1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/ADT/iterator_range.h" 18 #include "llvm/Object/Binary.h" 19 #include "llvm/Object/COFF.h" 20 #include "llvm/Object/Error.h" 21 #include "llvm/Object/ObjectFile.h" 22 #include "llvm/Support/BinaryStreamReader.h" 23 #include "llvm/Support/COFF.h" 24 #include "llvm/Support/ConvertUTF.h" 25 #include "llvm/Support/Endian.h" 26 #include "llvm/Support/Error.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/MemoryBuffer.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <cstddef> 33 #include <cstdint> 34 #include <cstring> 35 #include <limits> 36 #include <memory> 37 #include <system_error> 38 39 using namespace llvm; 40 using namespace object; 41 42 using support::ulittle16_t; 43 using support::ulittle32_t; 44 using support::ulittle64_t; 45 using support::little16_t; 46 47 // Returns false if size is greater than the buffer size. And sets ec. 48 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 49 if (M.getBufferSize() < Size) { 50 EC = object_error::unexpected_eof; 51 return false; 52 } 53 return true; 54 } 55 56 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 57 const uint64_t Size) { 58 if (Addr + Size < Addr || Addr + Size < Size || 59 Addr + Size > uintptr_t(M.getBufferEnd()) || 60 Addr < uintptr_t(M.getBufferStart())) { 61 return object_error::unexpected_eof; 62 } 63 return std::error_code(); 64 } 65 66 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 67 // Returns unexpected_eof if error. 68 template <typename T> 69 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 70 const void *Ptr, 71 const uint64_t Size = sizeof(T)) { 72 uintptr_t Addr = uintptr_t(Ptr); 73 if (std::error_code EC = checkOffset(M, Addr, Size)) 74 return EC; 75 Obj = reinterpret_cast<const T *>(Addr); 76 return std::error_code(); 77 } 78 79 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 80 // prefixed slashes. 81 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 82 assert(Str.size() <= 6 && "String too long, possible overflow."); 83 if (Str.size() > 6) 84 return true; 85 86 uint64_t Value = 0; 87 while (!Str.empty()) { 88 unsigned CharVal; 89 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 90 CharVal = Str[0] - 'A'; 91 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 92 CharVal = Str[0] - 'a' + 26; 93 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 94 CharVal = Str[0] - '0' + 52; 95 else if (Str[0] == '+') // 62 96 CharVal = 62; 97 else if (Str[0] == '/') // 63 98 CharVal = 63; 99 else 100 return true; 101 102 Value = (Value * 64) + CharVal; 103 Str = Str.substr(1); 104 } 105 106 if (Value > std::numeric_limits<uint32_t>::max()) 107 return true; 108 109 Result = static_cast<uint32_t>(Value); 110 return false; 111 } 112 113 template <typename coff_symbol_type> 114 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 115 const coff_symbol_type *Addr = 116 reinterpret_cast<const coff_symbol_type *>(Ref.p); 117 118 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 119 #ifndef NDEBUG 120 // Verify that the symbol points to a valid entry in the symbol table. 121 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 122 123 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 124 "Symbol did not point to the beginning of a symbol"); 125 #endif 126 127 return Addr; 128 } 129 130 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 131 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 132 133 #ifndef NDEBUG 134 // Verify that the section points to a valid entry in the section table. 135 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 136 report_fatal_error("Section was outside of section table."); 137 138 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 139 assert(Offset % sizeof(coff_section) == 0 && 140 "Section did not point to the beginning of a section"); 141 #endif 142 143 return Addr; 144 } 145 146 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 147 auto End = reinterpret_cast<uintptr_t>(StringTable); 148 if (SymbolTable16) { 149 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 150 Symb += 1 + Symb->NumberOfAuxSymbols; 151 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 152 } else if (SymbolTable32) { 153 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 154 Symb += 1 + Symb->NumberOfAuxSymbols; 155 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 156 } else { 157 llvm_unreachable("no symbol table pointer!"); 158 } 159 } 160 161 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 162 COFFSymbolRef Symb = getCOFFSymbol(Ref); 163 StringRef Result; 164 if (std::error_code EC = getSymbolName(Symb, Result)) 165 return errorCodeToError(EC); 166 return Result; 167 } 168 169 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 170 return getCOFFSymbol(Ref).getValue(); 171 } 172 173 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const { 174 // MSVC/link.exe seems to align symbols to the next-power-of-2 175 // up to 32 bytes. 176 COFFSymbolRef Symb = getCOFFSymbol(Ref); 177 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue())); 178 } 179 180 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 181 uint64_t Result = getSymbolValue(Ref); 182 COFFSymbolRef Symb = getCOFFSymbol(Ref); 183 int32_t SectionNumber = Symb.getSectionNumber(); 184 185 if (Symb.isAnyUndefined() || Symb.isCommon() || 186 COFF::isReservedSectionNumber(SectionNumber)) 187 return Result; 188 189 const coff_section *Section = nullptr; 190 if (std::error_code EC = getSection(SectionNumber, Section)) 191 return errorCodeToError(EC); 192 Result += Section->VirtualAddress; 193 194 // The section VirtualAddress does not include ImageBase, and we want to 195 // return virtual addresses. 196 Result += getImageBase(); 197 198 return Result; 199 } 200 201 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 202 COFFSymbolRef Symb = getCOFFSymbol(Ref); 203 int32_t SectionNumber = Symb.getSectionNumber(); 204 205 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 206 return SymbolRef::ST_Function; 207 if (Symb.isAnyUndefined()) 208 return SymbolRef::ST_Unknown; 209 if (Symb.isCommon()) 210 return SymbolRef::ST_Data; 211 if (Symb.isFileRecord()) 212 return SymbolRef::ST_File; 213 214 // TODO: perhaps we need a new symbol type ST_Section. 