1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/ADT/iterator_range.h" 18 #include "llvm/Object/Binary.h" 19 #include "llvm/Object/COFF.h" 20 #include "llvm/Object/Error.h" 21 #include "llvm/Object/ObjectFile.h" 22 #include "llvm/Support/COFF.h" 23 #include "llvm/Support/Endian.h" 24 #include "llvm/Support/Error.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/MemoryBuffer.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <cstddef> 31 #include <cstdint> 32 #include <cstring> 33 #include <limits> 34 #include <memory> 35 #include <system_error> 36 37 using namespace llvm; 38 using namespace object; 39 40 using support::ulittle16_t; 41 using support::ulittle32_t; 42 using support::ulittle64_t; 43 using support::little16_t; 44 45 // Returns false if size is greater than the buffer size. And sets ec. 46 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 47 if (M.getBufferSize() < Size) { 48 EC = object_error::unexpected_eof; 49 return false; 50 } 51 return true; 52 } 53 54 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 55 const uint64_t Size) { 56 if (Addr + Size < Addr || Addr + Size < Size || 57 Addr + Size > uintptr_t(M.getBufferEnd()) || 58 Addr < uintptr_t(M.getBufferStart())) { 59 return object_error::unexpected_eof; 60 } 61 return std::error_code(); 62 } 63 64 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 65 // Returns unexpected_eof if error. 66 template <typename T> 67 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 68 const void *Ptr, 69 const uint64_t Size = sizeof(T)) { 70 uintptr_t Addr = uintptr_t(Ptr); 71 if (std::error_code EC = checkOffset(M, Addr, Size)) 72 return EC; 73 Obj = reinterpret_cast<const T *>(Addr); 74 return std::error_code(); 75 } 76 77 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 78 // prefixed slashes. 79 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 80 assert(Str.size() <= 6 && "String too long, possible overflow."); 81 if (Str.size() > 6) 82 return true; 83 84 uint64_t Value = 0; 85 while (!Str.empty()) { 86 unsigned CharVal; 87 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 88 CharVal = Str[0] - 'A'; 89 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 90 CharVal = Str[0] - 'a' + 26; 91 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 92 CharVal = Str[0] - '0' + 52; 93 else if (Str[0] == '+') // 62 94 CharVal = 62; 95 else if (Str[0] == '/') // 63 96 CharVal = 63; 97 else 98 return true; 99 100 Value = (Value * 64) + CharVal; 101 Str = Str.substr(1); 102 } 103 104 if (Value > std::numeric_limits<uint32_t>::max()) 105 return true; 106 107 Result = static_cast<uint32_t>(Value); 108 return false; 109 } 110 111 template <typename coff_symbol_type> 112 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 113 const coff_symbol_type *Addr = 114 reinterpret_cast<const coff_symbol_type *>(Ref.p); 115 116 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 117 #ifndef NDEBUG 118 // Verify that the symbol points to a valid entry in the symbol table. 119 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 120 121 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 122 "Symbol did not point to the beginning of a symbol"); 123 #endif 124 125 return Addr; 126 } 127 128 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 129 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 130 131 #ifndef NDEBUG 132 // Verify that the section points to a valid entry in the section table. 133 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 134 report_fatal_error("Section was outside of section table."); 135 136 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 137 assert(Offset % sizeof(coff_section) == 0 && 138 "Section did not point to the beginning of a section"); 139 #endif 140 141 return Addr; 142 } 143 144 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 145 auto End = reinterpret_cast<uintptr_t>(StringTable); 146 if (SymbolTable16) { 147 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 148 Symb += 1 + Symb->NumberOfAuxSymbols; 149 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 150 } else if (SymbolTable32) { 151 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 152 Symb += 1 + Symb->NumberOfAuxSymbols; 153 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 154 } else { 155 llvm_unreachable("no symbol table pointer!"); 156 } 157 } 158 159 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 160 COFFSymbolRef Symb = getCOFFSymbol(Ref); 161 StringRef Result; 162 std::error_code EC = getSymbolName(Symb, Result); 163 if (EC) 164 return errorCodeToError(EC); 165 return Result; 166 } 167 168 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 169 return getCOFFSymbol(Ref).getValue(); 170 } 171 172 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const { 173 // MSVC/link.exe seems to align symbols to the next-power-of-2 174 // up to 32 bytes. 175 COFFSymbolRef Symb = getCOFFSymbol(Ref); 176 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue())); 177 } 178 179 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 180 uint64_t Result = getSymbolValue(Ref); 181 COFFSymbolRef Symb = getCOFFSymbol(Ref); 182 int32_t SectionNumber = Symb.getSectionNumber(); 183 184 if (Symb.isAnyUndefined() || Symb.isCommon() || 185 COFF::isReservedSectionNumber(SectionNumber)) 186 return Result; 187 188 const coff_section *Section = nullptr; 189 if (std::error_code EC = getSection(SectionNumber, Section)) 190 return errorCodeToError(EC); 191 Result += Section->VirtualAddress; 192 193 // The section VirtualAddress does not include ImageBase, and we want to 194 // return virtual addresses. 195 Result += getImageBase(); 196 197 return Result; 198 } 199 200 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 201 COFFSymbolRef Symb = getCOFFSymbol(Ref); 202 int32_t SectionNumber = Symb.getSectionNumber(); 203 204 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 205 return SymbolRef::ST_Function; 206 if (Symb.isAnyUndefined()) 207 return SymbolRef::ST_Unknown; 208 if (Symb.isCommon()) 209 return SymbolRef::ST_Data; 210 if (Symb.isFileRecord()) 211 return SymbolRef::ST_File; 212 213 // TODO: perhaps we need a new symbol type ST_Section. 