1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Support/COFF.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <cctype> 23 #include <limits> 24 25 using namespace llvm; 26 using namespace object; 27 28 using support::ulittle16_t; 29 using support::ulittle32_t; 30 using support::ulittle64_t; 31 using support::little16_t; 32 33 // Returns false if size is greater than the buffer size. And sets ec. 34 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 35 if (M.getBufferSize() < Size) { 36 EC = object_error::unexpected_eof; 37 return false; 38 } 39 return true; 40 } 41 42 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 43 const uint64_t Size) { 44 if (Addr + Size < Addr || Addr + Size < Size || 45 Addr + Size > uintptr_t(M.getBufferEnd()) || 46 Addr < uintptr_t(M.getBufferStart())) { 47 return object_error::unexpected_eof; 48 } 49 return object_error::success; 50 } 51 52 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 53 // Returns unexpected_eof if error. 54 template <typename T> 55 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 56 const void *Ptr, 57 const uint64_t Size = sizeof(T)) { 58 uintptr_t Addr = uintptr_t(Ptr); 59 if (std::error_code EC = checkOffset(M, Addr, Size)) 60 return EC; 61 Obj = reinterpret_cast<const T *>(Addr); 62 return object_error::success; 63 } 64 65 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 66 // prefixed slashes. 67 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 68 assert(Str.size() <= 6 && "String too long, possible overflow."); 69 if (Str.size() > 6) 70 return true; 71 72 uint64_t Value = 0; 73 while (!Str.empty()) { 74 unsigned CharVal; 75 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 76 CharVal = Str[0] - 'A'; 77 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 78 CharVal = Str[0] - 'a' + 26; 79 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 80 CharVal = Str[0] - '0' + 52; 81 else if (Str[0] == '+') // 62 82 CharVal = 62; 83 else if (Str[0] == '/') // 63 84 CharVal = 63; 85 else 86 return true; 87 88 Value = (Value * 64) + CharVal; 89 Str = Str.substr(1); 90 } 91 92 if (Value > std::numeric_limits<uint32_t>::max()) 93 return true; 94 95 Result = static_cast<uint32_t>(Value); 96 return false; 97 } 98 99 template <typename coff_symbol_type> 100 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 101 const coff_symbol_type *Addr = 102 reinterpret_cast<const coff_symbol_type *>(Ref.p); 103 104 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 105 #ifndef NDEBUG 106 // Verify that the symbol points to a valid entry in the symbol table. 107 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 108 109 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 110 "Symbol did not point to the beginning of a symbol"); 111 #endif 112 113 return Addr; 114 } 115 116 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 117 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 118 119 # ifndef NDEBUG 120 // Verify that the section points to a valid entry in the section table. 121 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 122 report_fatal_error("Section was outside of section table."); 123 124 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 125 assert(Offset % sizeof(coff_section) == 0 && 126 "Section did not point to the beginning of a section"); 127 # endif 128 129 return Addr; 130 } 131 132 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 133 auto End = reinterpret_cast<uintptr_t>(StringTable); 134 if (SymbolTable16) { 135 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 136 Symb += 1 + Symb->NumberOfAuxSymbols; 137 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 138 } else if (SymbolTable32) { 139 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 140 Symb += 1 + Symb->NumberOfAuxSymbols; 141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 142 } else { 143 llvm_unreachable("no symbol table pointer!"); 144 } 145 } 146 147 std::error_code COFFObjectFile::getSymbolName(DataRefImpl Ref, 148 StringRef &Result) const { 149 COFFSymbolRef Symb = getCOFFSymbol(Ref); 150 return getSymbolName(Symb, Result); 151 } 152 153 std::error_code COFFObjectFile::getSymbolAddress(DataRefImpl Ref, 154 uint64_t &Result) const { 155 COFFSymbolRef Symb = getCOFFSymbol(Ref); 156 157 if (Symb.isAnyUndefined()) { 158 Result = UnknownAddressOrSize; 159 return object_error::success; 160 } 161 if (Symb.isCommon()) { 162 Result = UnknownAddressOrSize; 163 return object_error::success; 164 } 165 int32_t SectionNumber = Symb.getSectionNumber(); 166 if (!COFF::isReservedSectionNumber(SectionNumber)) { 167 const coff_section *Section = nullptr; 168 if (std::error_code EC = getSection(SectionNumber, Section)) 169 return EC; 170 171 Result = Section->VirtualAddress + Symb.getValue(); 172 return object_error::success; 173 } 174 175 Result = Symb.getValue(); 176 return object_error::success; 177 } 178 179 std::error_code COFFObjectFile::getSymbolType(DataRefImpl Ref, 180 SymbolRef::Type &Result) const { 181 COFFSymbolRef Symb = getCOFFSymbol(Ref); 182 int32_t SectionNumber = Symb.getSectionNumber(); 183 Result = SymbolRef::ST_Other; 184 185 if (Symb.isAnyUndefined()) { 186 Result = SymbolRef::ST_Unknown; 187 } else if (Symb.isFunctionDefinition()) { 188 Result = SymbolRef::ST_Function; 189 } else if (Symb.isCommon()) { 190 Result = SymbolRef::ST_Data; 191 } else if (Symb.isFileRecord()) { 192 Result = SymbolRef::ST_File; 193 } else if (SectionNumber == COFF::IMAGE_SYM_DEBUG) { 194 Result = SymbolRef::ST_Debug; 195 } else if (!COFF::isReservedSectionNumber(SectionNumber)) { 196 const coff_section *Section = nullptr; 197 if (std::error_code EC = getSection(SectionNumber, Section)) 198 return EC; 199 uint32_t Characteristics = Section->Characteristics; 200 if (Characteristics & COFF::IMAGE_SCN_CNT_CODE) 201 Result = SymbolRef::ST_Function; 202 else if (Characteristics & (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 203 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA)) 204 Result = SymbolRef::ST_Data; 205 } 206 return object_error::success; 207 } 208 209 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 210 COFFSymbolRef Symb = getCOFFSymbol(Ref); 211 uint32_t Result = SymbolRef::SF_None; 212 213 if (Symb.isExternal() || Symb.isWeakExternal()) 214 Result |= SymbolRef::SF_Global; 215 216 if (Symb.isWeakExternal()) 217 Result |= SymbolRef::SF_Weak; 218 219 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 220 Result |= SymbolRef::SF_Absolute; 221 222 if (Symb.isFileRecord()) 223 Result |= SymbolRef::SF_FormatSpecific; 224 225 if (Symb.isSectionDefinition()) 226 Result |= SymbolRef::SF_FormatSpecific; 227 228 if (Symb.isCommon()) 229 Result |= SymbolRef::SF_Common; 230 231 if (Symb.isAnyUndefined()) 232 Result |= SymbolRef::SF_Undefined; 233 234 return Result; 235 } 236 237 std::error_code COFFObjectFile::getSymbolSize(DataRefImpl Ref, 238 uint64_t &Result) const { 239 COFFSymbolRef Symb = getCOFFSymbol(Ref); 240 241 if (Symb.isAnyUndefined()) { 242 Result = UnknownAddressOrSize; 243 return object_error::success; 244 } 245 if (Symb.isCommon()) { 246 Result = Symb.getValue(); 247 return object_error::success; 248 } 249 250 // Let's attempt to get the size of the symbol by looking at the address of 251 // the symbol after the symbol in question. 252 uint64_t SymbAddr; 253 if (std::error_code EC = getSymbolAddress(Ref, SymbAddr)) 254 return EC; 255 int32_t SectionNumber = Symb.getSectionNumber(); 256 if (COFF::isReservedSectionNumber(SectionNumber)) { 257 // Absolute and debug symbols aren't sorted in any interesting way. 258 Result = 0; 259 return object_error::success; 260 } 261 const section_iterator SecEnd = section_end(); 262 uint64_t AfterAddr = UnknownAddressOrSize; 263 for (const symbol_iterator &SymbI : symbols()) { 264 section_iterator SecI = SecEnd; 265 if (std::error_code EC = SymbI->getSection(SecI)) 266 return EC; 267 // Check the symbol's section, skip it if it's in the wrong section. 268 // First, make sure it is in any section. 269 if (SecI == SecEnd) 270 continue; 271 // Second, make sure it is in the same section as the symbol in question. 272 if (!sectionContainsSymbol(SecI->getRawDataRefImpl(), Ref)) 273 continue; 274 uint64_t Addr; 275 if (std::error_code EC = SymbI->getAddress(Addr)) 276 return EC; 277 // We want to compare our symbol in question with the closest possible 278 // symbol that comes after. 279 if (AfterAddr > Addr && Addr > SymbAddr) 280 AfterAddr = Addr; 281 } 282 if (AfterAddr == UnknownAddressOrSize) { 283 // No symbol comes after this one, assume that everything after our symbol 284 // is part of it. 285 const coff_section *Section = nullptr; 286 if (std::error_code EC = getSection(SectionNumber, Section)) 287 return EC; 288 Result = Section->SizeOfRawData - Symb.getValue(); 289 } else { 290 // Take the difference between our symbol and the symbol that comes after 291 // our symbol. 292 Result = AfterAddr - SymbAddr; 293 } 294 295 return object_error::success; 296 } 297 298 std::error_code 299 COFFObjectFile::getSymbolSection(DataRefImpl Ref, 300 section_iterator &Result) const { 301 COFFSymbolRef Symb = getCOFFSymbol(Ref); 302 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) { 303 Result = section_end(); 304 } else { 305 const coff_section *Sec = nullptr; 306 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 307 return EC; 308 DataRefImpl Ref; 309 Ref.p = reinterpret_cast<uintptr_t>(Sec); 310 Result = section_iterator(SectionRef(Ref, this)); 311 } 312 return object_error::success; 313 } 314 315 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 316 const coff_section *Sec = toSec(Ref); 317 Sec += 1; 318 Ref.p = reinterpret_cast<uintptr_t>(Sec); 319 } 320 321 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 322 StringRef &Result) const { 323 const coff_section *Sec = toSec(Ref); 324 return getSectionName(Sec, Result); 325 } 326 327 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 328 const coff_section *Sec = toSec(Ref); 329 return Sec->VirtualAddress; 330 } 331 332 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 333 return getSectionSize(toSec(Ref)); 334 } 335 336 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 337 StringRef &Result) const { 338 const coff_section *Sec = toSec(Ref); 339 ArrayRef<uint8_t> Res; 340 std::error_code EC = getSectionContents(Sec, Res); 341 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 342 return EC; 343 } 344 345 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 346 const coff_section *Sec = toSec(Ref); 347 return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1); 348 } 349 350 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 351 const coff_section *Sec = toSec(Ref); 352 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 353 } 354 355 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 356 const coff_section *Sec = toSec(Ref); 357 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 358 } 359 360 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 361 const coff_section *Sec = toSec(Ref); 362 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 363 } 364 365 bool COFFObjectFile::isSectionRequiredForExecution(DataRefImpl Ref) const { 366 // Sections marked 'Info', 'Remove', or 'Discardable' aren't required for 367 // execution. 368 const coff_section *Sec = toSec(Ref); 369 return !(Sec->Characteristics & 370 (COFF::IMAGE_SCN_LNK_INFO | COFF::IMAGE_SCN_LNK_REMOVE | 371 COFF::IMAGE_SCN_MEM_DISCARDABLE)); 372 } 373 374 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 375 const coff_section *Sec = toSec(Ref); 376 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 377 } 378 379 bool COFFObjectFile::isSectionZeroInit(DataRefImpl Ref) const { 380 const coff_section *Sec = toSec(Ref); 381 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 382 } 383 384 bool COFFObjectFile::isSectionReadOnlyData(DataRefImpl Ref) const { 385 const coff_section *Sec = toSec(Ref); 386 // Check if it's any sort of data section. 387 if (!