xref: /llvm-project/llvm/lib/Object/ELFObjectFile.cpp (revision 775f1cd34daffa3e188bddcd600b6ccad1f72d24)
1 //===- ELFObjectFile.cpp - ELF object file implementation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Part of the ELFObjectFile class implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Object/ELFObjectFile.h"
14 #include "llvm/BinaryFormat/ELF.h"
15 #include "llvm/MC/MCInstrAnalysis.h"
16 #include "llvm/MC/TargetRegistry.h"
17 #include "llvm/Object/ELF.h"
18 #include "llvm/Object/ELFTypes.h"
19 #include "llvm/Object/Error.h"
20 #include "llvm/Support/ARMAttributeParser.h"
21 #include "llvm/Support/ARMBuildAttributes.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/HexagonAttributeParser.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/RISCVAttributeParser.h"
26 #include "llvm/Support/RISCVAttributes.h"
27 #include "llvm/TargetParser/RISCVISAInfo.h"
28 #include "llvm/TargetParser/SubtargetFeature.h"
29 #include "llvm/TargetParser/Triple.h"
30 #include <algorithm>
31 #include <cstddef>
32 #include <cstdint>
33 #include <memory>
34 #include <optional>
35 #include <string>
36 #include <utility>
37 
38 using namespace llvm;
39 using namespace object;
40 
41 const EnumEntry<unsigned> llvm::object::ElfSymbolTypes[NumElfSymbolTypes] = {
42     {"None", "NOTYPE", ELF::STT_NOTYPE},
43     {"Object", "OBJECT", ELF::STT_OBJECT},
44     {"Function", "FUNC", ELF::STT_FUNC},
45     {"Section", "SECTION", ELF::STT_SECTION},
46     {"File", "FILE", ELF::STT_FILE},
47     {"Common", "COMMON", ELF::STT_COMMON},
48     {"TLS", "TLS", ELF::STT_TLS},
49     {"Unknown", "<unknown>: 7", 7},
50     {"Unknown", "<unknown>: 8", 8},
51     {"Unknown", "<unknown>: 9", 9},
52     {"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC},
53     {"OS Specific", "<OS specific>: 11", 11},
54     {"OS Specific", "<OS specific>: 12", 12},
55     {"Proc Specific", "<processor specific>: 13", 13},
56     {"Proc Specific", "<processor specific>: 14", 14},
57     {"Proc Specific", "<processor specific>: 15", 15}
58 };
59 
60 ELFObjectFileBase::ELFObjectFileBase(unsigned int Type, MemoryBufferRef Source)
61     : ObjectFile(Type, Source) {}
62 
63 template <class ELFT>
64 static Expected<std::unique_ptr<ELFObjectFile<ELFT>>>
65 createPtr(MemoryBufferRef Object, bool InitContent) {
66   auto Ret = ELFObjectFile<ELFT>::create(Object, InitContent);
67   if (Error E = Ret.takeError())
68     return std::move(E);
69   return std::make_unique<ELFObjectFile<ELFT>>(std::move(*Ret));
70 }
71 
72 Expected<std::unique_ptr<ObjectFile>>
73 ObjectFile::createELFObjectFile(MemoryBufferRef Obj, bool InitContent) {
74   std::pair<unsigned char, unsigned char> Ident =
75       getElfArchType(Obj.getBuffer());
76   std::size_t MaxAlignment =
77       1ULL << llvm::countr_zero(
78           reinterpret_cast<uintptr_t>(Obj.getBufferStart()));
79 
80   if (MaxAlignment < 2)
81     return createError("Insufficient alignment");
82 
83   if (Ident.first == ELF::ELFCLASS32) {
84     if (Ident.second == ELF::ELFDATA2LSB)
85       return createPtr<ELF32LE>(Obj, InitContent);
86     else if (Ident.second == ELF::ELFDATA2MSB)
87       return createPtr<ELF32BE>(Obj, InitContent);
88     else
89       return createError("Invalid ELF data");
90   } else if (Ident.first == ELF::ELFCLASS64) {
91     if (Ident.second == ELF::ELFDATA2LSB)
92       return createPtr<ELF64LE>(Obj, InitContent);
93     else if (Ident.second == ELF::ELFDATA2MSB)
94       return createPtr<ELF64BE>(Obj, InitContent);
95     else
96       return createError("Invalid ELF data");
97   }
98   return createError("Invalid ELF class");
99 }
100 
101 SubtargetFeatures ELFObjectFileBase::getMIPSFeatures() const {
102   SubtargetFeatures Features;
103   unsigned PlatformFlags = getPlatformFlags();
104 
105   switch (PlatformFlags & ELF::EF_MIPS_ARCH) {
106   case ELF::EF_MIPS_ARCH_1:
107     break;
108   case ELF::EF_MIPS_ARCH_2:
109     Features.AddFeature("mips2");
110     break;
111   case ELF::EF_MIPS_ARCH_3:
112     Features.AddFeature("mips3");
113     break;
114   case ELF::EF_MIPS_ARCH_4:
115     Features.AddFeature("mips4");
116     break;
117   case ELF::EF_MIPS_ARCH_5:
118     Features.AddFeature("mips5");
119     break;
120   case ELF::EF_MIPS_ARCH_32:
121     Features.AddFeature("mips32");
122     break;