215 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 216 return SymbolRef::ST_Debug; 217 218 if (!COFF::isReservedSectionNumber(SectionNumber)) 219 return SymbolRef::ST_Data; 220 221 return SymbolRef::ST_Other; 222 } 223 224 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 225 COFFSymbolRef Symb = getCOFFSymbol(Ref); 226 uint32_t Result = SymbolRef::SF_None; 227 228 if (Symb.isExternal() || Symb.isWeakExternal()) 229 Result |= SymbolRef::SF_Global; 230 231 if (Symb.isWeakExternal()) 232 Result |= SymbolRef::SF_Weak; 233 234 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 235 Result |= SymbolRef::SF_Absolute; 236 237 if (Symb.isFileRecord()) 238 Result |= SymbolRef::SF_FormatSpecific; 239 240 if (Symb.isSectionDefinition()) 241 Result |= SymbolRef::SF_FormatSpecific; 242 243 if (Symb.isCommon()) 244 Result |= SymbolRef::SF_Common; 245 246 if (Symb.isAnyUndefined()) 247 Result |= SymbolRef::SF_Undefined; 248 249 return Result; 250 } 251 252 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 253 COFFSymbolRef Symb = getCOFFSymbol(Ref); 254 return Symb.getValue(); 255 } 256 257 Expected<section_iterator> 258 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 259 COFFSymbolRef Symb = getCOFFSymbol(Ref); 260 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 261 return section_end(); 262 const coff_section *Sec = nullptr; 263 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 264 return errorCodeToError(EC); 265 DataRefImpl Ret; 266 Ret.p = reinterpret_cast<uintptr_t>(Sec); 267 return section_iterator(SectionRef(Ret, this)); 268 } 269 270 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 271 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 272 return Symb.getSectionNumber(); 273 } 274 275 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 276 const coff_section *Sec = toSec(Ref); 277 Sec += 1; 278 Ref.p = reinterpret_cast<uintptr_t>(Sec); 279 } 280 281 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 282 StringRef &Result) const { 283 const coff_section *Sec = toSec(Ref); 284 return getSectionName(Sec, Result); 285 } 286 287 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 288 const coff_section *Sec = toSec(Ref); 289 uint64_t Result = Sec->VirtualAddress; 290 291 // The section VirtualAddress does not include ImageBase, and we want to 292 // return virtual addresses. 293 Result += getImageBase(); 294 return Result; 295 } 296 297 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 298 return getSectionSize(toSec(Ref)); 299 } 300 301 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 302 StringRef &Result) const { 303 const coff_section *Sec = toSec(Ref); 304 ArrayRef<uint8_t> Res; 305 std::error_code EC = getSectionContents(Sec, Res); 306 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 307 return EC; 308 } 309 310 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 311 const coff_section *Sec = toSec(Ref); 312 return Sec->getAlignment(); 313 } 314 315 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 316 return false; 317 } 318 319 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 320 const coff_section *Sec = toSec(Ref); 321 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 322 } 323 324 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 325 const coff_section *Sec = toSec(Ref); 326 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 327 } 328 329 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 330 const coff_section *Sec = toSec(Ref); 331 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 332 COFF::IMAGE_SCN_MEM_READ | 333 COFF::IMAGE_SCN_MEM_WRITE; 334 return (Sec->Characteristics & BssFlags) == BssFlags; 335 } 336 337 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 338 uintptr_t Offset = 339 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 340 assert((Offset % sizeof(coff_section)) == 0); 341 return (Offset / sizeof(coff_section)) + 1; 342 } 343 344 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 345 const coff_section *Sec = toSec(Ref); 346 // In COFF, a virtual section won't have any in-file 347 // content, so the file pointer to the content will be zero. 348 return Sec->PointerToRawData == 0; 349 } 350 351 static uint32_t getNumberOfRelocations(const coff_section *Sec, 352 MemoryBufferRef M, const uint8_t *base) { 353 // The field for the number of relocations in COFF section table is only 354 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 355 // NumberOfRelocations field, and the actual relocation count is stored in the 356 // VirtualAddress field in the first relocation entry. 357 if (Sec->hasExtendedRelocations()) { 358 const coff_relocation *FirstReloc; 359 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 360 base + Sec->PointerToRelocations))) 361 return 0; 362 // -1 to exclude this first relocation entry. 363 return FirstReloc->VirtualAddress - 1; 364 } 365 return Sec->NumberOfRelocations; 366 } 367 368 static const coff_relocation * 369 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 370 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 371 if (!NumRelocs) 372 return nullptr; 373 auto begin = reinterpret_cast<const coff_relocation *>( 374 Base + Sec->PointerToRelocations); 375 if (Sec->hasExtendedRelocations()) { 376 // Skip the first relocation entry repurposed to store the number of 377 // relocations. 378 begin++; 379 } 380 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 381 return nullptr; 382 return begin; 383 } 384 385 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 386 const coff_section *Sec = toSec(Ref); 387 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 388 if (begin && Sec->VirtualAddress != 0) 389 report_fatal_error("Sections with relocations should have an address of 0"); 390 DataRefImpl Ret; 391 Ret.p = reinterpret_cast<uintptr_t>(begin); 392 return relocation_iterator(RelocationRef(Ret, this)); 393 } 394 395 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 396 const coff_section *Sec = toSec(Ref); 397 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 398 if (I) 399 I += getNumberOfRelocations(Sec, Data, base()); 400 DataRefImpl Ret; 401 Ret.p = reinterpret_cast<uintptr_t>(I); 402 return relocation_iterator(RelocationRef(Ret, this)); 403 } 404 405 // Initialize the pointer to the symbol table. 406 std::error_code COFFObjectFile::initSymbolTablePtr() { 407 if (COFFHeader) 408 if (std::error_code EC = getObject( 409 SymbolTable16, Data, base() + getPointerToSymbolTable(), 410 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 411 return EC; 412 413 if (COFFBigObjHeader) 414 if (std::error_code EC = getObject( 415 SymbolTable32, Data, base() + getPointerToSymbolTable(), 416 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 417 return EC; 418 419 // Find string table. The first four byte of the string table contains the 420 // total size of the string table, including the size field itself. If the 421 // string table is empty, the value of the first four byte would be 4. 422 uint32_t StringTableOffset = getPointerToSymbolTable() + 423 getNumberOfSymbols() * getSymbolTableEntrySize(); 424 const uint8_t *StringTableAddr = base() + StringTableOffset; 425 const ulittle32_t *StringTableSizePtr; 426 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 427 return EC; 428 StringTableSize = *StringTableSizePtr; 429 if (std::error_code EC = 430 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 431 return EC; 432 433 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 434 // tools like cvtres write a size of 0 for an empty table instead of 4. 