xref: /llvm-project/llvm/lib/Object/ELFObjectFile.cpp (revision aadaaface2ec96ee30d92bf46faa41dd9e68b64d)
1 //===- ELFObjectFile.cpp - ELF object file implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Part of the ELFObjectFile class implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Object/ELFObjectFile.h"
14 #include "llvm/ADT/Triple.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/MC/MCInstrAnalysis.h"
17 #include "llvm/MC/SubtargetFeature.h"
18 #include "llvm/MC/TargetRegistry.h"
19 #include "llvm/Object/ELF.h"
20 #include "llvm/Object/ELFTypes.h"
21 #include "llvm/Object/Error.h"
22 #include "llvm/Support/ARMAttributeParser.h"
23 #include "llvm/Support/ARMBuildAttributes.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/RISCVAttributeParser.h"
27 #include "llvm/Support/RISCVAttributes.h"
28 #include <algorithm>
29 #include <cstddef>
30 #include <cstdint>
31 #include <memory>
32 #include <optional>
33 #include <string>
34 #include <utility>
35 
36 using namespace llvm;
37 using namespace object;
38 
39 const EnumEntry<unsigned> llvm::object::ElfSymbolTypes[NumElfSymbolTypes] = {
40     {"None", "NOTYPE", ELF::STT_NOTYPE},
41     {"Object", "OBJECT", ELF::STT_OBJECT},
42     {"Function", "FUNC", ELF::STT_FUNC},
43     {"Section", "SECTION", ELF::STT_SECTION},
44     {"File", "FILE", ELF::STT_FILE},
45     {"Common", "COMMON", ELF::STT_COMMON},
46     {"TLS", "TLS", ELF::STT_TLS},
47     {"Unknown", "<unknown>: 7", 7},
48     {"Unknown", "<unknown>: 8", 8},
49     {"Unknown", "<unknown>: 9", 9},
50     {"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC},
51     {"OS Specific", "<OS specific>: 11", 11},
52     {"OS Specific", "<OS specific>: 12", 12},
53     {"Proc Specific", "<processor specific>: 13", 13},
54     {"Proc Specific", "<processor specific>: 14", 14},
55     {"Proc Specific", "<processor specific>: 15", 15}
56 };
57 
58 ELFObjectFileBase::ELFObjectFileBase(unsigned int Type, MemoryBufferRef Source)
59     : ObjectFile(Type, Source) {}
60 
61 template <class ELFT>
62 static Expected<std::unique_ptr<ELFObjectFile<ELFT>>>
63 createPtr(MemoryBufferRef Object, bool InitContent) {
64   auto Ret = ELFObjectFile<ELFT>::create(Object, InitContent);
65   if (Error E = Ret.takeError())
66     return std::move(E);
67   return std::make_unique<ELFObjectFile<ELFT>>(std::move(*Ret));
68 }
69 
70 Expected<std::unique_ptr<ObjectFile>>
71 ObjectFile::createELFObjectFile(MemoryBufferRef Obj, bool InitContent) {
72   std::pair<unsigned char, unsigned char> Ident =
73       getElfArchType(Obj.getBuffer());
74   std::size_t MaxAlignment =
75       1ULL << countTrailingZeros(
76           reinterpret_cast<uintptr_t>(Obj.getBufferStart()));
77 
78   if (MaxAlignment < 2)
79     return createError("Insufficient alignment");
80 
81   if (Ident.first == ELF::ELFCLASS32) {
82     if (Ident.second == ELF::ELFDATA2LSB)
83       return createPtr<ELF32LE>(Obj, InitContent);
84     else if (Ident.second == ELF::ELFDATA2MSB)
85       return createPtr<ELF32BE>(Obj, InitContent);
86     else
87       return createError("Invalid ELF data");
88   } else if (Ident.first == ELF::ELFCLASS64) {
89     if (Ident.second == ELF::ELFDATA2LSB)
90       return createPtr<ELF64LE>(Obj, InitContent);
91     else if (Ident.second == ELF::ELFDATA2MSB)
92       return createPtr<ELF64BE>(Obj, InitContent);
93     else
94       return createError("Invalid ELF data");
95   }
96   return createError("Invalid ELF class");
97 }
98 
99 SubtargetFeatures ELFObjectFileBase::getMIPSFeatures() const {
100   SubtargetFeatures Features;
101   unsigned PlatformFlags = getPlatformFlags();
102 
