xref: /llvm-project/llvm/lib/Object/COFFObjectFile.cpp (revision e3093808fb00e01bb1acae542f271f4c802e69b1)
1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the COFFObjectFile class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/BinaryFormat/COFF.h"
19 #include "llvm/Object/Binary.h"
20 #include "llvm/Object/COFF.h"
21 #include "llvm/Object/Error.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/Support/BinaryStreamReader.h"
24 #include "llvm/Support/Endian.h"
25 #include "llvm/Support/Error.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/MemoryBuffer.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <cstddef>
32 #include <cstdint>
33 #include <cstring>
34 #include <limits>
35 #include <memory>
36 #include <system_error>
37 
38 using namespace llvm;
39 using namespace object;
40 
41 using support::ulittle16_t;
42 using support::ulittle32_t;
43 using support::ulittle64_t;
44 using support::little16_t;
45 
46 // Returns false if size is greater than the buffer size. And sets ec.
47 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
48   if (M.getBufferSize() < Size) {
49     EC = object_error::unexpected_eof;
50     return false;
51   }
52   return true;
53 }
54 
55 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
56 // Returns unexpected_eof if error.
57 template <typename T>
58 static std::error_code getObject(const T *&Obj, MemoryBufferRef M,
59                                  const void *Ptr,
60                                  const uint64_t Size = sizeof(T)) {
61   uintptr_t Addr = uintptr_t(Ptr);
62   if (std::error_code EC = Binary::checkOffset(M, Addr, Size))
63     return EC;
64   Obj = reinterpret_cast<const T *>(Addr);
65   return std::error_code();
66 }
67 
68 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
69 // prefixed slashes.
70 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
71   assert(Str.size() <= 6 && "String too long, possible overflow.");
72   if (Str.size() > 6)
73     return true;
74 
75   uint64_t Value = 0;
76   while (!Str.empty()) {
77     unsigned CharVal;
78     if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
79       CharVal = Str[0] - 'A';
80     else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
81       CharVal = Str[0] - 'a' + 26;
82     else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
83       CharVal = Str[0] - '0' + 52;
84     else if (Str[0] == '+') // 62
85       CharVal = 62;
86     else if (Str[0] == '/') // 63
87       CharVal = 63;
88     else
89       return true;
90 
91     Value = (Value * 64) + CharVal;
92     Str = Str.substr(1);
93   }
94 
95   if (Value > std::numeric_limits<uint32_t>::max())
96     return true;
97 
98   Result = static_cast<uint32_t>(Value);
99   return false;
100 }
101 
102 template <typename coff_symbol_type>
103 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
104   const coff_symbol_type *Addr =
105       reinterpret_cast<const coff_symbol_type *>(Ref.p);
106 
107   assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr)));
108 #ifndef NDEBUG
109   // Verify that the symbol points to a valid entry in the symbol table.
110   uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base());
111 
112   assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
113          "Symbol did not point to the beginning of a symbol");
114 #endif
115 
116   return Addr;
117 }
118 
119 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
120   const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
121 
122 #ifndef NDEBUG
123   // Verify that the section points to a valid entry in the section table.
124   if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
125     report_fatal_error("Section was outside of section table.");
126 
127   uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable);
128   assert(Offset % sizeof(coff_section) == 0 &&
129          "Section did not point to the beginning of a section");
130 #endif
131 
132   return Addr;
133 }
134 
135 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
136   auto End = reinterpret_cast<uintptr_t>(StringTable);
137   if (SymbolTable16) {
138     const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
139     Symb += 1 + Symb->NumberOfAuxSymbols;
140     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
141   } else if (SymbolTable32) {
142     const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
143     Symb += 1 + Symb->NumberOfAuxSymbols;
144     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
145   } else {
146     llvm_unreachable("no symbol table pointer!");
147   }
148 }
149 
150 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
151   COFFSymbolRef Symb = getCOFFSymbol(Ref);
152   StringRef Result;
153   if (std::error_code EC = getSymbolName(Symb, Result))
154     return errorCodeToError(EC);
155   return Result;
156 }
157 
158 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
159   return getCOFFSymbol(Ref).getValue();
160 }
161 
162 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const {
163   // MSVC/link.exe seems to align symbols to the next-power-of-2
164   // up to 32 bytes.
165   COFFSymbolRef Symb = getCOFFSymbol(Ref);
166   return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue()));
167 }
168 
169 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
170   uint64_t Result = getSymbolValue(Ref);
171   COFFSymbolRef Symb = getCOFFSymbol(Ref);
172   int32_t SectionNumber = Symb.getSectionNumber();
173 
174   if (Symb.isAnyUndefined() || Symb.isCommon() ||
175       COFF::isReservedSectionNumber(SectionNumber))
176     return Result;
177 
178   const coff_section *Section = nullptr;
179   if (std::error_code EC = getSection(SectionNumber, Section))
180     return errorCodeToError(EC);
181   Result += Section->VirtualAddress;
182 
183   // The section VirtualAddress does not include ImageBase, and we want to
184   // return virtual addresses.
185   Result += getImageBase();
186 
187   return Result;
188 }
189 
190 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
191   COFFSymbolRef Symb = getCOFFSymbol(Ref);
192   int32_t SectionNumber = Symb.getSectionNumber();
193 
194   if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
195     return SymbolRef::ST_Function;
196   if (Symb.isAnyUndefined())
197     return SymbolRef::ST_Unknown;
198   if (Symb.isCommon())
199     return SymbolRef::ST_Data;
200   if (Symb.isFileRecord())
201     return SymbolRef::ST_File;
202 
203   // TODO: perhaps we need a new symbol type ST_Section.
