1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/StringSwitch.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/ADT/iterator_range.h" 19 #include "llvm/Support/COFF.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <cctype> 23 #include <limits> 24 25 using namespace llvm; 26 using namespace object; 27 28 using support::ulittle16_t; 29 using support::ulittle32_t; 30 using support::ulittle64_t; 31 using support::little16_t; 32 33 // Returns false if size is greater than the buffer size. And sets ec. 34 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 35 if (M.getBufferSize() < Size) { 36 EC = object_error::unexpected_eof; 37 return false; 38 } 39 return true; 40 } 41 42 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 43 const uint64_t Size) { 44 if (Addr + Size < Addr || Addr + Size < Size || 45 Addr + Size > uintptr_t(M.getBufferEnd()) || 46 Addr < uintptr_t(M.getBufferStart())) { 47 return object_error::unexpected_eof; 48 } 49 return std::error_code(); 50 } 51 52 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 53 // Returns unexpected_eof if error. 54 template <typename T> 55 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 56 const void *Ptr, 57 const uint64_t Size = sizeof(T)) { 58 uintptr_t Addr = uintptr_t(Ptr); 59 if (std::error_code EC = checkOffset(M, Addr, Size)) 60 return EC; 61 Obj = reinterpret_cast<const T *>(Addr); 62 return std::error_code(); 63 } 64 65 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 66 // prefixed slashes. 67 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 68 assert(Str.size() <= 6 && "String too long, possible overflow."); 69 if (Str.size() > 6) 70 return true; 71 72 uint64_t Value = 0; 73 while (!Str.empty()) { 74 unsigned CharVal; 75 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 76 CharVal = Str[0] - 'A'; 77 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 78 CharVal = Str[0] - 'a' + 26; 79 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 80 CharVal = Str[0] - '0' + 52; 81 else if (Str[0] == '+') // 62 82 CharVal = 62; 83 else if (Str[0] == '/') // 63 84 CharVal = 63; 85 else 86 return true; 87 88 Value = (Value * 64) + CharVal; 89 Str = Str.substr(1); 90 } 91 92 if (Value > std::numeric_limits<uint32_t>::max()) 93 return true; 94 95 Result = static_cast<uint32_t>(Value); 96 return false; 97 } 98 99 template <typename coff_symbol_type> 100 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 101 const coff_symbol_type *Addr = 102 reinterpret_cast<const coff_symbol_type *>(Ref.p); 103 104 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 105 #ifndef NDEBUG 106 // Verify that the symbol points to a valid entry in the symbol table. 107 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 108 109 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 110 "Symbol did not point to the beginning of a symbol"); 111 #endif 112 113 return Addr; 114 } 115 116 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 117 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 118 119 # ifndef NDEBUG 120 // Verify that the section points to a valid entry in the section table. 121 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 122 report_fatal_error("Section was outside of section table."); 123 124 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 125 assert(Offset % sizeof(coff_section) == 0 && 126 "Section did not point to the beginning of a section"); 127 # endif 128 129 return Addr; 130 } 131 132 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 133 auto End = reinterpret_cast<uintptr_t>(StringTable); 134 if (SymbolTable16) { 135 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 136 Symb += 1 + Symb->NumberOfAuxSymbols; 137 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 138 } else if (SymbolTable32) { 139 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 140 Symb += 1 + Symb->NumberOfAuxSymbols; 141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 142 } else { 143 llvm_unreachable("no symbol table pointer!"); 144 } 145 } 146 147 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 148 COFFSymbolRef Symb = getCOFFSymbol(Ref); 149 StringRef Result; 150 std::error_code EC = getSymbolName(Symb, Result); 151 if (EC) 152 return errorCodeToError(EC); 153 return Result; 154 } 155 156 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 157 return getCOFFSymbol(Ref).getValue(); 158 } 159 160 ErrorOr<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 161 uint64_t Result = getSymbolValue(Ref); 162 COFFSymbolRef Symb = getCOFFSymbol(Ref); 163 int32_t SectionNumber = Symb.getSectionNumber(); 164 165 if (Symb.isAnyUndefined() || Symb.isCommon() || 166 COFF::isReservedSectionNumber(SectionNumber)) 167 return Result; 168 169 const coff_section *Section = nullptr; 170 if (std::error_code EC = getSection(SectionNumber, Section)) 171 return EC; 172 Result += Section->VirtualAddress; 173 174 // The section VirtualAddress does not include ImageBase, and we want to 175 // return virtual addresses. 176 Result += getImageBase(); 177 178 return Result; 179 } 180 181 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 182 COFFSymbolRef Symb = getCOFFSymbol(Ref); 183 int32_t SectionNumber = Symb.getSectionNumber(); 184 185 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 186 return SymbolRef::ST_Function; 187 if (Symb.isAnyUndefined()) 188 return SymbolRef::ST_Unknown; 189 if (Symb.isCommon()) 190 return SymbolRef::ST_Data; 191 if (Symb.isFileRecord()) 192 return SymbolRef::ST_File; 193 194 // TODO: perhaps we need a new symbol type ST_Section. 