435 if (StringTableSize < 4) 436 StringTableSize = 4; 437 438 // Check that the string table is null terminated if has any in it. 439 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 440 return object_error::parse_failed; 441 return std::error_code(); 442 } 443 444 uint64_t COFFObjectFile::getImageBase() const { 445 if (PE32Header) 446 return PE32Header->ImageBase; 447 else if (PE32PlusHeader) 448 return PE32PlusHeader->ImageBase; 449 // This actually comes up in practice. 450 return 0; 451 } 452 453 // Returns the file offset for the given VA. 454 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 455 uint64_t ImageBase = getImageBase(); 456 uint64_t Rva = Addr - ImageBase; 457 assert(Rva <= UINT32_MAX); 458 return getRvaPtr((uint32_t)Rva, Res); 459 } 460 461 // Returns the file offset for the given RVA. 462 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 463 for (const SectionRef &S : sections()) { 464 const coff_section *Section = getCOFFSection(S); 465 uint32_t SectionStart = Section->VirtualAddress; 466 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 467 if (SectionStart <= Addr && Addr < SectionEnd) { 468 uint32_t Offset = Addr - SectionStart; 469 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 470 return std::error_code(); 471 } 472 } 473 return object_error::parse_failed; 474 } 475 476 std::error_code 477 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 478 ArrayRef<uint8_t> &Contents) const { 479 for (const SectionRef &S : sections()) { 480 const coff_section *Section = getCOFFSection(S); 481 uint32_t SectionStart = Section->VirtualAddress; 482 // Check if this RVA is within the section bounds. Be careful about integer 483 // overflow. 484 uint32_t OffsetIntoSection = RVA - SectionStart; 485 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 486 Size <= Section->VirtualSize - OffsetIntoSection) { 487 uintptr_t Begin = 488 uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection; 489 Contents = 490 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 491 return std::error_code(); 492 } 493 } 494 return object_error::parse_failed; 495 } 496 497 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 498 // table entry. 499 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 500 StringRef &Name) const { 501 uintptr_t IntPtr = 0; 502 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 503 return EC; 504 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 505 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 506 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 507 return std::error_code(); 508 } 509 510 std::error_code 511 COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 512 const codeview::DebugInfo *&PDBInfo, 513 StringRef &PDBFileName) const { 514 ArrayRef<uint8_t> InfoBytes; 515 if (std::error_code EC = getRvaAndSizeAsBytes( 516 DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes)) 517 return EC; 518 if (InfoBytes.size() < sizeof(*PDBInfo) + 1) 519 return object_error::parse_failed; 520 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data()); 521 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); 522 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 523 InfoBytes.size()); 524 // Truncate the name at the first null byte. Ignore any padding. 525 PDBFileName = PDBFileName.split('\0').first; 526 return std::error_code(); 527 } 528 529 std::error_code 530 COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, 531 StringRef &PDBFileName) const { 532 for (const debug_directory &D : debug_directories()) 533 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 534 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 535 // If we get here, there is no PDB info to return. 536 PDBInfo = nullptr; 537 PDBFileName = StringRef(); 538 return std::error_code(); 539 } 540 541 // Find the import table. 542 std::error_code COFFObjectFile::initImportTablePtr() { 543 // First, we get the RVA of the import table. If the file lacks a pointer to 544 // the import table, do nothing. 545 const data_directory *DataEntry; 546 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 547 return std::error_code(); 548 549 // Do nothing if the pointer to import table is NULL. 550 if (DataEntry->RelativeVirtualAddress == 0) 551 return std::error_code(); 552 553 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 554 555 // Find the section that contains the RVA. This is needed because the RVA is 556 // the import table's memory address which is different from its file offset. 557 uintptr_t IntPtr = 0; 558 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 559 return EC; 560 if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size)) 561 return EC; 562 ImportDirectory = reinterpret_cast< 563 const coff_import_directory_table_entry *>(IntPtr); 564 return std::error_code(); 565 } 566 567 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 568 std::error_code COFFObjectFile::initDelayImportTablePtr() { 569 const data_directory *DataEntry; 570 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 571 return std::error_code(); 572 if (DataEntry->RelativeVirtualAddress == 0) 573 return std::error_code(); 574 575 uint32_t RVA = DataEntry->RelativeVirtualAddress; 576 NumberOfDelayImportDirectory = DataEntry->Size / 577 sizeof(delay_import_directory_table_entry) - 1; 578 579 uintptr_t IntPtr = 0; 580 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 581 return EC; 582 DelayImportDirectory = reinterpret_cast< 583 const delay_import_directory_table_entry *>(IntPtr); 584 return std::error_code(); 585 } 586 587 // Find the export table. 588 std::error_code COFFObjectFile::initExportTablePtr() { 589 // First, we get the RVA of the export table. If the file lacks a pointer to 590 // the export table, do nothing. 591 const data_directory *DataEntry; 592 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 593 return std::error_code(); 594 595 // Do nothing if the pointer to export table is NULL. 596 if (DataEntry->RelativeVirtualAddress == 0) 597 return std::error_code(); 598 599 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 600 uintptr_t IntPtr = 0; 601 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 602 return EC; 603 ExportDirectory = 604 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 605 return std::error_code(); 606 } 607 608 std::error_code COFFObjectFile::initBaseRelocPtr() { 609 const data_directory *DataEntry; 610 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 611 return std::error_code(); 612 if (DataEntry->RelativeVirtualAddress == 0) 613 return std::error_code(); 614 615 uintptr_t IntPtr = 0; 616 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 617 return EC; 618 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 619 IntPtr); 620 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 621 IntPtr + DataEntry->Size); 622 return std::error_code(); 623 } 624 625 std::error_code COFFObjectFile::initDebugDirectoryPtr() { 626 // Get the RVA of the debug directory. Do nothing if it does not exist. 