(Sec->Characteristics & (COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 388 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA))) 389 return false; 390 // If it's writable or executable or contains code, it isn't read-only data. 391 if (Sec->Characteristics & 392 (COFF::IMAGE_SCN_CNT_CODE | COFF::IMAGE_SCN_MEM_EXECUTE | 393 COFF::IMAGE_SCN_MEM_WRITE)) 394 return false; 395 return true; 396 } 397 398 bool COFFObjectFile::sectionContainsSymbol(DataRefImpl SecRef, 399 DataRefImpl SymbRef) const { 400 const coff_section *Sec = toSec(SecRef); 401 COFFSymbolRef Symb = getCOFFSymbol(SymbRef); 402 int32_t SecNumber = (Sec - SectionTable) + 1; 403 return SecNumber == Symb.getSectionNumber(); 404 } 405 406 static uint32_t getNumberOfRelocations(const coff_section *Sec, 407 MemoryBufferRef M, const uint8_t *base) { 408 // The field for the number of relocations in COFF section table is only 409 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 410 // NumberOfRelocations field, and the actual relocation count is stored in the 411 // VirtualAddress field in the first relocation entry. 412 if (Sec->hasExtendedRelocations()) { 413 const coff_relocation *FirstReloc; 414 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 415 base + Sec->PointerToRelocations))) 416 return 0; 417 return FirstReloc->VirtualAddress; 418 } 419 return Sec->NumberOfRelocations; 420 } 421 422 static const coff_relocation * 423 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 424 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 425 if (!NumRelocs) 426 return nullptr; 427 auto begin = reinterpret_cast<const coff_relocation *>( 428 Base + Sec->PointerToRelocations); 429 if (Sec->hasExtendedRelocations()) { 430 // Skip the first relocation entry repurposed to store the number of 431 // relocations. 432 begin++; 433 } 434 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 435 return nullptr; 436 return begin; 437 } 438 439 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 440 const coff_section *Sec = toSec(Ref); 441 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 442 DataRefImpl Ret; 443 Ret.p = reinterpret_cast<uintptr_t>(begin); 444 return relocation_iterator(RelocationRef(Ret, this)); 445 } 446 447 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 448 const coff_section *Sec = toSec(Ref); 449 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 450 if (I) 451 I += getNumberOfRelocations(Sec, Data, base()); 452 DataRefImpl Ret; 453 Ret.p = reinterpret_cast<uintptr_t>(I); 454 return relocation_iterator(RelocationRef(Ret, this)); 455 } 456 457 // Initialize the pointer to the symbol table. 458 std::error_code COFFObjectFile::initSymbolTablePtr() { 459 if (COFFHeader) 460 if (std::error_code EC = getObject( 461 SymbolTable16, Data, base() + getPointerToSymbolTable(), 462 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 463 return EC; 464 465 if (COFFBigObjHeader) 466 if (std::error_code EC = getObject( 467 SymbolTable32, Data, base() + getPointerToSymbolTable(), 468 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 469 return EC; 470 471 // Find string table. The first four byte of the string table contains the 472 // total size of the string table, including the size field itself. If the 473 // string table is empty, the value of the first four byte would be 4. 474 uint32_t StringTableOffset = getPointerToSymbolTable() + 475 getNumberOfSymbols() * getSymbolTableEntrySize(); 476 const uint8_t *StringTableAddr = base() + StringTableOffset; 477 const ulittle32_t *StringTableSizePtr; 478 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 479 return EC; 480 StringTableSize = *StringTableSizePtr; 481 if (std::error_code EC = 482 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 483 return EC; 484 485 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 486 // tools like cvtres write a size of 0 for an empty table instead of 4. 487 if (StringTableSize < 4) 488 StringTableSize = 4; 489 490 // Check that the string table is null terminated if has any in it. 491 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 492 return object_error::parse_failed; 493 return object_error::success; 494 } 495 496 // Returns the file offset for the given VA. 497 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 498 uint64_t ImageBase = PE32Header ? (uint64_t)PE32Header->ImageBase 499 : (uint64_t)PE32PlusHeader->ImageBase; 500 uint64_t Rva = Addr - ImageBase; 501 assert(Rva <= UINT32_MAX); 502 return getRvaPtr((uint32_t)Rva, Res); 503 } 504 505 // Returns the file offset for the given RVA. 506 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 507 for (const SectionRef &S : sections()) { 508 const coff_section *Section = getCOFFSection(S); 509 uint32_t SectionStart = Section->VirtualAddress; 510 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 511 if (SectionStart <= Addr && Addr < SectionEnd) { 512 uint32_t Offset = Addr - SectionStart; 513 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 514 return object_error::success; 515 } 516 } 517 return object_error::parse_failed; 518 } 519 520 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 521 // table entry. 522 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 523 StringRef &Name) const { 524 uintptr_t IntPtr = 0; 525 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 526 return EC; 527 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 528 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 529 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 530 return object_error::success; 531 } 532 533 // Find the import table. 534 std::error_code COFFObjectFile::initImportTablePtr() { 535 // First, we get the RVA of the import table. If the file lacks a pointer to 536 // the import table, do nothing. 537 const data_directory *DataEntry; 538 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 539 return object_error::success; 540 541 // Do nothing if the pointer to import table is NULL. 542 if (DataEntry->RelativeVirtualAddress == 0) 543 return object_error::success; 544 545 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 546 // -1 because the last entry is the null entry. 547 NumberOfImportDirectory = DataEntry->Size / 548 sizeof(import_directory_table_entry) - 1; 549 550 // Find the section that contains the RVA. This is needed because the RVA is 551 // the import table's memory address which is different from its file offset. 