103   switch (PlatformFlags & ELF::EF_MIPS_ARCH) {
104   case ELF::EF_MIPS_ARCH_1:
105     break;
106   case ELF::EF_MIPS_ARCH_2:
107     Features.AddFeature("mips2");
108     break;
109   case ELF::EF_MIPS_ARCH_3:
110     Features.AddFeature("mips3");
111     break;
112   case ELF::EF_MIPS_ARCH_4:
113     Features.AddFeature("mips4");
114     break;
115   case ELF::EF_MIPS_ARCH_5:
116     Features.AddFeature("mips5");
117     break;
118   case ELF::EF_MIPS_ARCH_32:
119     Features.AddFeature("mips32");
120     break;
121   case ELF::EF_MIPS_ARCH_64:
122     Features.AddFeature("mips64");
123     break;
124   case ELF::EF_MIPS_ARCH_32R2:
125     Features.AddFeature("mips32r2");
126     break;
127   case ELF::EF_MIPS_ARCH_64R2:
128     Features.AddFeature("mips64r2");
129     break;
130   case ELF::EF_MIPS_ARCH_32R6:
131     Features.AddFeature("mips32r6");
132     break;
133   case ELF::EF_MIPS_ARCH_64R6:
134     Features.AddFeature("mips64r6");
135     break;
136   default:
137     llvm_unreachable("Unknown EF_MIPS_ARCH value");
138   }
139 
140   switch (PlatformFlags & ELF::EF_MIPS_MACH) {
141   case ELF::EF_MIPS_MACH_NONE:
142     // No feature associated with this value.
143     break;
144   case ELF::EF_MIPS_MACH_OCTEON:
145     Features.AddFeature("cnmips");
146     break;
147   default:
148     llvm_unreachable("Unknown EF_MIPS_ARCH value");
149   }
150 
151   if (PlatformFlags & ELF::EF_MIPS_ARCH_ASE_M16)
152     Features.AddFeature("mips16");
153   if (PlatformFlags & ELF::EF_MIPS_MICROMIPS)
154     Features.AddFeature("micromips");
155 
156   return Features;
157 }
158 
159 SubtargetFeatures ELFObjectFileBase::getARMFeatures() const {
160   SubtargetFeatures Features;
161   ARMAttributeParser Attributes;
162   if (Error E = getBuildAttributes(Attributes)) {
163     consumeError(std::move(E));
164     return SubtargetFeatures();
165   }
166 
167   // both ARMv7-M and R have to support thumb hardware div
168   bool isV7 = false;
169   std::optional<unsigned> Attr =
170       Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
171   if (Attr)
172     isV7 = Attr.value() == ARMBuildAttrs::v7;
173 
174   Attr = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
175   if (Attr) {
176     switch (Attr.value()) {
177     case ARMBuildAttrs::ApplicationProfile:
178       Features.AddFeature("aclass");
179       break;
180     case ARMBuildAttrs::RealTimeProfile:
181       Features.AddFeature("rclass");
182       if (isV7)
183         Features.AddFeature("hwdiv");
184       break;
185     case ARMBuildAttrs::MicroControllerProfile:
186       Features.AddFeature("mclass");
187       if (isV7)
188         Features.AddFeature("hwdiv");
189       break;
190     }
191   }
192 
193   Attr = Attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use);
194   if (Attr) {
195     switch (Attr.value()) {
196     default:
197       break;
198     case ARMBuildAttrs::Not_Allowed:
199       Features.AddFeature("thumb", false);
200       Features.AddFeature("thumb2", false);
201       break;
202     case ARMBuildAttrs::AllowThumb32:
203       Features.AddFeature("thumb2");
204       break;
205     }
206   }
207 
208   Attr = Attributes.getAttributeValue(ARMBuildAttrs::FP_arch);
209   if (Attr) {
210     switch (Attr.value()) {
211     default:
212       break;
213     case ARMBuildAttrs::Not_Allowed:
214       Features.AddFeature("vfp2sp", false);
215       Features.AddFeature("vfp3d16sp", false);
216       Features.AddFeature("vfp4d16sp", false);
217       break;
218     case ARMBuildAttrs::AllowFPv2:
219       Features.AddFeature("vfp2");
220       break;
221     case ARMBuildAttrs::AllowFPv3A:
222     case ARMBuildAttrs::AllowFPv3B:
223       Features.AddFeature("vfp3");
224       break;
225     case ARMBuildAttrs::AllowFPv4A:
226     case ARMBuildAttrs::AllowFPv4B:
227       Features.AddFeature("vfp4");
228       break;
229     }
230   }
231 
232   Attr = Attributes.getAttributeValue(ARMBuildAttrs::Advanced_SIMD_arch);
233   if (Attr) {
234     switch (Attr.value()) {
235     default:
236       break;
237     case ARMBuildAttrs::Not_Allowed:
238       Features.AddFeature("neon", false);
239       Features.AddFeature("fp16", false);
240       break;
241     case ARMBuildAttrs::AllowNeon:
242       Features.AddFeature("neon");
243       break;
244     case ARMBuildAttrs::AllowNeon2:
245       Features.AddFeature("neon");
246       Features.AddFeature("fp16");
247       break;
248     }
249   }
250 
251   Attr = Attributes.getAttributeValue(ARMBuildAttrs::MVE_arch);
252   if (Attr) {
253     switch (Attr.value()) {
254     default:
255       break;
256     case ARMBuildAttrs::Not_Allowed:
257       Features.AddFeature("mve", false);
258       Features.AddFeature("mve.fp", false);
259       break;
260     case ARMBuildAttrs::AllowMVEInteger:
261       Features.AddFeature("mve.fp", false);
262       Features.AddFeature("mve");
263       break;
264     case ARMBuildAttrs::AllowMVEIntegerAndFloat:
265       Features.AddFeature("mve.fp");
266       break;
267     }
268   }
269 
270   Attr = Attributes.getAttributeValue(ARMBuildAttrs::DIV_use);
271   if (Attr) {
272     switch (Attr.value()) {
273     default:
274       break;
275     case ARMBuildAttrs::DisallowDIV:
276       Features.AddFeature("hwdiv", false);
277       Features.AddFeature("hwdiv-arm", false);
278       break;
279     case ARMBuildAttrs::AllowDIVExt:
280       Features.AddFeature("hwdiv");
281       Features.AddFeature("hwdiv-arm");
282       break;
283     }
284   }
285 
286   return Features;
287 }
288 
289 SubtargetFeatures ELFObjectFileBase::getRISCVFeatures() const {
290   SubtargetFeatures Features;
291   unsigned PlatformFlags = getPlatformFlags();
292 
293   if (PlatformFlags & ELF::EF_RISCV_RVC) {
294     Features.AddFeature("c");
295   }
296 
297   // Add features according to the ELF attribute section.
298   // If there are any unrecognized features, ignore them.
299   RISCVAttributeParser Attributes;
300   if (Error E = getBuildAttributes(Attributes)) {
301     // TODO Propagate Error.
302     consumeError(std::move(E));
303     return Features; // Keep "c" feature if there is one in PlatformFlags.
304   }
305 
306   std::optional<StringRef> Attr =
307       Attributes.getAttributeString(RISCVAttrs::ARCH);
308   if (Attr) {
309     // The Arch pattern is [rv32|rv64][i|e]version(_[m|a|f|d|c]version)*
310     // Version string pattern is (major)p(minor). Major and minor are optional.
311     // For example, a version number could be 2p0, 2, or p92.
312     StringRef Arch = *Attr;
313     if (Arch.consume_front("rv32"))
314       Features.AddFeature("64bit", false);
315     else if (Arch.consume_front("rv64"))
316       Features.AddFeature("64bit");
317 
318     while (!Arch.empty()) {
319       switch (Arch[0]) {
320       default:
321         break; // Ignore unexpected features.
322       case 'i':
323         Features.AddFeature("e", false);
324         break;
325       case 'd':
326         Features.AddFeature("f"); // D-ext will imply F-ext.
327         [[fallthrough]];
328       case 'e':
329       case 'm':
330       case 'a':
331       case 'f':
332       case 'c':
333         Features.AddFeature(Arch.take_front());
334         break;
335       }
336 
337       // FIXME: Handle version numbers.