204   if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
205     return SymbolRef::ST_Debug;
206 
207   if (!COFF::isReservedSectionNumber(SectionNumber))
208     return SymbolRef::ST_Data;
209 
210   return SymbolRef::ST_Other;
211 }
212 
213 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
214   COFFSymbolRef Symb = getCOFFSymbol(Ref);
215   uint32_t Result = SymbolRef::SF_None;
216 
217   if (Symb.isExternal() || Symb.isWeakExternal())
218     Result |= SymbolRef::SF_Global;
219 
220   if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) {
221     Result |= SymbolRef::SF_Weak;
222     if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS)
223       Result |= SymbolRef::SF_Undefined;
224   }
225 
226   if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
227     Result |= SymbolRef::SF_Absolute;
228 
229   if (Symb.isFileRecord())
230     Result |= SymbolRef::SF_FormatSpecific;
231 
232   if (Symb.isSectionDefinition())
233     Result |= SymbolRef::SF_FormatSpecific;
234 
235   if (Symb.isCommon())
236     Result |= SymbolRef::SF_Common;
237 
238   if (Symb.isUndefined())
239     Result |= SymbolRef::SF_Undefined;
240 
241   return Result;
242 }
243 
244 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
245   COFFSymbolRef Symb = getCOFFSymbol(Ref);
246   return Symb.getValue();
247 }
248 
249 Expected<section_iterator>
250 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
251   COFFSymbolRef Symb = getCOFFSymbol(Ref);
252   if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
253     return section_end();
254   const coff_section *Sec = nullptr;
255   if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec))
256     return errorCodeToError(EC);
257   DataRefImpl Ret;
258   Ret.p = reinterpret_cast<uintptr_t>(Sec);
259   return section_iterator(SectionRef(Ret, this));
260 }
261 
262 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
263   COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
264   return Symb.getSectionNumber();
265 }
266 
267 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
268   const coff_section *Sec = toSec(Ref);
269   Sec += 1;
270   Ref.p = reinterpret_cast<uintptr_t>(Sec);
271 }
272 
273 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref,
274                                                StringRef &Result) const {
275   const coff_section *Sec = toSec(Ref);
276   return getSectionName(Sec, Result);
277 }
278 
279 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
280   const coff_section *Sec = toSec(Ref);
281   uint64_t Result = Sec->VirtualAddress;
282 
283   // The section VirtualAddress does not include ImageBase, and we want to
284   // return virtual addresses.
285   Result += getImageBase();
286   return Result;
287 }
288 
289 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const {
290   return toSec(Sec) - SectionTable;
291 }
292 
293 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
294   return getSectionSize(toSec(Ref));
295 }
296 
297 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref,
298                                                    StringRef &Result) const {
299   const coff_section *Sec = toSec(Ref);
300   ArrayRef<uint8_t> Res;
301   std::error_code EC = getSectionContents(Sec, Res);
302   Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size());
303   return EC;
304 }
305 
306 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
307   const coff_section *Sec = toSec(Ref);
308   return Sec->getAlignment();
309 }
310 
311 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
312   return false;
313 }
314 
315 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
316   const coff_section *Sec = toSec(Ref);
317   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
318 }
319 
320 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
321   const coff_section *Sec = toSec(Ref);
322   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
323 }
324 
325 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
326   const coff_section *Sec = toSec(Ref);
327   const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
328                             COFF::IMAGE_SCN_MEM_READ |
329                             COFF::IMAGE_SCN_MEM_WRITE;
330   return (Sec->Characteristics & BssFlags) == BssFlags;
331 }
332 
333 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
334   uintptr_t Offset =
335       uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable);
336   assert((Offset % sizeof(coff_section)) == 0);
337   return (Offset / sizeof(coff_section)) + 1;
338 }
339 
340 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
341   const coff_section *Sec = toSec(Ref);
342   // In COFF, a virtual section won't have any in-file
343   // content, so the file pointer to the content will be zero.
344   return Sec->PointerToRawData == 0;
345 }
346 
347 static uint32_t getNumberOfRelocations(const coff_section *Sec,
348                                        MemoryBufferRef M, const uint8_t *base) {
349   // The field for the number of relocations in COFF section table is only
350   // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
351   // NumberOfRelocations field, and the actual relocation count is stored in the
352   // VirtualAddress field in the first relocation entry.
353   if (Sec->hasExtendedRelocations()) {
354     const coff_relocation *FirstReloc;
355     if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>(
356         base + Sec->PointerToRelocations)))
357       return 0;
358     // -1 to exclude this first relocation entry.
359     return FirstReloc->VirtualAddress - 1;
360   }
361   return Sec->NumberOfRelocations;
362 }
363 
364 static const coff_relocation *
365 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
366   uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
367   if (!NumRelocs)
368     return nullptr;
369   auto begin = reinterpret_cast<const coff_relocation *>(
370       Base + Sec->PointerToRelocations);
371   if (Sec->hasExtendedRelocations()) {
372     // Skip the first relocation entry repurposed to store the number of
373     // relocations.
374     begin++;
375   }
376   if (Binary::checkOffset(M, uintptr_t(begin),
377                           sizeof(coff_relocation) * NumRelocs))
378     return nullptr;
379   return begin;
380 }
381 
382 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
383   const coff_section *Sec = toSec(Ref);
384   const coff_relocation *begin = getFirstReloc(Sec, Data, base());
385   if (begin && Sec->VirtualAddress != 0)
386     report_fatal_error("Sections with relocations should have an address of 0");
387   DataRefImpl Ret;
388   Ret.p = reinterpret_cast<uintptr_t>(begin);
389   return relocation_iterator(RelocationRef(Ret, this));
390 }
391 
392 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
393   const coff_section *Sec = toSec(Ref);
394   const coff_relocation *I = getFirstReloc(Sec, Data, base());
395   if (I)
396     I += getNumberOfRelocations(Sec, Data, base());
397   DataRefImpl Ret;
398   Ret.p = reinterpret_cast<uintptr_t>(I);
399   return relocation_iterator(RelocationRef(Ret, this));
400 }
401 
402 // Initialize the pointer to the symbol table.
403 std::error_code COFFObjectFile::initSymbolTablePtr() {
404   if (COFFHeader)
405     if (std::error_code EC = getObject(
406             SymbolTable16, Data, base() + getPointerToSymbolTable(),
407             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
408       return EC;
409 
410   if (COFFBigObjHeader)
411     if (std::error_code EC = getObject(
412             SymbolTable32, Data, base() + getPointerToSymbolTable(),
413             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
414       return EC;
415 
416   // Find string table. The first four byte of the string table contains the
417   // total size of the string table, including the size field itself. If the
418   // string table is empty, the value of the first four byte would be 4.
419   uint32_t StringTableOffset = getPointerToSymbolTable() +
420                                getNumberOfSymbols() * getSymbolTableEntrySize();
421   const uint8_t *StringTableAddr = base() + StringTableOffset;
422   const ulittle32_t *StringTableSizePtr;
423   if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr))
424     return EC;
425   StringTableSize = *StringTableSizePtr;
426   if (std::error_code EC =
427           getObject(StringTable, Data, StringTableAddr, StringTableSize))
428     return EC;
429 
430   // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
431   // tools like cvtres write a size of 0 for an empty table instead of 4.
432   if (StringTableSize < 4)
433       StringTableSize = 4;
434 
435   // Check that the string table is null terminated if has any in it.