552 uintptr_t IntPtr = 0; 553 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 554 return EC; 555 ImportDirectory = reinterpret_cast< 556 const import_directory_table_entry *>(IntPtr); 557 return object_error::success; 558 } 559 560 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 561 std::error_code COFFObjectFile::initDelayImportTablePtr() { 562 const data_directory *DataEntry; 563 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 564 return object_error::success; 565 if (DataEntry->RelativeVirtualAddress == 0) 566 return object_error::success; 567 568 uint32_t RVA = DataEntry->RelativeVirtualAddress; 569 NumberOfDelayImportDirectory = DataEntry->Size / 570 sizeof(delay_import_directory_table_entry) - 1; 571 572 uintptr_t IntPtr = 0; 573 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 574 return EC; 575 DelayImportDirectory = reinterpret_cast< 576 const delay_import_directory_table_entry *>(IntPtr); 577 return object_error::success; 578 } 579 580 // Find the export table. 581 std::error_code COFFObjectFile::initExportTablePtr() { 582 // First, we get the RVA of the export table. If the file lacks a pointer to 583 // the export table, do nothing. 584 const data_directory *DataEntry; 585 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 586 return object_error::success; 587 588 // Do nothing if the pointer to export table is NULL. 589 if (DataEntry->RelativeVirtualAddress == 0) 590 return object_error::success; 591 592 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 593 uintptr_t IntPtr = 0; 594 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 595 return EC; 596 ExportDirectory = 597 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 598 return object_error::success; 599 } 600 601 std::error_code COFFObjectFile::initBaseRelocPtr() { 602 const data_directory *DataEntry; 603 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 604 return object_error::success; 605 if (DataEntry->RelativeVirtualAddress == 0) 606 return object_error::success; 607 608 uintptr_t IntPtr = 0; 609 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 610 return EC; 611 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 612 IntPtr); 613 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 614 IntPtr + DataEntry->Size); 615 return object_error::success; 616 } 617 618 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 619 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 620 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 621 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 622 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 623 ImportDirectory(nullptr), NumberOfImportDirectory(0), 624 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 625 ExportDirectory(nullptr), BaseRelocHeader(nullptr), 626 BaseRelocEnd(nullptr) { 627 // Check that we at least have enough room for a header. 628 if (!checkSize(Data, EC, sizeof(coff_file_header))) 629 return; 630 631 // The current location in the file where we are looking at. 632 uint64_t CurPtr = 0; 633 634 // PE header is optional and is present only in executables. If it exists, 635 // it is placed right after COFF header. 636 bool HasPEHeader = false; 637 638 // Check if this is a PE/COFF file. 639 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 640 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 641 // PE signature to find 'normal' COFF header. 642 const auto *DH = reinterpret_cast<const dos_header *>(base()); 643 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 644 CurPtr = DH->AddressOfNewExeHeader; 645 // Check the PE magic bytes. ("PE\0\0") 646 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 647 EC = object_error::parse_failed; 648 return; 649 } 650 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 651 HasPEHeader = true; 652 } 653 } 654 655 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 656 return; 657 658 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 659 // import libraries share a common prefix but bigobj is more restrictive. 660 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 661 COFFHeader->NumberOfSections == uint16_t(0xffff) && 662 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 663 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 664 return; 665 666 // Verify that we are dealing with bigobj. 667 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 668 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 669 sizeof(COFF::BigObjMagic)) == 0) { 670 COFFHeader = nullptr; 671 CurPtr += sizeof(coff_bigobj_file_header); 672 } else { 673 // It's not a bigobj. 674 COFFBigObjHeader = nullptr; 675 } 676 } 677 if (COFFHeader) { 678 // The prior checkSize call may have failed. This isn't a hard error 679 // because we were just trying to sniff out bigobj. 680 EC = object_error::success; 681 CurPtr += sizeof(coff_file_header); 682 683 if (COFFHeader->isImportLibrary()) 684 return; 685 } 686 687 if (HasPEHeader) { 688 const pe32_header *Header; 689 if ((EC = getObject(Header, Data, base() + CurPtr))) 690 return; 691 692 const uint8_t *DataDirAddr; 693 uint64_t DataDirSize; 694 if (Header->Magic == COFF::PE32Header::PE32) { 695 PE32Header = Header; 696 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 697 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 698 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 699 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 700 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 701 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 702 } else { 703 // It's neither PE32 nor PE32+. 704 EC = object_error::parse_failed; 705 return; 706 } 707 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 708 return; 709 CurPtr += COFFHeader->SizeOfOptionalHeader; 710 } 711 712 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 713 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 714 return; 715 716 // Initialize the pointer to the symbol table. 717 if (getPointerToSymbolTable() != 0) { 718 if ((EC = initSymbolTablePtr())) 719 return; 720 } else { 721 // We had better not have any symbols if we don't have a symbol table. 