627 const data_directory *DataEntry; 628 if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry)) 629 return std::error_code(); 630 631 // Do nothing if the RVA is NULL. 632 if (DataEntry->RelativeVirtualAddress == 0) 633 return std::error_code(); 634 635 // Check that the size is a multiple of the entry size. 636 if (DataEntry->Size % sizeof(debug_directory) != 0) 637 return object_error::parse_failed; 638 639 uintptr_t IntPtr = 0; 640 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 641 return EC; 642 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 643 if (std::error_code EC = getRvaPtr( 644 DataEntry->RelativeVirtualAddress + DataEntry->Size, IntPtr)) 645 return EC; 646 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(IntPtr); 647 return std::error_code(); 648 } 649 650 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 651 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 652 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 653 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 654 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 655 ImportDirectory(nullptr), 656 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 657 ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 658 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) { 659 // Check that we at least have enough room for a header. 660 if (!checkSize(Data, EC, sizeof(coff_file_header))) 661 return; 662 663 // The current location in the file where we are looking at. 664 uint64_t CurPtr = 0; 665 666 // PE header is optional and is present only in executables. If it exists, 667 // it is placed right after COFF header. 668 bool HasPEHeader = false; 669 670 // Check if this is a PE/COFF file. 671 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 672 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 673 // PE signature to find 'normal' COFF header. 674 const auto *DH = reinterpret_cast<const dos_header *>(base()); 675 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 676 CurPtr = DH->AddressOfNewExeHeader; 677 // Check the PE magic bytes. ("PE\0\0") 678 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 679 EC = object_error::parse_failed; 680 return; 681 } 682 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 683 HasPEHeader = true; 684 } 685 } 686 687 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 688 return; 689 690 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 691 // import libraries share a common prefix but bigobj is more restrictive. 692 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 693 COFFHeader->NumberOfSections == uint16_t(0xffff) && 694 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 695 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 696 return; 697 698 // Verify that we are dealing with bigobj. 699 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 700 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 701 sizeof(COFF::BigObjMagic)) == 0) { 702 COFFHeader = nullptr; 703 CurPtr += sizeof(coff_bigobj_file_header); 704 } else { 705 // It's not a bigobj. 706 COFFBigObjHeader = nullptr; 707 } 708 } 709 if (COFFHeader) { 710 // The prior checkSize call may have failed. This isn't a hard error 711 // because we were just trying to sniff out bigobj. 712 EC = std::error_code(); 713 CurPtr += sizeof(coff_file_header); 714 715 if (COFFHeader->isImportLibrary()) 716 return; 717 } 718 719 if (HasPEHeader) { 720 const pe32_header *Header; 721 if ((EC = getObject(Header, Data, base() + CurPtr))) 722 return; 723 724 const uint8_t *DataDirAddr; 725 uint64_t DataDirSize; 726 if (Header->Magic == COFF::PE32Header::PE32) { 727 PE32Header = Header; 728 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 729 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 730 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 731 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 732 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 733 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 734 } else { 735 // It's neither PE32 nor PE32+. 736 EC = object_error::parse_failed; 737 return; 738 } 739 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 740 return; 741 } 742 743 if (COFFHeader) 744 CurPtr += COFFHeader->SizeOfOptionalHeader; 745 746 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 747 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 748 return; 749 750 // Initialize the pointer to the symbol table. 751 if (getPointerToSymbolTable() != 0) { 752 if ((EC = initSymbolTablePtr())) { 753 SymbolTable16 = nullptr; 754 SymbolTable32 = nullptr; 755 StringTable = nullptr; 756 StringTableSize = 0; 757 } 758 } else { 759 // We had better not have any symbols if we don't have a symbol table. 760 if (getNumberOfSymbols() != 0) { 761 EC = object_error::parse_failed; 762 return; 763 } 764 } 765 766 // Initialize the pointer to the beginning of the import table. 767 if ((EC = initImportTablePtr())) 768 return; 769 if ((EC = initDelayImportTablePtr())) 770 return; 771 772 // Initialize the pointer to the export table. 773 if ((EC = initExportTablePtr())) 774 return; 775 776 // Initialize the pointer to the base relocation table. 777 if ((EC = initBaseRelocPtr())) 778 return; 779 780 // Initialize the pointer to the export table. 781 if ((EC = initDebugDirectoryPtr())) 782 return; 783 784 EC = std::error_code(); 785 } 786 787 basic_symbol_iterator COFFObjectFile::symbol_begin() const { 788 DataRefImpl Ret; 789 Ret.p = getSymbolTable(); 790 return basic_symbol_iterator(SymbolRef(Ret, this)); 791 } 792 793 basic_symbol_iterator COFFObjectFile::symbol_end() const { 794 // The symbol table ends where the string table begins. 795 DataRefImpl Ret; 796 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 797 return basic_symbol_iterator(SymbolRef(Ret, this)); 798 } 799 800 import_directory_iterator COFFObjectFile::import_directory_begin() const { 801 if (!ImportDirectory) 802 return import_directory_end(); 803 if (ImportDirectory->isNull()) 804 return import_directory_end(); 805 return import_directory_iterator( 806 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 807 } 808 809 import_directory_iterator COFFObjectFile::import_directory_end() const { 810 return import_directory_iterator( 811 ImportDirectoryEntryRef(nullptr, -1, this)); 812 } 813 814 delay_import_directory_iterator 815 COFFObjectFile::delay_import_directory_begin() const { 816 return delay_import_directory_iterator( 817 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 818 } 819 820 delay_import_directory_iterator 821 COFFObjectFile::delay_import_directory_end() const { 822 return delay_import_directory_iterator( 823 DelayImportDirectoryEntryRef( 824 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 825 } 826 827 export_directory_iterator COFFObjectFile::export_directory_begin() const { 828 return export_directory_iterator( 