1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Support/COFF.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <cctype> 23 #include <limits> 24 25 using namespace llvm; 26 using namespace object; 27 28 using support::ulittle16_t; 29 using support::ulittle32_t; 30 using support::ulittle64_t; 31 using support::little16_t; 32 33 // Returns false if size is greater than the buffer size. And sets ec. 34 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 35 if (M.getBufferSize() < Size) { 36 EC = object_error::unexpected_eof; 37 return false; 38 } 39 return true; 40 } 41 42 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 43 const uint64_t Size) { 44 if (Addr + Size < Addr || Addr + Size < Size || 45 Addr + Size > uintptr_t(M.getBufferEnd()) || 46 Addr < uintptr_t(M.getBufferStart())) { 47 return object_error::unexpected_eof; 48 } 49 return object_error::success; 50 } 51 52 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 53 // Returns unexpected_eof if error. 54 template <typename T> 55 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 56 const void *Ptr, 57 const size_t Size = sizeof(T)) { 58 uintptr_t Addr = uintptr_t(Ptr); 59 if (std::error_code EC = checkOffset(M, Addr, Size)) 60 return EC; 61 Obj = reinterpret_cast<const T *>(Addr); 62 return object_error::success; 63 } 64 65 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 66 // prefixed slashes. 67 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 68 assert(Str.size() <= 6 && "String too long, possible overflow."); 69 if (Str.size() > 6) 70 return true; 71 72 uint64_t Value = 0; 73 while (!Str.empty()) { 74 unsigned CharVal; 75 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 76 CharVal = Str[0] - 'A'; 77 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 78 CharVal = Str[0] - 'a' + 26; 79 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 80 CharVal = Str[0] - '0' + 52; 81 else if (Str[0] == '+') // 62 82 CharVal = 62; 83 else if (Str[0] == '/') // 63 84 CharVal = 63; 85 else 86 return true; 87 88 Value = (Value * 64) + CharVal; 89 Str = Str.substr(1); 90 } 91 92 if (Value > std::numeric_limits<uint32_t>::max()) 93 return true; 94 95 Result = static_cast<uint32_t>(Value); 96 return false; 97 } 98 99 template <typename coff_symbol_type> 100 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 101 const coff_symbol_type *Addr = 102 reinterpret_cast<const coff_symbol_type *>(Ref.p); 103 104 #ifndef NDEBUG 105 // Verify that the symbol points to a valid entry in the symbol table. 106 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 107 if (Offset < getPointerToSymbolTable() || 108 Offset >= getPointerToSymbolTable() + 109 (getNumberOfSymbols() * sizeof(coff_symbol_type))) 110 report_fatal_error("Symbol was outside of symbol table."); 111 112 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 113 "Symbol did not point to the beginning of a symbol"); 114 #endif 115 116 return Addr; 117 } 118 119 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 120 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 121 122 # ifndef NDEBUG 123 // Verify that the section points to a valid entry in the section table. 124 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 125 report_fatal_error("Section was outside of section table."); 126 127 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 128 assert(Offset % sizeof(coff_section) == 0 && 129 "Section did not point to the beginning of a section"); 130 # endif 131 132 return Addr; 133 } 134 135 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 136 if (SymbolTable16) { 137 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 138 Symb += 1 + Symb->NumberOfAuxSymbols; 139 Ref.p = reinterpret_cast<uintptr_t>(Symb); 140 } else if (SymbolTable32) { 141 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 142 Symb += 1 + Symb->NumberOfAuxSymbols; 143 Ref.p = reinterpret_cast<uintptr_t>(Symb); 144 } else { 145 llvm_unreachable("no symbol table pointer!"); 146 } 147 } 148 149 std::error_code COFFObjectFile::getSymbolName(DataRefImpl Ref, 150 StringRef &Result) const { 151 COFFSymbolRef Symb = getCOFFSymbol(Ref); 152 return getSymbolName(Symb, Result); 153 } 154 155 std::error_code COFFObjectFile::getSymbolAddress(DataRefImpl Ref, 156 uint64_t &Result) const { 157 COFFSymbolRef Symb = getCOFFSymbol(Ref); 158 159 if (Symb.isAnyUndefined()) { 160 Result = UnknownAddressOrSize; 161 return object_error::success; 162 } 163 if (Symb.isCommon()) { 164 Result = UnknownAddressOrSize; 165 return object_error::success; 166 } 167 int32_t SectionNumber = Symb.getSectionNumber(); 168 if (!COFF::isReservedSectionNumber(SectionNumber)) { 169 const coff_section *Section = nullptr; 170 if (std::error_code EC = getSection(SectionNumber, Section)) 171 return EC; 172 173 Result = Section->VirtualAddress + Symb.getValue(); 174 return object_error::success; 175 } 176 177 Result = Symb.getValue(); 178 return object_error::success; 179 } 180 181 std::error_code COFFObjectFile::getSymbolType(DataRefImpl Ref, 182 SymbolRef::Type &Result) const { 183 COFFSymbolRef Symb = getCOFFSymbol(Ref); 184 int32_t SectionNumber = Symb.getSectionNumber(); 185 Result = SymbolRef::ST_Other; 186 187 if (Symb.isAnyUndefined()) { 188 Result = SymbolRef::ST_Unknown; 189 } else if (Symb.isFunctionDefinition()) { 190 Result = SymbolRef::ST_Function; 191 } else if (Symb.isCommon()) { 192 Result = SymbolRef::ST_Data; 193 } else if (Symb.isFileRecord()) { 194 Result = SymbolRef::ST_File; 195 } else if (SectionNumber == COFF::IMAGE_SYM_DEBUG) { 196 Result = SymbolRef::ST_Debug; 197 } else if (!COFF::isReservedSectionNumber(SectionNumber)) { 198 const coff_section *Section = nullptr; 199 if (std::error_code EC = getSection(SectionNumber, Section)) 200 return EC; 201 uint32_t Characteristics = Section->Characteristics; 202 if (Characteristics & COFF::IMAGE_SCN_CNT_CODE) 203 Result = SymbolRef::ST_Function; 204 else if (Characteristics & (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 205 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA)) 206 Result = SymbolRef::ST_Data; 207 } 208 return object_error::success; 209 } 210 211 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 212 COFFSymbolRef Symb = getCOFFSymbol(Ref); 213 uint32_t Result = SymbolRef::SF_None; 214 215 if (Symb.isExternal() || Symb.isWeakExternal()) 216 Result |= SymbolRef::SF_Global; 217 218 if (Symb.isWeakExternal()) 219 Result |= SymbolRef::SF_Weak; 220 221 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 222 Result |= SymbolRef::SF_Absolute; 223 224 if (Symb.isFileRecord()) 225 Result |= SymbolRef::SF_FormatSpecific; 226 227 if (Symb.isSectionDefinition()) 228 Result |= SymbolRef::SF_FormatSpecific; 229 230 if (Symb.isCommon()) 231 Result |= SymbolRef::SF_Common; 232 233 if (Symb.isAnyUndefined()) 234 Result |= SymbolRef::SF_Undefined; 235 236 return Result; 237 } 238 239 std::error_code COFFObjectFile::getSymbolSize(DataRefImpl Ref, 240 uint64_t &Result) const { 241 COFFSymbolRef Symb = getCOFFSymbol(Ref); 242 243 if (Symb.isAnyUndefined()) { 244 Result = UnknownAddressOrSize; 245 return object_error::success; 246 } 247 if (Symb.isCommon()) { 248 Result = Symb.getValue(); 249 return object_error::success; 250 } 251 252 // Let's attempt to get the size of the symbol by looking at the address of 253 // the symbol after the symbol in question. 254 uint64_t SymbAddr; 255 if (std::error_code EC = getSymbolAddress(Ref, SymbAddr)) 256 return EC; 257 int32_t SectionNumber = Symb.getSectionNumber(); 258 if (COFF::isReservedSectionNumber(SectionNumber)) { 259 // Absolute and debug symbols aren't sorted in any interesting way. 260 Result = 0; 261 return object_error::success; 262 } 263 const section_iterator SecEnd = section_end(); 264 uint64_t AfterAddr = UnknownAddressOrSize; 265 for (const symbol_iterator &SymbI : symbols()) { 266 section_iterator SecI = SecEnd; 267 if (std::error_code EC = SymbI->getSection(SecI)) 268 return EC; 269 // Check the symbol's section, skip it if it's in the wrong section. 270 // First, make sure it is in any section. 271 if (SecI == SecEnd) 272 continue; 273 // Second, make sure it is in the same section as the symbol in question. 274 if (!sectionContainsSymbol(SecI->getRawDataRefImpl(), Ref)) 275 continue; 276 uint64_t Addr; 277 if (std::error_code EC = SymbI->getAddress(Addr)) 278 return EC; 279 // We want to compare our symbol in question with the closest possible 280 // symbol that comes after. 281 if (AfterAddr > Addr && Addr > SymbAddr) 282 AfterAddr = Addr; 283 } 284 if (AfterAddr == UnknownAddressOrSize) { 285 // No symbol comes after this one, assume that everything after our symbol 286 // is part of it. 287 const coff_section *Section = nullptr; 288 if (std::error_code EC = getSection(SectionNumber, Section)) 289 return EC; 290 Result = Section->SizeOfRawData - Symb.getValue(); 291 } else { 292 // Take the difference between our symbol and the symbol that comes after 293 // our symbol. 294 Result = AfterAddr - SymbAddr; 295 } 296 297 return object_error::success; 298 } 299 300 std::error_code 301 COFFObjectFile::getSymbolSection(DataRefImpl Ref, 302 section_iterator &Result) const { 303 COFFSymbolRef Symb = getCOFFSymbol(Ref); 304 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) { 305 Result = section_end(); 306 } else { 307 const coff_section *Sec = nullptr; 308 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 309 return EC; 310 DataRefImpl Ref; 311 Ref.p = reinterpret_cast<uintptr_t>(Sec); 312 Result = section_iterator(SectionRef(Ref, this)); 313 } 314 return object_error::success; 315 } 316 317 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 318 const coff_section *Sec = toSec(Ref); 319 Sec += 1; 320 Ref.p = reinterpret_cast<uintptr_t>(Sec); 321 } 322 323 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 324 StringRef &Result) const { 325 const coff_section *Sec = toSec(Ref); 326 return getSectionName(Sec, Result); 327 } 328 329 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 330 const coff_section *Sec = toSec(Ref); 331 return Sec->VirtualAddress; 332 } 333 334 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 335 return getSectionSize(toSec(Ref)); 336 } 337 338 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 339 StringRef &Result) const { 340 const coff_section *Sec = toSec(Ref); 341 ArrayRef<uint8_t> Res; 342 std::error_code EC = getSectionContents(Sec, Res); 343 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 344 return EC; 345 } 346 347 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 348 const coff_section *Sec = toSec(Ref); 349 return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1); 350 } 351 352 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 353 const coff_section *Sec = toSec(Ref); 354 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 355 } 356 357 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 358 const coff_section *Sec = toSec(Ref); 359 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 360 } 361 362 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 363 const coff_section *Sec = toSec(Ref); 364 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 365 } 366 367 bool COFFObjectFile::isSectionRequiredForExecution(DataRefImpl Ref) const { 368 // FIXME: Unimplemented 369 return true; 370 } 371 372 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 373 const coff_section *Sec = toSec(Ref); 374 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 375 } 376 377 bool COFFObjectFile::isSectionZeroInit(DataRefImpl Ref) const { 378 // FIXME: Unimplemented. 379 return false; 380 } 381 382 bool COFFObjectFile::isSectionReadOnlyData(DataRefImpl Ref) const { 383 // FIXME: Unimplemented. 384 return false; 385 } 386 387 bool COFFObjectFile::sectionContainsSymbol(DataRefImpl SecRef, 388 DataRefImpl SymbRef) const { 389 const coff_section *Sec = toSec(SecRef); 390 COFFSymbolRef Symb = getCOFFSymbol(SymbRef); 391 int32_t SecNumber = (Sec - SectionTable) + 1; 392 return SecNumber == Symb.getSectionNumber(); 393 } 394 395 static uint32_t getNumberOfRelocations(const coff_section *Sec, 396 MemoryBufferRef M, const uint8_t *base) { 397 // The field for the number of relocations in COFF section table is only 398 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 399 // NumberOfRelocations field, and the actual relocation count is stored in the 400 // VirtualAddress field in the first relocation entry. 