xref: /llvm-project/llvm/lib/Object/ELFObjectFile.cpp (revision e9c8106a90d49e75bac87341ade57c6049357a97)
1 //===- ELFObjectFile.cpp - ELF object file implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Part of the ELFObjectFile class implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Object/ELFObjectFile.h"
14 #include "llvm/BinaryFormat/ELF.h"
15 #include "llvm/MC/MCInstrAnalysis.h"
16 #include "llvm/MC/TargetRegistry.h"
17 #include "llvm/Object/ELF.h"
18 #include "llvm/Object/ELFTypes.h"
19 #include "llvm/Object/Error.h"
20 #include "llvm/Support/ARMAttributeParser.h"
21 #include "llvm/Support/ARMBuildAttributes.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/HexagonAttributeParser.h"
24 #include "llvm/Support/RISCVAttributeParser.h"
25 #include "llvm/Support/RISCVAttributes.h"
26 #include "llvm/TargetParser/RISCVISAInfo.h"
27 #include "llvm/TargetParser/SubtargetFeature.h"
28 #include "llvm/TargetParser/Triple.h"
29 #include <algorithm>
30 #include <cstddef>
31 #include <cstdint>
32 #include <memory>
33 #include <optional>
34 #include <string>
35 #include <utility>
36 
37 using namespace llvm;
38 using namespace object;
39 
40 const EnumEntry<unsigned> llvm::object::ElfSymbolTypes[NumElfSymbolTypes] = {
41     {"None", "NOTYPE", ELF::STT_NOTYPE},
42     {"Object", "OBJECT", ELF::STT_OBJECT},
43     {"Function", "FUNC", ELF::STT_FUNC},
44     {"Section", "SECTION", ELF::STT_SECTION},
45     {"File", "FILE", ELF::STT_FILE},
46     {"Common", "COMMON", ELF::STT_COMMON},
47     {"TLS", "TLS", ELF::STT_TLS},
48     {"Unknown", "<unknown>: 7", 7},
49     {"Unknown", "<unknown>: 8", 8},
50     {"Unknown", "<unknown>: 9", 9},
51     {"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC},
52     {"OS Specific", "<OS specific>: 11", 11},
53     {"OS Specific", "<OS specific>: 12", 12},
54     {"Proc Specific", "<processor specific>: 13", 13},
55     {"Proc Specific", "<processor specific>: 14", 14},
56     {"Proc Specific", "<processor specific>: 15", 15}
57 };
58 
59 ELFObjectFileBase::ELFObjectFileBase(unsigned int Type, MemoryBufferRef Source)
60     : ObjectFile(Type, Source) {}
61 
62 template <class ELFT>
63 static Expected<std::unique_ptr<ELFObjectFile<ELFT>>>
64 createPtr(MemoryBufferRef Object, bool InitContent) {
65   auto Ret = ELFObjectFile<ELFT>::create(Object, InitContent);
66   if (Error E = Ret.takeError())
67     return std::move(E);
68   return std::make_unique<ELFObjectFile<ELFT>>(std::move(*Ret));
69 }
70 
71 Expected<std::unique_ptr<ObjectFile>>
72 ObjectFile::createELFObjectFile(MemoryBufferRef Obj, bool InitContent) {
73   std::pair<unsigned char, unsigned char> Ident =
74       getElfArchType(Obj.getBuffer());
75   std::size_t MaxAlignment =
76       1ULL << llvm::countr_zero(
77           reinterpret_cast<uintptr_t>(Obj.getBufferStart()));
78 
79   if (MaxAlignment < 2)
80     return createError("Insufficient alignment");
81 
82   if (Ident.first == ELF::ELFCLASS32) {
83     if (Ident.second == ELF::ELFDATA2LSB)
84       return createPtr<ELF32LE>(Obj, InitContent);
85     else if (Ident.second == ELF::ELFDATA2MSB)
86       return createPtr<ELF32BE>(Obj, InitContent);
87     else
88       return createError("Invalid ELF data");
89   } else if (Ident.first == ELF::ELFCLASS64) {
90     if (Ident.second == ELF::ELFDATA2LSB)
91       return createPtr<ELF64LE>(Obj, InitContent);
92     else if (Ident.second == ELF::ELFDATA2MSB)
93       return createPtr<ELF64BE>(Obj, InitContent);
94     else
95       return createError("Invalid ELF data");
96   }
97   return createError("Invalid ELF class");
98 }
99 
100 SubtargetFeatures ELFObjectFileBase::getMIPSFeatures() const {
101   SubtargetFeatures Features;
102   unsigned PlatformFlags = getPlatformFlags();
103 
104   switch (PlatformFlags & ELF::EF_MIPS_ARCH) {
105   case ELF::EF_MIPS_ARCH_1:
106     break;
107   case ELF::EF_MIPS_ARCH_2:
108     Features.AddFeature("mips2");
109     break;
110   case ELF::EF_MIPS_ARCH_3:
111     Features.AddFeature("mips3");
112     break;
113   case ELF::EF_MIPS_ARCH_4:
114     Features.AddFeature("mips4");
115     break;
116   case ELF::EF_MIPS_ARCH_5:
117     Features.AddFeature("mips5");
118     break;
119   case ELF::EF_MIPS_ARCH_32:
120     Features.AddFeature("mips32");
121     break;
122   case ELF::EF_MIPS_ARCH_64:
123     Features.AddFeature("mips64");
124     break;
125   case ELF::EF_MIPS_ARCH_32R2:
126     Features.AddFeature("mips32r2");
127     break;
128   case ELF::EF_MIPS_ARCH_64R2:
129     Features.AddFeature("mips64r2");
130     break;
131   case ELF::EF_MIPS_ARCH_32R6:
132     Features.AddFeature("mips32r6");
133     break;
134   case ELF::EF_MIPS_ARCH_64R6:
135     Features.AddFeature("mips64r6");
136     break;
137   default:
138     llvm_unreachable("Unknown EF_MIPS_ARCH value");
139   }
140 
141   switch (PlatformFlags & ELF::EF_MIPS_MACH) {
142   case ELF::EF_MIPS_MACH_NONE:
143     // No feature associated with this value.