829 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 830 } 831 832 export_directory_iterator COFFObjectFile::export_directory_end() const { 833 if (!ExportDirectory) 834 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 835 ExportDirectoryEntryRef Ref(ExportDirectory, 836 ExportDirectory->AddressTableEntries, this); 837 return export_directory_iterator(Ref); 838 } 839 840 section_iterator COFFObjectFile::section_begin() const { 841 DataRefImpl Ret; 842 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 843 return section_iterator(SectionRef(Ret, this)); 844 } 845 846 section_iterator COFFObjectFile::section_end() const { 847 DataRefImpl Ret; 848 int NumSections = 849 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 850 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 851 return section_iterator(SectionRef(Ret, this)); 852 } 853 854 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 855 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 856 } 857 858 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 859 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 860 } 861 862 uint8_t COFFObjectFile::getBytesInAddress() const { 863 return getArch() == Triple::x86_64 ? 8 : 4; 864 } 865 866 StringRef COFFObjectFile::getFileFormatName() const { 867 switch(getMachine()) { 868 case COFF::IMAGE_FILE_MACHINE_I386: 869 return "COFF-i386"; 870 case COFF::IMAGE_FILE_MACHINE_AMD64: 871 return "COFF-x86-64"; 872 case COFF::IMAGE_FILE_MACHINE_ARMNT: 873 return "COFF-ARM"; 874 case COFF::IMAGE_FILE_MACHINE_ARM64: 875 return "COFF-ARM64"; 876 default: 877 return "COFF-<unknown arch>"; 878 } 879 } 880 881 unsigned COFFObjectFile::getArch() const { 882 switch (getMachine()) { 883 case COFF::IMAGE_FILE_MACHINE_I386: 884 return Triple::x86; 885 case COFF::IMAGE_FILE_MACHINE_AMD64: 886 return Triple::x86_64; 887 case COFF::IMAGE_FILE_MACHINE_ARMNT: 888 return Triple::thumb; 889 case COFF::IMAGE_FILE_MACHINE_ARM64: 890 return Triple::aarch64; 891 default: 892 return Triple::UnknownArch; 893 } 894 } 895 896 iterator_range<import_directory_iterator> 897 COFFObjectFile::import_directories() const { 898 return make_range(import_directory_begin(), import_directory_end()); 899 } 900 901 iterator_range<delay_import_directory_iterator> 902 COFFObjectFile::delay_import_directories() const { 903 return make_range(delay_import_directory_begin(), 904 delay_import_directory_end()); 905 } 906 907 iterator_range<export_directory_iterator> 908 COFFObjectFile::export_directories() const { 909 return make_range(export_directory_begin(), export_directory_end()); 910 } 911 912 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 913 return make_range(base_reloc_begin(), base_reloc_end()); 914 } 915 916 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 917 Res = PE32Header; 918 return std::error_code(); 919 } 920 921 std::error_code 922 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 923 Res = PE32PlusHeader; 924 return std::error_code(); 925 } 926 927 std::error_code 928 COFFObjectFile::getDataDirectory(uint32_t Index, 929 const data_directory *&Res) const { 930 // Error if if there's no data directory or the index is out of range. 931 if (!DataDirectory) { 932 Res = nullptr; 933 return object_error::parse_failed; 934 } 935 assert(PE32Header || PE32PlusHeader); 936 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 937 : PE32PlusHeader->NumberOfRvaAndSize; 938 if (Index >= NumEnt) { 939 Res = nullptr; 940 return object_error::parse_failed; 941 } 942 Res = &DataDirectory[Index]; 943 return std::error_code(); 944 } 945 946 std::error_code COFFObjectFile::getSection(int32_t Index, 947 const coff_section *&Result) const { 948 Result = nullptr; 949 if (COFF::isReservedSectionNumber(Index)) 950 return std::error_code(); 951 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 952 // We already verified the section table data, so no need to check again. 953 Result = SectionTable + (Index - 1); 954 return std::error_code(); 955 } 956 return object_error::parse_failed; 957 } 958 959 std::error_code COFFObjectFile::getString(uint32_t Offset, 960 StringRef &Result) const { 961 if (StringTableSize <= 4) 962 // Tried to get a string from an empty string table. 963 return object_error::parse_failed; 964 if (Offset >= StringTableSize) 965 return object_error::unexpected_eof; 966 Result = StringRef(StringTable + Offset); 967 return std::error_code(); 968 } 969 970 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 971 StringRef &Res) const { 972 return getSymbolName(Symbol.getGeneric(), Res); 973 } 974 975 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol, 976 StringRef &Res) const { 977 // Check for string table entry. First 4 bytes are 0. 978 if (Symbol->Name.Offset.Zeroes == 0) { 979 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res)) 980 return EC; 981 return std::error_code(); 982 } 983 984 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 985 // Null terminated, let ::strlen figure out the length. 986 Res = StringRef(Symbol->Name.ShortName); 987 else 988 // Not null terminated, use all 8 bytes. 989 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize); 990 return std::error_code(); 991 } 992 993 ArrayRef<uint8_t> 994 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 995 const uint8_t *Aux = nullptr; 996 997 size_t SymbolSize = getSymbolTableEntrySize(); 998 if (Symbol.getNumberOfAuxSymbols() > 0) { 999 // AUX data comes immediately after the symbol in COFF 1000 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 1001 #ifndef NDEBUG 1002 // Verify that the Aux symbol points to a valid entry in the symbol table. 1003 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 1004 if (Offset < getPointerToSymbolTable() || 1005 Offset >= 1006 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 1007 report_fatal_error("Aux Symbol data was outside of symbol table."); 1008 1009 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 1010 "Aux Symbol data did not point to the beginning of a symbol"); 1011 #endif 1012 } 1013 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 1014 } 1015 1016 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 1017 StringRef &Res) const { 1018 StringRef Name; 1019 if (Sec->Name[COFF::NameSize - 1] == 0) 1020 // Null terminated, let ::strlen figure out the length. 1021 Name = Sec->Name; 1022 else 1023 // Not null terminated, use all 8 bytes. 1024 Name = StringRef(Sec->Name, COFF::NameSize); 1025 1026 // Check for string table entry. First byte is '/'. 1027 if (Name.startswith("/")) { 1028 uint32_t Offset; 1029 if (Name.startswith("//")) { 1030 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1031 return object_error::parse_failed; 1032 } else { 1033 if (Name.substr(1).getAsInteger(10, Offset)) 1034 return object_error::parse_failed; 1035 } 1036 if (std::error_code EC = getString(Offset, Name)) 1037 return EC; 1038 } 1039 1040 Res = Name; 1041 return std::error_code(); 1042 } 1043 1044 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1045 // SizeOfRawData and VirtualSize change what they represent depending on 1046 // whether or not we have an executable image. 