214 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 215 return SymbolRef::ST_Debug; 216 217 if (!COFF::isReservedSectionNumber(SectionNumber)) 218 return SymbolRef::ST_Data; 219 220 return SymbolRef::ST_Other; 221 } 222 223 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 224 COFFSymbolRef Symb = getCOFFSymbol(Ref); 225 uint32_t Result = SymbolRef::SF_None; 226 227 if (Symb.isExternal() || Symb.isWeakExternal()) 228 Result |= SymbolRef::SF_Global; 229 230 if (Symb.isWeakExternal()) 231 Result |= SymbolRef::SF_Weak; 232 233 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 234 Result |= SymbolRef::SF_Absolute; 235 236 if (Symb.isFileRecord()) 237 Result |= SymbolRef::SF_FormatSpecific; 238 239 if (Symb.isSectionDefinition()) 240 Result |= SymbolRef::SF_FormatSpecific; 241 242 if (Symb.isCommon()) 243 Result |= SymbolRef::SF_Common; 244 245 if (Symb.isAnyUndefined()) 246 Result |= SymbolRef::SF_Undefined; 247 248 return Result; 249 } 250 251 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 252 COFFSymbolRef Symb = getCOFFSymbol(Ref); 253 return Symb.getValue(); 254 } 255 256 Expected<section_iterator> 257 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 258 COFFSymbolRef Symb = getCOFFSymbol(Ref); 259 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 260 return section_end(); 261 const coff_section *Sec = nullptr; 262 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 263 return errorCodeToError(EC); 264 DataRefImpl Ret; 265 Ret.p = reinterpret_cast<uintptr_t>(Sec); 266 return section_iterator(SectionRef(Ret, this)); 267 } 268 269 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 270 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 271 return Symb.getSectionNumber(); 272 } 273 274 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 275 const coff_section *Sec = toSec(Ref); 276 Sec += 1; 277 Ref.p = reinterpret_cast<uintptr_t>(Sec); 278 } 279 280 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 281 StringRef &Result) const { 282 const coff_section *Sec = toSec(Ref); 283 return getSectionName(Sec, Result); 284 } 285 286 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 287 const coff_section *Sec = toSec(Ref); 288 uint64_t Result = Sec->VirtualAddress; 289 290 // The section VirtualAddress does not include ImageBase, and we want to 291 // return virtual addresses. 292 Result += getImageBase(); 293 return Result; 294 } 295 296 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 297 return getSectionSize(toSec(Ref)); 298 } 299 300 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 301 StringRef &Result) const { 302 const coff_section *Sec = toSec(Ref); 303 ArrayRef<uint8_t> Res; 304 std::error_code EC = getSectionContents(Sec, Res); 305 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 306 return EC; 307 } 308 309 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 310 const coff_section *Sec = toSec(Ref); 311 return Sec->getAlignment(); 312 } 313 314 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 315 return false; 316 } 317 318 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 319 const coff_section *Sec = toSec(Ref); 320 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 321 } 322 323 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 324 const coff_section *Sec = toSec(Ref); 325 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 326 } 327 328 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 329 const coff_section *Sec = toSec(Ref); 330 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 331 COFF::IMAGE_SCN_MEM_READ | 332 COFF::IMAGE_SCN_MEM_WRITE; 333 return (Sec->Characteristics & BssFlags) == BssFlags; 334 } 335 336 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 337 uintptr_t Offset = 338 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 339 assert((Offset % sizeof(coff_section)) == 0); 340 return (Offset / sizeof(coff_section)) + 1; 341 } 342 343 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 344 const coff_section *Sec = toSec(Ref); 345 // In COFF, a virtual section won't have any in-file 346 // content, so the file pointer to the content will be zero. 347 return Sec->PointerToRawData == 0; 348 } 349 350 static uint32_t getNumberOfRelocations(const coff_section *Sec, 351 MemoryBufferRef M, const uint8_t *base) { 352 // The field for the number of relocations in COFF section table is only 353 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 354 // NumberOfRelocations field, and the actual relocation count is stored in the 355 // VirtualAddress field in the first relocation entry. 356 if (Sec->hasExtendedRelocations()) { 357 const coff_relocation *FirstReloc; 358 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 359 base + Sec->PointerToRelocations))) 360 return 0; 361 // -1 to exclude this first relocation entry. 362 return FirstReloc->VirtualAddress - 1; 363 } 364 return Sec->NumberOfRelocations; 365 } 366 367 static const coff_relocation * 368 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 369 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 370 if (!NumRelocs) 371 return nullptr; 372 auto begin = reinterpret_cast<const coff_relocation *>( 373 Base + Sec->PointerToRelocations); 374 if (Sec->hasExtendedRelocations()) { 375 // Skip the first relocation entry repurposed to store the number of 376 // relocations. 377 begin++; 378 } 379 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 380 return nullptr; 381 return begin; 382 } 383 384 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 385 const coff_section *Sec = toSec(Ref); 386 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 387 if (begin && Sec->VirtualAddress != 0) 388 report_fatal_error("Sections with relocations should have an address of 0"); 389 DataRefImpl Ret; 390 Ret.p = reinterpret_cast<uintptr_t>(begin); 391 return relocation_iterator(RelocationRef(Ret, this)); 392 } 393 394 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 395 const coff_section *Sec = toSec(Ref); 396 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 397 if (I) 398 I += getNumberOfRelocations(Sec, Data, base()); 399 DataRefImpl Ret; 400 Ret.p = reinterpret_cast<uintptr_t>(I); 401 return relocation_iterator(RelocationRef(Ret, this)); 402 } 403 404 // Initialize the pointer to the symbol table. 405 std::error_code COFFObjectFile::initSymbolTablePtr() { 406 if (COFFHeader) 407 if (std::error_code EC = getObject( 408 SymbolTable16, Data, base() + getPointerToSymbolTable(), 409 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 410 return EC; 411 412 if (COFFBigObjHeader) 413 if (std::error_code EC = getObject( 414 SymbolTable32, Data, base() + getPointerToSymbolTable(), 415 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 416 return EC; 417 418 // Find string table. The first four byte of the string table contains the 419 // total size of the string table, including the size field itself. If the 420 // string table is empty, the value of the first four byte would be 4. 421 uint32_t StringTableOffset = getPointerToSymbolTable() + 422 getNumberOfSymbols() * getSymbolTableEntrySize(); 423 const uint8_t *StringTableAddr = base() + StringTableOffset; 424 const ulittle32_t *StringTableSizePtr; 425 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 426 return EC; 427 StringTableSize = *StringTableSizePtr; 428 if (std::error_code EC = 429 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 430 return EC; 431 432 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 433 // tools like cvtres write a size of 0 for an empty table instead of 4. 