1516   return Index < NumImportedTables + Tables.size();
1517 }
1518 
1519 bool WasmObjectFile::isDefinedGlobalIndex(uint32_t Index) const {
1520   return Index >= NumImportedGlobals && isValidGlobalIndex(Index);
1521 }
1522 
1523 bool WasmObjectFile::isDefinedTableNumber(uint32_t Index) const {
1524   return Index >= NumImportedTables && isValidTableNumber(Index);
1525 }
1526 
1527 bool WasmObjectFile::isValidTagIndex(uint32_t Index) const {
1528   return Index < NumImportedTags + Tags.size();
1529 }
1530 
1531 bool WasmObjectFile::isDefinedTagIndex(uint32_t Index) const {
1532   return Index >= NumImportedTags && isValidTagIndex(Index);
1533 }
1534 
1535 bool WasmObjectFile::isValidFunctionSymbol(uint32_t Index) const {
1536   return Index < Symbols.size() && Symbols[Index].isTypeFunction();
1537 }
1538 
1539 bool WasmObjectFile::isValidTableSymbol(uint32_t Index) const {
1540   return Index < Symbols.size() && Symbols[Index].isTypeTable();
1541 }
1542 
1543 bool WasmObjectFile::isValidGlobalSymbol(uint32_t Index) const {
1544   return Index < Symbols.size() && Symbols[Index].isTypeGlobal();
1545 }
1546 
1547 bool WasmObjectFile::isValidTagSymbol(uint32_t Index) const {
1548   return Index < Symbols.size() && Symbols[Index].isTypeTag();
1549 }
1550 
1551 bool WasmObjectFile::isValidDataSymbol(uint32_t Index) const {
1552   return Index < Symbols.size() && Symbols[Index].isTypeData();
1553 }
1554 
1555 bool WasmObjectFile::isValidSectionSymbol(uint32_t Index) const {
1556   return Index < Symbols.size() && Symbols[Index].isTypeSection();
1557 }
1558 
1559 wasm::WasmFunction &WasmObjectFile::getDefinedFunction(uint32_t Index) {
1560   assert(isDefinedFunctionIndex(Index));
1561   return Functions[Index - NumImportedFunctions];
1562 }
1563 
1564 const wasm::WasmFunction &
1565 WasmObjectFile::getDefinedFunction(uint32_t Index) const {
1566   assert(isDefinedFunctionIndex(Index));
1567   return Functions[Index - NumImportedFunctions];
1568 }
1569 
1570 const wasm::WasmGlobal &WasmObjectFile::getDefinedGlobal(uint32_t Index) const {
1571   assert(isDefinedGlobalIndex(Index));
1572   return Globals[Index - NumImportedGlobals];
1573 }
1574 
1575 wasm::WasmTag &WasmObjectFile::getDefinedTag(uint32_t Index) {
1576   assert(isDefinedTagIndex(Index));
1577   return Tags[Index - NumImportedTags];
1578 }
1579 
1580 Error WasmObjectFile::parseStartSection(ReadContext &Ctx) {
1581   StartFunction = readVaruint32(Ctx);
1582   if (!isValidFunctionIndex(StartFunction))
1583     return make_error<GenericBinaryError>("invalid start function",
1584                                           object_error::parse_failed);
1585   return Error::success();
1586 }
1587 
1588 Error WasmObjectFile::parseCodeSection(ReadContext &Ctx) {
1589   CodeSection = Sections.size();
1590   uint32_t FunctionCount = readVaruint32(Ctx);
1591   if (FunctionCount != Functions.size()) {
1592     return make_error<GenericBinaryError>("invalid function count",
1593                                           object_error::parse_failed);
1594   }
1595 
1596   for (uint32_t i = 0; i < FunctionCount; i++) {
1597     wasm::WasmFunction& Function = Functions[i];
1598     const uint8_t *FunctionStart = Ctx.Ptr;
1599     uint32_t Size = readVaruint32(Ctx);
1600     const uint8_t *FunctionEnd = Ctx.Ptr + Size;
1601 
1602     Function.CodeOffset = Ctx.Ptr - FunctionStart;
1603     Function.Index = NumImportedFunctions + i;
1604     Function.CodeSectionOffset = FunctionStart - Ctx.Start;
1605     Function.Size = FunctionEnd - FunctionStart;
1606 
1607     uint32_t NumLocalDecls = readVaruint32(Ctx);
1608     Function.Locals.reserve(NumLocalDecls);
1609     while (NumLocalDecls--) {
1610       wasm::WasmLocalDecl Decl;
1611       Decl.Count = readVaruint32(Ctx);
1612       Decl.Type = readUint8(Ctx);
1613       Function.Locals.push_back(Decl);
1614     }
1615 
1616     uint32_t BodySize = FunctionEnd - Ctx.Ptr;
1617     // Ensure that Function is within Ctx's buffer.