436   if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
437     return  object_error::parse_failed;
438   return std::error_code();
439 }
440 
441 uint64_t COFFObjectFile::getImageBase() const {
442   if (PE32Header)
443     return PE32Header->ImageBase;
444   else if (PE32PlusHeader)
445     return PE32PlusHeader->ImageBase;
446   // This actually comes up in practice.
447   return 0;
448 }
449 
450 // Returns the file offset for the given VA.
451 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
452   uint64_t ImageBase = getImageBase();
453   uint64_t Rva = Addr - ImageBase;
454   assert(Rva <= UINT32_MAX);
455   return getRvaPtr((uint32_t)Rva, Res);
456 }
457 
458 // Returns the file offset for the given RVA.
459 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const {
460   for (const SectionRef &S : sections()) {
461     const coff_section *Section = getCOFFSection(S);
462     uint32_t SectionStart = Section->VirtualAddress;
463     uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
464     if (SectionStart <= Addr && Addr < SectionEnd) {
465       uint32_t Offset = Addr - SectionStart;
466       Res = uintptr_t(base()) + Section->PointerToRawData + Offset;
467       return std::error_code();
468     }
469   }
470   return object_error::parse_failed;
471 }
472 
473 std::error_code
474 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size,
475                                      ArrayRef<uint8_t> &Contents) const {
476   for (const SectionRef &S : sections()) {
477     const coff_section *Section = getCOFFSection(S);
478     uint32_t SectionStart = Section->VirtualAddress;
479     // Check if this RVA is within the section bounds. Be careful about integer
480     // overflow.
481     uint32_t OffsetIntoSection = RVA - SectionStart;
482     if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize &&
483         Size <= Section->VirtualSize - OffsetIntoSection) {
484       uintptr_t Begin =
485           uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection;
486       Contents =
487           ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size);
488       return std::error_code();
489     }
490   }
491   return object_error::parse_failed;
492 }
493 
494 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
495 // table entry.
496 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
497                                             StringRef &Name) const {
498   uintptr_t IntPtr = 0;
499   if (std::error_code EC = getRvaPtr(Rva, IntPtr))
500     return EC;
501   const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
502   Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
503   Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
504   return std::error_code();
505 }
506 
507 std::error_code
508 COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir,
509                                 const codeview::DebugInfo *&PDBInfo,
510                                 StringRef &PDBFileName) const {
511   ArrayRef<uint8_t> InfoBytes;
512   if (std::error_code EC = getRvaAndSizeAsBytes(
513           DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes))
514     return EC;
515   if (InfoBytes.size() < sizeof(*PDBInfo) + 1)
516     return object_error::parse_failed;
517   PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data());
518   InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo));
519   PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()),
520                           InfoBytes.size());
521   // Truncate the name at the first null byte. Ignore any padding.
522   PDBFileName = PDBFileName.split('\0').first;
523   return std::error_code();
524 }
525 
526 std::error_code
527 COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo,
528                                 StringRef &PDBFileName) const {
529   for (const debug_directory &D : debug_directories())
530     if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW)
531       return getDebugPDBInfo(&D, PDBInfo, PDBFileName);
532   // If we get here, there is no PDB info to return.
533   PDBInfo = nullptr;
534   PDBFileName = StringRef();
535   return std::error_code();
536 }
537 
538 // Find the import table.
539 std::error_code COFFObjectFile::initImportTablePtr() {
540   // First, we get the RVA of the import table. If the file lacks a pointer to
541   // the import table, do nothing.
542   const data_directory *DataEntry;
543   if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry))
544     return std::error_code();
545 
546   // Do nothing if the pointer to import table is NULL.
547   if (DataEntry->RelativeVirtualAddress == 0)
548     return std::error_code();
549 
550   uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
551 
552   // Find the section that contains the RVA. This is needed because the RVA is
553   // the import table's memory address which is different from its file offset.
554   uintptr_t IntPtr = 0;
555   if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr))
556     return EC;
557   if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size))
558     return EC;
559   ImportDirectory = reinterpret_cast<
560       const coff_import_directory_table_entry *>(IntPtr);
561   return std::error_code();
562 }
563 
564 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
565 std::error_code COFFObjectFile::initDelayImportTablePtr() {
566   const data_directory *DataEntry;
567   if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry))
568     return std::error_code();
569   if (DataEntry->RelativeVirtualAddress == 0)
570     return std::error_code();
571 
572   uint32_t RVA = DataEntry->RelativeVirtualAddress;
573   NumberOfDelayImportDirectory = DataEntry->Size /
574       sizeof(delay_import_directory_table_entry) - 1;
575 
576   uintptr_t IntPtr = 0;
577   if (std::error_code EC = getRvaPtr(RVA, IntPtr))
578     return EC;
579   DelayImportDirectory = reinterpret_cast<
580       const delay_import_directory_table_entry *>(IntPtr);
581   return std::error_code();
582 }
583 
584 // Find the export table.
585 std::error_code COFFObjectFile::initExportTablePtr() {
586   // First, we get the RVA of the export table. If the file lacks a pointer to
587   // the export table, do nothing.
588   const data_directory *DataEntry;
589   if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
590     return std::error_code();
591 
592   // Do nothing if the pointer to export table is NULL.
593   if (DataEntry->RelativeVirtualAddress == 0)
594     return std::error_code();
595 
596   uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
597   uintptr_t IntPtr = 0;
598   if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr))
599     return EC;
600   ExportDirectory =
601       reinterpret_cast<const export_directory_table_entry *>(IntPtr);
602   return std::error_code();
603 }
604 
605 std::error_code COFFObjectFile::initBaseRelocPtr() {
606   const data_directory *DataEntry;
607   if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry))
608     return std::error_code();
609   if (DataEntry->RelativeVirtualAddress == 0)
610     return std::error_code();
611 
612   uintptr_t IntPtr = 0;
613   if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
614     return EC;
615   BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
616       IntPtr);
617   BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
618       IntPtr + DataEntry->Size);
619   // FIXME: Verify the section containing BaseRelocHeader has at least
620   // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
621   return std::error_code();
622 }
623 
624 std::error_code COFFObjectFile::initDebugDirectoryPtr() {
625   // Get the RVA of the debug directory. Do nothing if it does not exist.
626   const data_directory *DataEntry;
627   if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry))
628     return std::error_code();
629 
630   // Do nothing if the RVA is NULL.
631   if (DataEntry->RelativeVirtualAddress == 0)
632     return std::error_code();
633 
634   // Check that the size is a multiple of the entry size.