722 if (getNumberOfSymbols() != 0) { 723 EC = object_error::parse_failed; 724 return; 725 } 726 } 727 728 // Initialize the pointer to the beginning of the import table. 729 if ((EC = initImportTablePtr())) 730 return; 731 if ((EC = initDelayImportTablePtr())) 732 return; 733 734 // Initialize the pointer to the export table. 735 if ((EC = initExportTablePtr())) 736 return; 737 738 // Initialize the pointer to the base relocation table. 739 if ((EC = initBaseRelocPtr())) 740 return; 741 742 EC = object_error::success; 743 } 744 745 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 746 DataRefImpl Ret; 747 Ret.p = getSymbolTable(); 748 return basic_symbol_iterator(SymbolRef(Ret, this)); 749 } 750 751 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 752 // The symbol table ends where the string table begins. 753 DataRefImpl Ret; 754 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 755 return basic_symbol_iterator(SymbolRef(Ret, this)); 756 } 757 758 import_directory_iterator COFFObjectFile::import_directory_begin() const { 759 return import_directory_iterator( 760 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 761 } 762 763 import_directory_iterator COFFObjectFile::import_directory_end() const { 764 return import_directory_iterator( 765 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); 766 } 767 768 delay_import_directory_iterator 769 COFFObjectFile::delay_import_directory_begin() const { 770 return delay_import_directory_iterator( 771 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 772 } 773 774 delay_import_directory_iterator 775 COFFObjectFile::delay_import_directory_end() const { 776 return delay_import_directory_iterator( 777 DelayImportDirectoryEntryRef( 778 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 779 } 780 781 export_directory_iterator COFFObjectFile::export_directory_begin() const { 782 return export_directory_iterator( 783 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 784 } 785 786 export_directory_iterator COFFObjectFile::export_directory_end() const { 787 if (!ExportDirectory) 788 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 789 ExportDirectoryEntryRef Ref(ExportDirectory, 790 ExportDirectory->AddressTableEntries, this); 791 return export_directory_iterator(Ref); 792 } 793 794 section_iterator COFFObjectFile::section_begin() const { 795 DataRefImpl Ret; 796 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 797 return section_iterator(SectionRef(Ret, this)); 798 } 799 800 section_iterator COFFObjectFile::section_end() const { 801 DataRefImpl Ret; 802 int NumSections = 803 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 804 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 805 return section_iterator(SectionRef(Ret, this)); 806 } 807 808 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 809 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 810 } 811 812 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 813 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 814 } 815 816 uint8_t COFFObjectFile::getBytesInAddress() const { 817 return getArch() == Triple::x86_64 ? 8 : 4; 818 } 819 820 StringRef COFFObjectFile::getFileFormatName() const { 821 switch(getMachine()) { 822 case COFF::IMAGE_FILE_MACHINE_I386: 823 return "COFF-i386"; 824 case COFF::IMAGE_FILE_MACHINE_AMD64: 825 return "COFF-x86-64"; 826 case COFF::IMAGE_FILE_MACHINE_ARMNT: 827 return "COFF-ARM"; 828 default: 829 return "COFF-<unknown arch>"; 830 } 831 } 832 833 unsigned COFFObjectFile::getArch() const { 834 switch (getMachine()) { 835 case COFF::IMAGE_FILE_MACHINE_I386: 836 return Triple::x86; 837 case COFF::IMAGE_FILE_MACHINE_AMD64: 838 return Triple::x86_64; 839 case COFF::IMAGE_FILE_MACHINE_ARMNT: 840 return Triple::thumb; 841 default: 842 return Triple::UnknownArch; 843 } 844 } 845 846 iterator_range<import_directory_iterator> 847 COFFObjectFile::import_directories() const { 848 return make_range(import_directory_begin(), import_directory_end()); 849 } 850 851 iterator_range<delay_import_directory_iterator> 852 COFFObjectFile::delay_import_directories() const { 853 return make_range(delay_import_directory_begin(), 854 delay_import_directory_end()); 855 } 856 857 iterator_range<export_directory_iterator> 858 COFFObjectFile::export_directories() const { 859 return make_range(export_directory_begin(), export_directory_end()); 860 } 861 862 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 863 return make_range(base_reloc_begin(), base_reloc_end()); 864 } 865 866 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 867 Res = PE32Header; 868 return object_error::success; 869 } 870 871 std::error_code 872 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 873 Res = PE32PlusHeader; 874 return object_error::success; 875 } 876 877 std::error_code 878 COFFObjectFile::getDataDirectory(uint32_t Index, 879 const data_directory *&Res) const { 880 // Error if if there's no data directory or the index is out of range. 881 if (!DataDirectory) { 882 Res = nullptr; 883 return object_error::parse_failed; 884 } 885 assert(PE32Header || PE32PlusHeader); 886 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 887 : PE32PlusHeader->NumberOfRvaAndSize; 888 if (Index >= NumEnt) { 889 Res = nullptr; 890 return object_error::parse_failed; 891 } 892 Res = &DataDirectory[Index]; 893 return object_error::success; 894 } 895 896 std::error_code COFFObjectFile::getSection(int32_t Index, 897 const coff_section *&Result) const { 898 Result = nullptr; 899 if (COFF::isReservedSectionNumber(Index)) 900 return object_error::success; 901 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 902 // We already verified the section table data, so no need to check again. 903 Result = SectionTable + (Index - 1); 904 return object_error::success; 905 } 906 return object_error::parse_failed; 907 } 908 909 std::error_code COFFObjectFile::getString(uint32_t Offset, 910 StringRef &Result) const { 911 if (StringTableSize <= 4) 912 // Tried to get a string from an empty string table. 913 return object_error::parse_failed; 914 if (Offset >= StringTableSize) 915 return object_error::unexpected_eof; 916 Result = StringRef(StringTable + Offset); 917 return object_error::success; 918 } 919 920 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 921 StringRef &Res) const { 922 // Check for string table entry. First 4 bytes are 0. 