1618     if (Ctx.Ptr + BodySize > Ctx.End) {
1619       return make_error<GenericBinaryError>("Function extends beyond buffer",
1620                                             object_error::parse_failed);
1621     }
1622     Function.Body = ArrayRef<uint8_t>(Ctx.Ptr, BodySize);
1623     // This will be set later when reading in the linking metadata section.
1624     Function.Comdat = UINT32_MAX;
1625     Ctx.Ptr += BodySize;
1626     assert(Ctx.Ptr == FunctionEnd);
1627   }
1628   if (Ctx.Ptr != Ctx.End)
1629     return make_error<GenericBinaryError>("code section ended prematurely",
1630                                           object_error::parse_failed);
1631   return Error::success();
1632 }
1633 
1634 Error WasmObjectFile::parseElemSection(ReadContext &Ctx) {
1635   uint32_t Count = readVaruint32(Ctx);
1636   ElemSegments.reserve(Count);
1637   while (Count--) {
1638     wasm::WasmElemSegment Segment;
1639     Segment.Flags = readVaruint32(Ctx);
1640 
1641     uint32_t SupportedFlags = wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER |
1642                               wasm::WASM_ELEM_SEGMENT_IS_PASSIVE |
1643                               wasm::WASM_ELEM_SEGMENT_HAS_INIT_EXPRS;
1644     if (Segment.Flags & ~SupportedFlags)
1645       return make_error<GenericBinaryError>(
1646           "Unsupported flags for element segment", object_error::parse_failed);
1647 
1648     bool IsPassive = (Segment.Flags & wasm::WASM_ELEM_SEGMENT_IS_PASSIVE) != 0;
1649     bool IsDeclarative =
1650         IsPassive && (Segment.Flags & wasm::WASM_ELEM_SEGMENT_IS_DECLARATIVE);
1651     bool HasTableNumber =
1652         !IsPassive &&
1653         (Segment.Flags & wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER);
1654     bool HasInitExprs =
1655         (Segment.Flags & wasm::WASM_ELEM_SEGMENT_HAS_INIT_EXPRS);
1656     bool HasElemKind =
1657         (Segment.Flags & wasm::WASM_ELEM_SEGMENT_MASK_HAS_ELEM_KIND) &&
1658         !HasInitExprs;
1659 
1660     if (HasTableNumber)
1661       Segment.TableNumber = readVaruint32(Ctx);
1662     else
1663       Segment.TableNumber = 0;
1664 
1665     if (!isValidTableNumber(Segment.TableNumber))
1666       return make_error<GenericBinaryError>("invalid TableNumber",
1667                                             object_error::parse_failed);
1668 
1669     if (IsPassive || IsDeclarative) {
1670       Segment.Offset.Extended = false;
1671       Segment.Offset.Inst.Opcode = wasm::WASM_OPCODE_I32_CONST;
1672       Segment.Offset.Inst.Value.Int32 = 0;
1673     } else {
1674       if (Error Err = readInitExpr(Segment.Offset, Ctx))
1675         return Err;
1676     }
1677 
1678     if (HasElemKind) {
1679       auto ElemKind = readVaruint32(Ctx);
1680       if (Segment.Flags & wasm::WASM_ELEM_SEGMENT_HAS_INIT_EXPRS) {
1681         Segment.ElemKind = parseValType(Ctx, ElemKind);
1682         if (Segment.ElemKind != wasm::ValType::FUNCREF &&
1683             Segment.ElemKind != wasm::ValType::EXTERNREF &&
1684             Segment.ElemKind != wasm::ValType::EXNREF &&
1685             Segment.ElemKind != wasm::ValType::OTHERREF) {
1686           return make_error<GenericBinaryError>("invalid elem type",
1687                                                 object_error::parse_failed);
1688         }
1689       } else {
1690         if (ElemKind != 0)
1691           return make_error<GenericBinaryError>("invalid elem type",
1692                                                 object_error::parse_failed);
1693         Segment.ElemKind = wasm::ValType::FUNCREF;
1694       }
1695     } else if (HasInitExprs) {