401 if (Sec->hasExtendedRelocations()) { 402 const coff_relocation *FirstReloc; 403 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 404 base + Sec->PointerToRelocations))) 405 return 0; 406 return FirstReloc->VirtualAddress; 407 } 408 return Sec->NumberOfRelocations; 409 } 410 411 static const coff_relocation * 412 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 413 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 414 if (!NumRelocs) 415 return nullptr; 416 auto begin = reinterpret_cast<const coff_relocation *>( 417 Base + Sec->PointerToRelocations); 418 if (Sec->hasExtendedRelocations()) { 419 // Skip the first relocation entry repurposed to store the number of 420 // relocations. 421 begin++; 422 } 423 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 424 return nullptr; 425 return begin; 426 } 427 428 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 429 const coff_section *Sec = toSec(Ref); 430 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 431 DataRefImpl Ret; 432 Ret.p = reinterpret_cast<uintptr_t>(begin); 433 return relocation_iterator(RelocationRef(Ret, this)); 434 } 435 436 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 437 const coff_section *Sec = toSec(Ref); 438 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 439 if (I) 440 I += getNumberOfRelocations(Sec, Data, base()); 441 DataRefImpl Ret; 442 Ret.p = reinterpret_cast<uintptr_t>(I); 443 return relocation_iterator(RelocationRef(Ret, this)); 444 } 445 446 // Initialize the pointer to the symbol table. 447 std::error_code COFFObjectFile::initSymbolTablePtr() { 448 if (COFFHeader) 449 if (std::error_code EC = 450 getObject(SymbolTable16, Data, base() + getPointerToSymbolTable(), 451 getNumberOfSymbols() * getSymbolTableEntrySize())) 452 return EC; 453 454 if (COFFBigObjHeader) 455 if (std::error_code EC = 456 getObject(SymbolTable32, Data, base() + getPointerToSymbolTable(), 457 getNumberOfSymbols() * getSymbolTableEntrySize())) 458 return EC; 459 460 // Find string table. The first four byte of the string table contains the 461 // total size of the string table, including the size field itself. If the 462 // string table is empty, the value of the first four byte would be 4. 463 uint32_t StringTableOffset = getPointerToSymbolTable() + 464 getNumberOfSymbols() * getSymbolTableEntrySize(); 465 const uint8_t *StringTableAddr = base() + StringTableOffset; 466 const ulittle32_t *StringTableSizePtr; 467 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 468 return EC; 469 StringTableSize = *StringTableSizePtr; 470 if (std::error_code EC = 471 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 472 return EC; 473 474 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 475 // tools like cvtres write a size of 0 for an empty table instead of 4. 476 if (StringTableSize < 4) 477 StringTableSize = 4; 478 479 // Check that the string table is null terminated if has any in it. 480 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 481 return object_error::parse_failed; 482 return object_error::success; 483 } 484 485 // Returns the file offset for the given VA. 486 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 487 uint64_t ImageBase = PE32Header ? (uint64_t)PE32Header->ImageBase 488 : (uint64_t)PE32PlusHeader->ImageBase; 489 uint64_t Rva = Addr - ImageBase; 490 assert(Rva <= UINT32_MAX); 491 return getRvaPtr((uint32_t)Rva, Res); 492 } 493 494 // Returns the file offset for the given RVA. 495 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 496 for (const SectionRef &S : sections()) { 497 const coff_section *Section = getCOFFSection(S); 498 uint32_t SectionStart = Section->VirtualAddress; 499 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 500 if (SectionStart <= Addr && Addr < SectionEnd) { 501 uint32_t Offset = Addr - SectionStart; 502 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 503 return object_error::success; 504 } 505 } 506 return object_error::parse_failed; 507 } 508 509 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 510 // table entry. 511 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 512 StringRef &Name) const { 513 uintptr_t IntPtr = 0; 514 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 515 return EC; 516 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 517 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 518 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 519 return object_error::success; 520 } 521 522 // Find the import table. 523 std::error_code COFFObjectFile::initImportTablePtr() { 524 // First, we get the RVA of the import table. If the file lacks a pointer to 525 // the import table, do nothing. 526 const data_directory *DataEntry; 527 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 528 return object_error::success; 529 530 // Do nothing if the pointer to import table is NULL. 531 if (DataEntry->RelativeVirtualAddress == 0) 532 return object_error::success; 533 534 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 535 // -1 because the last entry is the null entry. 536 NumberOfImportDirectory = DataEntry->Size / 537 sizeof(import_directory_table_entry) - 1; 538 539 // Find the section that contains the RVA. This is needed because the RVA is 540 // the import table's memory address which is different from its file offset. 