635   if (DataEntry->Size % sizeof(debug_directory) != 0)
636     return object_error::parse_failed;
637 
638   uintptr_t IntPtr = 0;
639   if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
640     return EC;
641   DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr);
642   DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(
643       IntPtr + DataEntry->Size);
644   // FIXME: Verify the section containing DebugDirectoryBegin has at least
645   // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
646   return std::error_code();
647 }
648 
649 std::error_code COFFObjectFile::initLoadConfigPtr() {
650   // Get the RVA of the debug directory. Do nothing if it does not exist.
651   const data_directory *DataEntry;
652   if (getDataDirectory(COFF::LOAD_CONFIG_TABLE, DataEntry))
653     return std::error_code();
654 
655   // Do nothing if the RVA is NULL.
656   if (DataEntry->RelativeVirtualAddress == 0)
657     return std::error_code();
658   uintptr_t IntPtr = 0;
659   if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
660     return EC;
661 
662   LoadConfig = (const void *)IntPtr;
663   return std::error_code();
664 }
665 
666 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC)
667     : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
668       COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
669       DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
670       SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
671       ImportDirectory(nullptr),
672       DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0),
673       ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr),
674       DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) {
675   // Check that we at least have enough room for a header.
676   if (!checkSize(Data, EC, sizeof(coff_file_header)))
677     return;
678 
679   // The current location in the file where we are looking at.
680   uint64_t CurPtr = 0;
681 
682   // PE header is optional and is present only in executables. If it exists,
683   // it is placed right after COFF header.
684   bool HasPEHeader = false;
685 
686   // Check if this is a PE/COFF file.
687   if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
688     // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
689     // PE signature to find 'normal' COFF header.
690     const auto *DH = reinterpret_cast<const dos_header *>(base());
691     if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
692       CurPtr = DH->AddressOfNewExeHeader;
693       // Check the PE magic bytes. ("PE\0\0")
694       if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
695         EC = object_error::parse_failed;
696         return;
697       }
698       CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
699       HasPEHeader = true;
700     }
701   }
702 
703   if ((EC = getObject(COFFHeader, Data, base() + CurPtr)))
704     return;
705 
706   // It might be a bigobj file, let's check.  Note that COFF bigobj and COFF
707   // import libraries share a common prefix but bigobj is more restrictive.
708   if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
709       COFFHeader->NumberOfSections == uint16_t(0xffff) &&
710       checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
711     if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr)))
712       return;
713 
714     // Verify that we are dealing with bigobj.
715     if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
716         std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
717                     sizeof(COFF::BigObjMagic)) == 0) {
718       COFFHeader = nullptr;
719       CurPtr += sizeof(coff_bigobj_file_header);
720     } else {
721       // It's not a bigobj.
722       COFFBigObjHeader = nullptr;
723     }
724   }
725   if (COFFHeader) {
726     // The prior checkSize call may have failed.  This isn't a hard error
727     // because we were just trying to sniff out bigobj.
728     EC = std::error_code();
729     CurPtr += sizeof(coff_file_header);
730 
731     if (COFFHeader->isImportLibrary())
732       return;
733   }
734 
735   if (HasPEHeader) {
736     const pe32_header *Header;
737     if ((EC = getObject(Header, Data, base() + CurPtr)))
738       return;
739 
740     const uint8_t *DataDirAddr;
741     uint64_t DataDirSize;
742     if (Header->Magic == COFF::PE32Header::PE32) {
743       PE32Header = Header;
744       DataDirAddr = base() + CurPtr + sizeof(pe32_header);
745       DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
746     } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
747       PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
748       DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
749       DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
750     } else {
751       // It's neither PE32 nor PE32+.
752       EC = object_error::parse_failed;
753       return;
754     }
755     if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)))
756       return;
757   }
758 
759   if (COFFHeader)
760     CurPtr += COFFHeader->SizeOfOptionalHeader;
761 
762   if ((EC = getObject(SectionTable, Data, base() + CurPtr,
763                       (uint64_t)getNumberOfSections() * sizeof(coff_section))))
764     return;
765 
766   // Initialize the pointer to the symbol table.
767   if (getPointerToSymbolTable() != 0) {
768     if ((EC = initSymbolTablePtr())) {
769       SymbolTable16 = nullptr;
770       SymbolTable32 = nullptr;
771       StringTable = nullptr;
772       StringTableSize = 0;
773     }
774   } else {
775     // We had better not have any symbols if we don't have a symbol table.
776     if (getNumberOfSymbols() != 0) {
777       EC = object_error::parse_failed;
778       return;
779     }
780   }
781 
782   // Initialize the pointer to the beginning of the import table.
783   if ((EC = initImportTablePtr()))
784     return;
785   if ((EC = initDelayImportTablePtr()))
786     return;
787 
788   // Initialize the pointer to the export table.
789   if ((EC = initExportTablePtr()))
790     return;
791 
792   // Initialize the pointer to the base relocation table.
793   if ((EC = initBaseRelocPtr()))
794     return;
795 
796   // Initialize the pointer to the export table.
797   if ((EC = initDebugDirectoryPtr()))
798     return;
799 
800   if ((EC = initLoadConfigPtr()))
801     return;
802 
803   EC = std::error_code();
804 }
805 
806 basic_symbol_iterator COFFObjectFile::symbol_begin() const {
807   DataRefImpl Ret;
808   Ret.p = getSymbolTable();
809   return basic_symbol_iterator(SymbolRef(Ret, this));
810 }
811 
812 basic_symbol_iterator COFFObjectFile::symbol_end() const {
813   // The symbol table ends where the string table begins.