195 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 196 return SymbolRef::ST_Debug; 197 198 if (!COFF::isReservedSectionNumber(SectionNumber)) 199 return SymbolRef::ST_Data; 200 201 return SymbolRef::ST_Other; 202 } 203 204 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 205 COFFSymbolRef Symb = getCOFFSymbol(Ref); 206 uint32_t Result = SymbolRef::SF_None; 207 208 if (Symb.isExternal() || Symb.isWeakExternal()) 209 Result |= SymbolRef::SF_Global; 210 211 if (Symb.isWeakExternal()) 212 Result |= SymbolRef::SF_Weak; 213 214 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 215 Result |= SymbolRef::SF_Absolute; 216 217 if (Symb.isFileRecord()) 218 Result |= SymbolRef::SF_FormatSpecific; 219 220 if (Symb.isSectionDefinition()) 221 Result |= SymbolRef::SF_FormatSpecific; 222 223 if (Symb.isCommon()) 224 Result |= SymbolRef::SF_Common; 225 226 if (Symb.isAnyUndefined()) 227 Result |= SymbolRef::SF_Undefined; 228 229 return Result; 230 } 231 232 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 233 COFFSymbolRef Symb = getCOFFSymbol(Ref); 234 return Symb.getValue(); 235 } 236 237 Expected<section_iterator> 238 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 239 COFFSymbolRef Symb = getCOFFSymbol(Ref); 240 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 241 return section_end(); 242 const coff_section *Sec = nullptr; 243 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 244 return errorCodeToError(EC); 245 DataRefImpl Ret; 246 Ret.p = reinterpret_cast<uintptr_t>(Sec); 247 return section_iterator(SectionRef(Ret, this)); 248 } 249 250 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 251 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 252 return Symb.getSectionNumber(); 253 } 254 255 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 256 const coff_section *Sec = toSec(Ref); 257 Sec += 1; 258 Ref.p = reinterpret_cast<uintptr_t>(Sec); 259 } 260 261 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 262 StringRef &Result) const { 263 const coff_section *Sec = toSec(Ref); 264 return getSectionName(Sec, Result); 265 } 266 267 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 268 const coff_section *Sec = toSec(Ref); 269 uint64_t Result = Sec->VirtualAddress; 270 271 // The section VirtualAddress does not include ImageBase, and we want to 272 // return virtual addresses. 273 Result += getImageBase(); 274 return Result; 275 } 276 277 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 278 return getSectionSize(toSec(Ref)); 279 } 280 281 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 282 StringRef &Result) const { 283 const coff_section *Sec = toSec(Ref); 284 ArrayRef<uint8_t> Res; 285 std::error_code EC = getSectionContents(Sec, Res); 286 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 287 return EC; 288 } 289 290 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 291 const coff_section *Sec = toSec(Ref); 292 return Sec->getAlignment(); 293 } 294 295 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 296 return false; 297 } 298 299 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 300 const coff_section *Sec = toSec(Ref); 301 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 302 } 303 304 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 305 const coff_section *Sec = toSec(Ref); 306 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 307 } 308 309 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 310 const coff_section *Sec = toSec(Ref); 311 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 312 COFF::IMAGE_SCN_MEM_READ | 313 COFF::IMAGE_SCN_MEM_WRITE; 314 return (Sec->Characteristics & BssFlags) == BssFlags; 315 } 316 317 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 318 uintptr_t Offset = 319 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 320 assert((Offset % sizeof(coff_section)) == 0); 321 return (Offset / sizeof(coff_section)) + 1; 322 } 323 324 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 325 const coff_section *Sec = toSec(Ref); 326 // In COFF, a virtual section won't have any in-file 327 // content, so the file pointer to the content will be zero. 328 return Sec->PointerToRawData == 0; 329 } 330 331 static uint32_t getNumberOfRelocations(const coff_section *Sec, 332 MemoryBufferRef M, const uint8_t *base) { 333 // The field for the number of relocations in COFF section table is only 334 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 335 // NumberOfRelocations field, and the actual relocation count is stored in the 336 // VirtualAddress field in the first relocation entry. 337 if (Sec->hasExtendedRelocations()) { 338 const coff_relocation *FirstReloc; 339 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 340 base + Sec->PointerToRelocations))) 341 return 0; 342 // -1 to exclude this first relocation entry. 343 return FirstReloc->VirtualAddress - 1; 344 } 345 return Sec->NumberOfRelocations; 346 } 347 348 static const coff_relocation * 349 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 350 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 351 if (!NumRelocs) 352 return nullptr; 353 auto begin = reinterpret_cast<const coff_relocation *>( 354 Base + Sec->PointerToRelocations); 355 if (Sec->hasExtendedRelocations()) { 356 // Skip the first relocation entry repurposed to store the number of 357 // relocations. 358 begin++; 359 } 360 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 361 return nullptr; 362 return begin; 363 } 364 365 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 366 const coff_section *Sec = toSec(Ref); 367 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 368 if (begin && Sec->VirtualAddress != 0) 369 report_fatal_error("Sections with relocations should have an address of 0"); 370 DataRefImpl Ret; 371 Ret.p = reinterpret_cast<uintptr_t>(begin); 372 return relocation_iterator(RelocationRef(Ret, this)); 373 } 374 375 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 376 const coff_section *Sec = toSec(Ref); 377 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 378 if (I) 379 I += getNumberOfRelocations(Sec, Data, base()); 380 DataRefImpl Ret; 381 Ret.p = reinterpret_cast<uintptr_t>(I); 382 return relocation_iterator(RelocationRef(Ret, this)); 383 } 384 385 // Initialize the pointer to the symbol table. 386 std::error_code COFFObjectFile::initSymbolTablePtr() { 387 if (COFFHeader) 388 if (std::error_code EC = getObject( 389 SymbolTable16, Data, base() + getPointerToSymbolTable(), 390 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 391 return EC; 392 393 if (COFFBigObjHeader) 394 if (std::error_code EC = getObject( 395 SymbolTable32, Data, base() + getPointerToSymbolTable(), 396 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 397 return EC; 398 399 // Find string table. The first four byte of the string table contains the 400 // total size of the string table, including the size field itself. If the 401 // string table is empty, the value of the first four byte would be 4. 