1696       auto ElemType = parseValType(Ctx, readVaruint32(Ctx));
1697       Segment.ElemKind = ElemType;
1698     } else {
1699       Segment.ElemKind = wasm::ValType::FUNCREF;
1700     }
1701 
1702     uint32_t NumElems = readVaruint32(Ctx);
1703 
1704     if (HasInitExprs) {
1705       while (NumElems--) {
1706         wasm::WasmInitExpr Expr;
1707         if (Error Err = readInitExpr(Expr, Ctx))
1708           return Err;
1709       }
1710     } else {
1711       while (NumElems--) {
1712         Segment.Functions.push_back(readVaruint32(Ctx));
1713       }
1714     }
1715     ElemSegments.push_back(Segment);
1716   }
1717   if (Ctx.Ptr != Ctx.End)
1718     return make_error<GenericBinaryError>("elem section ended prematurely",
1719                                           object_error::parse_failed);
1720   return Error::success();
1721 }
1722 
1723 Error WasmObjectFile::parseDataSection(ReadContext &Ctx) {
1724   DataSection = Sections.size();
1725   uint32_t Count = readVaruint32(Ctx);
1726   if (DataCount && Count != *DataCount)
1727     return make_error<GenericBinaryError>(
1728         "number of data segments does not match DataCount section");
1729   DataSegments.reserve(Count);
1730   while (Count--) {
1731     WasmSegment Segment;
1732     Segment.Data.InitFlags = readVaruint32(Ctx);
1733     Segment.Data.MemoryIndex =
1734         (Segment.Data.InitFlags & wasm::WASM_DATA_SEGMENT_HAS_MEMINDEX)
1735             ? readVaruint32(Ctx)
1736             : 0;
1737     if ((Segment.Data.InitFlags & wasm::WASM_DATA_SEGMENT_IS_PASSIVE) == 0) {
1738       if (Error Err = readInitExpr(Segment.Data.Offset, Ctx))
1739         return Err;
1740     } else {
1741       Segment.Data.Offset.Extended = false;
1742       Segment.Data.Offset.Inst.Opcode = wasm::WASM_OPCODE_I32_CONST;
1743       Segment.Data.Offset.Inst.Value.Int32 = 0;
1744     }
1745     uint32_t Size = readVaruint32(Ctx);
1746     if (Size > (size_t)(Ctx.End - Ctx.Ptr))
1747       return make_error<GenericBinaryError>("invalid segment size",
1748                                             object_error::parse_failed);
1749     Segment.Data.Content = ArrayRef<uint8_t>(Ctx.Ptr, Size);
1750     // The rest of these Data fields are set later, when reading in the linking
1751     // metadata section.
1752     Segment.Data.Alignment = 0;
1753     Segment.Data.LinkingFlags = 0;
1754     Segment.Data.Comdat = UINT32_MAX;
1755     Segment.SectionOffset = Ctx.Ptr - Ctx.Start;
1756     Ctx.Ptr += Size;
1757     DataSegments.push_back(Segment);
1758   }
1759   if (Ctx.Ptr != Ctx.End)
1760     return make_error<GenericBinaryError>("data section ended prematurely",
1761                                           object_error::parse_failed);
1762   return Error::success();
1763 }
1764 
1765 Error WasmObjectFile::parseDataCountSection(ReadContext &Ctx) {
1766   DataCount = readVaruint32(Ctx);
1767   return Error::success();
1768 }
1769 
1770 const wasm::WasmObjectHeader &WasmObjectFile::getHeader() const {
1771   return Header;
1772 }
1773 
1774 void WasmObjectFile::moveSymbolNext(DataRefImpl &Symb) const { Symb.d.b++; }
1775 
1776 Expected<uint32_t> WasmObjectFile::getSymbolFlags(DataRefImpl Symb) const {
1777   uint32_t Result = SymbolRef::SF_None;
1778   const WasmSymbol &Sym = getWasmSymbol(Symb);
1779 
1780   LLVM_DEBUG(dbgs() << "getSymbolFlags: ptr=" << &Sym << " " << Sym << "\n");
1781   if (Sym.isBindingWeak())
1782     Result |= SymbolRef::SF_Weak;
1783   if (!Sym.isBindingLocal())
1784     Result |= SymbolRef::SF_Global;
1785   if (Sym.isHidden())
1786     Result |= SymbolRef::SF_Hidden;