338       Arch = Arch.drop_until([](char c) { return c == '_' || c == '\0'; });
339       Arch = Arch.drop_while([](char c) { return c == '_'; });
340     }
341   }
342 
343   return Features;
344 }
345 
346 SubtargetFeatures ELFObjectFileBase::getLoongArchFeatures() const {
347   SubtargetFeatures Features;
348 
349   switch (getPlatformFlags() & ELF::EF_LOONGARCH_ABI_MODIFIER_MASK) {
350   case ELF::EF_LOONGARCH_ABI_SOFT_FLOAT:
351     break;
352   case ELF::EF_LOONGARCH_ABI_DOUBLE_FLOAT:
353     Features.AddFeature("d");
354     // D implies F according to LoongArch ISA spec.
355     [[fallthrough]];
356   case ELF::EF_LOONGARCH_ABI_SINGLE_FLOAT:
357     Features.AddFeature("f");
358     break;
359   }
360 
361   return Features;
362 }
363 
364 SubtargetFeatures ELFObjectFileBase::getFeatures() const {
365   switch (getEMachine()) {
366   case ELF::EM_MIPS:
367     return getMIPSFeatures();
368   case ELF::EM_ARM:
369     return getARMFeatures();
370   case ELF::EM_RISCV:
371     return getRISCVFeatures();
372   case ELF::EM_LOONGARCH:
373     return getLoongArchFeatures();
374   default:
375     return SubtargetFeatures();
376   }
377 }
378 
379 Optional<StringRef> ELFObjectFileBase::tryGetCPUName() const {
380   switch (getEMachine()) {
381   case ELF::EM_AMDGPU:
382     return getAMDGPUCPUName();
383   case ELF::EM_PPC64:
384     return StringRef("future");
385   default:
386     return std::nullopt;
387   }
388 }
389 
390 StringRef ELFObjectFileBase::getAMDGPUCPUName() const {
391   assert(getEMachine() == ELF::EM_AMDGPU);
392   unsigned CPU = getPlatformFlags() & ELF::EF_AMDGPU_MACH;
393 
394   switch (CPU) {
395   // Radeon HD 2000/3000 Series (R600).
396   case ELF::EF_AMDGPU_MACH_R600_R600:
397     return "r600";
398   case ELF::EF_AMDGPU_MACH_R600_R630:
399     return "r630";
400   case ELF::EF_AMDGPU_MACH_R600_RS880:
401     return "rs880";
402   case ELF::EF_AMDGPU_MACH_R600_RV670:
403     return "rv670";
404 
405   // Radeon HD 4000 Series (R700).
406   case ELF::EF_AMDGPU_MACH_R600_RV710:
407     return "rv710";
408   case ELF::EF_AMDGPU_MACH_R600_RV730:
409     return "rv730";
410   case ELF::EF_AMDGPU_MACH_R600_RV770:
411     return "rv770";
412 
413   // Radeon HD 5000 Series (Evergreen).
414   case ELF::EF_AMDGPU_MACH_R600_CEDAR:
415     return "cedar";
416   case ELF::EF_AMDGPU_MACH_R600_CYPRESS:
417     return "cypress";
418   case ELF::EF_AMDGPU_MACH_R600_JUNIPER:
419     return "juniper";
420   case ELF::EF_AMDGPU_MACH_R600_REDWOOD:
421     return "redwood";
422   case ELF::EF_AMDGPU_MACH_R600_SUMO:
423     return "sumo";
424 
425   // Radeon HD 6000 Series (Northern Islands).
426   case ELF::EF_AMDGPU_MACH_R600_BARTS:
427     return "barts";
428   case ELF::EF_AMDGPU_MACH_R600_CAICOS:
429     return "caicos";
430   case ELF::EF_AMDGPU_MACH_R600_CAYMAN:
431     return "cayman";
432   case ELF::EF_AMDGPU_MACH_R600_TURKS:
433     return "turks";
434 
435   // AMDGCN GFX6.
436   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX600:
437     return "gfx600";
438   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX601:
439     return "gfx601";
440   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX602:
441     return "gfx602";
442 
443   // AMDGCN GFX7.
444   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX700:
445     return "gfx700";
446   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX701:
447     return "gfx701";
448   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX702:
449     return "gfx702";
450   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX703:
451     return "gfx703";
452   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX704:
453     return "gfx704";
454   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX705:
455     return "gfx705";
456 
457   // AMDGCN GFX8.