402 uint32_t StringTableOffset = getPointerToSymbolTable() + 403 getNumberOfSymbols() * getSymbolTableEntrySize(); 404 const uint8_t *StringTableAddr = base() + StringTableOffset; 405 const ulittle32_t *StringTableSizePtr; 406 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 407 return EC; 408 StringTableSize = *StringTableSizePtr; 409 if (std::error_code EC = 410 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 411 return EC; 412 413 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 414 // tools like cvtres write a size of 0 for an empty table instead of 4. 415 if (StringTableSize < 4) 416 StringTableSize = 4; 417 418 // Check that the string table is null terminated if has any in it. 419 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 420 return object_error::parse_failed; 421 return std::error_code(); 422 } 423 424 uint64_t COFFObjectFile::getImageBase() const { 425 if (PE32Header) 426 return PE32Header->ImageBase; 427 else if (PE32PlusHeader) 428 return PE32PlusHeader->ImageBase; 429 // This actually comes up in practice. 430 return 0; 431 } 432 433 // Returns the file offset for the given VA. 434 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 435 uint64_t ImageBase = getImageBase(); 436 uint64_t Rva = Addr - ImageBase; 437 assert(Rva <= UINT32_MAX); 438 return getRvaPtr((uint32_t)Rva, Res); 439 } 440 441 // Returns the file offset for the given RVA. 442 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 443 for (const SectionRef &S : sections()) { 444 const coff_section *Section = getCOFFSection(S); 445 uint32_t SectionStart = Section->VirtualAddress; 446 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 447 if (SectionStart <= Addr && Addr < SectionEnd) { 448 uint32_t Offset = Addr - SectionStart; 449 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 450 return std::error_code(); 451 } 452 } 453 return object_error::parse_failed; 454 } 455 456 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 457 // table entry. 458 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 459 StringRef &Name) const { 460 uintptr_t IntPtr = 0; 461 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 462 return EC; 463 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 464 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 465 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 466 return std::error_code(); 467 } 468 469 // Find the import table. 470 std::error_code COFFObjectFile::initImportTablePtr() { 471 // First, we get the RVA of the import table. If the file lacks a pointer to 472 // the import table, do nothing. 473 const data_directory *DataEntry; 474 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 475 return std::error_code(); 476 477 // Do nothing if the pointer to import table is NULL. 478 if (DataEntry->RelativeVirtualAddress == 0) 479 return std::error_code(); 480 481 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 482 // -1 because the last entry is the null entry. 483 NumberOfImportDirectory = DataEntry->Size / 484 sizeof(import_directory_table_entry) - 1; 485 486 // Find the section that contains the RVA. This is needed because the RVA is 487 // the import table's memory address which is different from its file offset. 488 uintptr_t IntPtr = 0; 489 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 490 return EC; 491 ImportDirectory = reinterpret_cast< 492 const import_directory_table_entry *>(IntPtr); 493 return std::error_code(); 494 } 495 496 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 497 std::error_code COFFObjectFile::initDelayImportTablePtr() { 498 const data_directory *DataEntry; 499 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 500 return std::error_code(); 501 if (DataEntry->RelativeVirtualAddress == 0) 502 return std::error_code(); 503 504 uint32_t RVA = DataEntry->RelativeVirtualAddress; 505 NumberOfDelayImportDirectory = DataEntry->Size / 506 sizeof(delay_import_directory_table_entry) - 1; 507 508 uintptr_t IntPtr = 0; 509 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 510 return EC; 511 DelayImportDirectory = reinterpret_cast< 512 const delay_import_directory_table_entry *>(IntPtr); 513 return std::error_code(); 514 } 515 516 // Find the export table. 517 std::error_code COFFObjectFile::initExportTablePtr() { 518 // First, we get the RVA of the export table. If the file lacks a pointer to 519 // the export table, do nothing. 520 const data_directory *DataEntry; 521 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 522 return std::error_code(); 523 524 // Do nothing if the pointer to export table is NULL. 525 if (DataEntry->RelativeVirtualAddress == 0) 526 return std::error_code(); 527 528 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 529 uintptr_t IntPtr = 0; 530 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 531 return EC; 532 ExportDirectory = 533 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 534 return std::error_code(); 535 } 536 537 std::error_code COFFObjectFile::initBaseRelocPtr() { 538 const data_directory *DataEntry; 539 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 540 return std::error_code(); 541 if (DataEntry->RelativeVirtualAddress == 0) 542 return std::error_code(); 543 544 uintptr_t IntPtr = 0; 545 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 546 return EC; 547 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 548 IntPtr); 549 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 550 IntPtr + DataEntry->Size); 551 return std::error_code(); 552 } 553 554 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 555 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 556 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 557 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 558 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 559 ImportDirectory(nullptr), NumberOfImportDirectory(0), 560 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 561 ExportDirectory(nullptr), BaseRelocHeader(nullptr), 562 BaseRelocEnd(nullptr) { 563 // Check that we at least have enough room for a header. 