123   case ELF::EF_MIPS_ARCH_64:
124     Features.AddFeature("mips64");
125     break;
126   case ELF::EF_MIPS_ARCH_32R2:
127     Features.AddFeature("mips32r2");
128     break;
129   case ELF::EF_MIPS_ARCH_64R2:
130     Features.AddFeature("mips64r2");
131     break;
132   case ELF::EF_MIPS_ARCH_32R6:
133     Features.AddFeature("mips32r6");
134     break;
135   case ELF::EF_MIPS_ARCH_64R6:
136     Features.AddFeature("mips64r6");
137     break;
138   default:
139     llvm_unreachable("Unknown EF_MIPS_ARCH value");
140   }
141 
142   switch (PlatformFlags & ELF::EF_MIPS_MACH) {
143   case ELF::EF_MIPS_MACH_NONE:
144     // No feature associated with this value.
145     break;
146   case ELF::EF_MIPS_MACH_OCTEON:
147     Features.AddFeature("cnmips");
148     break;
149   default:
150     llvm_unreachable("Unknown EF_MIPS_ARCH value");
151   }
152 
153   if (PlatformFlags & ELF::EF_MIPS_ARCH_ASE_M16)
154     Features.AddFeature("mips16");
155   if (PlatformFlags & ELF::EF_MIPS_MICROMIPS)
156     Features.AddFeature("micromips");
157 
158   return Features;
159 }
160 
161 SubtargetFeatures ELFObjectFileBase::getARMFeatures() const {
162   SubtargetFeatures Features;
163   ARMAttributeParser Attributes;
164   if (Error E = getBuildAttributes(Attributes)) {
165     consumeError(std::move(E));
166     return SubtargetFeatures();
167   }
168 
169   // both ARMv7-M and R have to support thumb hardware div
170   bool isV7 = false;
171   std::optional<unsigned> Attr =
172       Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
173   if (Attr)
174     isV7 = *Attr == ARMBuildAttrs::v7;
175 
176   Attr = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
177   if (Attr) {
178     switch (*Attr) {
179     case ARMBuildAttrs::ApplicationProfile:
180       Features.AddFeature("aclass");
181       break;
182     case ARMBuildAttrs::RealTimeProfile:
183       Features.AddFeature("rclass");
184       if (isV7)
185         Features.AddFeature("hwdiv");
186       break;
187     case ARMBuildAttrs::MicroControllerProfile:
188       Features.AddFeature("mclass");
189       if (isV7)
190         Features.AddFeature("hwdiv");
191       break;
192     }
193   }
194 
195   Attr = Attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use);
196   if (Attr) {
197     switch (*Attr) {
198     default:
199       break;
200     case ARMBuildAttrs::Not_Allowed:
201       Features.AddFeature("thumb", false);
202       Features.AddFeature("thumb2", false);
203       break;
204     case ARMBuildAttrs::AllowThumb32:
205       Features.AddFeature("thumb2");
206       break;
207     }
208   }
209 
210   Attr = Attributes.getAttributeValue(ARMBuildAttrs::FP_arch);
211   if (Attr) {
212     switch (*Attr) {
213     default:
214       break;
215     case ARMBuildAttrs::Not_Allowed:
216       Features.AddFeature("vfp2sp", false);
217       Features.AddFeature("vfp3d16sp", false);
218       Features.AddFeature("vfp4d16sp", false);
219       break;
220     case ARMBuildAttrs::AllowFPv2:
221       Features.AddFeature("vfp2");
222       break;
223     case ARMBuildAttrs::AllowFPv3A:
224     case ARMBuildAttrs::AllowFPv3B:
225       Features.AddFeature("vfp3");
226       break;
227     case ARMBuildAttrs::AllowFPv4A:
228     case ARMBuildAttrs::AllowFPv4B:
229       Features.AddFeature("vfp4");
230       break;
231     }
232   }
233 
234   Attr = Attributes.getAttributeValue(ARMBuildAttrs::Advanced_SIMD_arch);
235   if (Attr) {
236     switch (*Attr) {
237     default:
238       break;
239     case ARMBuildAttrs::Not_Allowed:
240       Features.AddFeature("neon", false);
241       Features.AddFeature("fp16", false);
242       break;
243     case ARMBuildAttrs::AllowNeon:
244       Features.AddFeature("neon");
245       break;
246     case ARMBuildAttrs::AllowNeon2:
247       Features.AddFeature("neon");
248       Features.AddFeature("fp16");
249       break;
250     }
251   }
252 
253   Attr = Attributes.getAttributeValue(ARMBuildAttrs::MVE_arch);
254   if (Attr) {
255     switch (*Attr) {
256     default:
257       break;
258     case ARMBuildAttrs::Not_Allowed:
259       Features.AddFeature("mve", false);
260       Features.AddFeature("mve.fp", false);
261       break;
262     case ARMBuildAttrs::AllowMVEInteger:
263       Features.AddFeature("mve.fp", false);
264       Features.AddFeature("mve");