814   DataRefImpl Ret;
815   Ret.p = reinterpret_cast<uintptr_t>(StringTable);
816   return basic_symbol_iterator(SymbolRef(Ret, this));
817 }
818 
819 import_directory_iterator COFFObjectFile::import_directory_begin() const {
820   if (!ImportDirectory)
821     return import_directory_end();
822   if (ImportDirectory->isNull())
823     return import_directory_end();
824   return import_directory_iterator(
825       ImportDirectoryEntryRef(ImportDirectory, 0, this));
826 }
827 
828 import_directory_iterator COFFObjectFile::import_directory_end() const {
829   return import_directory_iterator(
830       ImportDirectoryEntryRef(nullptr, -1, this));
831 }
832 
833 delay_import_directory_iterator
834 COFFObjectFile::delay_import_directory_begin() const {
835   return delay_import_directory_iterator(
836       DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
837 }
838 
839 delay_import_directory_iterator
840 COFFObjectFile::delay_import_directory_end() const {
841   return delay_import_directory_iterator(
842       DelayImportDirectoryEntryRef(
843           DelayImportDirectory, NumberOfDelayImportDirectory, this));
844 }
845 
846 export_directory_iterator COFFObjectFile::export_directory_begin() const {
847   return export_directory_iterator(
848       ExportDirectoryEntryRef(ExportDirectory, 0, this));
849 }
850 
851 export_directory_iterator COFFObjectFile::export_directory_end() const {
852   if (!ExportDirectory)
853     return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
854   ExportDirectoryEntryRef Ref(ExportDirectory,
855                               ExportDirectory->AddressTableEntries, this);
856   return export_directory_iterator(Ref);
857 }
858 
859 section_iterator COFFObjectFile::section_begin() const {
860   DataRefImpl Ret;
861   Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
862   return section_iterator(SectionRef(Ret, this));
863 }
864 
865 section_iterator COFFObjectFile::section_end() const {
866   DataRefImpl Ret;
867   int NumSections =
868       COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
869   Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
870   return section_iterator(SectionRef(Ret, this));
871 }
872 
873 base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
874   return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
875 }
876 
877 base_reloc_iterator COFFObjectFile::base_reloc_end() const {
878   return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
879 }
880 
881 uint8_t COFFObjectFile::getBytesInAddress() const {
882   return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4;
883 }
884 
885 StringRef COFFObjectFile::getFileFormatName() const {
886   switch(getMachine()) {
887   case COFF::IMAGE_FILE_MACHINE_I386:
888     return "COFF-i386";
889   case COFF::IMAGE_FILE_MACHINE_AMD64:
890     return "COFF-x86-64";
891   case COFF::IMAGE_FILE_MACHINE_ARMNT:
892     return "COFF-ARM";
893   case COFF::IMAGE_FILE_MACHINE_ARM64:
894     return "COFF-ARM64";
895   default:
896     return "COFF-<unknown arch>";
897   }
898 }
899 
900 Triple::ArchType COFFObjectFile::getArch() const {
901   switch (getMachine()) {
902   case COFF::IMAGE_FILE_MACHINE_I386:
903     return Triple::x86;
904   case COFF::IMAGE_FILE_MACHINE_AMD64:
905     return Triple::x86_64;
906   case COFF::IMAGE_FILE_MACHINE_ARMNT:
907     return Triple::thumb;
908   case COFF::IMAGE_FILE_MACHINE_ARM64:
909     return Triple::aarch64;
910   default:
911     return Triple::UnknownArch;
912   }
913 }
914 
915 Expected<uint64_t> COFFObjectFile::getStartAddress() const {
916   if (PE32Header)
917     return PE32Header->AddressOfEntryPoint;
918   return 0;
919 }
920 
921 iterator_range<import_directory_iterator>
922 COFFObjectFile::import_directories() const {
923   return make_range(import_directory_begin(), import_directory_end());
924 }
925 
926 iterator_range<delay_import_directory_iterator>
927 COFFObjectFile::delay_import_directories() const {
928   return make_range(delay_import_directory_begin(),
929                     delay_import_directory_end());
930 }
931 
932 iterator_range<export_directory_iterator>
933 COFFObjectFile::export_directories() const {
934   return make_range(export_directory_begin(), export_directory_end());
935 }
936 
937 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
938   return make_range(base_reloc_begin(), base_reloc_end());
939 }
940 
941 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const {
942   Res = PE32Header;
943   return std::error_code();
944 }
945 
946 std::error_code
947 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const {
948   Res = PE32PlusHeader;
949   return std::error_code();
950 }
951 
952 std::error_code
953 COFFObjectFile::getDataDirectory(uint32_t Index,
954                                  const data_directory *&Res) const {
955   // Error if there's no data directory or the index is out of range.
956   if (!DataDirectory) {
957     Res = nullptr;
958     return object_error::parse_failed;
959   }
960   assert(PE32Header || PE32PlusHeader);
961   uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
962                                : PE32PlusHeader->NumberOfRvaAndSize;
963   if (Index >= NumEnt) {
964     Res = nullptr;
965     return object_error::parse_failed;
966   }
967   Res = &DataDirectory[Index];
968   return std::error_code();
969 }
970 
971 std::error_code COFFObjectFile::getSection(int32_t Index,
972                                            const coff_section *&Result) const {
973   Result = nullptr;
974   if (COFF::isReservedSectionNumber(Index))
975     return std::error_code();
976   if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
977     // We already verified the section table data, so no need to check again.
978     Result = SectionTable + (Index - 1);
979     return std::error_code();
980   }
981   return object_error::parse_failed;
982 }
983 
984 std::error_code COFFObjectFile::getSection(StringRef SectionName,
985                                            const coff_section *&Result) const {
986   Result = nullptr;
987   StringRef SecName;
988   for (const SectionRef &Section : sections()) {
989     if (std::error_code E = Section.getName(SecName))
990       return E;
991     if (SecName == SectionName) {
992       Result = getCOFFSection(Section);
993       return std::error_code();
994     }
995   }
996   return object_error::parse_failed;
997 }
998 
999 std::error_code COFFObjectFile::getString(uint32_t Offset,
1000                                           StringRef &Result) const {
1001   if (StringTableSize <= 4)
1002     // Tried to get a string from an empty string table.
1003     return object_error::parse_failed;
1004   if (Offset >= StringTableSize)
1005     return object_error::unexpected_eof;
1006   Result = StringRef(StringTable + Offset);
1007   return std::error_code();
1008 }
1009 
1010 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol,
1011                                               StringRef &Res) const {
1012   return getSymbolName(Symbol.getGeneric(), Res);
1013 }
1014 
1015 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol,
1016                                               StringRef &Res) const {
1017   // Check for string table entry. First 4 bytes are 0.
1018   if (Symbol->Name.Offset.Zeroes == 0) {
1019     if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res))
1020       return EC;
1021     return std::error_code();
1022   }
1023 
1024   if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
1025     // Null terminated, let ::strlen figure out the length.
1026     Res = StringRef(Symbol->Name.ShortName);
1027   else
1028     // Not null terminated, use all 8 bytes.
1029     Res = StringRef(Symbol->Name.ShortName, COFF::NameSize);
1030   return std::error_code();
1031 }
1032 
1033 ArrayRef<uint8_t>
1034 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
1035   const uint8_t *Aux = nullptr;
1036 
1037   size_t SymbolSize = getSymbolTableEntrySize();
1038   if (Symbol.getNumberOfAuxSymbols() > 0) {
1039     // AUX data comes immediately after the symbol in COFF
1040     Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
1041 #ifndef NDEBUG
1042     // Verify that the Aux symbol points to a valid entry in the symbol table.