144     break;
145   case ELF::EF_MIPS_MACH_OCTEON:
146     Features.AddFeature("cnmips");
147     break;
148   default:
149     llvm_unreachable("Unknown EF_MIPS_ARCH value");
150   }
151 
152   if (PlatformFlags & ELF::EF_MIPS_ARCH_ASE_M16)
153     Features.AddFeature("mips16");
154   if (PlatformFlags & ELF::EF_MIPS_MICROMIPS)
155     Features.AddFeature("micromips");
156 
157   return Features;
158 }
159 
160 SubtargetFeatures ELFObjectFileBase::getARMFeatures() const {
161   SubtargetFeatures Features;
162   ARMAttributeParser Attributes;
163   if (Error E = getBuildAttributes(Attributes)) {
164     consumeError(std::move(E));
165     return SubtargetFeatures();
166   }
167 
168   // both ARMv7-M and R have to support thumb hardware div
169   bool isV7 = false;
170   std::optional<unsigned> Attr =
171       Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
172   if (Attr)
173     isV7 = *Attr == ARMBuildAttrs::v7;
174 
175   Attr = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
176   if (Attr) {
177     switch (*Attr) {
178     case ARMBuildAttrs::ApplicationProfile:
179       Features.AddFeature("aclass");
180       break;
181     case ARMBuildAttrs::RealTimeProfile:
182       Features.AddFeature("rclass");
183       if (isV7)
184         Features.AddFeature("hwdiv");
185       break;
186     case ARMBuildAttrs::MicroControllerProfile:
187       Features.AddFeature("mclass");
188       if (isV7)
189         Features.AddFeature("hwdiv");
190       break;
191     }
192   }
193 
194   Attr = Attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use);
195   if (Attr) {
196     switch (*Attr) {
197     default:
198       break;
199     case ARMBuildAttrs::Not_Allowed:
200       Features.AddFeature("thumb", false);
201       Features.AddFeature("thumb2", false);
202       break;
203     case ARMBuildAttrs::AllowThumb32:
204       Features.AddFeature("thumb2");
205       break;
206     }
207   }
208 
209   Attr = Attributes.getAttributeValue(ARMBuildAttrs::FP_arch);
210   if (Attr) {
211     switch (*Attr) {
212     default:
213       break;
214     case ARMBuildAttrs::Not_Allowed:
215       Features.AddFeature("vfp2sp", false);
216       Features.AddFeature("vfp3d16sp", false);
217       Features.AddFeature("vfp4d16sp", false);
218       break;
219     case ARMBuildAttrs::AllowFPv2:
220       Features.AddFeature("vfp2");
221       break;
222     case ARMBuildAttrs::AllowFPv3A:
223     case ARMBuildAttrs::AllowFPv3B:
224       Features.AddFeature("vfp3");
225       break;
226     case ARMBuildAttrs::AllowFPv4A:
227     case ARMBuildAttrs::AllowFPv4B:
228       Features.AddFeature("vfp4");
229       break;
230     }
231   }
232 
233   Attr = Attributes.getAttributeValue(ARMBuildAttrs::Advanced_SIMD_arch);
234   if (Attr) {
235     switch (*Attr) {
236     default:
237       break;
238     case ARMBuildAttrs::Not_Allowed:
239       Features.AddFeature("neon", false);
240       Features.AddFeature("fp16", false);
241       break;
242     case ARMBuildAttrs::AllowNeon:
243       Features.AddFeature("neon");
244       break;
245     case ARMBuildAttrs::AllowNeon2:
246       Features.AddFeature("neon");
247       Features.AddFeature("fp16");
248       break;
249     }
250   }
251 
252   Attr = Attributes.getAttributeValue(ARMBuildAttrs::MVE_arch);
253   if (Attr) {
254     switch (*Attr) {
255     default:
256       break;
257     case ARMBuildAttrs::Not_Allowed:
258       Features.AddFeature("mve", false);
259       Features.AddFeature("mve.fp", false);
260       break;
261     case ARMBuildAttrs::AllowMVEInteger:
262       Features.AddFeature("mve.fp", false);
263       Features.AddFeature("mve");
264       break;
265     case ARMBuildAttrs::AllowMVEIntegerAndFloat:
266       Features.AddFeature("mve.fp");
267       break;
268     }
269   }
270 
271   Attr = Attributes.getAttributeValue(ARMBuildAttrs::DIV_use);
272   if (Attr) {
273     switch (*Attr) {
274     default:
275       break;
276     case ARMBuildAttrs::DisallowDIV:
277       Features.AddFeature("hwdiv", false);
278       Features.AddFeature("hwdiv-arm", false);
279       break;
280     case ARMBuildAttrs::AllowDIVExt:
281       Features.AddFeature("hwdiv");
282       Features.AddFeature("hwdiv-arm");
283       break;
284     }
285   }
286 
287   return Features;
288 }
289 
290 static std::optional<std::string> hexagonAttrToFeatureString(unsigned Attr) {
291   switch (Attr) {
292   case 5:
293     return "v5";
294   case 55:
295     return "v55";
296   case 60:
297     return "v60";
298   case 62:
299     return "v62";
300   case 65:
301     return "v65";
302   case 67:
303     return "v67";
304   case 68:
305     return "v68";
306   case 69:
307     return "v69";
308   case 71:
309     return "v71";
310   case 73:
311     return "v73";
312   default:
313     return {};
314   }
315 }
316 
317 SubtargetFeatures ELFObjectFileBase::getHexagonFeatures() const {
318   SubtargetFeatures Features;
319   HexagonAttributeParser Parser;
320   if (Error E = getBuildAttributes(Parser)) {
321     // Return no attributes if none can be read.
322     // This behavior is important for backwards compatibility.
323     consumeError(std::move(E));
324     return Features;
325   }
326   std::optional<unsigned> Attr;
327 
328   if ((Attr = Parser.getAttributeValue(HexagonAttrs::ARCH))) {
329     if (std::optional<std::string> FeatureString =
330             hexagonAttrToFeatureString(*Attr))
331       Features.AddFeature(*FeatureString);
332   }
333 
334   if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXARCH))) {
335     std::optional<std::string> FeatureString =
336         hexagonAttrToFeatureString(*Attr);
337     // There is no corresponding hvx arch for v5 and v55.
338     if (FeatureString && *Attr >= 60)
339       Features.AddFeature("hvx" + *FeatureString);
340   }
341 
342   if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXIEEEFP)))
343     if (*Attr)
344       Features.AddFeature("hvx-ieee-fp");
345 
346   if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXQFLOAT)))
347     if (*Attr)
348       Features.AddFeature("hvx-qfloat");
349 
350   if ((Attr = Parser.getAttributeValue(HexagonAttrs::ZREG)))
351     if (*Attr)
352       Features.AddFeature("zreg");
353 
354   if ((Attr = Parser.getAttributeValue(HexagonAttrs::AUDIO)))
355     if (*Attr)
356       Features.AddFeature("audio");
357 
358   if ((Attr = Parser.getAttributeValue(HexagonAttrs::CABAC)))
359     if (*Attr)
360       Features.AddFeature("cabac");
361 
362   return Features;
363 }
364 
365 Expected<SubtargetFeatures> ELFObjectFileBase::getRISCVFeatures() const {
366   SubtargetFeatures Features;
367   unsigned PlatformFlags = getPlatformFlags();
368 
369   if (PlatformFlags & ELF::EF_RISCV_RVC) {
370     Features.AddFeature("zca");
371   }
372 
373   RISCVAttributeParser Attributes;
374   if (Error E = getBuildAttributes(Attributes)) {
375     return std::move(E);
376   }
377 
378   std::optional<StringRef> Attr =
379       Attributes.getAttributeString(RISCVAttrs::ARCH);
380   if (Attr) {
381     auto ParseResult = RISCVISAInfo::parseNormalizedArchString(*Attr);
382     if (!ParseResult)
383       return ParseResult.takeError();
384     auto &ISAInfo = *ParseResult;
385 
386     if (ISAInfo->getXLen() == 32)
387       Features.AddFeature("64bit", false);
388     else if (ISAInfo->getXLen() == 64)
389       Features.AddFeature("64bit");
390     else
391       llvm_unreachable("XLEN should be 32 or 64.");
392 
393     Features.addFeaturesVector(ISAInfo->toFeatures());
394   }
395 
396   return Features;
397 }
398 
399 SubtargetFeatures ELFObjectFileBase::getLoongArchFeatures() const {
400   SubtargetFeatures Features;
401 
402   switch (getPlatformFlags() & ELF::EF_LOONGARCH_ABI_MODIFIER_MASK) {
403   case ELF::EF_LOONGARCH_ABI_SOFT_FLOAT:
404     break;
405   case ELF::EF_LOONGARCH_ABI_DOUBLE_FLOAT:
406     Features.AddFeature("d");
407     // D implies F according to LoongArch ISA spec.