265       break;
266     case ARMBuildAttrs::AllowMVEIntegerAndFloat:
267       Features.AddFeature("mve.fp");
268       break;
269     }
270   }
271 
272   Attr = Attributes.getAttributeValue(ARMBuildAttrs::DIV_use);
273   if (Attr) {
274     switch (*Attr) {
275     default:
276       break;
277     case ARMBuildAttrs::DisallowDIV:
278       Features.AddFeature("hwdiv", false);
279       Features.AddFeature("hwdiv-arm", false);
280       break;
281     case ARMBuildAttrs::AllowDIVExt:
282       Features.AddFeature("hwdiv");
283       Features.AddFeature("hwdiv-arm");
284       break;
285     }
286   }
287 
288   return Features;
289 }
290 
291 static std::optional<std::string> hexagonAttrToFeatureString(unsigned Attr) {
292   switch (Attr) {
293   case 5:
294     return "v5";
295   case 55:
296     return "v55";
297   case 60:
298     return "v60";
299   case 62:
300     return "v62";
301   case 65:
302     return "v65";
303   case 67:
304     return "v67";
305   case 68:
306     return "v68";
307   case 69:
308     return "v69";
309   case 71:
310     return "v71";
311   case 73:
312     return "v73";
313   default:
314     return {};
315   }
316 }
317 
318 SubtargetFeatures ELFObjectFileBase::getHexagonFeatures() const {
319   SubtargetFeatures Features;
320   HexagonAttributeParser Parser;
321   if (Error E = getBuildAttributes(Parser)) {
322     // Return no attributes if none can be read.
323     // This behavior is important for backwards compatibility.
324     consumeError(std::move(E));
325     return Features;
326   }
327   std::optional<unsigned> Attr;
328 
329   if ((Attr = Parser.getAttributeValue(HexagonAttrs::ARCH))) {
330     if (std::optional<std::string> FeatureString =
331             hexagonAttrToFeatureString(*Attr))
332       Features.AddFeature(*FeatureString);
333   }
334 
335   if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXARCH))) {
336     std::optional<std::string> FeatureString =
337         hexagonAttrToFeatureString(*Attr);
338     // There is no corresponding hvx arch for v5 and v55.
339     if (FeatureString && *Attr >= 60)
340       Features.AddFeature("hvx" + *FeatureString);
341   }
342 
343   if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXIEEEFP)))
344     if (*Attr)
345       Features.AddFeature("hvx-ieee-fp");
346 
347   if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXQFLOAT)))
348     if (*Attr)
349       Features.AddFeature("hvx-qfloat");
350 
351   if ((Attr = Parser.getAttributeValue(HexagonAttrs::ZREG)))
352     if (*Attr)
353       Features.AddFeature("zreg");
354 
355   if ((Attr = Parser.getAttributeValue(HexagonAttrs::AUDIO)))
356     if (*Attr)
357       Features.AddFeature("audio");
358 
359   if ((Attr = Parser.getAttributeValue(HexagonAttrs::CABAC)))
360     if (*Attr)
361       Features.AddFeature("cabac");
362 
363   return Features;
364 }
365 
366 Expected<SubtargetFeatures> ELFObjectFileBase::getRISCVFeatures() const {
367   SubtargetFeatures Features;
368   unsigned PlatformFlags = getPlatformFlags();
369 
370   if (PlatformFlags & ELF::EF_RISCV_RVC) {
371     Features.AddFeature("zca");
372   }
373 
374   RISCVAttributeParser Attributes;
375   if (Error E = getBuildAttributes(Attributes)) {
376     return std::move(E);
377   }
378 
379   std::optional<StringRef> Attr =
380       Attributes.getAttributeString(RISCVAttrs::ARCH);
381   if (Attr) {
382     auto ParseResult = RISCVISAInfo::parseNormalizedArchString(*Attr);
383     if (!ParseResult)
384       return ParseResult.takeError();
385     auto &ISAInfo = *ParseResult;
386 
387     if (ISAInfo->getXLen() == 32)
388       Features.AddFeature("64bit", false);
389     else if (ISAInfo->getXLen() == 64)
390       Features.AddFeature("64bit");
391     else
392       llvm_unreachable("XLEN should be 32 or 64.");
393 
394     Features.addFeaturesVector(ISAInfo->toFeatures());
395   }
396 
397   return Features;
398 }
399 
400 SubtargetFeatures ELFObjectFileBase::getLoongArchFeatures() const {
401   SubtargetFeatures Features;
402 
403   switch (getPlatformFlags() & ELF::EF_LOONGARCH_ABI_MODIFIER_MASK) {
404   case ELF::EF_LOONGARCH_ABI_SOFT_FLOAT:
405     break;
406   case ELF::EF_LOONGARCH_ABI_DOUBLE_FLOAT:
407     Features.AddFeature("d");
408     // D implies F according to LoongArch ISA spec.