458   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX801:
459     return "gfx801";
460   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX802:
461     return "gfx802";
462   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX803:
463     return "gfx803";
464   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX805:
465     return "gfx805";
466   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX810:
467     return "gfx810";
468 
469   // AMDGCN GFX9.
470   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX900:
471     return "gfx900";
472   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX902:
473     return "gfx902";
474   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX904:
475     return "gfx904";
476   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX906:
477     return "gfx906";
478   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX908:
479     return "gfx908";
480   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX909:
481     return "gfx909";
482   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A:
483     return "gfx90a";
484   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C:
485     return "gfx90c";
486   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX940:
487     return "gfx940";
488 
489   // AMDGCN GFX10.
490   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010:
491     return "gfx1010";
492   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011:
493     return "gfx1011";
494   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012:
495     return "gfx1012";
496   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013:
497     return "gfx1013";
498   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030:
499     return "gfx1030";
500   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031:
501     return "gfx1031";
502   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032:
503     return "gfx1032";
504   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033:
505     return "gfx1033";
506   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034:
507     return "gfx1034";
508   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035:
509     return "gfx1035";
510   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036:
511     return "gfx1036";
512 
513   // AMDGCN GFX11.
514   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1100:
515     return "gfx1100";
516   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1101:
517     return "gfx1101";
518   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1102:
519     return "gfx1102";
520   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1103:
521     return "gfx1103";
522   default:
523     llvm_unreachable("Unknown EF_AMDGPU_MACH value");
524   }
525 }
526 
527 // FIXME Encode from a tablegen description or target parser.
528 void ELFObjectFileBase::setARMSubArch(Triple &TheTriple) const {
529   if (TheTriple.getSubArch() != Triple::NoSubArch)
530     return;
531 
532   ARMAttributeParser Attributes;
533   if (Error E = getBuildAttributes(Attributes)) {
534     // TODO Propagate Error.
535     consumeError(std::move(E));
536     return;
537   }
538 
539   std::string Triple;
540   // Default to ARM, but use the triple if it's been set.
541   if (TheTriple.isThumb())
542     Triple = "thumb";
543   else
544     Triple = "arm";
545 
546   std::optional<unsigned> Attr =
547       Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
548   if (Attr) {
549     switch (Attr.value()) {
550     case ARMBuildAttrs::v4:
551       Triple += "v4";
552       break;
553     case ARMBuildAttrs::v4T:
554       Triple += "v4t";
555       break;
556     case ARMBuildAttrs::v5T:
557       Triple += "v5t";
558       break;
559     case ARMBuildAttrs::v5TE:
560       Triple += "v5te";
561       break;
562     case ARMBuildAttrs::v5TEJ:
563       Triple += "v5tej";
564       break;
565     case ARMBuildAttrs::v6:
566       Triple += "v6";
567       break;
568     case ARMBuildAttrs::v6KZ:
569       Triple += "v6kz";
570       break;
571     case ARMBuildAttrs::v6T2:
572       Triple += "v6t2";
573       break;
574     case ARMBuildAttrs::v6K:
575       Triple += "v6k";
576       break;
577     case ARMBuildAttrs::v7: {
578       std::optional<unsigned> ArchProfileAttr =
579           Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
580       if (ArchProfileAttr &&
581           ArchProfileAttr.value() == ARMBuildAttrs::MicroControllerProfile)