408     [[fallthrough]];
409   case ELF::EF_LOONGARCH_ABI_SINGLE_FLOAT:
410     Features.AddFeature("f");
411     break;
412   }
413 
414   return Features;
415 }
416 
417 Expected<SubtargetFeatures> ELFObjectFileBase::getFeatures() const {
418   switch (getEMachine()) {
419   case ELF::EM_MIPS:
420     return getMIPSFeatures();
421   case ELF::EM_ARM:
422     return getARMFeatures();
423   case ELF::EM_RISCV:
424     return getRISCVFeatures();
425   case ELF::EM_LOONGARCH:
426     return getLoongArchFeatures();
427   case ELF::EM_HEXAGON:
428     return getHexagonFeatures();
429   default:
430     return SubtargetFeatures();
431   }
432 }
433 
434 std::optional<StringRef> ELFObjectFileBase::tryGetCPUName() const {
435   switch (getEMachine()) {
436   case ELF::EM_AMDGPU:
437     return getAMDGPUCPUName();
438   case ELF::EM_CUDA:
439     return getNVPTXCPUName();
440   case ELF::EM_PPC:
441   case ELF::EM_PPC64:
442     return StringRef("future");
443   case ELF::EM_BPF:
444     return StringRef("v4");
445   default:
446     return std::nullopt;
447   }
448 }
449 
450 StringRef ELFObjectFileBase::getAMDGPUCPUName() const {
451   assert(getEMachine() == ELF::EM_AMDGPU);
452   unsigned CPU = getPlatformFlags() & ELF::EF_AMDGPU_MACH;
453 
454   switch (CPU) {
455   // Radeon HD 2000/3000 Series (R600).
456   case ELF::EF_AMDGPU_MACH_R600_R600:
457     return "r600";
458   case ELF::EF_AMDGPU_MACH_R600_R630:
459     return "r630";
460   case ELF::EF_AMDGPU_MACH_R600_RS880:
461     return "rs880";
462   case ELF::EF_AMDGPU_MACH_R600_RV670:
463     return "rv670";
464 
465   // Radeon HD 4000 Series (R700).
466   case ELF::EF_AMDGPU_MACH_R600_RV710:
467     return "rv710";
468   case ELF::EF_AMDGPU_MACH_R600_RV730:
469     return "rv730";
470   case ELF::EF_AMDGPU_MACH_R600_RV770:
471     return "rv770";
472 
473   // Radeon HD 5000 Series (Evergreen).
474   case ELF::EF_AMDGPU_MACH_R600_CEDAR:
475     return "cedar";
476   case ELF::EF_AMDGPU_MACH_R600_CYPRESS:
477     return "cypress";
478   case ELF::EF_AMDGPU_MACH_R600_JUNIPER:
479     return "juniper";
480   case ELF::EF_AMDGPU_MACH_R600_REDWOOD:
481     return "redwood";
482   case ELF::EF_AMDGPU_MACH_R600_SUMO:
483     return "sumo";
484 
485   // Radeon HD 6000 Series (Northern Islands).
486   case ELF::EF_AMDGPU_MACH_R600_BARTS:
487     return "barts";
488   case ELF::EF_AMDGPU_MACH_R600_CAICOS:
489     return "caicos";
490   case ELF::EF_AMDGPU_MACH_R600_CAYMAN:
491     return "cayman";
492   case ELF::EF_AMDGPU_MACH_R600_TURKS:
493     return "turks";
494 
495   // AMDGCN GFX6.
496   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX600:
497     return "gfx600";
498   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX601:
499     return "gfx601";
500   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX602:
501     return "gfx602";
502 
503   // AMDGCN GFX7.
504   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX700:
505     return "gfx700";
506   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX701:
507     return "gfx701";
508   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX702:
509     return "gfx702";
510   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX703:
511     return "gfx703";
512   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX704:
513     return "gfx704";
514   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX705:
515     return "gfx705";
516 
517   // AMDGCN GFX8.