564 if (!checkSize(Data, EC, sizeof(coff_file_header))) 565 return; 566 567 // The current location in the file where we are looking at. 568 uint64_t CurPtr = 0; 569 570 // PE header is optional and is present only in executables. If it exists, 571 // it is placed right after COFF header. 572 bool HasPEHeader = false; 573 574 // Check if this is a PE/COFF file. 575 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 576 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 577 // PE signature to find 'normal' COFF header. 578 const auto *DH = reinterpret_cast<const dos_header *>(base()); 579 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 580 CurPtr = DH->AddressOfNewExeHeader; 581 // Check the PE magic bytes. ("PE\0\0") 582 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 583 EC = object_error::parse_failed; 584 return; 585 } 586 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 587 HasPEHeader = true; 588 } 589 } 590 591 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 592 return; 593 594 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 595 // import libraries share a common prefix but bigobj is more restrictive. 596 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 597 COFFHeader->NumberOfSections == uint16_t(0xffff) && 598 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 599 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 600 return; 601 602 // Verify that we are dealing with bigobj. 603 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 604 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 605 sizeof(COFF::BigObjMagic)) == 0) { 606 COFFHeader = nullptr; 607 CurPtr += sizeof(coff_bigobj_file_header); 608 } else { 609 // It's not a bigobj. 610 COFFBigObjHeader = nullptr; 611 } 612 } 613 if (COFFHeader) { 614 // The prior checkSize call may have failed. This isn't a hard error 615 // because we were just trying to sniff out bigobj. 616 EC = std::error_code(); 617 CurPtr += sizeof(coff_file_header); 618 619 if (COFFHeader->isImportLibrary()) 620 return; 621 } 622 623 if (HasPEHeader) { 624 const pe32_header *Header; 625 if ((EC = getObject(Header, Data, base() + CurPtr))) 626 return; 627 628 const uint8_t *DataDirAddr; 629 uint64_t DataDirSize; 630 if (Header->Magic == COFF::PE32Header::PE32) { 631 PE32Header = Header; 632 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 633 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 634 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 635 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 636 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 637 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 638 } else { 639 // It's neither PE32 nor PE32+. 640 EC = object_error::parse_failed; 641 return; 642 } 643 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 644 return; 645 CurPtr += COFFHeader->SizeOfOptionalHeader; 646 } 647 648 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 649 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 650 return; 651 652 // Initialize the pointer to the symbol table. 653 if (getPointerToSymbolTable() != 0) { 654 if ((EC = initSymbolTablePtr())) 655 return; 656 } else { 657 // We had better not have any symbols if we don't have a symbol table. 658 if (getNumberOfSymbols() != 0) { 659 EC = object_error::parse_failed; 660 return; 661 } 662 } 663 664 // Initialize the pointer to the beginning of the import table. 665 if ((EC = initImportTablePtr())) 666 return; 667 if ((EC = initDelayImportTablePtr())) 668 return; 669 670 // Initialize the pointer to the export table. 671 if ((EC = initExportTablePtr())) 672 return; 673 674 // Initialize the pointer to the base relocation table. 675 if ((EC = initBaseRelocPtr())) 676 return; 677 678 EC = std::error_code(); 679 } 680 681 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 682 DataRefImpl Ret; 683 Ret.p = getSymbolTable(); 684 return basic_symbol_iterator(SymbolRef(Ret, this)); 685 } 686 687 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 688 // The symbol table ends where the string table begins. 689 DataRefImpl Ret; 690 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 691 return basic_symbol_iterator(SymbolRef(Ret, this)); 692 } 693 694 import_directory_iterator COFFObjectFile::import_directory_begin() const { 695 return import_directory_iterator( 696 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 697 } 698 699 import_directory_iterator COFFObjectFile::import_directory_end() const { 700 return import_directory_iterator( 701 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); 702 } 703 704 delay_import_directory_iterator 705 COFFObjectFile::delay_import_directory_begin() const { 706 return delay_import_directory_iterator( 707 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 708 } 709 710 delay_import_directory_iterator 711 COFFObjectFile::delay_import_directory_end() const { 712 return delay_import_directory_iterator( 713 DelayImportDirectoryEntryRef( 714 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 715 } 716 717 export_directory_iterator COFFObjectFile::export_directory_begin() const { 718 return export_directory_iterator( 719 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 720 } 721 722 export_directory_iterator COFFObjectFile::export_directory_end() const { 723 if (!ExportDirectory) 724 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 725 ExportDirectoryEntryRef Ref(ExportDirectory, 726 ExportDirectory->AddressTableEntries, this); 727 return export_directory_iterator(Ref); 728 } 729 730 section_iterator COFFObjectFile::section_begin() const { 731 DataRefImpl Ret; 732 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 733 return section_iterator(SectionRef(Ret, this)); 734 } 735 736 section_iterator COFFObjectFile::section_end() const { 737 DataRefImpl Ret; 738 int NumSections = 739 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 740 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 741 return section_iterator(SectionRef(Ret, this)); 742 } 743 744 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 745 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 746 } 747 748 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 749 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 750 } 751 752 uint8_t COFFObjectFile::getBytesInAddress() const { 753 return getArch() == Triple::x86_64 ? 