1043     uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
1044     if (Offset < getPointerToSymbolTable() ||
1045         Offset >=
1046             getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
1047       report_fatal_error("Aux Symbol data was outside of symbol table.");
1048 
1049     assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
1050            "Aux Symbol data did not point to the beginning of a symbol");
1051 #endif
1052   }
1053   return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
1054 }
1055 
1056 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec,
1057                                                StringRef &Res) const {
1058   StringRef Name;
1059   if (Sec->Name[COFF::NameSize - 1] == 0)
1060     // Null terminated, let ::strlen figure out the length.
1061     Name = Sec->Name;
1062   else
1063     // Not null terminated, use all 8 bytes.
1064     Name = StringRef(Sec->Name, COFF::NameSize);
1065 
1066   // Check for string table entry. First byte is '/'.
1067   if (Name.startswith("/")) {
1068     uint32_t Offset;
1069     if (Name.startswith("//")) {
1070       if (decodeBase64StringEntry(Name.substr(2), Offset))
1071         return object_error::parse_failed;
1072     } else {
1073       if (Name.substr(1).getAsInteger(10, Offset))
1074         return object_error::parse_failed;
1075     }
1076     if (std::error_code EC = getString(Offset, Name))
1077       return EC;
1078   }
1079 
1080   Res = Name;
1081   return std::error_code();
1082 }
1083 
1084 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
1085   // SizeOfRawData and VirtualSize change what they represent depending on
1086   // whether or not we have an executable image.
1087   //
1088   // For object files, SizeOfRawData contains the size of section's data;
1089   // VirtualSize should be zero but isn't due to buggy COFF writers.
1090   //
1091   // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
1092   // actual section size is in VirtualSize.  It is possible for VirtualSize to
1093   // be greater than SizeOfRawData; the contents past that point should be
1094   // considered to be zero.
1095   if (getDOSHeader())
1096     return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
1097   return Sec->SizeOfRawData;
1098 }
1099 
1100 std::error_code
1101 COFFObjectFile::getSectionContents(const coff_section *Sec,
1102                                    ArrayRef<uint8_t> &Res) const {
1103   // In COFF, a virtual section won't have any in-file
1104   // content, so the file pointer to the content will be zero.
1105   if (Sec->PointerToRawData == 0)
1106     return std::error_code();
1107   // The only thing that we need to verify is that the contents is contained
1108   // within the file bounds. We don't need to make sure it doesn't cover other
1109   // data, as there's nothing that says that is not allowed.
1110   uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
1111   uint32_t SectionSize = getSectionSize(Sec);
1112   if (checkOffset(Data, ConStart, SectionSize))
1113     return object_error::parse_failed;
1114   Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
1115   return std::error_code();
1116 }
1117 
1118 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
1119   return reinterpret_cast<const coff_relocation*>(Rel.p);
1120 }
1121 
1122 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
1123   Rel.p = reinterpret_cast<uintptr_t>(
1124             reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
1125 }
1126 
1127 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
1128   const coff_relocation *R = toRel(Rel);
1129   return R->VirtualAddress;
1130 }
1131 
1132 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
1133   const coff_relocation *R = toRel(Rel);
1134   DataRefImpl Ref;
1135   if (R->SymbolTableIndex >= getNumberOfSymbols())
1136     return symbol_end();
1137   if (SymbolTable16)
1138     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
1139   else if (SymbolTable32)
1140     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
1141   else
1142     llvm_unreachable("no symbol table pointer!");
1143   return symbol_iterator(SymbolRef(Ref, this));
1144 }
1145 
1146 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
1147   const coff_relocation* R = toRel(Rel);
1148   return R->Type;
1149 }
1150 
1151 const coff_section *
1152 COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1153   return toSec(Section.getRawDataRefImpl());
1154 }
1155 
1156 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1157   if (SymbolTable16)
1158     return toSymb<coff_symbol16>(Ref);
1159   if (SymbolTable32)
1160     return toSymb<coff_symbol32>(Ref);
1161   llvm_unreachable("no symbol table pointer!");
1162 }
1163 
1164 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1165   return getCOFFSymbol(Symbol.getRawDataRefImpl());
1166 }
1167 
1168 const coff_relocation *
1169 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1170   return toRel(Reloc.getRawDataRefImpl());
1171 }
1172 
1173 ArrayRef<coff_relocation>
1174 COFFObjectFile::getRelocations(const coff_section *Sec) const {
1175   return {getFirstReloc(Sec, Data, base()),
1176           getNumberOfRelocations(Sec, Data, base())};
1177 }
1178 
1179 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type)                           \
1180   case COFF::reloc_type:                                                       \
1181     return #reloc_type;
1182 
1183 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const {
1184   switch (getMachine()) {
1185   case COFF::IMAGE_FILE_MACHINE_AMD64:
1186     switch (Type) {
1187     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1188     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1189     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1190     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1191     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1192     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1193     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1194     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1195     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1196     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1197     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1198     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1199     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1200     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1201     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1202     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1203     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1204     default:
1205       return "Unknown";
1206     }
1207     break;
1208   case COFF::IMAGE_FILE_MACHINE_ARMNT:
1209     switch (Type) {
1210     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1211     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1212     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1213     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1214     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1215     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1216     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1217     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1218     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1219     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1220     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1221     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1222     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1223     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1224     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1225     default:
1226       return "Unknown";
1227     }
1228     break;
1229   case COFF::IMAGE_FILE_MACHINE_ARM64:
1230     switch (Type) {
1231     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE);
1232     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32);
1233     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB);
1234     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26);
1235     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21);
1236     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21);
1237     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A);
1238     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L);
1239     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL);
1240     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A);
1241     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A);
1242     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L);
1243     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN);
1244     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION);
1245     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64);
1246     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19);
1247     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14);
1248     default:
1249       return "Unknown";
1250     }
1251     break;
1252   case COFF::IMAGE_FILE_MACHINE_I386:
1253     switch (Type) {
1254     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1255     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1256     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1257     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1258     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1259     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1260     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1261     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1262     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1263     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1264     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1265     default:
1266       return "Unknown";
1267     }
1268     break;
1269   default:
1270     return "Unknown";
1271   }
1272 }
1273 
1274 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1275 
1276 void COFFObjectFile::getRelocationTypeName(
1277     DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1278   const coff_relocation *Reloc = toRel(Rel);
1279   StringRef Res = getRelocationTypeName(Reloc->Type);
1280   Result.append(Res.begin(), Res.end());
1281 }
1282 
1283 bool COFFObjectFile::isRelocatableObject() const {
1284   return !DataDirectory;
1285 }
1286 
1287 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const {
1288   return StringSwitch<StringRef>(Name)
1289       .Case("eh_fram", "eh_frame")
1290       .Default(Name);
1291 }
1292 
1293 bool ImportDirectoryEntryRef::
1294 operator==(const ImportDirectoryEntryRef &Other) const {
1295   return ImportTable == Other.ImportTable && Index == Other.Index;
1296 }
1297 
1298 void ImportDirectoryEntryRef::moveNext() {
1299   ++Index;
1300   if (ImportTable[Index].isNull()) {
1301     Index = -1;
1302     ImportTable = nullptr;
1303   }
1304 }
1305 
1306 std::error_code ImportDirectoryEntryRef::getImportTableEntry(
1307     const coff_import_directory_table_entry *&Result) const {
1308   return getObject(Result, OwningObject->Data, ImportTable + Index);
1309 }
1310 
1311 static imported_symbol_iterator
1312 makeImportedSymbolIterator(const COFFObjectFile *Object,
1313                            uintptr_t Ptr, int Index) {
1314   if (Object->getBytesInAddress() == 4) {
1315     auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1316     return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1317   }
1318   auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1319   return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1320 }
1321 
1322 static imported_symbol_iterator
1323 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1324   uintptr_t IntPtr = 0;
1325   Object->getRvaPtr(RVA, IntPtr);
1326   return makeImportedSymbolIterator(Object, IntPtr, 0);
1327 }
1328 
1329 static imported_symbol_iterator
1330 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1331   uintptr_t IntPtr = 0;
1332   Object->getRvaPtr(RVA, IntPtr);
1333   // Forward the pointer to the last entry which is null.