409     [[fallthrough]];
410   case ELF::EF_LOONGARCH_ABI_SINGLE_FLOAT:
411     Features.AddFeature("f");
412     break;
413   }
414 
415   return Features;
416 }
417 
418 Expected<SubtargetFeatures> ELFObjectFileBase::getFeatures() const {
419   switch (getEMachine()) {
420   case ELF::EM_MIPS:
421     return getMIPSFeatures();
422   case ELF::EM_ARM:
423     return getARMFeatures();
424   case ELF::EM_RISCV:
425     return getRISCVFeatures();
426   case ELF::EM_LOONGARCH:
427     return getLoongArchFeatures();
428   case ELF::EM_HEXAGON:
429     return getHexagonFeatures();
430   default:
431     return SubtargetFeatures();
432   }
433 }
434 
435 std::optional<StringRef> ELFObjectFileBase::tryGetCPUName() const {
436   switch (getEMachine()) {
437   case ELF::EM_AMDGPU:
438     return getAMDGPUCPUName();
439   case ELF::EM_CUDA:
440     return getNVPTXCPUName();
441   case ELF::EM_PPC:
442   case ELF::EM_PPC64:
443     return StringRef("future");
444   default:
445     return std::nullopt;
446   }
447 }
448 
449 StringRef ELFObjectFileBase::getAMDGPUCPUName() const {
450   assert(getEMachine() == ELF::EM_AMDGPU);
451   unsigned CPU = getPlatformFlags() & ELF::EF_AMDGPU_MACH;
452 
453   switch (CPU) {
454   // Radeon HD 2000/3000 Series (R600).
455   case ELF::EF_AMDGPU_MACH_R600_R600:
456     return "r600";
457   case ELF::EF_AMDGPU_MACH_R600_R630:
458     return "r630";
459   case ELF::EF_AMDGPU_MACH_R600_RS880:
460     return "rs880";
461   case ELF::EF_AMDGPU_MACH_R600_RV670:
462     return "rv670";
463 
464   // Radeon HD 4000 Series (R700).
465   case ELF::EF_AMDGPU_MACH_R600_RV710:
466     return "rv710";
467   case ELF::EF_AMDGPU_MACH_R600_RV730:
468     return "rv730";
469   case ELF::EF_AMDGPU_MACH_R600_RV770:
470     return "rv770";
471 
472   // Radeon HD 5000 Series (Evergreen).
473   case ELF::EF_AMDGPU_MACH_R600_CEDAR:
474     return "cedar";
475   case ELF::EF_AMDGPU_MACH_R600_CYPRESS:
476     return "cypress";
477   case ELF::EF_AMDGPU_MACH_R600_JUNIPER:
478     return "juniper";
479   case ELF::EF_AMDGPU_MACH_R600_REDWOOD:
480     return "redwood";
481   case ELF::EF_AMDGPU_MACH_R600_SUMO:
482     return "sumo";
483 
484   // Radeon HD 6000 Series (Northern Islands).
485   case ELF::EF_AMDGPU_MACH_R600_BARTS:
486     return "barts";
487   case ELF::EF_AMDGPU_MACH_R600_CAICOS:
488     return "caicos";
489   case ELF::EF_AMDGPU_MACH_R600_CAYMAN:
490     return "cayman";
491   case ELF::EF_AMDGPU_MACH_R600_TURKS:
492     return "turks";
493 
494   // AMDGCN GFX6.
495   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX600:
496     return "gfx600";
497   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX601:
498     return "gfx601";
499   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX602:
500     return "gfx602";
501 
502   // AMDGCN GFX7.