8 : 4; 754 } 755 756 StringRef COFFObjectFile::getFileFormatName() const { 757 switch(getMachine()) { 758 case COFF::IMAGE_FILE_MACHINE_I386: 759 return "COFF-i386"; 760 case COFF::IMAGE_FILE_MACHINE_AMD64: 761 return "COFF-x86-64"; 762 case COFF::IMAGE_FILE_MACHINE_ARMNT: 763 return "COFF-ARM"; 764 case COFF::IMAGE_FILE_MACHINE_ARM64: 765 return "COFF-ARM64"; 766 default: 767 return "COFF-<unknown arch>"; 768 } 769 } 770 771 unsigned COFFObjectFile::getArch() const { 772 switch (getMachine()) { 773 case COFF::IMAGE_FILE_MACHINE_I386: 774 return Triple::x86; 775 case COFF::IMAGE_FILE_MACHINE_AMD64: 776 return Triple::x86_64; 777 case COFF::IMAGE_FILE_MACHINE_ARMNT: 778 return Triple::thumb; 779 case COFF::IMAGE_FILE_MACHINE_ARM64: 780 return Triple::aarch64; 781 default: 782 return Triple::UnknownArch; 783 } 784 } 785 786 iterator_range<import_directory_iterator> 787 COFFObjectFile::import_directories() const { 788 return make_range(import_directory_begin(), import_directory_end()); 789 } 790 791 iterator_range<delay_import_directory_iterator> 792 COFFObjectFile::delay_import_directories() const { 793 return make_range(delay_import_directory_begin(), 794 delay_import_directory_end()); 795 } 796 797 iterator_range<export_directory_iterator> 798 COFFObjectFile::export_directories() const { 799 return make_range(export_directory_begin(), export_directory_end()); 800 } 801 802 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 803 return make_range(base_reloc_begin(), base_reloc_end()); 804 } 805 806 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 807 Res = PE32Header; 808 return std::error_code(); 809 } 810 811 std::error_code 812 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 813 Res = PE32PlusHeader; 814 return std::error_code(); 815 } 816 817 std::error_code 818 COFFObjectFile::getDataDirectory(uint32_t Index, 819 const data_directory *&Res) const { 820 // Error if if there's no data directory or the index is out of range. 821 if (!DataDirectory) { 822 Res = nullptr; 823 return object_error::parse_failed; 824 } 825 assert(PE32Header || PE32PlusHeader); 826 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 827 : PE32PlusHeader->NumberOfRvaAndSize; 828 if (Index >= NumEnt) { 829 Res = nullptr; 830 return object_error::parse_failed; 831 } 832 Res = &DataDirectory[Index]; 833 return std::error_code(); 834 } 835 836 std::error_code COFFObjectFile::getSection(int32_t Index, 837 const coff_section *&Result) const { 838 Result = nullptr; 839 if (COFF::isReservedSectionNumber(Index)) 840 return std::error_code(); 841 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 842 // We already verified the section table data, so no need to check again. 843 Result = SectionTable + (Index - 1); 844 return std::error_code(); 845 } 846 return object_error::parse_failed; 847 } 848 849 std::error_code COFFObjectFile::getString(uint32_t Offset, 850 StringRef &Result) const { 851 if (StringTableSize <= 4) 852 // Tried to get a string from an empty string table. 853 return object_error::parse_failed; 854 if (Offset >= StringTableSize) 855 return object_error::unexpected_eof; 856 Result = StringRef(StringTable + Offset); 857 return std::error_code(); 858 } 859 860 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 861 StringRef &Res) const { 862 return getSymbolName(Symbol.getGeneric(), Res); 863 } 864 865 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol, 866 StringRef &Res) const { 867 // Check for string table entry. First 4 bytes are 0. 868 if (Symbol->Name.Offset.Zeroes == 0) { 869 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res)) 870 return EC; 871 return std::error_code(); 872 } 873 874 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 875 // Null terminated, let ::strlen figure out the length. 876 Res = StringRef(Symbol->Name.ShortName); 877 else 878 // Not null terminated, use all 8 bytes. 879 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize); 880 return std::error_code(); 881 } 882 883 ArrayRef<uint8_t> 884 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 885 const uint8_t *Aux = nullptr; 886 887 size_t SymbolSize = getSymbolTableEntrySize(); 888 if (Symbol.getNumberOfAuxSymbols() > 0) { 889 // AUX data comes immediately after the symbol in COFF 890 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 891 # ifndef NDEBUG 892 // Verify that the Aux symbol points to a valid entry in the symbol table. 893 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 894 if (Offset < getPointerToSymbolTable() || 895 Offset >= 896 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 897 report_fatal_error("Aux Symbol data was outside of symbol table."); 898 899 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 900 "Aux Symbol data did not point to the beginning of a symbol"); 901 # endif 902 } 903 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 904 } 905 906 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 907 StringRef &Res) const { 908 StringRef Name; 909 if (Sec->Name[COFF::NameSize - 1] == 0) 910 // Null terminated, let ::strlen figure out the length. 911 Name = Sec->Name; 912 else 913 // Not null terminated, use all 8 bytes. 914 Name = StringRef(Sec->Name, COFF::NameSize); 915 916 // Check for string table entry. First byte is '/'. 917 if (Name.startswith("/")) { 918 uint32_t Offset; 919 if (Name.startswith("//")) { 920 if (decodeBase64StringEntry(Name.substr(2), Offset)) 921 return object_error::parse_failed; 922 } else { 923 if (Name.substr(1).getAsInteger(10, Offset)) 924 return object_error::parse_failed; 925 } 926 if (std::error_code EC = getString(Offset, Name)) 927 return EC; 928 } 929 930 Res = Name; 931 return std::error_code(); 932 } 933 934 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 935 // SizeOfRawData and VirtualSize change what they represent depending on 936 // whether or not we have an executable image. 