434 if (StringTableSize < 4) 435 StringTableSize = 4; 436 437 // Check that the string table is null terminated if has any in it. 438 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 439 return object_error::parse_failed; 440 return std::error_code(); 441 } 442 443 uint64_t COFFObjectFile::getImageBase() const { 444 if (PE32Header) 445 return PE32Header->ImageBase; 446 else if (PE32PlusHeader) 447 return PE32PlusHeader->ImageBase; 448 // This actually comes up in practice. 449 return 0; 450 } 451 452 // Returns the file offset for the given VA. 453 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 454 uint64_t ImageBase = getImageBase(); 455 uint64_t Rva = Addr - ImageBase; 456 assert(Rva <= UINT32_MAX); 457 return getRvaPtr((uint32_t)Rva, Res); 458 } 459 460 // Returns the file offset for the given RVA. 461 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 462 for (const SectionRef &S : sections()) { 463 const coff_section *Section = getCOFFSection(S); 464 uint32_t SectionStart = Section->VirtualAddress; 465 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 466 if (SectionStart <= Addr && Addr < SectionEnd) { 467 uint32_t Offset = Addr - SectionStart; 468 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 469 return std::error_code(); 470 } 471 } 472 return object_error::parse_failed; 473 } 474 475 std::error_code 476 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 477 ArrayRef<uint8_t> &Contents) const { 478 for (const SectionRef &S : sections()) { 479 const coff_section *Section = getCOFFSection(S); 480 uint32_t SectionStart = Section->VirtualAddress; 481 // Check if this RVA is within the section bounds. Be careful about integer 482 // overflow. 483 uint32_t OffsetIntoSection = RVA - SectionStart; 484 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 485 Size <= Section->VirtualSize - OffsetIntoSection) { 486 uintptr_t Begin = 487 uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection; 488 Contents = 489 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 490 return std::error_code(); 491 } 492 } 493 return object_error::parse_failed; 494 } 495 496 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 497 // table entry. 498 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 499 StringRef &Name) const { 500 uintptr_t IntPtr = 0; 501 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 502 return EC; 503 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 504 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 505 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 506 return std::error_code(); 507 } 508 509 std::error_code 510 COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 511 const codeview::DebugInfo *&PDBInfo, 512 StringRef &PDBFileName) const { 513 ArrayRef<uint8_t> InfoBytes; 514 if (std::error_code EC = getRvaAndSizeAsBytes( 515 DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes)) 516 return EC; 517 if (InfoBytes.size() < sizeof(*PDBInfo) + 1) 518 return object_error::parse_failed; 519 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data()); 520 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); 521 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 522 InfoBytes.size()); 523 // Truncate the name at the first null byte. Ignore any padding. 524 PDBFileName = PDBFileName.split('\0').first; 525 return std::error_code(); 526 } 527 528 std::error_code 529 COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, 530 StringRef &PDBFileName) const { 531 for (const debug_directory &D : debug_directories()) 532 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 533 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 534 // If we get here, there is no PDB info to return. 535 PDBInfo = nullptr; 536 PDBFileName = StringRef(); 537 return std::error_code(); 538 } 539 540 // Find the import table. 541 std::error_code COFFObjectFile::initImportTablePtr() { 542 // First, we get the RVA of the import table. If the file lacks a pointer to 543 // the import table, do nothing. 544 const data_directory *DataEntry; 545 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 546 return std::error_code(); 547 548 // Do nothing if the pointer to import table is NULL. 549 if (DataEntry->RelativeVirtualAddress == 0) 550 return std::error_code(); 551 552 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 553 554 // Find the section that contains the RVA. This is needed because the RVA is 555 // the import table's memory address which is different from its file offset. 556 uintptr_t IntPtr = 0; 557 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 558 return EC; 559 if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size)) 560 return EC; 561 ImportDirectory = reinterpret_cast< 562 const coff_import_directory_table_entry *>(IntPtr); 563 return std::error_code(); 564 } 565 566 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 567 std::error_code COFFObjectFile::initDelayImportTablePtr() { 568 const data_directory *DataEntry; 569 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 570 return std::error_code(); 571 if (DataEntry->RelativeVirtualAddress == 0) 572 return std::error_code(); 573 574 uint32_t RVA = DataEntry->RelativeVirtualAddress; 575 NumberOfDelayImportDirectory = DataEntry->Size / 576 sizeof(delay_import_directory_table_entry) - 1; 577 578 uintptr_t IntPtr = 0; 579 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 580 return EC; 581 DelayImportDirectory = reinterpret_cast< 582 const delay_import_directory_table_entry *>(IntPtr); 583 return std::error_code(); 584 } 585 586 // Find the export table. 587 std::error_code COFFObjectFile::initExportTablePtr() { 588 // First, we get the RVA of the export table. If the file lacks a pointer to 589 // the export table, do nothing. 590 const data_directory *DataEntry; 591 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 592 return std::error_code(); 593 594 // Do nothing if the pointer to export table is NULL. 595 if (DataEntry->RelativeVirtualAddress == 0) 596 return std::error_code(); 597 598 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 599 uintptr_t IntPtr = 0; 600 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 601 return EC; 602 ExportDirectory = 603 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 604 return std::error_code(); 605 } 606 607 std::error_code COFFObjectFile::initBaseRelocPtr() { 608 const data_directory *DataEntry; 609 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 610 return std::error_code(); 611 if (DataEntry->RelativeVirtualAddress == 0) 612 return std::error_code(); 613 614 uintptr_t IntPtr = 0; 615 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 616 return EC; 617 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 618 IntPtr); 619 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 620 IntPtr + DataEntry->Size); 621 return std::error_code(); 622 } 623 624 std::error_code COFFObjectFile::initDebugDirectoryPtr() { 625 // Get the RVA of the debug directory. Do nothing if it does not exist. 