923 if (Symbol.getStringTableOffset().Zeroes == 0) { 924 uint32_t Offset = Symbol.getStringTableOffset().Offset; 925 if (std::error_code EC = getString(Offset, Res)) 926 return EC; 927 return object_error::success; 928 } 929 930 if (Symbol.getShortName()[COFF::NameSize - 1] == 0) 931 // Null terminated, let ::strlen figure out the length. 932 Res = StringRef(Symbol.getShortName()); 933 else 934 // Not null terminated, use all 8 bytes. 935 Res = StringRef(Symbol.getShortName(), COFF::NameSize); 936 return object_error::success; 937 } 938 939 ArrayRef<uint8_t> 940 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 941 const uint8_t *Aux = nullptr; 942 943 size_t SymbolSize = getSymbolTableEntrySize(); 944 if (Symbol.getNumberOfAuxSymbols() > 0) { 945 // AUX data comes immediately after the symbol in COFF 946 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 947 # ifndef NDEBUG 948 // Verify that the Aux symbol points to a valid entry in the symbol table. 949 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 950 if (Offset < getPointerToSymbolTable() || 951 Offset >= 952 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 953 report_fatal_error("Aux Symbol data was outside of symbol table."); 954 955 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 956 "Aux Symbol data did not point to the beginning of a symbol"); 957 # endif 958 } 959 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 960 } 961 962 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 963 StringRef &Res) const { 964 StringRef Name; 965 if (Sec->Name[COFF::NameSize - 1] == 0) 966 // Null terminated, let ::strlen figure out the length. 967 Name = Sec->Name; 968 else 969 // Not null terminated, use all 8 bytes. 970 Name = StringRef(Sec->Name, COFF::NameSize); 971 972 // Check for string table entry. First byte is '/'. 973 if (Name.startswith("/")) { 974 uint32_t Offset; 975 if (Name.startswith("//")) { 976 if (decodeBase64StringEntry(Name.substr(2), Offset)) 977 return object_error::parse_failed; 978 } else { 979 if (Name.substr(1).getAsInteger(10, Offset)) 980 return object_error::parse_failed; 981 } 982 if (std::error_code EC = getString(Offset, Name)) 983 return EC; 984 } 985 986 Res = Name; 987 return object_error::success; 988 } 989 990 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 991 // SizeOfRawData and VirtualSize change what they represent depending on 992 // whether or not we have an executable image. 993 // 994 // For object files, SizeOfRawData contains the size of section's data; 995 // VirtualSize is always zero. 996 // 997 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 998 // actual section size is in VirtualSize. It is possible for VirtualSize to 999 // be greater than SizeOfRawData; the contents past that point should be 1000 // considered to be zero. 1001 uint32_t SectionSize; 1002 if (Sec->VirtualSize) 1003 SectionSize = std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1004 else 1005 SectionSize = Sec->SizeOfRawData; 1006 1007 return SectionSize; 1008 } 1009 1010 std::error_code 1011 COFFObjectFile::getSectionContents(const coff_section *Sec, 1012 ArrayRef<uint8_t> &Res) const { 1013 // PointerToRawData and SizeOfRawData won't make sense for BSS sections, 1014 // don't do anything interesting for them. 1015 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && 1016 "BSS sections don't have contents!"); 1017 // The only thing that we need to verify is that the contents is contained 1018 // within the file bounds. We don't need to make sure it doesn't cover other 1019 // data, as there's nothing that says that is not allowed. 1020 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 1021 uint32_t SectionSize = getSectionSize(Sec); 1022 if (checkOffset(Data, ConStart, SectionSize)) 1023 return object_error::parse_failed; 1024 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1025 return object_error::success; 1026 } 1027 1028 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1029 return reinterpret_cast<const coff_relocation*>(Rel.p); 1030 } 1031 1032 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1033 Rel.p = reinterpret_cast<uintptr_t>( 1034 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1035 } 1036 1037 std::error_code COFFObjectFile::getRelocationAddress(DataRefImpl Rel, 1038 uint64_t &Res) const { 1039 report_fatal_error("getRelocationAddress not implemented in COFFObjectFile"); 1040 } 1041 1042 std::error_code COFFObjectFile::getRelocationOffset(DataRefImpl Rel, 1043 uint64_t &Res) const { 1044 const coff_relocation *R = toRel(Rel); 1045 const support::ulittle32_t *VirtualAddressPtr; 1046 if (std::error_code EC = 1047 getObject(VirtualAddressPtr, Data, &R->VirtualAddress)) 1048 return EC; 1049 Res = *VirtualAddressPtr; 1050 return object_error::success; 1051 } 1052 1053 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1054 const coff_relocation *R = toRel(Rel); 1055 DataRefImpl Ref; 1056 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1057 return symbol_end(); 1058 if (SymbolTable16) 1059 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1060 else if (SymbolTable32) 1061 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1062 else 1063 llvm_unreachable("no symbol table pointer!"); 1064 return symbol_iterator(SymbolRef(Ref, this)); 1065 } 1066 1067 std::error_code COFFObjectFile::getRelocationType(DataRefImpl Rel, 1068 uint64_t &Res) const { 1069 const coff_relocation* R = toRel(Rel); 1070 Res = R->Type; 1071 return object_error::success; 1072 } 1073 1074 const coff_section * 1075 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1076 return toSec(Section.getRawDataRefImpl()); 1077 } 1078 1079 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1080 if (SymbolTable16) 1081 return toSymb<coff_symbol16>(Ref); 1082 if (SymbolTable32) 1083 return toSymb<coff_symbol32>(Ref); 1084 llvm_unreachable("no symbol table pointer!"); 1085 } 1086 1087 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1088 