937 // 938 // For object files, SizeOfRawData contains the size of section's data; 939 // VirtualSize should be zero but isn't due to buggy COFF writers. 940 // 941 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 942 // actual section size is in VirtualSize. It is possible for VirtualSize to 943 // be greater than SizeOfRawData; the contents past that point should be 944 // considered to be zero. 945 if (getDOSHeader()) 946 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 947 return Sec->SizeOfRawData; 948 } 949 950 std::error_code 951 COFFObjectFile::getSectionContents(const coff_section *Sec, 952 ArrayRef<uint8_t> &Res) const { 953 // PointerToRawData and SizeOfRawData won't make sense for BSS sections, 954 // don't do anything interesting for them. 955 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && 956 "BSS sections don't have contents!"); 957 // The only thing that we need to verify is that the contents is contained 958 // within the file bounds. We don't need to make sure it doesn't cover other 959 // data, as there's nothing that says that is not allowed. 960 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 961 uint32_t SectionSize = getSectionSize(Sec); 962 if (checkOffset(Data, ConStart, SectionSize)) 963 return object_error::parse_failed; 964 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 965 return std::error_code(); 966 } 967 968 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 969 return reinterpret_cast<const coff_relocation*>(Rel.p); 970 } 971 972 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 973 Rel.p = reinterpret_cast<uintptr_t>( 974 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 975 } 976 977 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 978 const coff_relocation *R = toRel(Rel); 979 return R->VirtualAddress; 980 } 981 982 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 983 const coff_relocation *R = toRel(Rel); 984 DataRefImpl Ref; 985 if (R->SymbolTableIndex >= getNumberOfSymbols()) 986 return symbol_end(); 987 if (SymbolTable16) 988 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 989 else if (SymbolTable32) 990 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 991 else 992 llvm_unreachable("no symbol table pointer!"); 993 return symbol_iterator(SymbolRef(Ref, this)); 994 } 995 996 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 997 const coff_relocation* R = toRel(Rel); 998 return R->Type; 999 } 1000 1001 const coff_section * 1002 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1003 return toSec(Section.getRawDataRefImpl()); 1004 } 1005 1006 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1007 if (SymbolTable16) 1008 return toSymb<coff_symbol16>(Ref); 1009 if (SymbolTable32) 1010 return toSymb<coff_symbol32>(Ref); 1011 llvm_unreachable("no symbol table pointer!"); 1012 } 1013 1014 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1015 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1016 } 1017 1018 const coff_relocation * 1019 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1020 return toRel(Reloc.getRawDataRefImpl()); 1021 } 1022 1023 iterator_range<const coff_relocation *> 1024 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1025 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 1026 const coff_relocation *E = I; 1027 if (I) 1028 E += getNumberOfRelocations(Sec, Data, base()); 1029 return make_range(I, E); 1030 } 1031 1032 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1033 case COFF::reloc_type: \ 1034 Res = #reloc_type; \ 1035 break; 1036 1037 void COFFObjectFile::getRelocationTypeName( 1038 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1039 const coff_relocation *Reloc = toRel(Rel); 1040 StringRef Res; 1041 switch (getMachine()) { 1042 case COFF::IMAGE_FILE_MACHINE_AMD64: 1043 switch (Reloc->Type) { 1044 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1045 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1046 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1047 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1048 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1049 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1050 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1051 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1052 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1053 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1054 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1055 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1056 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1057 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1058 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1059 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1060 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1061 default: 1062 Res = "Unknown"; 1063 } 1064 break; 1065 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1066 switch (Reloc->Type) { 1067 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1068 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1069 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1070 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1071 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1072 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1073 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1074 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1075 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1076 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1077 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1078 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1079 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1080 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1081 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1082 default: 1083 Res = "Unknown"; 1084 } 1085 break; 1086 case COFF::IMAGE_FILE_MACHINE_I386: 1087 switch (Reloc->Type) { 1088 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1089 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1090 