1047 // 1048 // For object files, SizeOfRawData contains the size of section's data; 1049 // VirtualSize should be zero but isn't due to buggy COFF writers. 1050 // 1051 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1052 // actual section size is in VirtualSize. It is possible for VirtualSize to 1053 // be greater than SizeOfRawData; the contents past that point should be 1054 // considered to be zero. 1055 if (getDOSHeader()) 1056 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1057 return Sec->SizeOfRawData; 1058 } 1059 1060 std::error_code 1061 COFFObjectFile::getSectionContents(const coff_section *Sec, 1062 ArrayRef<uint8_t> &Res) const { 1063 // In COFF, a virtual section won't have any in-file 1064 // content, so the file pointer to the content will be zero. 1065 if (Sec->PointerToRawData == 0) 1066 return object_error::parse_failed; 1067 // The only thing that we need to verify is that the contents is contained 1068 // within the file bounds. We don't need to make sure it doesn't cover other 1069 // data, as there's nothing that says that is not allowed. 1070 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 1071 uint32_t SectionSize = getSectionSize(Sec); 1072 if (checkOffset(Data, ConStart, SectionSize)) 1073 return object_error::parse_failed; 1074 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1075 return std::error_code(); 1076 } 1077 1078 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1079 return reinterpret_cast<const coff_relocation*>(Rel.p); 1080 } 1081 1082 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1083 Rel.p = reinterpret_cast<uintptr_t>( 1084 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1085 } 1086 1087 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1088 const coff_relocation *R = toRel(Rel); 1089 return R->VirtualAddress; 1090 } 1091 1092 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1093 const coff_relocation *R = toRel(Rel); 1094 DataRefImpl Ref; 1095 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1096 return symbol_end(); 1097 if (SymbolTable16) 1098 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1099 else if (SymbolTable32) 1100 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1101 else 1102 llvm_unreachable("no symbol table pointer!"); 1103 return symbol_iterator(SymbolRef(Ref, this)); 1104 } 1105 1106 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1107 const coff_relocation* R = toRel(Rel); 1108 return R->Type; 1109 } 1110 1111 const coff_section * 1112 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1113 return toSec(Section.getRawDataRefImpl()); 1114 } 1115 1116 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1117 if (SymbolTable16) 1118 return toSymb<coff_symbol16>(Ref); 1119 if (SymbolTable32) 1120 return toSymb<coff_symbol32>(Ref); 1121 llvm_unreachable("no symbol table pointer!"); 1122 } 1123 1124 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1125 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1126 } 1127 1128 const coff_relocation * 1129 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1130 return toRel(Reloc.getRawDataRefImpl()); 1131 } 1132 1133 iterator_range<const coff_relocation *> 1134 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1135 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 1136 const coff_relocation *E = I; 1137 if (I) 1138 E += getNumberOfRelocations(Sec, Data, base()); 1139 return make_range(I, E); 1140 } 1141 1142 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1143 case COFF::reloc_type: \ 1144 Res = #reloc_type; \ 1145 break; 1146 1147 void COFFObjectFile::getRelocationTypeName( 1148 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1149 const coff_relocation *Reloc = toRel(Rel); 1150 StringRef Res; 1151 switch (getMachine()) { 1152 case COFF::IMAGE_FILE_MACHINE_AMD64: 1153 switch (Reloc->Type) { 1154 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1155 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1156 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1157 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1158 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1159 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1160 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1161 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1162 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1163 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1164 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1165 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1166 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1167 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1168 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1169 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1170 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1171 default: 1172 Res = "Unknown"; 1173 } 1174 break; 1175 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1176 switch (Reloc->Type) { 1177 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1178 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1179 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1180 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1181 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1182 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1183 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1184 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1185 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1186 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1187 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1188 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1189 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1190 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1191 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1192 default: 1193 Res = "Unknown"; 1194 } 1195 break; 1196 case COFF::IMAGE_FILE_MACHINE_I386: 1197 switch (Reloc->Type) { 1198 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1199 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1200 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1201 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1202 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1203 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1204 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1205 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1206 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1207 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1208 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1209 default: 1210 Res = "Unknown"; 1211 } 1212 break; 1213 default: 1214 Res = "Unknown"; 1215 } 