626 const data_directory *DataEntry; 627 if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry)) 628 return std::error_code(); 629 630 // Do nothing if the RVA is NULL. 631 if (DataEntry->RelativeVirtualAddress == 0) 632 return std::error_code(); 633 634 // Check that the size is a multiple of the entry size. 635 if (DataEntry->Size % sizeof(debug_directory) != 0) 636 return object_error::parse_failed; 637 638 uintptr_t IntPtr = 0; 639 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 640 return EC; 641 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 642 if (std::error_code EC = getRvaPtr( 643 DataEntry->RelativeVirtualAddress + DataEntry->Size, IntPtr)) 644 return EC; 645 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(IntPtr); 646 return std::error_code(); 647 } 648 649 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 650 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 651 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 652 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 653 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 654 ImportDirectory(nullptr), 655 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 656 ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 657 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) { 658 // Check that we at least have enough room for a header. 659 if (!checkSize(Data, EC, sizeof(coff_file_header))) 660 return; 661 662 // The current location in the file where we are looking at. 663 uint64_t CurPtr = 0; 664 665 // PE header is optional and is present only in executables. If it exists, 666 // it is placed right after COFF header. 667 bool HasPEHeader = false; 668 669 // Check if this is a PE/COFF file. 670 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 671 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 672 // PE signature to find 'normal' COFF header. 673 const auto *DH = reinterpret_cast<const dos_header *>(base()); 674 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 675 CurPtr = DH->AddressOfNewExeHeader; 676 // Check the PE magic bytes. ("PE\0\0") 677 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 678 EC = object_error::parse_failed; 679 return; 680 } 681 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 682 HasPEHeader = true; 683 } 684 } 685 686 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 687 return; 688 689 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 690 // import libraries share a common prefix but bigobj is more restrictive. 691 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 692 COFFHeader->NumberOfSections == uint16_t(0xffff) && 693 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 694 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 695 return; 696 697 // Verify that we are dealing with bigobj. 698 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 699 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 700 sizeof(COFF::BigObjMagic)) == 0) { 701 COFFHeader = nullptr; 702 CurPtr += sizeof(coff_bigobj_file_header); 703 } else { 704 // It's not a bigobj. 705 COFFBigObjHeader = nullptr; 706 } 707 } 708 if (COFFHeader) { 709 // The prior checkSize call may have failed. This isn't a hard error 710 // because we were just trying to sniff out bigobj. 711 EC = std::error_code(); 712 CurPtr += sizeof(coff_file_header); 713 714 if (COFFHeader->isImportLibrary()) 715 return; 716 } 717 718 if (HasPEHeader) { 719 const pe32_header *Header; 720 if ((EC = getObject(Header, Data, base() + CurPtr))) 721 return; 722 723 const uint8_t *DataDirAddr; 724 uint64_t DataDirSize; 725 if (Header->Magic == COFF::PE32Header::PE32) { 726 PE32Header = Header; 727 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 728 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 729 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 730 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 731 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 732 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 733 } else { 734 // It's neither PE32 nor PE32+. 735 EC = object_error::parse_failed; 736 return; 737 } 738 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 739 return; 740 } 741 742 if (COFFHeader) 743 CurPtr += COFFHeader->SizeOfOptionalHeader; 744 745 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 746 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 747 return; 748 749 // Initialize the pointer to the symbol table. 750 if (getPointerToSymbolTable() != 0) { 751 if ((EC = initSymbolTablePtr())) { 752 SymbolTable16 = nullptr; 753 SymbolTable32 = nullptr; 754 StringTable = nullptr; 755 StringTableSize = 0; 756 } 757 } else { 758 // We had better not have any symbols if we don't have a symbol table. 759 if (getNumberOfSymbols() != 0) { 760 EC = object_error::parse_failed; 761 return; 762 } 763 } 764 765 // Initialize the pointer to the beginning of the import table. 766 if ((EC = initImportTablePtr())) 767 return; 768 if ((EC = initDelayImportTablePtr())) 769 return; 770 771 // Initialize the pointer to the export table. 772 if ((EC = initExportTablePtr())) 773 return; 774 775 // Initialize the pointer to the base relocation table. 776 if ((EC = initBaseRelocPtr())) 777 return; 778 779 // Initialize the pointer to the export table. 780 if ((EC = initDebugDirectoryPtr())) 781 return; 782 783 EC = std::error_code(); 784 } 785 786 basic_symbol_iterator COFFObjectFile::symbol_begin() const { 787 DataRefImpl Ret; 788 Ret.p = getSymbolTable(); 789 return basic_symbol_iterator(SymbolRef(Ret, this)); 790 } 791 792 basic_symbol_iterator COFFObjectFile::symbol_end() const { 793 // The symbol table ends where the string table begins. 