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1091 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1092 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1093 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1094 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1095 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1096 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1097 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1098 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1099 default: 1100 Res = "Unknown"; 1101 } 1102 break; 1103 default: 1104 Res = "Unknown"; 1105 } 1106 Result.append(Res.begin(), Res.end()); 1107 } 1108 1109 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1110 1111 bool COFFObjectFile::isRelocatableObject() const { 1112 return !DataDirectory; 1113 } 1114 1115 bool ImportDirectoryEntryRef:: 1116 operator==(const ImportDirectoryEntryRef &Other) const { 1117 return ImportTable == Other.ImportTable && Index == Other.Index; 1118 } 1119 1120 void ImportDirectoryEntryRef::moveNext() { 1121 ++Index; 1122 } 1123 1124 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1125 const import_directory_table_entry *&Result) const { 1126 Result = ImportTable + Index; 1127 return std::error_code(); 1128 } 1129 1130 static imported_symbol_iterator 1131 makeImportedSymbolIterator(const COFFObjectFile *Object, 1132 uintptr_t Ptr, int Index) { 1133 if (Object->getBytesInAddress() == 4) { 1134 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1135 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1136 } 1137 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1138 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1139 } 1140 1141 static imported_symbol_iterator 1142 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1143 uintptr_t IntPtr = 0; 1144 Object->getRvaPtr(RVA, IntPtr); 1145 return makeImportedSymbolIterator(Object, IntPtr, 0); 1146 } 1147 1148 static imported_symbol_iterator 1149 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1150 uintptr_t IntPtr = 0; 1151 Object->getRvaPtr(RVA, IntPtr); 1152 // Forward the pointer to the last entry which is null. 1153 int Index = 0; 1154 if (Object->getBytesInAddress() == 4) { 1155 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1156 while (*Entry++) 1157 ++Index; 1158 } else { 1159 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1160 while (*Entry++) 1161 ++Index; 1162 } 1163 return makeImportedSymbolIterator(Object, IntPtr, Index); 1164 } 1165 1166 imported_symbol_iterator 1167 ImportDirectoryEntryRef::imported_symbol_begin() const { 1168 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1169 OwningObject); 1170 } 1171 1172 imported_symbol_iterator 1173 ImportDirectoryEntryRef::imported_symbol_end() const { 1174 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1175 OwningObject); 1176 } 1177 1178 iterator_range<imported_symbol_iterator> 1179 ImportDirectoryEntryRef::imported_symbols() const { 1180 return make_range(imported_symbol_begin(), imported_symbol_end()); 1181 } 1182 1183 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1184 uintptr_t IntPtr = 0; 1185 if (std::error_code EC = 1186 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1187 return EC; 1188 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1189 return std::error_code(); 1190 } 1191 1192 std::error_code 1193 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1194 Result = ImportTable[Index].ImportLookupTableRVA; 1195 return std::error_code(); 1196 } 1197 1198 std::error_code 1199 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1200 Result = ImportTable[Index].ImportAddressTableRVA; 1201 return std::error_code(); 1202 } 1203 1204 std::error_code ImportDirectoryEntryRef::getImportLookupEntry( 1205 const import_lookup_table_entry32 *&Result) const { 1206 uintptr_t IntPtr = 0; 1207 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; 1208 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1209 return EC; 1210 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr); 1211 return std::error_code(); 1212 } 1213 1214 bool DelayImportDirectoryEntryRef:: 1215 operator==(const DelayImportDirectoryEntryRef &Other) const { 1216 return Table == Other.Table && Index == Other.Index; 1217 } 1218 1219 void DelayImportDirectoryEntryRef::moveNext() { 1220 ++Index; 1221 } 1222 1223 imported_symbol_iterator 1224 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1225 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1226 OwningObject); 1227 } 1228 1229 imported_symbol_iterator 1230 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1231 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1232 OwningObject); 1233 } 1234 1235 iterator_range<imported_symbol_iterator> 1236 DelayImportDirectoryEntryRef::imported_symbols() const { 1237 return make_range(imported_symbol_begin(), imported_symbol_end()); 1238 } 1239 1240 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1241 uintptr_t IntPtr = 0; 1242 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1243 return EC; 1244 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1245 return std::error_code(); 1246 } 1247 1248 std::error_code DelayImportDirectoryEntryRef:: 1249 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1250 Result = Table; 1251 return std::error_code(); 1252 } 1253 1254 std::error_code DelayImportDirectoryEntryRef:: 1255 getImportAddress(int AddrIndex, uint64_t &Result) const { 1256 uint32_t RVA = Table[Index].DelayImportAddressTable + 1257 AddrIndex * (OwningObject->is64() ? 8 : 4); 1258 uintptr_t IntPtr = 0; 1259 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1260 return EC; 1261 if (OwningObject->is64()) 1262 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1263 else 1264 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1265 return std::error_code(); 1266 } 1267 1268 bool ExportDirectoryEntryRef:: 1269 operator==(const ExportDirectoryEntryRef &Other) const { 1270 return ExportTable == Other.ExportTable && Index == Other.Index; 1271 } 1272 1273 void ExportDirectoryEntryRef::moveNext() { 1274 ++Index; 1275 } 1276 1277 // Returns the name of the current export symbol. If the symbol is exported only 1278 // by ordinal, the empty string is set as a result. 