541 uintptr_t IntPtr = 0; 542 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 543 return EC; 544 ImportDirectory = reinterpret_cast< 545 const import_directory_table_entry *>(IntPtr); 546 return object_error::success; 547 } 548 549 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 550 std::error_code COFFObjectFile::initDelayImportTablePtr() { 551 const data_directory *DataEntry; 552 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 553 return object_error::success; 554 if (DataEntry->RelativeVirtualAddress == 0) 555 return object_error::success; 556 557 uint32_t RVA = DataEntry->RelativeVirtualAddress; 558 NumberOfDelayImportDirectory = DataEntry->Size / 559 sizeof(delay_import_directory_table_entry) - 1; 560 561 uintptr_t IntPtr = 0; 562 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 563 return EC; 564 DelayImportDirectory = reinterpret_cast< 565 const delay_import_directory_table_entry *>(IntPtr); 566 return object_error::success; 567 } 568 569 // Find the export table. 570 std::error_code COFFObjectFile::initExportTablePtr() { 571 // First, we get the RVA of the export table. If the file lacks a pointer to 572 // the export table, do nothing. 573 const data_directory *DataEntry; 574 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 575 return object_error::success; 576 577 // Do nothing if the pointer to export table is NULL. 578 if (DataEntry->RelativeVirtualAddress == 0) 579 return object_error::success; 580 581 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 582 uintptr_t IntPtr = 0; 583 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 584 return EC; 585 ExportDirectory = 586 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 587 return object_error::success; 588 } 589 590 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 591 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 592 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 593 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 594 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 595 ImportDirectory(nullptr), NumberOfImportDirectory(0), 596 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 597 ExportDirectory(nullptr) { 598 // Check that we at least have enough room for a header. 599 if (!checkSize(Data, EC, sizeof(coff_file_header))) 600 return; 601 602 // The current location in the file where we are looking at. 603 uint64_t CurPtr = 0; 604 605 // PE header is optional and is present only in executables. If it exists, 606 // it is placed right after COFF header. 607 bool HasPEHeader = false; 608 609 // Check if this is a PE/COFF file. 610 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 611 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 612 // PE signature to find 'normal' COFF header. 613 const auto *DH = reinterpret_cast<const dos_header *>(base()); 614 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 615 CurPtr = DH->AddressOfNewExeHeader; 616 // Check the PE magic bytes. ("PE\0\0") 617 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 618 EC = object_error::parse_failed; 619 return; 620 } 621 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 622 HasPEHeader = true; 623 } 624 } 625 626 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 627 return; 628 629 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 630 // import libraries share a common prefix but bigobj is more restrictive. 631 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 632 COFFHeader->NumberOfSections == uint16_t(0xffff) && 633 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 634 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 635 return; 636 637 // Verify that we are dealing with bigobj. 638 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 639 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 640 sizeof(COFF::BigObjMagic)) == 0) { 641 COFFHeader = nullptr; 642 CurPtr += sizeof(coff_bigobj_file_header); 643 } else { 644 // It's not a bigobj. 645 COFFBigObjHeader = nullptr; 646 } 647 } 648 if (COFFHeader) { 649 // The prior checkSize call may have failed. This isn't a hard error 650 // because we were just trying to sniff out bigobj. 651 EC = object_error::success; 652 CurPtr += sizeof(coff_file_header); 653 654 if (COFFHeader->isImportLibrary()) 655 return; 656 } 657 658 if (HasPEHeader) { 659 const pe32_header *Header; 660 if ((EC = getObject(Header, Data, base() + CurPtr))) 661 return; 662 663 const uint8_t *DataDirAddr; 664 uint64_t DataDirSize; 665 if (Header->Magic == COFF::PE32Header::PE32) { 666 PE32Header = Header; 667 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 668 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 669 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 670 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 671 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 672 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 673 } else { 674 // It's neither PE32 nor PE32+. 675 EC = object_error::parse_failed; 676 return; 677 } 678 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 679 return; 680 CurPtr += COFFHeader->SizeOfOptionalHeader; 681 } 682 683 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 684 getNumberOfSections() * sizeof(coff_section)))) 685 return; 686 687 // Initialize the pointer to the symbol table. 688 if (getPointerToSymbolTable() != 0) 689 if ((EC = initSymbolTablePtr())) 690 return; 691 692 // Initialize the pointer to the beginning of the import table. 693 if ((EC = initImportTablePtr())) 694 return; 695 if ((EC = initDelayImportTablePtr())) 696 return; 697 698 // Initialize the pointer to the export table. 699 if ((EC = initExportTablePtr())) 700 return; 701 702 EC = object_error::success; 703 } 704 705 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 706 DataRefImpl Ret; 707 Ret.p = getSymbolTable(); 708 return basic_symbol_iterator(SymbolRef(Ret, this)); 709 } 710 711 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 712 // The symbol table ends where the string table begins. 