794 DataRefImpl Ret; 795 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 796 return basic_symbol_iterator(SymbolRef(Ret, this)); 797 } 798 799 import_directory_iterator COFFObjectFile::import_directory_begin() const { 800 if (!ImportDirectory) 801 return import_directory_end(); 802 if (ImportDirectory->isNull()) 803 return import_directory_end(); 804 return import_directory_iterator( 805 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 806 } 807 808 import_directory_iterator COFFObjectFile::import_directory_end() const { 809 return import_directory_iterator( 810 ImportDirectoryEntryRef(nullptr, -1, this)); 811 } 812 813 delay_import_directory_iterator 814 COFFObjectFile::delay_import_directory_begin() const { 815 return delay_import_directory_iterator( 816 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 817 } 818 819 delay_import_directory_iterator 820 COFFObjectFile::delay_import_directory_end() const { 821 return delay_import_directory_iterator( 822 DelayImportDirectoryEntryRef( 823 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 824 } 825 826 export_directory_iterator COFFObjectFile::export_directory_begin() const { 827 return export_directory_iterator( 828 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 829 } 830 831 export_directory_iterator COFFObjectFile::export_directory_end() const { 832 if (!ExportDirectory) 833 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 834 ExportDirectoryEntryRef Ref(ExportDirectory, 835 ExportDirectory->AddressTableEntries, this); 836 return export_directory_iterator(Ref); 837 } 838 839 section_iterator COFFObjectFile::section_begin() const { 840 DataRefImpl Ret; 841 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 842 return section_iterator(SectionRef(Ret, this)); 843 } 844 845 section_iterator COFFObjectFile::section_end() const { 846 DataRefImpl Ret; 847 int NumSections = 848 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 849 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 850 return section_iterator(SectionRef(Ret, this)); 851 } 852 853 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 854 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 855 } 856 857 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 858 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 859 } 860 861 uint8_t COFFObjectFile::getBytesInAddress() const { 862 return getArch() == Triple::x86_64 ? 8 : 4; 863 } 864 865 StringRef COFFObjectFile::getFileFormatName() const { 866 switch(getMachine()) { 867 case COFF::IMAGE_FILE_MACHINE_I386: 868 return "COFF-i386"; 869 case COFF::IMAGE_FILE_MACHINE_AMD64: 870 return "COFF-x86-64"; 871 case COFF::IMAGE_FILE_MACHINE_ARMNT: 872 return "COFF-ARM"; 873 case COFF::IMAGE_FILE_MACHINE_ARM64: 874 return "COFF-ARM64"; 875 default: 876 return "COFF-<unknown arch>"; 877 } 878 } 879 880 unsigned COFFObjectFile::getArch() const { 881 switch (getMachine()) { 882 case COFF::IMAGE_FILE_MACHINE_I386: 883 return Triple::x86; 884 case COFF::IMAGE_FILE_MACHINE_AMD64: 885 return Triple::x86_64; 886 case COFF::IMAGE_FILE_MACHINE_ARMNT: 887 return Triple::thumb; 888 case COFF::IMAGE_FILE_MACHINE_ARM64: 889 return Triple::aarch64; 890 default: 891 return Triple::UnknownArch; 892 } 893 } 894 895 iterator_range<import_directory_iterator> 896 COFFObjectFile::import_directories() const { 897 return make_range(import_directory_begin(), import_directory_end()); 898 } 899 900 iterator_range<delay_import_directory_iterator> 901 COFFObjectFile::delay_import_directories() const { 902 return make_range(delay_import_directory_begin(), 903 delay_import_directory_end()); 904 } 905 906 iterator_range<export_directory_iterator> 907 COFFObjectFile::export_directories() const { 908 return make_range(export_directory_begin(), export_directory_end()); 909 } 910 911 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 912 return make_range(base_reloc_begin(), base_reloc_end()); 913 } 914 915 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 916 Res = PE32Header; 917 return std::error_code(); 918 } 919 920 std::error_code 921 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 922 Res = PE32PlusHeader; 923 return std::error_code(); 924 } 925 926 std::error_code 927 COFFObjectFile::getDataDirectory(uint32_t Index, 928 const data_directory *&Res) const { 929 // Error if if there's no data directory or the index is out of range. 930 if (!DataDirectory) { 931 Res = nullptr; 932 return object_error::parse_failed; 933 } 934 assert(PE32Header || PE32PlusHeader); 935 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 936 : PE32PlusHeader->NumberOfRvaAndSize; 937 if (Index >= NumEnt) { 938 Res = nullptr; 939 return object_error::parse_failed; 940 } 941 Res = &DataDirectory[Index]; 942 return std::error_code(); 943 } 944 945 std::error_code COFFObjectFile::getSection(int32_t Index, 946 const coff_section *&Result) const { 947 Result = nullptr; 948 if (COFF::isReservedSectionNumber(Index)) 949 return std::error_code(); 950 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 951 // We already verified the section table data, so no need to check again. 952 Result = SectionTable + (Index - 1); 953 return std::error_code(); 954 } 955 return object_error::parse_failed; 956 } 957 958 std::error_code COFFObjectFile::getString(uint32_t Offset, 959 StringRef &Result) const { 960 if (StringTableSize <= 4) 961 // Tried to get a string from an empty string table. 962 return object_error::parse_failed; 963 if (Offset >= StringTableSize) 964 return object_error::unexpected_eof; 965 Result = StringRef(StringTable + Offset); 966 return std::error_code(); 967 } 968 969 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 970 StringRef &Res) const { 971 return getSymbolName(Symbol.getGeneric(), Res); 972 } 973 974 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol, 975 StringRef &Res) const { 976 // Check for string table entry. First 4 bytes are 0. 977 if (Symbol->Name.Offset.Zeroes == 0) { 978 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res)) 979 return EC; 980 return std::error_code(); 981 } 982 983 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 984 // Null terminated, let ::strlen figure out the length. 985 Res = StringRef(Symbol->Name.ShortName); 986 else 987 // Not null terminated, use all 8 bytes. 988 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize); 989 return std::error_code(); 990 } 991 992 ArrayRef<uint8_t> 993 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 994 const uint8_t *Aux = nullptr; 995 996 size_t SymbolSize = getSymbolTableEntrySize(); 997 if (Symbol.getNumberOfAuxSymbols() > 0) { 998 // AUX data comes immediately after the symbol in COFF 999 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 1000 #ifndef NDEBUG 1001 // Verify that the Aux symbol points to a valid entry in the symbol table. 1002 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 1003 if (Offset < getPointerToSymbolTable() || 1004 Offset >= 1005 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 1006 report_fatal_error("Aux Symbol data was outside of symbol table."); 1007 1008 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 1009 "Aux Symbol data did not point to the beginning of a symbol"); 1010 #endif 1011 } 1012 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 1013 } 1014 1015 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 1016 StringRef &Res) const { 1017 StringRef Name; 1018 if (Sec->Name[COFF::NameSize - 1] == 0) 1019 // Null terminated, let ::strlen figure out the length. 