503   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX700:
504     return "gfx700";
505   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX701:
506     return "gfx701";
507   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX702:
508     return "gfx702";
509   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX703:
510     return "gfx703";
511   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX704:
512     return "gfx704";
513   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX705:
514     return "gfx705";
515 
516   // AMDGCN GFX8.
517   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX801:
518     return "gfx801";
519   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX802:
520     return "gfx802";
521   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX803:
522     return "gfx803";
523   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX805:
524     return "gfx805";
525   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX810:
526     return "gfx810";
527 
528   // AMDGCN GFX9.
529   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX900:
530     return "gfx900";
531   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX902:
532     return "gfx902";
533   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX904:
534     return "gfx904";
535   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX906:
536     return "gfx906";
537   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX908:
538     return "gfx908";
539   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX909:
540     return "gfx909";
541   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A:
542     return "gfx90a";
543   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C:
544     return "gfx90c";
545   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX940:
546     return "gfx940";
547   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX941:
548     return "gfx941";
549   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX942:
550     return "gfx942";
551 
552   // AMDGCN GFX10.
553   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010:
554     return "gfx1010";
555   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011:
556     return "gfx1011";
557   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012:
558     return "gfx1012";
559   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013:
560     return "gfx1013";
561   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030:
562     return "gfx1030";
563   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031:
564     return "gfx1031";
565   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032:
566     return "gfx1032";
567   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033:
568     return "gfx1033";
569   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034:
570     return "gfx1034";
571   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035:
572     return "gfx1035";
573   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036:
574     return "gfx1036";
575 
576   // AMDGCN GFX11.
577   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1100:
578     return "gfx1100";
579   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1101:
580     return "gfx1101";
581   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1102:
582     return "gfx1102";
583   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1103:
584     return "gfx1103";
585   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1150:
586     return "gfx1150";
587   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1151:
588     return "gfx1151";
589 
590   // AMDGCN GFX12.
591   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1200:
592     return "gfx1200";
593   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1201:
594     return "gfx1201";
595 
596   // Generic AMDGCN targets
597   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX9_GENERIC:
598     return "gfx9-generic";
599   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX10_1_GENERIC:
600     return "gfx10-1-generic";
601   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX10_3_GENERIC:
602     return "gfx10-3-generic";
603   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX11_GENERIC:
604     return "gfx11-generic";
605   case ELF::EF_AMDGPU_MACH_AMDGCN_GFX12_GENERIC:
606     return "gfx12-generic";
607   default:
608     llvm_unreachable("Unknown EF_AMDGPU_MACH value");
609   }
610 }
611 
612 StringRef ELFObjectFileBase::getNVPTXCPUName() const {
613   assert(getEMachine() == ELF::EM_CUDA);
614   unsigned SM = getPlatformFlags() & ELF::EF_CUDA_SM;
615 
616   switch (SM) {
617   // Fermi architecture.
618   case ELF::EF_CUDA_SM20:
619     return "sm_20";
620   case ELF::EF_CUDA_SM21:
621     return "sm_21";
622 
623   // Kepler architecture.
624   case ELF::EF_CUDA_SM30:
625     return "sm_30";
626   case ELF::EF_CUDA_SM32:
627     return "sm_32";
628   case ELF::EF_CUDA_SM35:
629     return "sm_35";
630   case ELF::EF_CUDA_SM37:
631     return "sm_37";
632 
633   // Maxwell architecture.
634   case ELF::EF_CUDA_SM50:
635     return "sm_50";
636   case ELF::EF_CUDA_SM52:
637     return "sm_52";
638   case ELF::EF_CUDA_SM53:
639     return "sm_53";
640 
641   // Pascal architecture.
642   case ELF::EF_CUDA_SM60:
643     return "sm_60";
644   case ELF::EF_CUDA_SM61:
645     return "sm_61";
646   case ELF::EF_CUDA_SM62:
647     return "sm_62";
648 
649   // Volta architecture.
650   case ELF::EF_CUDA_SM70:
651     return "sm_70";
652   case ELF::EF_CUDA_SM72:
653     return "sm_72";
654 
655   // Turing architecture.
656   case ELF::EF_CUDA_SM75:
657     return "sm_75";
658 
659   // Ampere architecture.
660   case ELF::EF_CUDA_SM80:
661     return "sm_80";
662   case ELF::EF_CUDA_SM86:
663     return "sm_86";
664   case ELF::EF_CUDA_SM87:
665     return "sm_87";
666 
667   // Ada architecture.
668   case ELF::EF_CUDA_SM89:
669     return "sm_89";
670 
671   // Hopper architecture.