713 DataRefImpl Ret; 714 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 715 return basic_symbol_iterator(SymbolRef(Ret, this)); 716 } 717 718 import_directory_iterator COFFObjectFile::import_directory_begin() const { 719 return import_directory_iterator( 720 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 721 } 722 723 import_directory_iterator COFFObjectFile::import_directory_end() const { 724 return import_directory_iterator( 725 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); 726 } 727 728 delay_import_directory_iterator 729 COFFObjectFile::delay_import_directory_begin() const { 730 return delay_import_directory_iterator( 731 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 732 } 733 734 delay_import_directory_iterator 735 COFFObjectFile::delay_import_directory_end() const { 736 return delay_import_directory_iterator( 737 DelayImportDirectoryEntryRef( 738 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 739 } 740 741 export_directory_iterator COFFObjectFile::export_directory_begin() const { 742 return export_directory_iterator( 743 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 744 } 745 746 export_directory_iterator COFFObjectFile::export_directory_end() const { 747 if (!ExportDirectory) 748 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 749 ExportDirectoryEntryRef Ref(ExportDirectory, 750 ExportDirectory->AddressTableEntries, this); 751 return export_directory_iterator(Ref); 752 } 753 754 section_iterator COFFObjectFile::section_begin() const { 755 DataRefImpl Ret; 756 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 757 return section_iterator(SectionRef(Ret, this)); 758 } 759 760 section_iterator COFFObjectFile::section_end() const { 761 DataRefImpl Ret; 762 int NumSections = 763 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 764 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 765 return section_iterator(SectionRef(Ret, this)); 766 } 767 768 uint8_t COFFObjectFile::getBytesInAddress() const { 769 return getArch() == Triple::x86_64 ? 8 : 4; 770 } 771 772 StringRef COFFObjectFile::getFileFormatName() const { 773 switch(getMachine()) { 774 case COFF::IMAGE_FILE_MACHINE_I386: 775 return "COFF-i386"; 776 case COFF::IMAGE_FILE_MACHINE_AMD64: 777 return "COFF-x86-64"; 778 case COFF::IMAGE_FILE_MACHINE_ARMNT: 779 return "COFF-ARM"; 780 default: 781 return "COFF-<unknown arch>"; 782 } 783 } 784 785 unsigned COFFObjectFile::getArch() const { 786 switch (getMachine()) { 787 case COFF::IMAGE_FILE_MACHINE_I386: 788 return Triple::x86; 789 case COFF::IMAGE_FILE_MACHINE_AMD64: 790 return Triple::x86_64; 791 case COFF::IMAGE_FILE_MACHINE_ARMNT: 792 return Triple::thumb; 793 default: 794 return Triple::UnknownArch; 795 } 796 } 797 798 iterator_range<import_directory_iterator> 799 COFFObjectFile::import_directories() const { 800 return make_range(import_directory_begin(), import_directory_end()); 801 } 802 803 iterator_range<delay_import_directory_iterator> 804 COFFObjectFile::delay_import_directories() const { 805 return make_range(delay_import_directory_begin(), 806 delay_import_directory_end()); 807 } 808 809 iterator_range<export_directory_iterator> 810 COFFObjectFile::export_directories() const { 811 return make_range(export_directory_begin(), export_directory_end()); 812 } 813 814 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 815 Res = PE32Header; 816 return object_error::success; 817 } 818 819 std::error_code 820 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 821 Res = PE32PlusHeader; 822 return object_error::success; 823 } 824 825 std::error_code 826 COFFObjectFile::getDataDirectory(uint32_t Index, 827 const data_directory *&Res) const { 828 // Error if if there's no data directory or the index is out of range. 829 if (!DataDirectory) { 830 Res = nullptr; 831 return object_error::parse_failed; 832 } 833 assert(PE32Header || PE32PlusHeader); 834 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 835 : PE32PlusHeader->NumberOfRvaAndSize; 836 if (Index >= NumEnt) { 837 Res = nullptr; 838 return object_error::parse_failed; 839 } 840 Res = &DataDirectory[Index]; 841 return object_error::success; 842 } 843 844 std::error_code COFFObjectFile::getSection(int32_t Index, 845 const coff_section *&Result) const { 846 // Check for special index values. 847 if (COFF::isReservedSectionNumber(Index)) 848 Result = nullptr; 849 else if (Index > 0 && static_cast<uint32_t>(Index) <= getNumberOfSections()) 850 // We already verified the section table data, so no need to check again. 851 Result = SectionTable + (Index - 1); 852 else 853 return object_error::parse_failed; 854 return object_error::success; 855 } 856 857 std::error_code COFFObjectFile::getString(uint32_t Offset, 858 StringRef &Result) const { 859 if (StringTableSize <= 4) 860 // Tried to get a string from an empty string table. 861 return object_error::parse_failed; 862 if (Offset >= StringTableSize) 863 return object_error::unexpected_eof; 864 Result = StringRef(StringTable + Offset); 865 return object_error::success; 866 } 867 868 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 869 StringRef &Res) const { 870 // Check for string table entry. First 4 bytes are 0. 871 if (Symbol.getStringTableOffset().Zeroes == 0) { 872 uint32_t Offset = Symbol.getStringTableOffset().Offset; 873 if (std::error_code EC = getString(Offset, Res)) 874 return EC; 875 return object_error::success; 876 } 877 878 if (Symbol.getShortName()[COFF::NameSize - 1] == 0) 879 // Null terminated, let ::strlen figure out the length. 880 Res = StringRef(Symbol.getShortName()); 881 else 882 // Not null terminated, use all 8 bytes. 883 Res = StringRef(Symbol.getShortName(), COFF::NameSize); 884 return object_error::success; 885 } 886 887 ArrayRef<uint8_t> 888 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 889 const uint8_t *Aux = nullptr; 890 891 size_t SymbolSize = getSymbolTableEntrySize(); 892 if (Symbol.getNumberOfAuxSymbols() > 0) { 893 // AUX data comes immediately after the symbol in COFF 894 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 895 # ifndef NDEBUG 896 // Verify that the Aux symbol points to a valid entry in the symbol table. 897 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 898 if (Offset < getPointerToSymbolTable() || 899 Offset >= 900 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 901 report_fatal_error("Aux Symbol data was outside of symbol table."); 902 903 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 904 "Aux Symbol data did not point to the beginning of a symbol"); 905 # endif 906 } 907 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 908 } 909 910 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 911 StringRef &Res) const { 912 StringRef Name; 913 if (Sec->Name[COFF::NameSize - 1] == 0) 914 // Null terminated, let ::strlen figure out the length. 