518   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX801:
519     return "gfx801";
520   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX802:
521     return "gfx802";
522   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX803:
523     return "gfx803";
524   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX805:
525     return "gfx805";
526   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX810:
527     return "gfx810";
528 
529   // AMDGCN GFX9.
530   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX900:
531     return "gfx900";
532   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX902:
533     return "gfx902";
534   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX904:
535     return "gfx904";
536   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX906:
537     return "gfx906";
538   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX908:
539     return "gfx908";
540   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX909:
541     return "gfx909";
542   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A:
543     return "gfx90a";
544   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C:
545     return "gfx90c";
546   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX940:
547     return "gfx940";
548   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX941:
549     return "gfx941";
550   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX942:
551     return "gfx942";
552   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX950:
553     return "gfx950";
554 
555   // AMDGCN GFX10.
556   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010:
557     return "gfx1010";
558   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011:
559     return "gfx1011";
560   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012:
561     return "gfx1012";
562   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013:
563     return "gfx1013";
564   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030:
565     return "gfx1030";
566   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031:
567     return "gfx1031";
568   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032:
569     return "gfx1032";
570   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033:
571     return "gfx1033";
572   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034:
573     return "gfx1034";
574   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035:
575     return "gfx1035";
576   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036:
577     return "gfx1036";
578 
579   // AMDGCN GFX11.
580   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1100:
581     return "gfx1100";
582   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1101:
583     return "gfx1101";
584   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1102:
585     return "gfx1102";
586   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1103:
587     return "gfx1103";
588   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1150:
589     return "gfx1150";
590   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1151:
591     return "gfx1151";
592   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1152:
593     return "gfx1152";
594   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1153:
595     return "gfx1153";
596 
597   // AMDGCN GFX12.
598   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1200:
599     return "gfx1200";
600   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1201:
601     return "gfx1201";
602 
603   // Generic AMDGCN targets
604   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX9_GENERIC:
605     return "gfx9-generic";
606   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX9_4_GENERIC:
607     return "gfx9-4-generic";
608   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX10_1_GENERIC:
609     return "gfx10-1-generic";
610   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX10_3_GENERIC:
611     return "gfx10-3-generic";
612   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX11_GENERIC:
613     return "gfx11-generic";
614   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX12_GENERIC:
615     return "gfx12-generic";
616   default:
617     llvm_unreachable("Unknown EF_AMDGPU_MACH value");
618   }
619 }
620 
621 StringRef ELFObjectFileBase::getNVPTXCPUName() const {
622   assert(getEMachine() == ELF::EM_CUDA);
623   unsigned SM = getPlatformFlags() & ELF::EF_CUDA_SM;
624 
625   switch (SM) {
626   // Fermi architecture.
627   case ELF::EF_CUDA_SM20:
628     return "sm_20";
629   case ELF::EF_CUDA_SM21:
630     return "sm_21";
631 
632   // Kepler architecture.
633   case ELF::EF_CUDA_SM30:
634     return "sm_30";
635   case ELF::EF_CUDA_SM32:
636     return "sm_32";
637   case ELF::EF_CUDA_SM35:
638     return "sm_35";
639   case ELF::EF_CUDA_SM37:
640     return "sm_37";
641 
642   // Maxwell architecture.
643   case ELF::EF_CUDA_SM50:
644     return "sm_50";
645   case ELF::EF_CUDA_SM52:
646     return "sm_52";
647   case ELF::EF_CUDA_SM53:
648     return "sm_53";
649 
650   // Pascal architecture.
651   case ELF::EF_CUDA_SM60:
652     return "sm_60";
653   case ELF::EF_CUDA_SM61:
654     return "sm_61";
655   case ELF::EF_CUDA_SM62:
656     return "sm_62";
657 
658   // Volta architecture.
659   case ELF::EF_CUDA_SM70:
660     return "sm_70";
661   case ELF::EF_CUDA_SM72:
662     return "sm_72";
663 
664   // Turing architecture.
665   case ELF::EF_CUDA_SM75:
666     return "sm_75";
667 
668   // Ampere architecture.
669   case ELF::EF_CUDA_SM80:
670     return "sm_80";
671   case ELF::EF_CUDA_SM86:
672     return "sm_86";
673   case ELF::EF_CUDA_SM87:
674     return "sm_87";
675 
676   // Ada architecture.
677   case ELF::EF_CUDA_SM89:
678     return "sm_89";
679 
680   // Hopper architecture.
681   case ELF::EF_CUDA_SM90:
682     return getPlatformFlags() & ELF::EF_CUDA_ACCELERATORS ? "sm_90a" : "sm_90";
683   default:
684     llvm_unreachable("Unknown EF_CUDA_SM value");
685   }
686 }
687 
688 // FIXME Encode from a tablegen description or target parser.