1787   if (!Sym.isDefined())
1788     Result |= SymbolRef::SF_Undefined;
1789   if (Sym.isTypeFunction())
1790     Result |= SymbolRef::SF_Executable;
1791   return Result;
1792 }
1793 
1794 basic_symbol_iterator WasmObjectFile::symbol_begin() const {
1795   DataRefImpl Ref;
1796   Ref.d.a = 1; // Arbitrary non-zero value so that Ref.p is non-null
1797   Ref.d.b = 0; // Symbol index
1798   return BasicSymbolRef(Ref, this);
1799 }
1800 
1801 basic_symbol_iterator WasmObjectFile::symbol_end() const {
1802   DataRefImpl Ref;
1803   Ref.d.a = 1; // Arbitrary non-zero value so that Ref.p is non-null
1804   Ref.d.b = Symbols.size(); // Symbol index
1805   return BasicSymbolRef(Ref, this);
1806 }
1807 
1808 const WasmSymbol &WasmObjectFile::getWasmSymbol(const DataRefImpl &Symb) const {
1809   return Symbols[Symb.d.b];
1810 }
1811 
1812 const WasmSymbol &WasmObjectFile::getWasmSymbol(const SymbolRef &Symb) const {
1813   return getWasmSymbol(Symb.getRawDataRefImpl());
1814 }
1815 
1816 Expected<StringRef> WasmObjectFile::getSymbolName(DataRefImpl Symb) const {
1817   return getWasmSymbol(Symb).Info.Name;
1818 }
1819 
1820 Expected<uint64_t> WasmObjectFile::getSymbolAddress(DataRefImpl Symb) const {
1821   auto &Sym = getWasmSymbol(Symb);
1822   if (!Sym.isDefined())
1823     return 0;
1824   Expected<section_iterator> Sec = getSymbolSection(Symb);
1825   if (!Sec)
1826     return Sec.takeError();
1827   uint32_t SectionAddress = getSectionAddress(Sec.get()->getRawDataRefImpl());
1828   if (Sym.Info.Kind == wasm::WASM_SYMBOL_TYPE_FUNCTION &&
1829       isDefinedFunctionIndex(Sym.Info.ElementIndex)) {
1830     return getDefinedFunction(Sym.Info.ElementIndex).CodeSectionOffset +
1831            SectionAddress;
1832   }
1833   if (Sym.Info.Kind == wasm::WASM_SYMBOL_TYPE_GLOBAL &&
1834       isDefinedGlobalIndex(Sym.Info.ElementIndex)) {
1835     return getDefinedGlobal(Sym.Info.ElementIndex).Offset + SectionAddress;
1836   }
1837 
1838   return getSymbolValue(Symb);
1839 }
1840 
1841 uint64_t WasmObjectFile::getWasmSymbolValue(const WasmSymbol &Sym) const {
1842   switch (Sym.Info.Kind) {
1843   case wasm::WASM_SYMBOL_TYPE_FUNCTION:
1844   case wasm::WASM_SYMBOL_TYPE_GLOBAL:
1845   case wasm::WASM_SYMBOL_TYPE_TAG:
1846   case wasm::WASM_SYMBOL_TYPE_TABLE:
1847     return Sym.Info.ElementIndex;
1848   case wasm::WASM_SYMBOL_TYPE_DATA: {
1849     // The value of a data symbol is the segment offset, plus the symbol
1850     // offset within the segment.
1851     uint32_t SegmentIndex = Sym.Info.DataRef.Segment;
1852     const wasm::WasmDataSegment &Segment = DataSegments[SegmentIndex].Data;
1853     if (Segment.Offset.Extended) {
1854       llvm_unreachable("extended init exprs not supported");
1855     } else if (Segment.Offset.Inst.Opcode == wasm::WASM_OPCODE_I32_CONST) {
1856       return Segment.Offset.Inst.Value.Int32 + Sym.Info.DataRef.Offset;
1857     } else if (Segment.Offset.Inst.Opcode == wasm::WASM_OPCODE_I64_CONST) {
1858       return Segment.Offset.Inst.Value.Int64 + Sym.Info.DataRef.Offset;
1859     } else if (Segment.Offset.Inst.Opcode == wasm::WASM_OPCODE_GLOBAL_GET) {
1860       return Sym.Info.DataRef.Offset;
1861     } else {
1862       llvm_unreachable("unknown init expr opcode");
1863     }
1864   }
1865   case wasm::WASM_SYMBOL_TYPE_SECTION:
1866     return 0;
1867   }
1868   llvm_unreachable("invalid symbol type");
1869 }
1870 
1871 uint64_t WasmObjectFile::getSymbolValueImpl(DataRefImpl Symb) const {
1872   return getWasmSymbolValue(getWasmSymbol(Symb));
1873 }
1874 
1875 uint32_t WasmObjectFile::getSymbolAlignment(DataRefImpl Symb) const {