672   case ELF::EF_CUDA_SM90:
673     return getPlatformFlags() & ELF::EF_CUDA_ACCELERATORS ? "sm_90a" : "sm_90";
674   default:
675     llvm_unreachable("Unknown EF_CUDA_SM value");
676   }
677 }
678 
679 // FIXME Encode from a tablegen description or target parser.
680 void ELFObjectFileBase::setARMSubArch(Triple &TheTriple) const {
681   if (TheTriple.getSubArch() != Triple::NoSubArch)
682     return;
683 
684   ARMAttributeParser Attributes;
685   if (Error E = getBuildAttributes(Attributes)) {
686     // TODO Propagate Error.
687     consumeError(std::move(E));
688     return;
689   }
690 
691   std::string Triple;
692   // Default to ARM, but use the triple if it's been set.
693   if (TheTriple.isThumb())
694     Triple = "thumb";
695   else
696     Triple = "arm";
697 
698   std::optional<unsigned> Attr =
699       Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
700   if (Attr) {
701     switch (*Attr) {
702     case ARMBuildAttrs::v4:
703       Triple += "v4";
704       break;
705     case ARMBuildAttrs::v4T:
706       Triple += "v4t";
707       break;
708     case ARMBuildAttrs::v5T:
709       Triple += "v5t";
710       break;
711     case ARMBuildAttrs::v5TE:
712       Triple += "v5te";
713       break;
714     case ARMBuildAttrs::v5TEJ:
715       Triple += "v5tej";
716       break;
717     case ARMBuildAttrs::v6:
718       Triple += "v6";
719       break;
720     case ARMBuildAttrs::v6KZ:
721       Triple += "v6kz";
722       break;
723     case ARMBuildAttrs::v6T2:
724       Triple += "v6t2";
725       break;
726     case ARMBuildAttrs::v6K:
727       Triple += "v6k";
728       break;
729     case ARMBuildAttrs::v7: {
730       std::optional<unsigned> ArchProfileAttr =
731           Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
732       if (ArchProfileAttr &&
733           *ArchProfileAttr == ARMBuildAttrs::MicroControllerProfile)
734         Triple += "v7m";
735       else
736         Triple += "v7";
737       break;
738     }
739     case ARMBuildAttrs::v6_M:
740       Triple += "v6m";
741       break;
742     case ARMBuildAttrs::v6S_M:
743       Triple += "v6sm";
744       break;
745     case ARMBuildAttrs::v7E_M:
746       Triple += "v7em";
747       break;
748     case ARMBuildAttrs::v8_A:
749       Triple += "v8a";
750       break;
751     case ARMBuildAttrs::v8_R:
752       Triple += "v8r";
753       break;
754     case ARMBuildAttrs::v8_M_Base:
755       Triple += "v8m.base";
756       break;
757     case ARMBuildAttrs::v8_M_Main:
758       Triple += "v8m.main";
759       break;
760     case ARMBuildAttrs::v8_1_M_Main:
761       Triple += "v8.1m.main";
762       break;
763     case ARMBuildAttrs::v9_A:
764       Triple += "v9a";
765       break;
766     }
767   }
768   if (!isLittleEndian())
769     Triple += "eb";
770 
771   TheTriple.setArchName(Triple);
772 }
773 
774 std::vector<ELFPltEntry> ELFObjectFileBase::getPltEntries() const {
775   std::string Err;
776   const auto Triple = makeTriple();
777   const auto *T = TargetRegistry::lookupTarget(Triple.str(), Err);
778   if (!T)
779     return {};
780   uint32_t JumpSlotReloc = 0, GlobDatReloc = 0;
781   switch (Triple.getArch()) {
782     case Triple::x86:
783       JumpSlotReloc = ELF::R_386_JUMP_SLOT;
784       GlobDatReloc = ELF::R_386_GLOB_DAT;
785       break;
786     case Triple::x86_64:
787       JumpSlotReloc = ELF::R_X86_64_JUMP_SLOT;
788       GlobDatReloc = ELF::R_X86_64_GLOB_DAT;
789       break;
790     case Triple::aarch64:
791     case Triple::aarch64_be:
792       JumpSlotReloc = ELF::R_AARCH64_JUMP_SLOT;
793       break;
794     default:
795       return {};
796   }
797   std::unique_ptr<const MCInstrInfo> MII(T->createMCInstrInfo());
798   std::unique_ptr<const MCInstrAnalysis> MIA(
799       T->createMCInstrAnalysis(MII.get()));
800   if (!MIA)
801     return {};
802   std::vector<std::pair<uint64_t, uint64_t>> PltEntries;
803   std::optional<SectionRef> RelaPlt, RelaDyn;
804   uint64_t GotBaseVA = 0;
805   for (const SectionRef &Section : sections()) {
806     Expected<StringRef> NameOrErr = Section.getName();
807     if (!NameOrErr) {
808       consumeError(NameOrErr.takeError());
809       continue;
810     }
811     StringRef Name = *NameOrErr;
812 
813     if (Name == ".rela.plt" || Name == ".rel.plt") {
814       RelaPlt = Section;
815     } else if (Name == ".rela.dyn" || Name == ".rel.dyn") {
816       RelaDyn = Section;
817     } else if (Name == ".got.plt") {
818       GotBaseVA = Section.getAddress();
819     } else if (Name == ".plt" || Name == ".plt.got") {
820       Expected<StringRef> PltContents = Section.getContents();
821       if (!PltContents) {
822         consumeError(PltContents.takeError());
823         return {};
824       }
825       llvm::append_range(
826           PltEntries,
827           MIA->findPltEntries(Section.getAddress(),
828                               arrayRefFromStringRef(*PltContents), Triple));
829     }
830   }
831 
832   // Build a map from GOT entry virtual address to PLT entry virtual address.