915 Name = Sec->Name; 916 else 917 // Not null terminated, use all 8 bytes. 918 Name = StringRef(Sec->Name, COFF::NameSize); 919 920 // Check for string table entry. First byte is '/'. 921 if (Name.startswith("/")) { 922 uint32_t Offset; 923 if (Name.startswith("//")) { 924 if (decodeBase64StringEntry(Name.substr(2), Offset)) 925 return object_error::parse_failed; 926 } else { 927 if (Name.substr(1).getAsInteger(10, Offset)) 928 return object_error::parse_failed; 929 } 930 if (std::error_code EC = getString(Offset, Name)) 931 return EC; 932 } 933 934 Res = Name; 935 return object_error::success; 936 } 937 938 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 939 // SizeOfRawData and VirtualSize change what they represent depending on 940 // whether or not we have an executable image. 941 // 942 // For object files, SizeOfRawData contains the size of section's data; 943 // VirtualSize is always zero. 944 // 945 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 946 // actual section size is in VirtualSize. It is possible for VirtualSize to 947 // be greater than SizeOfRawData; the contents past that point should be 948 // considered to be zero. 949 uint32_t SectionSize; 950 if (Sec->VirtualSize) 951 SectionSize = std::min(Sec->VirtualSize, Sec->SizeOfRawData); 952 else 953 SectionSize = Sec->SizeOfRawData; 954 955 return SectionSize; 956 } 957 958 std::error_code 959 COFFObjectFile::getSectionContents(const coff_section *Sec, 960 ArrayRef<uint8_t> &Res) const { 961 // PointerToRawData and SizeOfRawData won't make sense for BSS sections, 962 // don't do anything interesting for them. 963 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && 964 "BSS sections don't have contents!"); 965 // The only thing that we need to verify is that the contents is contained 966 // within the file bounds. We don't need to make sure it doesn't cover other 967 // data, as there's nothing that says that is not allowed. 968 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 969 uint32_t SectionSize = getSectionSize(Sec); 970 if (checkOffset(Data, ConStart, SectionSize)) 971 return object_error::parse_failed; 972 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 973 return object_error::success; 974 } 975 976 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 977 return reinterpret_cast<const coff_relocation*>(Rel.p); 978 } 979 980 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 981 Rel.p = reinterpret_cast<uintptr_t>( 982 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 983 } 984 985 std::error_code COFFObjectFile::getRelocationAddress(DataRefImpl Rel, 986 uint64_t &Res) const { 987 report_fatal_error("getRelocationAddress not implemented in COFFObjectFile"); 988 } 989 990 std::error_code COFFObjectFile::getRelocationOffset(DataRefImpl Rel, 991 uint64_t &Res) const { 992 const coff_relocation *R = toRel(Rel); 993 const support::ulittle32_t *VirtualAddressPtr; 994 if (std::error_code EC = 995 getObject(VirtualAddressPtr, Data, &R->VirtualAddress)) 996 return EC; 997 Res = *VirtualAddressPtr; 998 return object_error::success; 999 } 1000 1001 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1002 const coff_relocation *R = toRel(Rel); 1003 DataRefImpl Ref; 1004 if (SymbolTable16) 1005 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1006 else if (SymbolTable32) 1007 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1008 else 1009 return symbol_end(); 1010 return symbol_iterator(SymbolRef(Ref, this)); 1011 } 1012 1013 std::error_code COFFObjectFile::getRelocationType(DataRefImpl Rel, 1014 uint64_t &Res) const { 1015 const coff_relocation* R = toRel(Rel); 1016 Res = R->Type; 1017 return object_error::success; 1018 } 1019 1020 const coff_section * 1021 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1022 return toSec(Section.getRawDataRefImpl()); 1023 } 1024 1025 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1026 if (SymbolTable16) 1027 return toSymb<coff_symbol16>(Ref); 1028 if (SymbolTable32) 1029 return toSymb<coff_symbol32>(Ref); 1030 llvm_unreachable("no symbol table pointer!"); 1031 } 1032 1033 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1034 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1035 } 1036 1037 const coff_relocation * 1038 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1039 return toRel(Reloc.getRawDataRefImpl()); 1040 } 1041 1042 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1043 case COFF::reloc_type: \ 1044 Res = #reloc_type; \ 1045 break; 1046 1047 std::error_code 1048 COFFObjectFile::getRelocationTypeName(DataRefImpl Rel, 1049 SmallVectorImpl<char> &Result) const { 1050 const coff_relocation *Reloc = toRel(Rel); 1051 StringRef Res; 1052 switch (getMachine()) { 1053 case COFF::IMAGE_FILE_MACHINE_AMD64: 1054 switch (Reloc->Type) { 1055 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1056 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1057 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1058 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1059 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1060 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1061 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1062 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1063 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1064 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1065 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1066 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1067 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1068 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1069 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1070 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1071 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1072 default: 1073 Res = "Unknown"; 1074 } 1075 break; 1076 