1876   llvm_unreachable("not yet implemented");
1877   return 0;
1878 }
1879 
1880 uint64_t WasmObjectFile::getCommonSymbolSizeImpl(DataRefImpl Symb) const {
1881   llvm_unreachable("not yet implemented");
1882   return 0;
1883 }
1884 
1885 Expected<SymbolRef::Type>
1886 WasmObjectFile::getSymbolType(DataRefImpl Symb) const {
1887   const WasmSymbol &Sym = getWasmSymbol(Symb);
1888 
1889   switch (Sym.Info.Kind) {
1890   case wasm::WASM_SYMBOL_TYPE_FUNCTION:
1891     return SymbolRef::ST_Function;
1892   case wasm::WASM_SYMBOL_TYPE_GLOBAL:
1893     return SymbolRef::ST_Other;
1894   case wasm::WASM_SYMBOL_TYPE_DATA:
1895     return SymbolRef::ST_Data;
1896   case wasm::WASM_SYMBOL_TYPE_SECTION:
1897     return SymbolRef::ST_Debug;
1898   case wasm::WASM_SYMBOL_TYPE_TAG:
1899     return SymbolRef::ST_Other;
1900   case wasm::WASM_SYMBOL_TYPE_TABLE:
1901     return SymbolRef::ST_Other;
1902   }
1903 
1904   llvm_unreachable("unknown WasmSymbol::SymbolType");
1905   return SymbolRef::ST_Other;
1906 }
1907 
1908 Expected<section_iterator>
1909 WasmObjectFile::getSymbolSection(DataRefImpl Symb) const {
1910   const WasmSymbol &Sym = getWasmSymbol(Symb);
1911   if (Sym.isUndefined())
1912     return section_end();
1913 
1914   DataRefImpl Ref;
1915   Ref.d.a = getSymbolSectionIdImpl(Sym);
1916   return section_iterator(SectionRef(Ref, this));
1917 }
1918 
1919 uint32_t WasmObjectFile::getSymbolSectionId(SymbolRef Symb) const {
1920   const WasmSymbol &Sym = getWasmSymbol(Symb);
1921   return getSymbolSectionIdImpl(Sym);
1922 }
1923 
1924 uint32_t WasmObjectFile::getSymbolSectionIdImpl(const WasmSymbol &Sym) const {
1925   switch (Sym.Info.Kind) {
1926   case wasm::WASM_SYMBOL_TYPE_FUNCTION:
1927     return CodeSection;
1928   case wasm::WASM_SYMBOL_TYPE_GLOBAL:
1929     return GlobalSection;
1930   case wasm::WASM_SYMBOL_TYPE_DATA:
1931     return DataSection;
1932   case wasm::WASM_SYMBOL_TYPE_SECTION:
1933     return Sym.Info.ElementIndex;
1934   case wasm::WASM_SYMBOL_TYPE_TAG:
1935     return TagSection;
1936   case wasm::WASM_SYMBOL_TYPE_TABLE:
1937     return TableSection;
1938   default:
1939     llvm_unreachable("unknown WasmSymbol::SymbolType");
1940   }
1941 }
1942 
1943 uint32_t WasmObjectFile::getSymbolSize(SymbolRef Symb) const {
1944   const WasmSymbol &Sym = getWasmSymbol(Symb);
1945   if (!Sym.isDefined())
1946     return 0;
1947   if (Sym.isTypeGlobal())
1948     return getDefinedGlobal(Sym.Info.ElementIndex).Size;
1949   if (Sym.isTypeData())
1950     return Sym.Info.DataRef.Size;
1951   if (Sym.isTypeFunction())
1952     return functions()[Sym.Info.ElementIndex - getNumImportedFunctions()].Size;
1953   // Currently symbol size is only tracked for data segments and functions. In
1954   // principle we could also track size (e.g. binary size) for tables, globals
1955   // and element segments etc too.
1956   return 0;
1957 }
1958 
1959 void WasmObjectFile::moveSectionNext(DataRefImpl &Sec) const { Sec.d.a++; }
1960 
1961 Expected<StringRef> WasmObjectFile::getSectionName(DataRefImpl Sec) const {
1962   const WasmSection &S = Sections[Sec.d.a];
1963   if (S.Type == wasm::WASM_SEC_CUSTOM)
1964     return S.Name;
1965   if (S.Type > wasm::WASM_SEC_LAST_KNOWN)
1966     return createStringError(object_error::invalid_section_index, "");
1967   return wasm::sectionTypeToString(S.Type);
1968 }
1969 
1970 uint64_t WasmObjectFile::getSectionAddress(DataRefImpl Sec) const {
1971   // For object files, use 0 for section addresses, and section offsets for
1972   // symbol addresses. For linked files, use file offsets.
1973   // See also getSymbolAddress.