689 void ELFObjectFileBase::setARMSubArch(Triple &TheTriple) const {
690   if (TheTriple.getSubArch() != Triple::NoSubArch)
691     return;
692 
693   ARMAttributeParser Attributes;
694   if (Error E = getBuildAttributes(Attributes)) {
695     // TODO Propagate Error.
696     consumeError(std::move(E));
697     return;
698   }
699 
700   std::string Triple;
701   // Default to ARM, but use the triple if it's been set.
702   if (TheTriple.isThumb())
703     Triple = "thumb";
704   else
705     Triple = "arm";
706 
707   std::optional<unsigned> Attr =
708       Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
709   if (Attr) {
710     switch (*Attr) {
711     case ARMBuildAttrs::v4:
712       Triple += "v4";
713       break;
714     case ARMBuildAttrs::v4T:
715       Triple += "v4t";
716       break;
717     case ARMBuildAttrs::v5T:
718       Triple += "v5t";
719       break;
720     case ARMBuildAttrs::v5TE:
721       Triple += "v5te";
722       break;
723     case ARMBuildAttrs::v5TEJ:
724       Triple += "v5tej";
725       break;
726     case ARMBuildAttrs::v6:
727       Triple += "v6";
728       break;
729     case ARMBuildAttrs::v6KZ:
730       Triple += "v6kz";
731       break;
732     case ARMBuildAttrs::v6T2:
733       Triple += "v6t2";
734       break;
735     case ARMBuildAttrs::v6K:
736       Triple += "v6k";
737       break;
738     case ARMBuildAttrs::v7: {
739       std::optional<unsigned> ArchProfileAttr =
740           Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
741       if (ArchProfileAttr &&
742           *ArchProfileAttr == ARMBuildAttrs::MicroControllerProfile)
743         Triple += "v7m";
744       else
745         Triple += "v7";
746       break;
747     }
748     case ARMBuildAttrs::v6_M:
749       Triple += "v6m";
750       break;
751     case ARMBuildAttrs::v6S_M:
752       Triple += "v6sm";
753       break;
754     case ARMBuildAttrs::v7E_M:
755       Triple += "v7em";
756       break;
757     case ARMBuildAttrs::v8_A:
758       Triple += "v8a";
759       break;
760     case ARMBuildAttrs::v8_R:
761       Triple += "v8r";
762       break;
763     case ARMBuildAttrs::v8_M_Base:
764       Triple += "v8m.base";
765       break;
766     case ARMBuildAttrs::v8_M_Main:
767       Triple += "v8m.main";
768       break;
769     case ARMBuildAttrs::v8_1_M_Main:
770       Triple += "v8.1m.main";
771       break;
772     case ARMBuildAttrs::v9_A:
773       Triple += "v9a";
774       break;
775     }
776   }
777   if (!isLittleEndian())
778     Triple += "eb";
779 
780   TheTriple.setArchName(Triple);
781 }
782 
783 std::vector<ELFPltEntry> ELFObjectFileBase::getPltEntries() const {
784   std::string Err;
785   const auto Triple = makeTriple();
786   const auto *T = TargetRegistry::lookupTarget(Triple.str(), Err);
787   if (!T)
788     return {};
789   uint32_t JumpSlotReloc = 0, GlobDatReloc = 0;
790   switch (Triple.getArch()) {
791     case Triple::x86:
792       JumpSlotReloc = ELF::R_386_JUMP_SLOT;
793       GlobDatReloc = ELF::R_386_GLOB_DAT;
794       break;
795     case Triple::x86_64:
796       JumpSlotReloc = ELF::R_X86_64_JUMP_SLOT;
797       GlobDatReloc = ELF::R_X86_64_GLOB_DAT;
798       break;
799     case Triple::aarch64:
800     case Triple::aarch64_be:
801       JumpSlotReloc = ELF::R_AARCH64_JUMP_SLOT;
802       break;
803     default:
804       return {};
805   }
806   std::unique_ptr<const MCInstrInfo> MII(T->createMCInstrInfo());
807   std::unique_ptr<const MCInstrAnalysis> MIA(
808       T->createMCInstrAnalysis(MII.get()));
809   if (!MIA)
810     return {};
811   std::vector<std::pair<uint64_t, uint64_t>> PltEntries;
812   std::optional<SectionRef> RelaPlt, RelaDyn;
813   uint64_t GotBaseVA = 0;
814   for (const SectionRef &Section : sections()) {
815     Expected<StringRef> NameOrErr = Section.getName();
816     if (!NameOrErr) {
817       consumeError(NameOrErr.takeError());
818       continue;
819     }
820     StringRef Name = *NameOrErr;
821 
822     if (Name == ".rela.plt" || Name == ".rel.plt") {
823       RelaPlt = Section;
824     } else if (Name == ".rela.dyn" || Name == ".rel.dyn") {
825       RelaDyn = Section;
826     } else if (Name == ".got.plt") {
827       GotBaseVA = Section.getAddress();
828     } else if (Name == ".plt" || Name == ".plt.got") {
829       Expected<StringRef> PltContents = Section.getContents();
830       if (!PltContents) {
831         consumeError(PltContents.takeError());
832         return {};
833       }
834       llvm::append_range(
835           PltEntries,
836           MIA->findPltEntries(Section.getAddress(),
837                               arrayRefFromStringRef(*PltContents), Triple));
838     }
839   }
840 
841   // Build a map from GOT entry virtual address to PLT entry virtual address.