1216 Result.append(Res.begin(), Res.end()); 1217 } 1218 1219 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1220 1221 bool COFFObjectFile::isRelocatableObject() const { 1222 return !DataDirectory; 1223 } 1224 1225 bool ImportDirectoryEntryRef:: 1226 operator==(const ImportDirectoryEntryRef &Other) const { 1227 return ImportTable == Other.ImportTable && Index == Other.Index; 1228 } 1229 1230 void ImportDirectoryEntryRef::moveNext() { 1231 ++Index; 1232 if (ImportTable[Index].isNull()) { 1233 Index = -1; 1234 ImportTable = nullptr; 1235 } 1236 } 1237 1238 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1239 const coff_import_directory_table_entry *&Result) const { 1240 return getObject(Result, OwningObject->Data, ImportTable + Index); 1241 } 1242 1243 static imported_symbol_iterator 1244 makeImportedSymbolIterator(const COFFObjectFile *Object, 1245 uintptr_t Ptr, int Index) { 1246 if (Object->getBytesInAddress() == 4) { 1247 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1248 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1249 } 1250 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1251 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1252 } 1253 1254 static imported_symbol_iterator 1255 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1256 uintptr_t IntPtr = 0; 1257 Object->getRvaPtr(RVA, IntPtr); 1258 return makeImportedSymbolIterator(Object, IntPtr, 0); 1259 } 1260 1261 static imported_symbol_iterator 1262 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1263 uintptr_t IntPtr = 0; 1264 Object->getRvaPtr(RVA, IntPtr); 1265 // Forward the pointer to the last entry which is null. 1266 int Index = 0; 1267 if (Object->getBytesInAddress() == 4) { 1268 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1269 while (*Entry++) 1270 ++Index; 1271 } else { 1272 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1273 while (*Entry++) 1274 ++Index; 1275 } 1276 return makeImportedSymbolIterator(Object, IntPtr, Index); 1277 } 1278 1279 imported_symbol_iterator 1280 ImportDirectoryEntryRef::imported_symbol_begin() const { 1281 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1282 OwningObject); 1283 } 1284 1285 imported_symbol_iterator 1286 ImportDirectoryEntryRef::imported_symbol_end() const { 1287 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1288 OwningObject); 1289 } 1290 1291 iterator_range<imported_symbol_iterator> 1292 ImportDirectoryEntryRef::imported_symbols() const { 1293 return make_range(imported_symbol_begin(), imported_symbol_end()); 1294 } 1295 1296 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1297 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1298 OwningObject); 1299 } 1300 1301 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1302 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1303 OwningObject); 1304 } 1305 1306 iterator_range<imported_symbol_iterator> 1307 ImportDirectoryEntryRef::lookup_table_symbols() const { 1308 return make_range(lookup_table_begin(), lookup_table_end()); 1309 } 1310 1311 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1312 uintptr_t IntPtr = 0; 1313 if (std::error_code EC = 1314 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1315 return EC; 1316 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1317 return std::error_code(); 1318 } 1319 1320 std::error_code 1321 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1322 Result = ImportTable[Index].ImportLookupTableRVA; 1323 return std::error_code(); 1324 } 1325 1326 std::error_code 1327 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1328 Result = ImportTable[Index].ImportAddressTableRVA; 1329 return std::error_code(); 1330 } 1331 1332 bool DelayImportDirectoryEntryRef:: 1333 operator==(const DelayImportDirectoryEntryRef &Other) const { 1334 return Table == Other.Table && Index == Other.Index; 1335 } 1336 1337 void DelayImportDirectoryEntryRef::moveNext() { 1338 ++Index; 1339 } 1340 1341 imported_symbol_iterator 1342 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1343 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1344 OwningObject); 1345 } 1346 1347 imported_symbol_iterator 1348 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1349 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1350 OwningObject); 1351 } 1352 1353 iterator_range<imported_symbol_iterator> 1354 DelayImportDirectoryEntryRef::imported_symbols() const { 1355 return make_range(imported_symbol_begin(), imported_symbol_end()); 1356 } 1357 1358 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1359 uintptr_t IntPtr = 0; 1360 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1361 return EC; 1362 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1363 return std::error_code(); 1364 } 1365 1366 std::error_code DelayImportDirectoryEntryRef:: 1367 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1368 Result = Table; 1369 return std::error_code(); 1370 } 1371 1372 std::error_code DelayImportDirectoryEntryRef:: 1373 getImportAddress(int AddrIndex, uint64_t &Result) const { 1374 uint32_t RVA = Table[Index].DelayImportAddressTable + 1375 AddrIndex * (OwningObject->is64() ? 8 : 4); 1376 uintptr_t IntPtr = 0; 1377 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1378 return EC; 1379 if (OwningObject->is64()) 1380 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1381 else 1382 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1383 return std::error_code(); 1384 } 1385 1386 bool ExportDirectoryEntryRef:: 1387 operator==(const ExportDirectoryEntryRef &Other) const { 1388 return ExportTable == Other.ExportTable && Index == Other.Index; 1389 } 1390 1391 void ExportDirectoryEntryRef::moveNext() { 1392 ++Index; 1393 } 1394 1395 // Returns the name of the current export symbol. If the symbol is exported only 1396 // by ordinal, the empty string is set as a result. 1397 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1398 uintptr_t IntPtr = 0; 1399 if (std::error_code EC = 1400 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1401 return EC; 1402 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1403 return std::error_code(); 1404 } 1405 1406 // Returns the starting ordinal number. 1407 std::error_code 1408 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1409 Result = ExportTable->OrdinalBase; 1410 return std::error_code(); 1411 } 1412 1413 // Returns the export ordinal of the current export symbol. 1414 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1415 Result = ExportTable->OrdinalBase + Index; 1416 return std::error_code(); 1417 } 1418 1419 // Returns the address of the current export symbol. 1420 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1421 uintptr_t IntPtr = 0; 1422 if (std::error_code EC = 1423 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1424 return EC; 1425 const export_address_table_entry *entry = 1426 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1427 Result = entry[Index].ExportRVA; 1428 return std::error_code(); 1429 } 1430 1431 // Returns the name of the current export symbol. If the symbol is exported only 1432 // by ordinal, the empty string is set as a result. 