1974   return isRelocatableObject() || isSharedObject() ? 0
1975                                                    : Sections[Sec.d.a].Offset;
1976 }
1977 
1978 uint64_t WasmObjectFile::getSectionIndex(DataRefImpl Sec) const {
1979   return Sec.d.a;
1980 }
1981 
1982 uint64_t WasmObjectFile::getSectionSize(DataRefImpl Sec) const {
1983   const WasmSection &S = Sections[Sec.d.a];
1984   return S.Content.size();
1985 }
1986 
1987 Expected<ArrayRef<uint8_t>>
1988 WasmObjectFile::getSectionContents(DataRefImpl Sec) const {
1989   const WasmSection &S = Sections[Sec.d.a];
1990   // This will never fail since wasm sections can never be empty (user-sections
1991   // must have a name and non-user sections each have a defined structure).
1992   return S.Content;
1993 }
1994 
1995 uint64_t WasmObjectFile::getSectionAlignment(DataRefImpl Sec) const {
1996   return 1;
1997 }
1998 
1999 bool WasmObjectFile::isSectionCompressed(DataRefImpl Sec) const {
2000   return false;
2001 }
2002 
2003 bool WasmObjectFile::isSectionText(DataRefImpl Sec) const {
2004   return getWasmSection(Sec).Type == wasm::WASM_SEC_CODE;
2005 }
2006 
2007 bool WasmObjectFile::isSectionData(DataRefImpl Sec) const {
2008   return getWasmSection(Sec).Type == wasm::WASM_SEC_DATA;
2009 }
2010 
2011 bool WasmObjectFile::isSectionBSS(DataRefImpl Sec) const { return false; }
2012 
2013 bool WasmObjectFile::isSectionVirtual(DataRefImpl Sec) const { return false; }
2014 
2015 relocation_iterator WasmObjectFile::section_rel_begin(DataRefImpl Ref) const {
2016   DataRefImpl RelocRef;
2017   RelocRef.d.a = Ref.d.a;
2018   RelocRef.d.b = 0;
2019   return relocation_iterator(RelocationRef(RelocRef, this));
2020 }
2021 
2022 relocation_iterator WasmObjectFile::section_rel_end(DataRefImpl Ref) const {
2023   const WasmSection &Sec = getWasmSection(Ref);
2024   DataRefImpl RelocRef;
2025   RelocRef.d.a = Ref.d.a;
2026   RelocRef.d.b = Sec.Relocations.size();
2027   return relocation_iterator(RelocationRef(RelocRef, this));
2028 }
2029 
2030 void WasmObjectFile::moveRelocationNext(DataRefImpl &Rel) const { Rel.d.b++; }
2031 
2032 uint64_t WasmObjectFile::getRelocationOffset(DataRefImpl Ref) const {
2033   const wasm::WasmRelocation &Rel = getWasmRelocation(Ref);
2034   return Rel.Offset;
2035 }
2036 
2037 symbol_iterator WasmObjectFile::getRelocationSymbol(DataRefImpl Ref) const {
2038   const wasm::WasmRelocation &Rel = getWasmRelocation(Ref);
2039   if (Rel.Type == wasm::R_WASM_TYPE_INDEX_LEB)
2040     return symbol_end();
2041   DataRefImpl Sym;
2042   Sym.d.a = 1;
2043   Sym.d.b = Rel.Index;
2044   return symbol_iterator(SymbolRef(Sym, this));
2045 }
2046 
2047 uint64_t WasmObjectFile::getRelocationType(DataRefImpl Ref) const {
2048   const wasm::WasmRelocation &Rel = getWasmRelocation(Ref);
2049   return Rel.Type;
2050 }
2051 
2052 void WasmObjectFile::getRelocationTypeName(
2053     DataRefImpl Ref, SmallVectorImpl<char> &Result) const {
2054   const wasm::WasmRelocation &Rel = getWasmRelocation(Ref);
2055   StringRef Res = "Unknown";
2056 
2057 #define WASM_RELOC(name, value)                                                \
2058   case wasm::name:                                                             \
2059     Res = #name;                                                               \
2060     break;
2061 
2062   switch (Rel.Type) {
2063 #include "llvm/BinaryFormat/WasmRelocs.def"
2064   }
2065 
2066 #undef WASM_RELOC
2067 
2068   Result.append(Res.begin(), Res.end());
2069 }
2070 
2071 section_iterator WasmObjectFile::section_begin() const {
2072   DataRefImpl Ref;