582         Triple += "v7m";
583       else
584         Triple += "v7";
585       break;
586     }
587     case ARMBuildAttrs::v6_M:
588       Triple += "v6m";
589       break;
590     case ARMBuildAttrs::v6S_M:
591       Triple += "v6sm";
592       break;
593     case ARMBuildAttrs::v7E_M:
594       Triple += "v7em";
595       break;
596     case ARMBuildAttrs::v8_A:
597       Triple += "v8a";
598       break;
599     case ARMBuildAttrs::v8_R:
600       Triple += "v8r";
601       break;
602     case ARMBuildAttrs::v8_M_Base:
603       Triple += "v8m.base";
604       break;
605     case ARMBuildAttrs::v8_M_Main:
606       Triple += "v8m.main";
607       break;
608     case ARMBuildAttrs::v8_1_M_Main:
609       Triple += "v8.1m.main";
610       break;
611     case ARMBuildAttrs::v9_A:
612       Triple += "v9a";
613       break;
614     }
615   }
616   if (!isLittleEndian())
617     Triple += "eb";
618 
619   TheTriple.setArchName(Triple);
620 }
621 
622 std::vector<std::pair<Optional<DataRefImpl>, uint64_t>>
623 ELFObjectFileBase::getPltAddresses() const {
624   std::string Err;
625   const auto Triple = makeTriple();
626   const auto *T = TargetRegistry::lookupTarget(Triple.str(), Err);
627   if (!T)
628     return {};
629   uint64_t JumpSlotReloc = 0;
630   switch (Triple.getArch()) {
631     case Triple::x86:
632       JumpSlotReloc = ELF::R_386_JUMP_SLOT;
633       break;
634     case Triple::x86_64:
635       JumpSlotReloc = ELF::R_X86_64_JUMP_SLOT;
636       break;
637     case Triple::aarch64:
638     case Triple::aarch64_be:
639       JumpSlotReloc = ELF::R_AARCH64_JUMP_SLOT;
640       break;
641     default:
642       return {};
643   }
644   std::unique_ptr<const MCInstrInfo> MII(T->createMCInstrInfo());
645   std::unique_ptr<const MCInstrAnalysis> MIA(
646       T->createMCInstrAnalysis(MII.get()));
647   if (!MIA)
648     return {};
649   std::optional<SectionRef> Plt, RelaPlt, GotPlt;
650   for (const SectionRef &Section : sections()) {
651     Expected<StringRef> NameOrErr = Section.getName();
652     if (!NameOrErr) {
653       consumeError(NameOrErr.takeError());
654       continue;
655     }
656     StringRef Name = *NameOrErr;
657 
658     if (Name == ".plt")
659       Plt = Section;
660     else if (Name == ".rela.plt" || Name == ".rel.plt")
661       RelaPlt = Section;
662     else if (Name == ".got.plt")
663       GotPlt = Section;
664   }
665   if (!Plt || !RelaPlt || !GotPlt)
666     return {};
667   Expected<StringRef> PltContents = Plt->getContents();
668   if (!PltContents) {
669     consumeError(PltContents.takeError());
670     return {};
671   }
672   auto PltEntries = MIA->findPltEntries(Plt->getAddress(),
673                                         arrayRefFromStringRef(*PltContents),
674                                         GotPlt->getAddress(), Triple);
675   // Build a map from GOT entry virtual address to PLT entry virtual address.
676   DenseMap<uint64_t, uint64_t> GotToPlt;
677   for (const auto &Entry : PltEntries)
678     GotToPlt.insert(std::make_pair(Entry.second, Entry.first));
679   // Find the relocations in the dynamic relocation table that point to
680   // locations in the GOT for which we know the corresponding PLT entry.
681   std::vector<std::pair<Optional<DataRefImpl>, uint64_t>> Result;
682   for (const auto &Relocation : RelaPlt->relocations()) {
683     if (Relocation.getType() != JumpSlotReloc)
684       continue;
685     auto PltEntryIter = GotToPlt.find(Relocation.getOffset());
686     if (PltEntryIter != GotToPlt.end()) {
687       symbol_iterator Sym = Relocation.getSymbol();
688       if (Sym == symbol_end())
689         Result.emplace_back(std::nullopt, PltEntryIter->second);
690       else
691         Result.emplace_back(Sym->getRawDataRefImpl(), PltEntryIter->second);
692     }
693   }
694   return Result;
695 }
696 
697 template <class ELFT>
698 Expected<std::vector<BBAddrMap>> static readBBAddrMapImpl(
699     const ELFFile<ELFT> &EF, Optional<unsigned> TextSectionIndex) {
700   using Elf_Shdr = typename ELFT::Shdr;
701   std::vector<BBAddrMap> BBAddrMaps;
702   const auto &Sections = cantFail(EF.sections());
703   for (const Elf_Shdr &Sec : Sections) {
704     if (Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP &&
705         Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP_V0)
706       continue;
707     if (TextSectionIndex) {
708       Expected<const Elf_Shdr *> TextSecOrErr = EF.getSection(Sec.sh_link);