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1089 } 1090 1091 const coff_relocation * 1092 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1093 return toRel(Reloc.getRawDataRefImpl()); 1094 } 1095 1096 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1097 case COFF::reloc_type: \ 1098 Res = #reloc_type; \ 1099 break; 1100 1101 std::error_code 1102 COFFObjectFile::getRelocationTypeName(DataRefImpl Rel, 1103 SmallVectorImpl<char> &Result) const { 1104 const coff_relocation *Reloc = toRel(Rel); 1105 StringRef Res; 1106 switch (getMachine()) { 1107 case COFF::IMAGE_FILE_MACHINE_AMD64: 1108 switch (Reloc->Type) { 1109 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1110 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1111 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1112 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1113 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1114 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1115 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1116 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1117 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1118 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1119 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1120 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1121 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1122 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1123 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1124 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1125 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1126 default: 1127 Res = "Unknown"; 1128 } 1129 break; 1130 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1131 switch (Reloc->Type) { 1132 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1133 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1134 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1135 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1136 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1137 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1138 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1139 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1140 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1141 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1142 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1143 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1144 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1145 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1146 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1147 default: 1148 Res = "Unknown"; 1149 } 1150 break; 1151 case COFF::IMAGE_FILE_MACHINE_I386: 1152 switch (Reloc->Type) { 1153 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1154 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1155 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1156 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1157 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1158 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1159 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1160 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1161 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1162 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1163 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1164 default: 1165 Res = "Unknown"; 1166 } 1167 break; 1168 default: 1169 Res = "Unknown"; 1170 } 1171 Result.append(Res.begin(), Res.end()); 1172 return object_error::success; 1173 } 1174 1175 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1176 1177 std::error_code 1178 COFFObjectFile::getRelocationValueString(DataRefImpl Rel, 1179 SmallVectorImpl<char> &Result) const { 1180 const coff_relocation *Reloc = toRel(Rel); 1181 DataRefImpl Sym; 1182 ErrorOr<COFFSymbolRef> Symb = getSymbol(Reloc->SymbolTableIndex); 1183 if (std::error_code EC = Symb.getError()) 1184 return EC; 1185 Sym.p = reinterpret_cast<uintptr_t>(Symb->getRawPtr()); 1186 StringRef SymName; 1187 if (std::error_code EC = getSymbolName(Sym, SymName)) 1188 return EC; 1189 Result.append(SymName.begin(), SymName.end()); 1190 return object_error::success; 1191 } 1192 1193 bool COFFObjectFile::isRelocatableObject() const { 1194 return !DataDirectory; 1195 } 1196 1197 bool ImportDirectoryEntryRef:: 1198 operator==(const ImportDirectoryEntryRef &Other) const { 1199 return ImportTable == Other.ImportTable && Index == Other.Index; 1200 } 1201 1202 void ImportDirectoryEntryRef::moveNext() { 1203 ++Index; 1204 } 1205 1206 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1207 const import_directory_table_entry *&Result) const { 1208 Result = ImportTable + Index; 1209 return object_error::success; 1210 } 1211 1212 static imported_symbol_iterator 1213 makeImportedSymbolIterator(const COFFObjectFile *Object, 1214 uintptr_t Ptr, int Index) { 1215 if (Object->getBytesInAddress() == 4) { 1216 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1217 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1218 } 1219 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1220 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1221 } 1222 1223 static imported_symbol_iterator 1224 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1225 uintptr_t IntPtr = 0; 1226 Object->getRvaPtr(RVA, IntPtr); 1227 return makeImportedSymbolIterator(Object, IntPtr, 0); 1228 } 1229 1230 static imported_symbol_iterator 1231 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1232 uintptr_t IntPtr = 0; 1233 Object->getRvaPtr(RVA, IntPtr); 1234 // Forward the pointer to the last entry which is null. 1235 int Index = 0; 1236 if (Object->getBytesInAddress() == 4) { 1237 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1238 while (*Entry++) 1239 ++Index; 1240 } else { 1241 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1242 while (*Entry++) 1243 ++Index; 1244 } 1245 return makeImportedSymbolIterator(Object, IntPtr, Index); 1246 } 1247 1248 imported_symbol_iterator 1249 ImportDirectoryEntryRef::imported_symbol_begin() const { 1250 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1251 OwningObject); 