842   DenseMap<uint64_t, uint64_t> GotToPlt;
843   for (auto [Plt, GotPlt] : PltEntries) {
844     uint64_t GotPltEntry = GotPlt;
845     // An x86-32 PIC PLT uses jmp DWORD PTR [ebx-offset]. Add
846     // _GLOBAL_OFFSET_TABLE_ (EBX) to get the .got.plt (or .got) entry address.
847     // See X86MCTargetDesc.cpp:findPltEntries for the 1 << 32 bit.
848     if (GotPltEntry & (uint64_t(1) << 32) && getEMachine() == ELF::EM_386)
849       GotPltEntry = static_cast<int32_t>(GotPltEntry) + GotBaseVA;
850     GotToPlt.insert(std::make_pair(GotPltEntry, Plt));
851   }
852 
853   // Find the relocations in the dynamic relocation table that point to
854   // locations in the GOT for which we know the corresponding PLT entry.
855   std::vector<ELFPltEntry> Result;
856   auto handleRels = [&](iterator_range<relocation_iterator> Rels,
857                         uint32_t RelType, StringRef PltSec) {
858     for (const auto &R : Rels) {
859       if (R.getType() != RelType)
860         continue;
861       auto PltEntryIter = GotToPlt.find(R.getOffset());
862       if (PltEntryIter != GotToPlt.end()) {
863         symbol_iterator Sym = R.getSymbol();
864         if (Sym == symbol_end())
865           Result.push_back(
866               ELFPltEntry{PltSec, std::nullopt, PltEntryIter->second});
867         else
868           Result.push_back(ELFPltEntry{PltSec, Sym->getRawDataRefImpl(),
869                                        PltEntryIter->second});
870       }
871     }
872   };
873 
874   if (RelaPlt)
875     handleRels(RelaPlt->relocations(), JumpSlotReloc, ".plt");
876 
877   // If a symbol needing a PLT entry also needs a GLOB_DAT relocation, GNU ld's
878   // x86 port places the PLT entry in the .plt.got section.
879   if (RelaDyn)
880     handleRels(RelaDyn->relocations(), GlobDatReloc, ".plt.got");
881 
882   return Result;
883 }
884 
885 template <class ELFT>
886 Expected<std::vector<BBAddrMap>> static readBBAddrMapImpl(
887     const ELFFile<ELFT> &EF, std::optional<unsigned> TextSectionIndex,
888     std::vector<PGOAnalysisMap> *PGOAnalyses) {
889   using Elf_Shdr = typename ELFT::Shdr;
890   bool IsRelocatable = EF.getHeader().e_type == ELF::ET_REL;
891   std::vector<BBAddrMap> BBAddrMaps;
892   if (PGOAnalyses)
893     PGOAnalyses->clear();
894 
895   const auto &Sections = cantFail(EF.sections());
896   auto IsMatch = [&](const Elf_Shdr &Sec) -> Expected<bool> {
897     if (Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP &&
898         Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP_V0)
899       return false;
900     if (!TextSectionIndex)
901       return true;
902     Expected<const Elf_Shdr *> TextSecOrErr = EF.getSection(Sec.sh_link);
903     if (!TextSecOrErr)
904       return createError("unable to get the linked-to section for " +
905                          describe(EF, Sec) + ": " +
906                          toString(TextSecOrErr.takeError()));
907     assert(*TextSecOrErr >= Sections.begin() &&
908            "Text section pointer outside of bounds");
909     if (*TextSectionIndex !=
910         (unsigned)std::distance(Sections.begin(), *TextSecOrErr))
911       return false;
912     return true;
913   };
914 
915   Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SectionRelocMapOrErr =
916       EF.getSectionAndRelocations(IsMatch);
917   if (!SectionRelocMapOrErr)
918     return SectionRelocMapOrErr.takeError();
919 
920   for (auto const &[Sec, RelocSec] : *SectionRelocMapOrErr) {
921     if (IsRelocatable && !RelocSec)
922       return createError("unable to get relocation section for " +
923                          describe(EF, *Sec));
924     Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
925         EF.decodeBBAddrMap(*Sec, RelocSec, PGOAnalyses);
926     if (!BBAddrMapOrErr) {
927       if (PGOAnalyses)
928         PGOAnalyses->clear();
929       return createError("unable to read " + describe(EF, *Sec) + ": " +
930                          toString(BBAddrMapOrErr.takeError()));
931     }
932     std::move(BBAddrMapOrErr->begin(), BBAddrMapOrErr->end(),
933               std::back_inserter(BBAddrMaps));
934   }
935   if (PGOAnalyses)
936     assert(PGOAnalyses->size() == BBAddrMaps.size() &&
937            "The same number of BBAddrMaps and PGOAnalysisMaps should be "
938            "returned when PGO information is requested");
939   return BBAddrMaps;
940 }
941 
942 template <class ELFT>
943 static Expected<std::vector<VersionEntry>>
944 readDynsymVersionsImpl(const ELFFile<ELFT> &EF,
945                        ELFObjectFileBase::elf_symbol_iterator_range Symbols) {
946   using Elf_Shdr = typename ELFT::Shdr;
947   const Elf_Shdr *VerSec = nullptr;
948   const Elf_Shdr *VerNeedSec = nullptr;
949   const Elf_Shdr *VerDefSec = nullptr;
950   // The user should ensure sections() can't fail here.