709       if (!TextSecOrErr)
710         return createError("unable to get the linked-to section for " +
711                            describe(EF, Sec) + ": " +
712                            toString(TextSecOrErr.takeError()));
713       if (*TextSectionIndex != std::distance(Sections.begin(), *TextSecOrErr))
714         continue;
715     }
716     Expected<std::vector<BBAddrMap>> BBAddrMapOrErr = EF.decodeBBAddrMap(Sec);
717     if (!BBAddrMapOrErr)
718       return createError("unable to read " + describe(EF, Sec) + ": " +
719                          toString(BBAddrMapOrErr.takeError()));
720     std::move(BBAddrMapOrErr->begin(), BBAddrMapOrErr->end(),
721               std::back_inserter(BBAddrMaps));
722   }
723   return BBAddrMaps;
724 }
725 
726 template <class ELFT>
727 static Expected<std::vector<VersionEntry>>
728 readDynsymVersionsImpl(const ELFFile<ELFT> &EF,
729                        ELFObjectFileBase::elf_symbol_iterator_range Symbols) {
730   using Elf_Shdr = typename ELFT::Shdr;
731   const Elf_Shdr *VerSec = nullptr;
732   const Elf_Shdr *VerNeedSec = nullptr;
733   const Elf_Shdr *VerDefSec = nullptr;
734   // The user should ensure sections() can't fail here.
735   for (const Elf_Shdr &Sec : cantFail(EF.sections())) {
736     if (Sec.sh_type == ELF::SHT_GNU_versym)
737       VerSec = &Sec;
738     else if (Sec.sh_type == ELF::SHT_GNU_verdef)
739       VerDefSec = &Sec;
740     else if (Sec.sh_type == ELF::SHT_GNU_verneed)
741       VerNeedSec = &Sec;
742   }
743   if (!VerSec)
744     return std::vector<VersionEntry>();
745 
746   Expected<SmallVector<Optional<VersionEntry>, 0>> MapOrErr =
747       EF.loadVersionMap(VerNeedSec, VerDefSec);
748   if (!MapOrErr)
749     return MapOrErr.takeError();
750 
751   std::vector<VersionEntry> Ret;
752   size_t I = 0;
753   for (const ELFSymbolRef &Sym : Symbols) {
754     ++I;
755     Expected<const typename ELFT::Versym *> VerEntryOrErr =
756         EF.template getEntry<typename ELFT::Versym>(*VerSec, I);
757     if (!VerEntryOrErr)
758       return createError("unable to read an entry with index " + Twine(I) +
759                          " from " + describe(EF, *VerSec) + ": " +
760                          toString(VerEntryOrErr.takeError()));
761 
762     Expected<uint32_t> FlagsOrErr = Sym.getFlags();
763     if (!FlagsOrErr)
764       return createError("unable to read flags for symbol with index " +
765                          Twine(I) + ": " + toString(FlagsOrErr.takeError()));
766 
767     bool IsDefault;
768     Expected<StringRef> VerOrErr = EF.getSymbolVersionByIndex(
769         (*VerEntryOrErr)->vs_index, IsDefault, *MapOrErr,
770         (*FlagsOrErr) & SymbolRef::SF_Undefined);
771     if (!VerOrErr)
772       return createError("unable to get a version for entry " + Twine(I) +
773                          " of " + describe(EF, *VerSec) + ": " +
774                          toString(VerOrErr.takeError()));
775 
776     Ret.push_back({(*VerOrErr).str(), IsDefault});
777   }
778 
779   return Ret;
780 }
781 
782 Expected<std::vector<VersionEntry>>
783 ELFObjectFileBase::readDynsymVersions() const {
784   elf_symbol_iterator_range Symbols = getDynamicSymbolIterators();
785   if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
786     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
787   if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
788     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
789   if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
790     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
791   return readDynsymVersionsImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
792                                 Symbols);
793 }
794 
795 Expected<std::vector<BBAddrMap>>
796 ELFObjectFileBase::readBBAddrMap(Optional<unsigned> TextSectionIndex) const {
797   if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
798     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex);
799   if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
800     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex);
801   if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
802     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex);
803   if (const auto *Obj = cast<ELF64BEObjectFile>(this))
804     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex);
805   else
806     llvm_unreachable("Unsupported binary format");
807 }
808