2073   Ref.d.a = 0;
2074   return section_iterator(SectionRef(Ref, this));
2075 }
2076 
2077 section_iterator WasmObjectFile::section_end() const {
2078   DataRefImpl Ref;
2079   Ref.d.a = Sections.size();
2080   return section_iterator(SectionRef(Ref, this));
2081 }
2082 
2083 uint8_t WasmObjectFile::getBytesInAddress() const {
2084   return HasMemory64 ? 8 : 4;
2085 }
2086 
2087 StringRef WasmObjectFile::getFileFormatName() const { return "WASM"; }
2088 
2089 Triple::ArchType WasmObjectFile::getArch() const {
2090   return HasMemory64 ? Triple::wasm64 : Triple::wasm32;
2091 }
2092 
2093 Expected<SubtargetFeatures> WasmObjectFile::getFeatures() const {
2094   return SubtargetFeatures();
2095 }
2096 
2097 bool WasmObjectFile::isRelocatableObject() const { return HasLinkingSection; }
2098 
2099 bool WasmObjectFile::isSharedObject() const { return HasDylinkSection; }
2100 
2101 const WasmSection &WasmObjectFile::getWasmSection(DataRefImpl Ref) const {
2102   assert(Ref.d.a < Sections.size());
2103   return Sections[Ref.d.a];
2104 }
2105 
2106 const WasmSection &
2107 WasmObjectFile::getWasmSection(const SectionRef &Section) const {
2108   return getWasmSection(Section.getRawDataRefImpl());
2109 }
2110 
2111 const wasm::WasmRelocation &
2112 WasmObjectFile::getWasmRelocation(const RelocationRef &Ref) const {
2113   return getWasmRelocation(Ref.getRawDataRefImpl());
2114 }
2115 
2116 const wasm::WasmRelocation &
2117 WasmObjectFile::getWasmRelocation(DataRefImpl Ref) const {
2118   assert(Ref.d.a < Sections.size());
2119   const WasmSection &Sec = Sections[Ref.d.a];
2120   assert(Ref.d.b < Sec.Relocations.size());
2121   return Sec.Relocations[Ref.d.b];
2122 }
2123 
2124 int WasmSectionOrderChecker::getSectionOrder(unsigned ID,
2125                                              StringRef CustomSectionName) {
2126   switch (ID) {
2127   case wasm::WASM_SEC_CUSTOM:
2128     return StringSwitch<unsigned>(CustomSectionName)
2129         .Case("dylink", WASM_SEC_ORDER_DYLINK)
2130         .Case("dylink.0", WASM_SEC_ORDER_DYLINK)
2131         .Case("linking", WASM_SEC_ORDER_LINKING)
2132         .StartsWith("reloc.", WASM_SEC_ORDER_RELOC)
2133         .Case("name", WASM_SEC_ORDER_NAME)
2134         .Case("producers", WASM_SEC_ORDER_PRODUCERS)
2135         .Case("target_features", WASM_SEC_ORDER_TARGET_FEATURES)
2136         .Default(WASM_SEC_ORDER_NONE);
2137   case wasm::WASM_SEC_TYPE:
2138     return WASM_SEC_ORDER_TYPE;
2139   case wasm::WASM_SEC_IMPORT:
2140     return WASM_SEC_ORDER_IMPORT;
2141   case wasm::WASM_SEC_FUNCTION:
2142     return WASM_SEC_ORDER_FUNCTION;
2143   case wasm::WASM_SEC_TABLE:
2144     return WASM_SEC_ORDER_TABLE;
2145   case wasm::WASM_SEC_MEMORY:
2146     return WASM_SEC_ORDER_MEMORY;
2147   case wasm::WASM_SEC_GLOBAL:
2148     return WASM_SEC_ORDER_GLOBAL;
2149   case wasm::WASM_SEC_EXPORT:
2150     return WASM_SEC_ORDER_EXPORT;
2151   case wasm::WASM_SEC_START:
2152     return WASM_SEC_ORDER_START;
2153   case wasm::WASM_SEC_ELEM:
2154     return WASM_SEC_ORDER_ELEM;
2155   case wasm::WASM_SEC_CODE:
2156     return WASM_SEC_ORDER_CODE;
2157   case wasm::WASM_SEC_DATA:
2158     return WASM_SEC_ORDER_DATA;
2159   case wasm::WASM_SEC_DATACOUNT:
2160     return WASM_SEC_ORDER_DATACOUNT;
2161   case wasm::WASM_SEC_TAG:
2162     return WASM_SEC_ORDER_TAG;
2163   default:
2164     return WASM_SEC_ORDER_NONE;
2165   }
2166 }
2167 
2168 // Represents the edges in a directed graph where any node B reachable from node
2169 // A is not allowed to appear before A in the section ordering, but may appear
2170 // afterward.