1334   int Index = 0;
1335   if (Object->getBytesInAddress() == 4) {
1336     auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1337     while (*Entry++)
1338       ++Index;
1339   } else {
1340     auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1341     while (*Entry++)
1342       ++Index;
1343   }
1344   return makeImportedSymbolIterator(Object, IntPtr, Index);
1345 }
1346 
1347 imported_symbol_iterator
1348 ImportDirectoryEntryRef::imported_symbol_begin() const {
1349   return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA,
1350                              OwningObject);
1351 }
1352 
1353 imported_symbol_iterator
1354 ImportDirectoryEntryRef::imported_symbol_end() const {
1355   return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA,
1356                            OwningObject);
1357 }
1358 
1359 iterator_range<imported_symbol_iterator>
1360 ImportDirectoryEntryRef::imported_symbols() const {
1361   return make_range(imported_symbol_begin(), imported_symbol_end());
1362 }
1363 
1364 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const {
1365   return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1366                              OwningObject);
1367 }
1368 
1369 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const {
1370   return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1371                            OwningObject);
1372 }
1373 
1374 iterator_range<imported_symbol_iterator>
1375 ImportDirectoryEntryRef::lookup_table_symbols() const {
1376   return make_range(lookup_table_begin(), lookup_table_end());
1377 }
1378 
1379 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const {
1380   uintptr_t IntPtr = 0;
1381   if (std::error_code EC =
1382           OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr))
1383     return EC;
1384   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1385   return std::error_code();
1386 }
1387 
1388 std::error_code
1389 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t  &Result) const {
1390   Result = ImportTable[Index].ImportLookupTableRVA;
1391   return std::error_code();
1392 }
1393 
1394 std::error_code
1395 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const {
1396   Result = ImportTable[Index].ImportAddressTableRVA;
1397   return std::error_code();
1398 }
1399 
1400 bool DelayImportDirectoryEntryRef::
1401 operator==(const DelayImportDirectoryEntryRef &Other) const {
1402   return Table == Other.Table && Index == Other.Index;
1403 }
1404 
1405 void DelayImportDirectoryEntryRef::moveNext() {
1406   ++Index;
1407 }
1408 
1409 imported_symbol_iterator
1410 DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1411   return importedSymbolBegin(Table[Index].DelayImportNameTable,
1412                              OwningObject);
1413 }
1414 
1415 imported_symbol_iterator
1416 DelayImportDirectoryEntryRef::imported_symbol_end() const {
1417   return importedSymbolEnd(Table[Index].DelayImportNameTable,
1418                            OwningObject);
1419 }
1420 
1421 iterator_range<imported_symbol_iterator>
1422 DelayImportDirectoryEntryRef::imported_symbols() const {
1423   return make_range(imported_symbol_begin(), imported_symbol_end());
1424 }
1425 
1426 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1427   uintptr_t IntPtr = 0;
1428   if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr))
1429     return EC;
1430   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1431   return std::error_code();
1432 }
1433 
1434 std::error_code DelayImportDirectoryEntryRef::
1435 getDelayImportTable(const delay_import_directory_table_entry *&Result) const {
1436   Result = Table;
1437   return std::error_code();
1438 }
1439 
1440 std::error_code DelayImportDirectoryEntryRef::
1441 getImportAddress(int AddrIndex, uint64_t &Result) const {
1442   uint32_t RVA = Table[Index].DelayImportAddressTable +
1443       AddrIndex * (OwningObject->is64() ? 8 : 4);
1444   uintptr_t IntPtr = 0;
1445   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1446     return EC;
1447   if (OwningObject->is64())
1448     Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1449   else
1450     Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1451   return std::error_code();
1452 }
1453 
1454 bool ExportDirectoryEntryRef::
1455 operator==(const ExportDirectoryEntryRef &Other) const {
1456   return ExportTable == Other.ExportTable && Index == Other.Index;
1457 }
1458 
1459 void ExportDirectoryEntryRef::moveNext() {
1460   ++Index;
1461 }
1462 
1463 // Returns the name of the current export symbol. If the symbol is exported only
1464 // by ordinal, the empty string is set as a result.
1465 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1466   uintptr_t IntPtr = 0;
1467   if (std::error_code EC =
1468           OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr))
1469     return EC;
1470   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1471   return std::error_code();
1472 }
1473 
1474 // Returns the starting ordinal number.
1475 std::error_code
1476 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1477   Result = ExportTable->OrdinalBase;
1478   return std::error_code();
1479 }
1480 
1481 // Returns the export ordinal of the current export symbol.
1482 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1483   Result = ExportTable->OrdinalBase + Index;
1484   return std::error_code();
1485 }
1486 
1487 // Returns the address of the current export symbol.