1433 std::error_code 1434 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1435 uintptr_t IntPtr = 0; 1436 if (std::error_code EC = 1437 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1438 return EC; 1439 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1440 1441 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1442 int Offset = 0; 1443 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1444 I < E; ++I, ++Offset) { 1445 if (*I != Index) 1446 continue; 1447 if (std::error_code EC = 1448 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1449 return EC; 1450 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1451 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1452 return EC; 1453 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1454 return std::error_code(); 1455 } 1456 Result = ""; 1457 return std::error_code(); 1458 } 1459 1460 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1461 const data_directory *DataEntry; 1462 if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 1463 return EC; 1464 uint32_t RVA; 1465 if (auto EC = getExportRVA(RVA)) 1466 return EC; 1467 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1468 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1469 Result = (Begin <= RVA && RVA < End); 1470 return std::error_code(); 1471 } 1472 1473 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1474 uint32_t RVA; 1475 if (auto EC = getExportRVA(RVA)) 1476 return EC; 1477 uintptr_t IntPtr = 0; 1478 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1479 return EC; 1480 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1481 return std::error_code(); 1482 } 1483 1484 bool ImportedSymbolRef:: 1485 operator==(const ImportedSymbolRef &Other) const { 1486 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1487 && Index == Other.Index; 1488 } 1489 1490 void ImportedSymbolRef::moveNext() { 1491 ++Index; 1492 } 1493 1494 std::error_code 1495 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1496 uint32_t RVA; 1497 if (Entry32) { 1498 // If a symbol is imported only by ordinal, it has no name. 1499 if (Entry32[Index].isOrdinal()) 1500 return std::error_code(); 1501 RVA = Entry32[Index].getHintNameRVA(); 1502 } else { 1503 if (Entry64[Index].isOrdinal()) 1504 return std::error_code(); 1505 RVA = Entry64[Index].getHintNameRVA(); 1506 } 1507 uintptr_t IntPtr = 0; 1508 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1509 return EC; 1510 // +2 because the first two bytes is hint. 1511 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1512 return std::error_code(); 1513 } 1514 1515 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const { 1516 if (Entry32) 1517 Result = Entry32[Index].isOrdinal(); 1518 else 1519 Result = Entry64[Index].isOrdinal(); 1520 return std::error_code(); 1521 } 1522 1523 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1524 if (Entry32) 1525 Result = Entry32[Index].getHintNameRVA(); 1526 else 1527 Result = Entry64[Index].getHintNameRVA(); 1528 return std::error_code(); 1529 } 1530 1531 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1532 uint32_t RVA; 1533 if (Entry32) { 1534 if (Entry32[Index].isOrdinal()) { 1535 Result = Entry32[Index].getOrdinal(); 1536 return std::error_code(); 1537 } 1538 RVA = Entry32[Index].getHintNameRVA(); 1539 } else { 1540 if (Entry64[Index].isOrdinal()) { 1541 Result = Entry64[Index].getOrdinal(); 1542 return std::error_code(); 1543 } 1544 RVA = Entry64[Index].getHintNameRVA(); 1545 } 1546 uintptr_t IntPtr = 0; 1547 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1548 return EC; 1549 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1550 return std::error_code(); 1551 } 1552 1553 ErrorOr<std::unique_ptr<COFFObjectFile>> 1554 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1555 std::error_code EC; 1556 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1557 if (EC) 1558 return EC; 1559 return std::move(Ret); 1560 } 1561 1562 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1563 return Header == Other.Header && Index == Other.Index; 1564 } 1565 1566 void BaseRelocRef::moveNext() { 1567 // Header->BlockSize is the size of the current block, including the 1568 // size of the header itself. 1569 uint32_t Size = sizeof(*Header) + 1570 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1571 if (Size == Header->BlockSize) { 1572 // .reloc contains a list of base relocation blocks. Each block 1573 // consists of the header followed by entries. The header contains 1574 // how many entories will follow. When we reach the end of the 1575 // current block, proceed to the next block. 1576 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1577 reinterpret_cast<const uint8_t *>(Header) + Size); 1578 Index = 0; 1579 } else { 1580 ++Index; 1581 } 1582 } 1583 1584 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1585 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1586 Type = Entry[Index].getType(); 1587 return std::error_code(); 1588 } 1589 1590 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1591 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1592 Result = Header->PageRVA + Entry[Index].getOffset(); 1593 return std::error_code(); 1594 } 1595 1596 #define RETURN_IF_ERROR(X) \ 1597 if (auto EC = errorToErrorCode(X)) \ 1598 return EC; 1599 1600 ErrorOr<StringRef> ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) { 1601 BinaryStreamReader Reader = BinaryStreamReader(BBS); 1602 Reader.setOffset(Offset); 1603 uint16_t Length; 1604 RETURN_IF_ERROR(Reader.readInteger(Length)); 1605 ArrayRef<UTF16> RawDirString; 1606 // Strings are stored as 2-byte aligned unicode characters but readFixedString 1607 // assumes byte string, so we double length. 1608 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length)); 1609 std::string DirString; 1610 if (!llvm::convertUTF16ToUTF8String(RawDirString, DirString)) 1611 return object_error::parse_failed; 1612 return DirString; 1613 } 1614 1615 ErrorOr<StringRef> 1616 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) { 1617 return getDirStringAtOffset(Entry.Identifier.getNameOffset()); 1618 } 1619 1620 ErrorOr<const coff_resource_dir_table &> 1621 ResourceSectionRef::getTableAtOffset(uint32_t Offset) { 1622 const coff_resource_dir_table *Table = nullptr; 1623 1624 BinaryStreamReader Reader(BBS); 1625 Reader.setOffset(Offset); 1626 RETURN_IF_ERROR(Reader.readObject(Table)); 1627 assert(Table != nullptr); 1628 return *Table; 1629 } 1630 1631 ErrorOr<const coff_resource_dir_table &> 1632 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) { 1633 return getTableAtOffset(Entry.Offset.value()); 1634 } 1635 1636 ErrorOr<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() { 1637 return getTableAtOffset(0); 1638 } 1639