1020 Name = Sec->Name; 1021 else 1022 // Not null terminated, use all 8 bytes. 1023 Name = StringRef(Sec->Name, COFF::NameSize); 1024 1025 // Check for string table entry. First byte is '/'. 1026 if (Name.startswith("/")) { 1027 uint32_t Offset; 1028 if (Name.startswith("//")) { 1029 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1030 return object_error::parse_failed; 1031 } else { 1032 if (Name.substr(1).getAsInteger(10, Offset)) 1033 return object_error::parse_failed; 1034 } 1035 if (std::error_code EC = getString(Offset, Name)) 1036 return EC; 1037 } 1038 1039 Res = Name; 1040 return std::error_code(); 1041 } 1042 1043 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1044 // SizeOfRawData and VirtualSize change what they represent depending on 1045 // whether or not we have an executable image. 1046 // 1047 // For object files, SizeOfRawData contains the size of section's data; 1048 // VirtualSize should be zero but isn't due to buggy COFF writers. 1049 // 1050 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1051 // actual section size is in VirtualSize. It is possible for VirtualSize to 1052 // be greater than SizeOfRawData; the contents past that point should be 1053 // considered to be zero. 1054 if (getDOSHeader()) 1055 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1056 return Sec->SizeOfRawData; 1057 } 1058 1059 std::error_code 1060 COFFObjectFile::getSectionContents(const coff_section *Sec, 1061 ArrayRef<uint8_t> &Res) const { 1062 // In COFF, a virtual section won't have any in-file 1063 // content, so the file pointer to the content will be zero. 1064 if (Sec->PointerToRawData == 0) 1065 return object_error::parse_failed; 1066 // The only thing that we need to verify is that the contents is contained 1067 // within the file bounds. We don't need to make sure it doesn't cover other 1068 // data, as there's nothing that says that is not allowed. 1069 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 1070 uint32_t SectionSize = getSectionSize(Sec); 1071 if (checkOffset(Data, ConStart, SectionSize)) 1072 return object_error::parse_failed; 1073 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1074 return std::error_code(); 1075 } 1076 1077 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1078 return reinterpret_cast<const coff_relocation*>(Rel.p); 1079 } 1080 1081 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1082 Rel.p = reinterpret_cast<uintptr_t>( 1083 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1084 } 1085 1086 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1087 const coff_relocation *R = toRel(Rel); 1088 return R->VirtualAddress; 1089 } 1090 1091 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1092 const coff_relocation *R = toRel(Rel); 1093 DataRefImpl Ref; 1094 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1095 return symbol_end(); 1096 if (SymbolTable16) 1097 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1098 else if (SymbolTable32) 1099 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1100 else 1101 llvm_unreachable("no symbol table pointer!"); 1102 return symbol_iterator(SymbolRef(Ref, this)); 1103 } 1104 1105 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1106 const coff_relocation* R = toRel(Rel); 1107 return R->Type; 1108 } 1109 1110 const coff_section * 1111 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1112 return toSec(Section.getRawDataRefImpl()); 1113 } 1114 1115 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1116 if (SymbolTable16) 1117 return toSymb<coff_symbol16>(Ref); 1118 if (SymbolTable32) 1119 return toSymb<coff_symbol32>(Ref); 1120 llvm_unreachable("no symbol table pointer!"); 1121 } 1122 1123 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1124 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1125 } 1126 1127 const coff_relocation * 1128 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1129 return toRel(Reloc.getRawDataRefImpl()); 1130 } 1131 1132 iterator_range<const coff_relocation *> 1133 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1134 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 1135 const coff_relocation *E = I; 1136 if (I) 1137 E += getNumberOfRelocations(Sec, Data, base()); 1138 return make_range(I, E); 1139 } 1140 1141 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1142 case COFF::reloc_type: \ 1143 Res = #reloc_type; \ 1144 break; 1145 1146 void COFFObjectFile::getRelocationTypeName( 1147 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1148 const coff_relocation *Reloc = toRel(Rel); 1149 StringRef Res; 1150 switch (getMachine()) { 1151 case COFF::IMAGE_FILE_MACHINE_AMD64: 1152 switch (Reloc->Type) { 1153 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1154 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1155 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1156 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1157 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1158 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1159 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1160 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1161 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1162 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1163 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1164 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1165 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1166 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1167 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1168 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1169 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1170 default: 1171 Res = "Unknown"; 1172 } 1173 break; 1174 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1175 switch (Reloc->Type) { 1176 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1177 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1178 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1179 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1180 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1181 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1182 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1183 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1184 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1185 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1186 