833   DenseMap<uint64_t, uint64_t> GotToPlt;
834   for (auto [Plt, GotPlt] : PltEntries) {
835     uint64_t GotPltEntry = GotPlt;
836     // An x86-32 PIC PLT uses jmp DWORD PTR [ebx-offset]. Add
837     // _GLOBAL_OFFSET_TABLE_ (EBX) to get the .got.plt (or .got) entry address.
838     // See X86MCTargetDesc.cpp:findPltEntries for the 1 << 32 bit.
839     if (GotPltEntry & (uint64_t(1) << 32) && getEMachine() == ELF::EM_386)
840       GotPltEntry = static_cast<int32_t>(GotPltEntry) + GotBaseVA;
841     GotToPlt.insert(std::make_pair(GotPltEntry, Plt));
842   }
843 
844   // Find the relocations in the dynamic relocation table that point to
845   // locations in the GOT for which we know the corresponding PLT entry.
846   std::vector<ELFPltEntry> Result;
847   auto handleRels = [&](iterator_range<relocation_iterator> Rels,
848                         uint32_t RelType, StringRef PltSec) {
849     for (const auto &R : Rels) {
850       if (R.getType() != RelType)
851         continue;
852       auto PltEntryIter = GotToPlt.find(R.getOffset());
853       if (PltEntryIter != GotToPlt.end()) {
854         symbol_iterator Sym = R.getSymbol();
855         if (Sym == symbol_end())
856           Result.push_back(
857               ELFPltEntry{PltSec, std::nullopt, PltEntryIter->second});
858         else
859           Result.push_back(ELFPltEntry{PltSec, Sym->getRawDataRefImpl(),
860                                        PltEntryIter->second});
861       }
862     }
863   };
864 
865   if (RelaPlt)
866     handleRels(RelaPlt->relocations(), JumpSlotReloc, ".plt");
867 
868   // If a symbol needing a PLT entry also needs a GLOB_DAT relocation, GNU ld's
869   // x86 port places the PLT entry in the .plt.got section.
870   if (RelaDyn)
871     handleRels(RelaDyn->relocations(), GlobDatReloc, ".plt.got");
872 
873   return Result;
874 }
875 
876 template <class ELFT>
877 Expected<std::vector<BBAddrMap>> static readBBAddrMapImpl(
878     const ELFFile<ELFT> &EF, std::optional<unsigned> TextSectionIndex,
879     std::vector<PGOAnalysisMap> *PGOAnalyses) {
880   using Elf_Shdr = typename ELFT::Shdr;
881   bool IsRelocatable = EF.getHeader().e_type == ELF::ET_REL;
882   std::vector<BBAddrMap> BBAddrMaps;
883   if (PGOAnalyses)
884     PGOAnalyses->clear();
885 
886   const auto &Sections = cantFail(EF.sections());
887   auto IsMatch = [&](const Elf_Shdr &Sec) -> Expected<bool> {
888     if (Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP &&
889         Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP_V0)
890       return false;
891     if (!TextSectionIndex)
892       return true;
893     Expected<const Elf_Shdr *> TextSecOrErr = EF.getSection(Sec.sh_link);
894     if (!TextSecOrErr)
895       return createError("unable to get the linked-to section for " +
896                          describe(EF, Sec) + ": " +
897                          toString(TextSecOrErr.takeError()));
898     assert(*TextSecOrErr >= Sections.begin() &&
899            "Text section pointer outside of bounds");
900     if (*TextSectionIndex !=
901         (unsigned)std::distance(Sections.begin(), *TextSecOrErr))
902       return false;
903     return true;
904   };
905 
906   Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SectionRelocMapOrErr =
907       EF.getSectionAndRelocations(IsMatch);
908   if (!SectionRelocMapOrErr)
909     return SectionRelocMapOrErr.takeError();
910 
911   for (auto const &[Sec, RelocSec] : *SectionRelocMapOrErr) {
912     if (IsRelocatable && !RelocSec)
913       return createError("unable to get relocation section for " +
914                          describe(EF, *Sec));
915     Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
916         EF.decodeBBAddrMap(*Sec, RelocSec, PGOAnalyses);
917     if (!BBAddrMapOrErr) {
918       if (PGOAnalyses)
919         PGOAnalyses->clear();
920       return createError("unable to read " + describe(EF, *Sec) + ": " +
921                          toString(BBAddrMapOrErr.takeError()));
922     }