2171 int WasmSectionOrderChecker::DisallowedPredecessors
2172     [WASM_NUM_SEC_ORDERS][WASM_NUM_SEC_ORDERS] = {
2173         // WASM_SEC_ORDER_NONE
2174         {},
2175         // WASM_SEC_ORDER_TYPE
2176         {WASM_SEC_ORDER_TYPE, WASM_SEC_ORDER_IMPORT},
2177         // WASM_SEC_ORDER_IMPORT
2178         {WASM_SEC_ORDER_IMPORT, WASM_SEC_ORDER_FUNCTION},
2179         // WASM_SEC_ORDER_FUNCTION
2180         {WASM_SEC_ORDER_FUNCTION, WASM_SEC_ORDER_TABLE},
2181         // WASM_SEC_ORDER_TABLE
2182         {WASM_SEC_ORDER_TABLE, WASM_SEC_ORDER_MEMORY},
2183         // WASM_SEC_ORDER_MEMORY
2184         {WASM_SEC_ORDER_MEMORY, WASM_SEC_ORDER_TAG},
2185         // WASM_SEC_ORDER_TAG
2186         {WASM_SEC_ORDER_TAG, WASM_SEC_ORDER_GLOBAL},
2187         // WASM_SEC_ORDER_GLOBAL
2188         {WASM_SEC_ORDER_GLOBAL, WASM_SEC_ORDER_EXPORT},
2189         // WASM_SEC_ORDER_EXPORT
2190         {WASM_SEC_ORDER_EXPORT, WASM_SEC_ORDER_START},
2191         // WASM_SEC_ORDER_START
2192         {WASM_SEC_ORDER_START, WASM_SEC_ORDER_ELEM},
2193         // WASM_SEC_ORDER_ELEM
2194         {WASM_SEC_ORDER_ELEM, WASM_SEC_ORDER_DATACOUNT},
2195         // WASM_SEC_ORDER_DATACOUNT
2196         {WASM_SEC_ORDER_DATACOUNT, WASM_SEC_ORDER_CODE},
2197         // WASM_SEC_ORDER_CODE
2198         {WASM_SEC_ORDER_CODE, WASM_SEC_ORDER_DATA},
2199         // WASM_SEC_ORDER_DATA
2200         {WASM_SEC_ORDER_DATA, WASM_SEC_ORDER_LINKING},
2201 
2202         // Custom Sections
2203         // WASM_SEC_ORDER_DYLINK
2204         {WASM_SEC_ORDER_DYLINK, WASM_SEC_ORDER_TYPE},
2205         // WASM_SEC_ORDER_LINKING
2206         {WASM_SEC_ORDER_LINKING, WASM_SEC_ORDER_RELOC, WASM_SEC_ORDER_NAME},
2207         // WASM_SEC_ORDER_RELOC (can be repeated)
2208         {},
2209         // WASM_SEC_ORDER_NAME
2210         {WASM_SEC_ORDER_NAME, WASM_SEC_ORDER_PRODUCERS},
2211         // WASM_SEC_ORDER_PRODUCERS
2212         {WASM_SEC_ORDER_PRODUCERS, WASM_SEC_ORDER_TARGET_FEATURES},
2213         // WASM_SEC_ORDER_TARGET_FEATURES
2214         {WASM_SEC_ORDER_TARGET_FEATURES}};
2215 
2216 bool WasmSectionOrderChecker::isValidSectionOrder(unsigned ID,
2217                                                   StringRef CustomSectionName) {
2218   int Order = getSectionOrder(ID, CustomSectionName);
2219   if (Order == WASM_SEC_ORDER_NONE)
2220     return true;
2221 
2222   // Disallowed predecessors we need to check for
2223   SmallVector<int, WASM_NUM_SEC_ORDERS> WorkList;
2224 
2225   // Keep track of completed checks to avoid repeating work
2226   bool Checked[WASM_NUM_SEC_ORDERS] = {};
2227 
2228   int Curr = Order;
2229   while (true) {
2230     // Add new disallowed predecessors to work list
2231     for (size_t I = 0;; ++I) {
2232       int Next = DisallowedPredecessors[Curr][I];
2233       if (Next == WASM_SEC_ORDER_NONE)
2234         break;
2235       if (Checked[Next])
2236         continue;
2237       WorkList.push_back(Next);
2238       Checked[Next] = true;
2239     }
2240 
2241     if (WorkList.empty())
2242       break;
2243 
2244     // Consider next disallowed predecessor
2245     Curr = WorkList.pop_back_val();
2246     if (Seen[Curr])
2247       return false;
2248   }
2249 
2250   // Have not seen any disallowed predecessors
2251   Seen[Order] = true;
2252   return true;
2253 }
2254