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1187 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1188 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1189 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1190 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1191 default: 1192 Res = "Unknown"; 1193 } 1194 break; 1195 case COFF::IMAGE_FILE_MACHINE_I386: 1196 switch (Reloc->Type) { 1197 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1198 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1199 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1200 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1201 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1202 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1203 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1204 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1205 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1206 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1207 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1208 default: 1209 Res = "Unknown"; 1210 } 1211 break; 1212 default: 1213 Res = "Unknown"; 1214 } 1215 Result.append(Res.begin(), Res.end()); 1216 } 1217 1218 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1219 1220 bool COFFObjectFile::isRelocatableObject() const { 1221 return !DataDirectory; 1222 } 1223 1224 bool ImportDirectoryEntryRef:: 1225 operator==(const ImportDirectoryEntryRef &Other) const { 1226 return ImportTable == Other.ImportTable && Index == Other.Index; 1227 } 1228 1229 void ImportDirectoryEntryRef::moveNext() { 1230 ++Index; 1231 if (ImportTable[Index].isNull()) { 1232 Index = -1; 1233 ImportTable = nullptr; 1234 } 1235 } 1236 1237 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1238 const coff_import_directory_table_entry *&Result) const { 1239 return getObject(Result, OwningObject->Data, ImportTable + Index); 1240 } 1241 1242 static imported_symbol_iterator 1243 makeImportedSymbolIterator(const COFFObjectFile *Object, 1244 uintptr_t Ptr, int Index) { 1245 if (Object->getBytesInAddress() == 4) { 1246 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1247 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1248 } 1249 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1250 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1251 } 1252 1253 static imported_symbol_iterator 1254 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1255 uintptr_t IntPtr = 0; 1256 Object->getRvaPtr(RVA, IntPtr); 1257 return makeImportedSymbolIterator(Object, IntPtr, 0); 1258 } 1259 1260 static imported_symbol_iterator 1261 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1262 uintptr_t IntPtr = 0; 1263 Object->getRvaPtr(RVA, IntPtr); 1264 // Forward the pointer to the last entry which is null. 1265 int Index = 0; 1266 if (Object->getBytesInAddress() == 4) { 1267 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1268 while (*Entry++) 1269 ++Index; 1270 } else { 1271 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1272 while (*Entry++) 1273 ++Index; 1274 } 1275 return makeImportedSymbolIterator(Object, IntPtr, Index); 1276 } 1277 1278 imported_symbol_iterator 1279 ImportDirectoryEntryRef::imported_symbol_begin() const { 1280 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1281 OwningObject); 1282 } 1283 1284 imported_symbol_iterator 1285 ImportDirectoryEntryRef::imported_symbol_end() const { 1286 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1287 OwningObject); 1288 } 1289 1290 iterator_range<imported_symbol_iterator> 1291 ImportDirectoryEntryRef::imported_symbols() const { 1292 return make_range(imported_symbol_begin(), imported_symbol_end()); 1293 } 1294 1295 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1296 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1297 OwningObject); 1298 } 1299 1300 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1301 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1302 OwningObject); 1303 } 1304 1305 iterator_range<imported_symbol_iterator> 1306 ImportDirectoryEntryRef::lookup_table_symbols() const { 1307 return make_range(lookup_table_begin(), lookup_table_end()); 1308 } 1309 1310 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1311 uintptr_t IntPtr = 0; 1312 if (std::error_code EC = 1313 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1314 return EC; 1315 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1316 return std::error_code(); 1317 } 1318 1319 std::error_code 1320 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1321 Result = ImportTable[Index].ImportLookupTableRVA; 1322 return std::error_code(); 1323 } 1324 1325 std::error_code 1326 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1327 Result = ImportTable[Index].ImportAddressTableRVA; 1328 return std::error_code(); 1329 } 1330 1331 bool DelayImportDirectoryEntryRef:: 1332 operator==(const DelayImportDirectoryEntryRef &Other) const { 1333 return Table == Other.Table && Index == Other.Index; 1334 } 1335 1336 void DelayImportDirectoryEntryRef::moveNext() { 1337 ++Index; 1338 } 1339 1340 imported_symbol_iterator 1341 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1342 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1343 OwningObject); 1344 } 1345 1346 imported_symbol_iterator 1347 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1348 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1349 OwningObject); 1350 } 1351 1352 iterator_range<imported_symbol_iterator> 1353 DelayImportDirectoryEntryRef::imported_symbols() const { 1354 return make_range(imported_symbol_begin(), imported_symbol_end()); 1355 } 1356 1357 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1358 uintptr_t IntPtr = 0; 1359 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1360 return EC; 1361 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1362 return std::error_code(); 1363 } 1364 1365 std::error_code DelayImportDirectoryEntryRef:: 1366 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1367 Result = Table; 1368 return std::error_code(); 1369 } 1370 1371 std::error_code DelayImportDirectoryEntryRef:: 1372 getImportAddress(int AddrIndex, uint64_t &Result) const { 1373 uint32_t RVA = Table[Index].DelayImportAddressTable + 1374 AddrIndex * (OwningObject->is64() ? 8 : 4); 1375 uintptr_t IntPtr = 0; 1376 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1377 return EC; 1378 if (OwningObject->is64()) 1379 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1380 else 1381 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1382 return std::error_code(); 1383 } 1384 1385 bool ExportDirectoryEntryRef:: 1386 operator==(const ExportDirectoryEntryRef &Other) const { 1387 return ExportTable == Other.ExportTable && Index == Other.Index; 1388 } 1389 1390 void ExportDirectoryEntryRef::moveNext() { 1391 ++Index; 1392 } 1393 1394 // Returns the name of the current export symbol. If the symbol is exported only 1395 // by ordinal, the empty string is set as a result. 