1488 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1489   uintptr_t IntPtr = 0;
1490   if (std::error_code EC =
1491           OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr))
1492     return EC;
1493   const export_address_table_entry *entry =
1494       reinterpret_cast<const export_address_table_entry *>(IntPtr);
1495   Result = entry[Index].ExportRVA;
1496   return std::error_code();
1497 }
1498 
1499 // Returns the name of the current export symbol. If the symbol is exported only
1500 // by ordinal, the empty string is set as a result.
1501 std::error_code
1502 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1503   uintptr_t IntPtr = 0;
1504   if (std::error_code EC =
1505           OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr))
1506     return EC;
1507   const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1508 
1509   uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1510   int Offset = 0;
1511   for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1512        I < E; ++I, ++Offset) {
1513     if (*I != Index)
1514       continue;
1515     if (std::error_code EC =
1516             OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr))
1517       return EC;
1518     const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1519     if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr))
1520       return EC;
1521     Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1522     return std::error_code();
1523   }
1524   Result = "";
1525   return std::error_code();
1526 }
1527 
1528 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1529   const data_directory *DataEntry;
1530   if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
1531     return EC;
1532   uint32_t RVA;
1533   if (auto EC = getExportRVA(RVA))
1534     return EC;
1535   uint32_t Begin = DataEntry->RelativeVirtualAddress;
1536   uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1537   Result = (Begin <= RVA && RVA < End);
1538   return std::error_code();
1539 }
1540 
1541 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1542   uint32_t RVA;
1543   if (auto EC = getExportRVA(RVA))
1544     return EC;
1545   uintptr_t IntPtr = 0;
1546   if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr))
1547     return EC;
1548   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1549   return std::error_code();
1550 }
1551 
1552 bool ImportedSymbolRef::
1553 operator==(const ImportedSymbolRef &Other) const {
1554   return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1555       && Index == Other.Index;
1556 }
1557 
1558 void ImportedSymbolRef::moveNext() {
1559   ++Index;
1560 }
1561 
1562 std::error_code
1563 ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1564   uint32_t RVA;
1565   if (Entry32) {
1566     // If a symbol is imported only by ordinal, it has no name.
1567     if (Entry32[Index].isOrdinal())
1568       return std::error_code();
1569     RVA = Entry32[Index].getHintNameRVA();
1570   } else {
1571     if (Entry64[Index].isOrdinal())
1572       return std::error_code();
1573     RVA = Entry64[Index].getHintNameRVA();
1574   }
1575   uintptr_t IntPtr = 0;
1576   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1577     return EC;
1578   // +2 because the first two bytes is hint.
1579   Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1580   return std::error_code();
1581 }
1582 
1583 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const {
1584   if (Entry32)
1585     Result = Entry32[Index].isOrdinal();
1586   else
1587     Result = Entry64[Index].isOrdinal();
1588   return std::error_code();
1589 }
1590 
1591 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const {
1592   if (Entry32)
1593     Result = Entry32[Index].getHintNameRVA();
1594   else
1595     Result = Entry64[Index].getHintNameRVA();
1596   return std::error_code();
1597 }
1598 
1599 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1600   uint32_t RVA;
1601   if (Entry32) {
1602     if (Entry32[Index].isOrdinal()) {
1603       Result = Entry32[Index].getOrdinal();
1604       return std::error_code();
1605     }
1606     RVA = Entry32[Index].getHintNameRVA();
1607   } else {
1608     if (Entry64[Index].isOrdinal()) {
1609       Result = Entry64[Index].getOrdinal();
1610       return std::error_code();
1611     }
1612     RVA = Entry64[Index].getHintNameRVA();
1613   }
1614   uintptr_t IntPtr = 0;
1615   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1616     return EC;
1617   Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1618   return std::error_code();
1619 }
1620 
1621 Expected<std::unique_ptr<COFFObjectFile>>
1622 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1623   std::error_code EC;
1624   std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC));
1625   if (EC)
1626     return errorCodeToError(EC);
1627   return std::move(Ret);
1628 }
1629 
1630 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1631   return Header == Other.Header && Index == Other.Index;
1632 }
1633 
1634 void BaseRelocRef::moveNext() {
1635   // Header->BlockSize is the size of the current block, including the
1636   // size of the header itself.
1637   uint32_t Size = sizeof(*Header) +
1638       sizeof(coff_base_reloc_block_entry) * (Index + 1);
1639   if (Size == Header->BlockSize) {
1640     // .reloc contains a list of base relocation blocks. Each block
1641     // consists of the header followed by entries. The header contains
1642     // how many entories will follow. When we reach the end of the
1643     // current block, proceed to the next block.
1644     Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1645         reinterpret_cast<const uint8_t *>(Header) + Size);
1646     Index = 0;
1647   } else {
1648     ++Index;
1649   }
1650 }
1651 
1652 std::error_code BaseRelocRef::getType(uint8_t &Type) const {
1653   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1654   Type = Entry[Index].getType();
1655   return std::error_code();
1656 }
1657 
1658 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const {
1659   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1660   Result = Header->PageRVA + Entry[Index].getOffset();
1661   return std::error_code();
1662 }
1663 
1664 #define RETURN_IF_ERROR(E)                                                     \
1665   if (E)                                                                       \
1666     return E;
1667 
1668 Expected<ArrayRef<UTF16>>
1669 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) {
1670   BinaryStreamReader Reader = BinaryStreamReader(BBS);
1671   Reader.setOffset(Offset);
1672   uint16_t Length;
1673   RETURN_IF_ERROR(Reader.readInteger(Length));
1674   ArrayRef<UTF16> RawDirString;
1675   RETURN_IF_ERROR(Reader.readArray(RawDirString, Length));
1676   return RawDirString;
1677 }
1678 
1679 Expected<ArrayRef<UTF16>>
1680 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) {
1681   return getDirStringAtOffset(Entry.Identifier.getNameOffset());
1682 }
1683 
1684 Expected<const coff_resource_dir_table &>
1685 ResourceSectionRef::getTableAtOffset(uint32_t Offset) {
1686   const coff_resource_dir_table *Table = nullptr;
1687 
1688   BinaryStreamReader Reader(BBS);
1689   Reader.setOffset(Offset);
1690   RETURN_IF_ERROR(Reader.readObject(Table));
1691   assert(Table != nullptr);
1692   return *Table;
1693 }
1694 
1695 Expected<const coff_resource_dir_table &>
1696 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) {
1697   return getTableAtOffset(Entry.Offset.value());
1698 }
1699 
1700 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() {
1701   return getTableAtOffset(0);
1702 }
1703