923     std::move(BBAddrMapOrErr->begin(), BBAddrMapOrErr->end(),
924               std::back_inserter(BBAddrMaps));
925   }
926   if (PGOAnalyses)
927     assert(PGOAnalyses->size() == BBAddrMaps.size() &&
928            "The same number of BBAddrMaps and PGOAnalysisMaps should be "
929            "returned when PGO information is requested");
930   return BBAddrMaps;
931 }
932 
933 template <class ELFT>
934 static Expected<std::vector<VersionEntry>>
935 readDynsymVersionsImpl(const ELFFile<ELFT> &EF,
936                        ELFObjectFileBase::elf_symbol_iterator_range Symbols) {
937   using Elf_Shdr = typename ELFT::Shdr;
938   const Elf_Shdr *VerSec = nullptr;
939   const Elf_Shdr *VerNeedSec = nullptr;
940   const Elf_Shdr *VerDefSec = nullptr;
941   // The user should ensure sections() can't fail here.
942   for (const Elf_Shdr &Sec : cantFail(EF.sections())) {
943     if (Sec.sh_type == ELF::SHT_GNU_versym)
944       VerSec = &Sec;
945     else if (Sec.sh_type == ELF::SHT_GNU_verdef)
946       VerDefSec = &Sec;
947     else if (Sec.sh_type == ELF::SHT_GNU_verneed)
948       VerNeedSec = &Sec;
949   }
950   if (!VerSec)
951     return std::vector<VersionEntry>();
952 
953   Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
954       EF.loadVersionMap(VerNeedSec, VerDefSec);
955   if (!MapOrErr)
956     return MapOrErr.takeError();
957 
958   std::vector<VersionEntry> Ret;
959   size_t I = 0;
960   for (const ELFSymbolRef &Sym : Symbols) {
961     ++I;
962     Expected<const typename ELFT::Versym *> VerEntryOrErr =
963         EF.template getEntry<typename ELFT::Versym>(*VerSec, I);
964     if (!VerEntryOrErr)
965       return createError("unable to read an entry with index " + Twine(I) +
966                          " from " + describe(EF, *VerSec) + ": " +
967                          toString(VerEntryOrErr.takeError()));
968 
969     Expected<uint32_t> FlagsOrErr = Sym.getFlags();
970     if (!FlagsOrErr)
971       return createError("unable to read flags for symbol with index " +
972                          Twine(I) + ": " + toString(FlagsOrErr.takeError()));
973 
974     bool IsDefault;
975     Expected<StringRef> VerOrErr = EF.getSymbolVersionByIndex(
976         (*VerEntryOrErr)->vs_index, IsDefault, *MapOrErr,
977         (*FlagsOrErr) & SymbolRef::SF_Undefined);
978     if (!VerOrErr)
979       return createError("unable to get a version for entry " + Twine(I) +
980                          " of " + describe(EF, *VerSec) + ": " +
981                          toString(VerOrErr.takeError()));
982 
983     Ret.push_back({(*VerOrErr).str(), IsDefault});
984   }
985 
986   return Ret;
987 }
988 
989 Expected<std::vector<VersionEntry>>
990 ELFObjectFileBase::readDynsymVersions() const {
991   elf_symbol_iterator_range Symbols = getDynamicSymbolIterators();
992   if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
993     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
994   if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
995     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
996   if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
997     return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
998   return readDynsymVersionsImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
999                                 Symbols);
1000 }
1001 
1002 Expected<std::vector<BBAddrMap>> ELFObjectFileBase::readBBAddrMap(
1003     std::optional<unsigned> TextSectionIndex,
1004     std::vector<PGOAnalysisMap> *PGOAnalyses) const {
1005   if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
1006     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1007   if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
1008     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1009   if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
1010     return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1011   return readBBAddrMapImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
1012                            TextSectionIndex, PGOAnalyses);
1013 }
1014