951   for (const Elf_Shdr &Sec : cantFail(EF.sections())) {
952     if (Sec.sh_type == ELF::SHT_GNU_versym)
953       VerSec = &Sec;
954     else if (Sec.sh_type == ELF::SHT_GNU_verdef)
955       VerDefSec = &Sec;
956     else if (Sec.sh_type == ELF::SHT_GNU_verneed)
957       VerNeedSec = &Sec;
958   }
959   if (!VerSec)
960     return std::vector<VersionEntry>();
961 
962   Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
963       EF.loadVersionMap(VerNeedSec, VerDefSec);
964   if (!MapOrErr)
965     return MapOrErr.takeError();
966 
967   std::vector<VersionEntry> Ret;
968   size_t I = 0;
969   for (const ELFSymbolRef &Sym : Symbols) {
970     ++I;
971     Expected<const typename ELFT::Versym *> VerEntryOrErr =
972         EF.template getEntry<typename ELFT::Versym>(*VerSec, I);
973     if (!VerEntryOrErr)
974       return createError("unable to read an entry with index " + Twine(I) +
975                          " from " + describe(EF, *VerSec) + ": " +
976                          toString(VerEntryOrErr.takeError()));
977 
978     Expected<uint32_t> FlagsOrErr = Sym.getFlags();
979     if (!FlagsOrErr)
980       return createError("unable to read flags for symbol with index " +
981                          Twine(I) + ": " + toString(FlagsOrErr.takeError()));
982 
983     bool IsDefault;
984     Expected<StringRef> VerOrErr = EF.getSymbolVersionByIndex(
985         (*VerEntryOrErr)->vs_index, IsDefault, *MapOrErr,
986         (*FlagsOrErr) & SymbolRef::SF_Undefined);
987     if (!VerOrErr)
988       return createError("unable to get a version for entry " + Twine(I) +
989                          " of " + describe(EF, *VerSec) + ": " +
990                          toString(VerOrErr.takeError()));
991 
992     Ret.push_back({(*VerOrErr).str(), IsDefault});
993   }
994 
995   return Ret;
996 }
997 
998 Expected<std::vector<VersionEntry>>
999 ELFObjectFileBase::readDynsymVersions() const {
1000   elf_symbol_iterator_range Symbols = getDynamicSymbolIterators();
1001   if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
1002     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
1003   if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
1004     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
1005   if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
1006     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
1007   return readDynsymVersionsImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
1008                                 Symbols);
1009 }
1010 
1011 Expected<std::vector<BBAddrMap>> ELFObjectFileBase::readBBAddrMap(
1012     std::optional<unsigned> TextSectionIndex,
1013     std::vector<PGOAnalysisMap> *PGOAnalyses) const {
1014   if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
1015     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1016   if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
1017     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1018   if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
1019     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1020   return readBBAddrMapImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
1021                            TextSectionIndex, PGOAnalyses);
1022 }
1023 
1024 StringRef ELFObjectFileBase::getCrelDecodeProblem(SectionRef Sec) const {
1025   auto Data = Sec.getRawDataRefImpl();
1026   if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
1027     return Obj->getCrelDecodeProblem(Data);
1028   if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
1029     return Obj->getCrelDecodeProblem(Data);
1030   if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
1031     return Obj->getCrelDecodeProblem(Data);
1032   return cast<ELF64BEObjectFile>(this)->getCrelDecodeProblem(Data);
1033 }
1034