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1077 switch (Reloc->Type) { 1078 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1079 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1080 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1081 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1082 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1083 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1084 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1085 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1086 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1087 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1088 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1089 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1090 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1091 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1092 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1093 default: 1094 Res = "Unknown"; 1095 } 1096 break; 1097 case COFF::IMAGE_FILE_MACHINE_I386: 1098 switch (Reloc->Type) { 1099 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1100 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1101 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1102 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1103 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1104 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1105 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1106 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1107 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1108 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1109 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1110 default: 1111 Res = "Unknown"; 1112 } 1113 break; 1114 default: 1115 Res = "Unknown"; 1116 } 1117 Result.append(Res.begin(), Res.end()); 1118 return object_error::success; 1119 } 1120 1121 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1122 1123 std::error_code 1124 COFFObjectFile::getRelocationValueString(DataRefImpl Rel, 1125 SmallVectorImpl<char> &Result) const { 1126 const coff_relocation *Reloc = toRel(Rel); 1127 DataRefImpl Sym; 1128 ErrorOr<COFFSymbolRef> Symb = getSymbol(Reloc->SymbolTableIndex); 1129 if (std::error_code EC = Symb.getError()) 1130 return EC; 1131 Sym.p = reinterpret_cast<uintptr_t>(Symb->getRawPtr()); 1132 StringRef SymName; 1133 if (std::error_code EC = getSymbolName(Sym, SymName)) 1134 return EC; 1135 Result.append(SymName.begin(), SymName.end()); 1136 return object_error::success; 1137 } 1138 1139 bool COFFObjectFile::isRelocatableObject() const { 1140 return !DataDirectory; 1141 } 1142 1143 bool ImportDirectoryEntryRef:: 1144 operator==(const ImportDirectoryEntryRef &Other) const { 1145 return ImportTable == Other.ImportTable && Index == Other.Index; 1146 } 1147 1148 void ImportDirectoryEntryRef::moveNext() { 1149 ++Index; 1150 } 1151 1152 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1153 const import_directory_table_entry *&Result) const { 1154 Result = ImportTable + Index; 1155 return object_error::success; 1156 } 1157 1158 static imported_symbol_iterator 1159 makeImportedSymbolIterator(const COFFObjectFile *Object, 1160 uintptr_t Ptr, int Index) { 1161 if (Object->getBytesInAddress() == 4) { 1162 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1163 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1164 } 1165 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1166 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1167 } 1168 1169 static imported_symbol_iterator 1170 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1171 uintptr_t IntPtr = 0; 1172 Object->getRvaPtr(RVA, IntPtr); 1173 return makeImportedSymbolIterator(Object, IntPtr, 0); 1174 } 1175 1176 static imported_symbol_iterator 1177 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1178 uintptr_t IntPtr = 0; 1179 Object->getRvaPtr(RVA, IntPtr); 1180 // Forward the pointer to the last entry which is null. 1181 int Index = 0; 1182 if (Object->getBytesInAddress() == 4) { 1183 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1184 while (*Entry++) 1185 ++Index; 1186 } else { 1187 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1188 while (*Entry++) 1189 ++Index; 1190 } 1191 return makeImportedSymbolIterator(Object, IntPtr, Index); 1192 } 1193 1194 imported_symbol_iterator 1195 ImportDirectoryEntryRef::imported_symbol_begin() const { 1196 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1197 OwningObject); 1198 } 1199 1200 imported_symbol_iterator 1201 ImportDirectoryEntryRef::imported_symbol_end() const { 1202 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1203 OwningObject); 1204 } 1205 1206 iterator_range<imported_symbol_iterator> 1207 ImportDirectoryEntryRef::imported_symbols() const { 1208 return make_range(imported_symbol_begin(), imported_symbol_end()); 1209 } 1210 1211 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1212 uintptr_t IntPtr = 0; 1213 if (std::error_code EC = 1214 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1215 return EC; 1216 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1217 return object_error::success; 1218 } 1219 1220 std::error_code 1221 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1222 Result = ImportTable[Index].ImportLookupTableRVA; 1223 return object_error::success; 1224 } 1225 1226 std::error_code 1227 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1228 Result = ImportTable[Index].ImportAddressTableRVA; 1229 return object_error::success; 1230 } 1231 1232 std::error_code ImportDirectoryEntryRef::getImportLookupEntry( 1233 const import_lookup_table_entry32 *&Result) const { 1234 uintptr_t IntPtr = 0; 1235 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; 1236 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1237 return EC; 1238 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr); 1239 return object_error::success; 1240 } 1241 1242 bool DelayImportDirectoryEntryRef:: 1243 operator==(const DelayImportDirectoryEntryRef &Other) const { 1244 return Table == Other.Table && Index == Other.Index; 1245 } 1246 1247 void DelayImportDirectoryEntryRef::moveNext() { 1248 ++Index; 1249 } 1250 1251 imported_symbol_iterator 1252 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1253 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1254 OwningObject); 1255 } 1256 1257 imported_symbol_iterator 1258 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1259 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1260 OwningObject); 1261 } 1262 1263 iterator_range<imported_symbol_iterator> 1264 DelayImportDirectoryEntryRef::imported_symbols() const { 1265 return make_range(imported_symbol_begin(), imported_symbol_end()); 1266 } 1267 1268 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1269 uintptr_t IntPtr = 0; 1270 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1271 return EC; 1272 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1273 return object_error::success; 1274 } 1275 1276 std::error_code DelayImportDirectoryEntryRef:: 1277 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1278 Result = Table; 1279 return object_error::success; 1280 } 1281 1282 std::error_code DelayImportDirectoryEntryRef:: 1283 getImportAddress(int AddrIndex, uint64_t &Result) const { 1284 uint32_t RVA = Table[Index].DelayImportAddressTable + 1285 AddrIndex * (OwningObject->is64() ? 8 : 4); 1286 uintptr_t IntPtr = 0; 1287 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1288 return EC; 1289 if (OwningObject->is64()) 1290 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1291 else 1292 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1293 return object_error::success; 1294 } 1295 1296 bool ExportDirectoryEntryRef:: 1297 operator==(const ExportDirectoryEntryRef &Other) const { 1298 return ExportTable == Other.ExportTable && Index == Other.Index; 1299 } 1300 1301 void ExportDirectoryEntryRef::moveNext() { 1302 ++Index; 1303 } 1304 1305 // Returns the name of the current export symbol. If the symbol is exported only 1306 // by ordinal, the empty string is set as a result. 1307 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1308 uintptr_t IntPtr = 0; 1309 if (std::error_code EC = 1310 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1311 return EC; 1312 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1313 return object_error::success; 1314 } 1315 1316 // Returns the starting ordinal number. 1317 std::error_code 1318 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1319 Result = ExportTable->OrdinalBase; 1320 return object_error::success; 1321 } 1322 1323 // Returns the export ordinal of the current export symbol. 1324 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1325 Result = ExportTable->OrdinalBase + Index; 1326 return object_error::success; 1327 } 1328 1329 // Returns the address of the current export symbol. 1330 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1331 uintptr_t IntPtr = 0; 1332 if (std::error_code EC = 1333 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1334 return EC; 1335 const export_address_table_entry *entry = 1336 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1337 Result = entry[Index].ExportRVA; 1338 return object_error::success; 1339 } 1340 1341 // Returns the name of the current export symbol. If the symbol is exported only 1342 // by ordinal, the empty string is set as a result. 1343 std::error_code 1344 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1345 uintptr_t IntPtr = 0; 1346 if (std::error_code EC = 1347 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1348 return EC; 1349 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1350 1351 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1352 int Offset = 0; 1353 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1354 I < E; ++I, ++Offset) { 1355 if (*I != Index) 1356 continue; 1357 if (std::error_code EC = 1358 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1359 return EC; 1360 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1361 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1362 return EC; 1363 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1364 return object_error::success; 1365 } 1366 Result = ""; 1367 return object_error::success; 1368 } 1369 1370 bool ImportedSymbolRef:: 1371 operator==(const ImportedSymbolRef &Other) const { 1372 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1373 && Index == Other.Index; 1374 } 1375 1376 void ImportedSymbolRef::moveNext() { 1377 ++Index; 1378 } 1379 1380 std::error_code 1381 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1382 uint32_t RVA; 1383 if (Entry32) { 1384 // If a symbol is imported only by ordinal, it has no name. 1385 if (Entry32[Index].isOrdinal()) 1386 return object_error::success; 1387 RVA = Entry32[Index].getHintNameRVA(); 1388 } else { 1389 if (Entry64[Index].isOrdinal()) 1390 return object_error::success; 1391 RVA = Entry64[Index].getHintNameRVA(); 1392 } 1393 uintptr_t IntPtr = 0; 1394 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1395 return EC; 1396 // +2 because the first two bytes is hint. 1397 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1398 return object_error::success; 1399 } 1400 1401 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1402 uint32_t RVA; 1403 if (Entry32) { 1404 if (Entry32[Index].isOrdinal()) { 1405 Result = Entry32[Index].getOrdinal(); 1406 return object_error::success; 1407 } 1408 RVA = Entry32[Index].getHintNameRVA(); 1409 } else { 1410 if (Entry64[Index].isOrdinal()) { 1411 Result = Entry64[Index].getOrdinal(); 1412 return object_error::success; 1413 } 1414 RVA = Entry64[Index].getHintNameRVA(); 1415 } 1416 uintptr_t IntPtr = 0; 1417 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1418 return EC; 1419 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1420 return object_error::success; 1421 } 1422 1423 ErrorOr<std::unique_ptr<COFFObjectFile>> 1424 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1425 std::error_code EC; 1426 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1427 if (EC) 1428 return EC; 1429 return std::move(Ret); 1430 } 1431