1279 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1280 uintptr_t IntPtr = 0; 1281 if (std::error_code EC = 1282 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1283 return EC; 1284 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1285 return std::error_code(); 1286 } 1287 1288 // Returns the starting ordinal number. 1289 std::error_code 1290 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1291 Result = ExportTable->OrdinalBase; 1292 return std::error_code(); 1293 } 1294 1295 // Returns the export ordinal of the current export symbol. 1296 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1297 Result = ExportTable->OrdinalBase + Index; 1298 return std::error_code(); 1299 } 1300 1301 // Returns the address of the current export symbol. 1302 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1303 uintptr_t IntPtr = 0; 1304 if (std::error_code EC = 1305 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1306 return EC; 1307 const export_address_table_entry *entry = 1308 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1309 Result = entry[Index].ExportRVA; 1310 return std::error_code(); 1311 } 1312 1313 // Returns the name of the current export symbol. If the symbol is exported only 1314 // by ordinal, the empty string is set as a result. 1315 std::error_code 1316 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1317 uintptr_t IntPtr = 0; 1318 if (std::error_code EC = 1319 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1320 return EC; 1321 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1322 1323 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1324 int Offset = 0; 1325 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1326 I < E; ++I, ++Offset) { 1327 if (*I != Index) 1328 continue; 1329 if (std::error_code EC = 1330 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1331 return EC; 1332 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1333 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1334 return EC; 1335 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1336 return std::error_code(); 1337 } 1338 Result = ""; 1339 return std::error_code(); 1340 } 1341 1342 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1343 const data_directory *DataEntry; 1344 if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 1345 return EC; 1346 uint32_t RVA; 1347 if (auto EC = getExportRVA(RVA)) 1348 return EC; 1349 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1350 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1351 Result = (Begin <= RVA && RVA < End); 1352 return std::error_code(); 1353 } 1354 1355 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1356 uint32_t RVA; 1357 if (auto EC = getExportRVA(RVA)) 1358 return EC; 1359 uintptr_t IntPtr = 0; 1360 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1361 return EC; 1362 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1363 return std::error_code(); 1364 } 1365 1366 bool ImportedSymbolRef:: 1367 operator==(const ImportedSymbolRef &Other) const { 1368 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1369 && Index == Other.Index; 1370 } 1371 1372 void ImportedSymbolRef::moveNext() { 1373 ++Index; 1374 } 1375 1376 std::error_code 1377 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1378 uint32_t RVA; 1379 if (Entry32) { 1380 // If a symbol is imported only by ordinal, it has no name. 1381 if (Entry32[Index].isOrdinal()) 1382 return std::error_code(); 1383 RVA = Entry32[Index].getHintNameRVA(); 1384 } else { 1385 if (Entry64[Index].isOrdinal()) 1386 return std::error_code(); 1387 RVA = Entry64[Index].getHintNameRVA(); 1388 } 1389 uintptr_t IntPtr = 0; 1390 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1391 return EC; 1392 // +2 because the first two bytes is hint. 1393 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1394 return std::error_code(); 1395 } 1396 1397 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1398 uint32_t RVA; 1399 if (Entry32) { 1400 if (Entry32[Index].isOrdinal()) { 1401 Result = Entry32[Index].getOrdinal(); 1402 return std::error_code(); 1403 } 1404 RVA = Entry32[Index].getHintNameRVA(); 1405 } else { 1406 if (Entry64[Index].isOrdinal()) { 1407 Result = Entry64[Index].getOrdinal(); 1408 return std::error_code(); 1409 } 1410 RVA = Entry64[Index].getHintNameRVA(); 1411 } 1412 uintptr_t IntPtr = 0; 1413 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1414 return EC; 1415 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1416 return std::error_code(); 1417 } 1418 1419 ErrorOr<std::unique_ptr<COFFObjectFile>> 1420 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1421 std::error_code EC; 1422 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1423 if (EC) 1424 return EC; 1425 return std::move(Ret); 1426 } 1427 1428 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1429 return Header == Other.Header && Index == Other.Index; 1430 } 1431 1432 void BaseRelocRef::moveNext() { 1433 // Header->BlockSize is the size of the current block, including the 1434 // size of the header itself. 1435 uint32_t Size = sizeof(*Header) + 1436 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1437 if (Size == Header->BlockSize) { 1438 // .reloc contains a list of base relocation blocks. Each block 1439 // consists of the header followed by entries. The header contains 1440 // how many entories will follow. When we reach the end of the 1441 // current block, proceed to the next block. 1442 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1443 reinterpret_cast<const uint8_t *>(Header) + Size); 1444 Index = 0; 1445 } else { 1446 ++Index; 1447 } 1448 } 1449 1450 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1451 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1452 Type = Entry[Index].getType(); 1453 return std::error_code(); 1454 } 1455 1456 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1457 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1458 Result = Header->PageRVA + Entry[Index].getOffset(); 1459 return std::error_code(); 1460 } 1461