1396 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1397 uintptr_t IntPtr = 0; 1398 if (std::error_code EC = 1399 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1400 return EC; 1401 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1402 return std::error_code(); 1403 } 1404 1405 // Returns the starting ordinal number. 1406 std::error_code 1407 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1408 Result = ExportTable->OrdinalBase; 1409 return std::error_code(); 1410 } 1411 1412 // Returns the export ordinal of the current export symbol. 1413 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1414 Result = ExportTable->OrdinalBase + Index; 1415 return std::error_code(); 1416 } 1417 1418 // Returns the address of the current export symbol. 1419 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1420 uintptr_t IntPtr = 0; 1421 if (std::error_code EC = 1422 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1423 return EC; 1424 const export_address_table_entry *entry = 1425 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1426 Result = entry[Index].ExportRVA; 1427 return std::error_code(); 1428 } 1429 1430 // Returns the name of the current export symbol. If the symbol is exported only 1431 // by ordinal, the empty string is set as a result. 1432 std::error_code 1433 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1434 uintptr_t IntPtr = 0; 1435 if (std::error_code EC = 1436 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1437 return EC; 1438 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1439 1440 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1441 int Offset = 0; 1442 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1443 I < E; ++I, ++Offset) { 1444 if (*I != Index) 1445 continue; 1446 if (std::error_code EC = 1447 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1448 return EC; 1449 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1450 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1451 return EC; 1452 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1453 return std::error_code(); 1454 } 1455 Result = ""; 1456 return std::error_code(); 1457 } 1458 1459 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1460 const data_directory *DataEntry; 1461 if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 1462 return EC; 1463 uint32_t RVA; 1464 if (auto EC = getExportRVA(RVA)) 1465 return EC; 1466 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1467 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1468 Result = (Begin <= RVA && RVA < End); 1469 return std::error_code(); 1470 } 1471 1472 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1473 uint32_t RVA; 1474 if (auto EC = getExportRVA(RVA)) 1475 return EC; 1476 uintptr_t IntPtr = 0; 1477 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1478 return EC; 1479 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1480 return std::error_code(); 1481 } 1482 1483 bool ImportedSymbolRef:: 1484 operator==(const ImportedSymbolRef &Other) const { 1485 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1486 && Index == Other.Index; 1487 } 1488 1489 void ImportedSymbolRef::moveNext() { 1490 ++Index; 1491 } 1492 1493 std::error_code 1494 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1495 uint32_t RVA; 1496 if (Entry32) { 1497 // If a symbol is imported only by ordinal, it has no name. 1498 if (Entry32[Index].isOrdinal()) 1499 return std::error_code(); 1500 RVA = Entry32[Index].getHintNameRVA(); 1501 } else { 1502 if (Entry64[Index].isOrdinal()) 1503 return std::error_code(); 1504 RVA = Entry64[Index].getHintNameRVA(); 1505 } 1506 uintptr_t IntPtr = 0; 1507 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1508 return EC; 1509 // +2 because the first two bytes is hint. 1510 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1511 return std::error_code(); 1512 } 1513 1514 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const { 1515 if (Entry32) 1516 Result = Entry32[Index].isOrdinal(); 1517 else 1518 Result = Entry64[Index].isOrdinal(); 1519 return std::error_code(); 1520 } 1521 1522 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1523 if (Entry32) 1524 Result = Entry32[Index].getHintNameRVA(); 1525 else 1526 Result = Entry64[Index].getHintNameRVA(); 1527 return std::error_code(); 1528 } 1529 1530 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1531 uint32_t RVA; 1532 if (Entry32) { 1533 if (Entry32[Index].isOrdinal()) { 1534 Result = Entry32[Index].getOrdinal(); 1535 return std::error_code(); 1536 } 1537 RVA = Entry32[Index].getHintNameRVA(); 1538 } else { 1539 if (Entry64[Index].isOrdinal()) { 1540 Result = Entry64[Index].getOrdinal(); 1541 return std::error_code(); 1542 } 1543 RVA = Entry64[Index].getHintNameRVA(); 1544 } 1545 uintptr_t IntPtr = 0; 1546 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1547 return EC; 1548 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1549 return std::error_code(); 1550 } 1551 1552 ErrorOr<std::unique_ptr<COFFObjectFile>> 1553 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1554 std::error_code EC; 1555 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1556 if (EC) 1557 return EC; 1558 return std::move(Ret); 1559 } 1560 1561 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1562 return Header == Other.Header && Index == Other.Index; 1563 } 1564 1565 void BaseRelocRef::moveNext() { 1566 // Header->BlockSize is the size of the current block, including the 1567 // size of the header itself. 1568 uint32_t Size = sizeof(*Header) + 1569 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1570 if (Size == Header->BlockSize) { 1571 // .reloc contains a list of base relocation blocks. Each block 1572 // consists of the header followed by entries. The header contains 1573 // how many entories will follow. When we reach the end of the 1574 // current block, proceed to the next block. 1575 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1576 reinterpret_cast<const uint8_t *>(Header) + Size); 1577 Index = 0; 1578 } else { 1579 ++Index; 1580 } 1581 } 1582 1583 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1584 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1585 Type = Entry[Index].getType(); 1586 return std::error_code(); 1587 } 1588 1589 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1590 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1591 Result = Header->PageRVA + Entry[Index].getOffset(); 1592 return std::error_code(); 1593 } 1594