1252 } 1253 1254 imported_symbol_iterator 1255 ImportDirectoryEntryRef::imported_symbol_end() const { 1256 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1257 OwningObject); 1258 } 1259 1260 iterator_range<imported_symbol_iterator> 1261 ImportDirectoryEntryRef::imported_symbols() const { 1262 return make_range(imported_symbol_begin(), imported_symbol_end()); 1263 } 1264 1265 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1266 uintptr_t IntPtr = 0; 1267 if (std::error_code EC = 1268 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1269 return EC; 1270 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1271 return object_error::success; 1272 } 1273 1274 std::error_code 1275 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1276 Result = ImportTable[Index].ImportLookupTableRVA; 1277 return object_error::success; 1278 } 1279 1280 std::error_code 1281 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1282 Result = ImportTable[Index].ImportAddressTableRVA; 1283 return object_error::success; 1284 } 1285 1286 std::error_code ImportDirectoryEntryRef::getImportLookupEntry( 1287 const import_lookup_table_entry32 *&Result) const { 1288 uintptr_t IntPtr = 0; 1289 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; 1290 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1291 return EC; 1292 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr); 1293 return object_error::success; 1294 } 1295 1296 bool DelayImportDirectoryEntryRef:: 1297 operator==(const DelayImportDirectoryEntryRef &Other) const { 1298 return Table == Other.Table && Index == Other.Index; 1299 } 1300 1301 void DelayImportDirectoryEntryRef::moveNext() { 1302 ++Index; 1303 } 1304 1305 imported_symbol_iterator 1306 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1307 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1308 OwningObject); 1309 } 1310 1311 imported_symbol_iterator 1312 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1313 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1314 OwningObject); 1315 } 1316 1317 iterator_range<imported_symbol_iterator> 1318 DelayImportDirectoryEntryRef::imported_symbols() const { 1319 return make_range(imported_symbol_begin(), imported_symbol_end()); 1320 } 1321 1322 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1323 uintptr_t IntPtr = 0; 1324 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1325 return EC; 1326 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1327 return object_error::success; 1328 } 1329 1330 std::error_code DelayImportDirectoryEntryRef:: 1331 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1332 Result = Table; 1333 return object_error::success; 1334 } 1335 1336 std::error_code DelayImportDirectoryEntryRef:: 1337 getImportAddress(int AddrIndex, uint64_t &Result) const { 1338 uint32_t RVA = Table[Index].DelayImportAddressTable + 1339 AddrIndex * (OwningObject->is64() ? 8 : 4); 1340 uintptr_t IntPtr = 0; 1341 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1342 return EC; 1343 if (OwningObject->is64()) 1344 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1345 else 1346 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1347 return object_error::success; 1348 } 1349 1350 bool ExportDirectoryEntryRef:: 1351 operator==(const ExportDirectoryEntryRef &Other) const { 1352 return ExportTable == Other.ExportTable && Index == Other.Index; 1353 } 1354 1355 void ExportDirectoryEntryRef::moveNext() { 1356 ++Index; 1357 } 1358 1359 // Returns the name of the current export symbol. If the symbol is exported only 1360 // by ordinal, the empty string is set as a result. 1361 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1362 uintptr_t IntPtr = 0; 1363 if (std::error_code EC = 1364 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1365 return EC; 1366 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1367 return object_error::success; 1368 } 1369 1370 // Returns the starting ordinal number. 1371 std::error_code 1372 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1373 Result = ExportTable->OrdinalBase; 1374 return object_error::success; 1375 } 1376 1377 // Returns the export ordinal of the current export symbol. 1378 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1379 Result = ExportTable->OrdinalBase + Index; 1380 return object_error::success; 1381 } 1382 1383 // Returns the address of the current export symbol. 1384 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1385 uintptr_t IntPtr = 0; 1386 if (std::error_code EC = 1387 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1388 return EC; 1389 const export_address_table_entry *entry = 1390 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1391 Result = entry[Index].ExportRVA; 1392 return object_error::success; 1393 } 1394 1395 // Returns the name of the current export symbol. If the symbol is exported only 1396 // by ordinal, the empty string is set as a result. 1397 std::error_code 1398 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1399 uintptr_t IntPtr = 0; 1400 if (std::error_code EC = 1401 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1402 return EC; 1403 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1404 1405 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1406 int Offset = 0; 1407 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1408 I < E; ++I, ++Offset) { 1409 if (*I != Index) 1410 continue; 1411 if (std::error_code EC = 1412 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1413 return EC; 1414 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1415 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1416 return EC; 1417 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1418 return object_error::success; 1419 } 1420 Result = ""; 1421 return object_error::success; 1422 } 1423 1424 bool ImportedSymbolRef:: 1425 operator==(const ImportedSymbolRef &Other) const { 1426 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1427 && Index == Other.Index; 1428 } 1429 1430 void ImportedSymbolRef::moveNext() { 1431 ++Index; 1432 } 1433 1434 std::error_code 1435 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1436 uint32_t RVA; 1437 if (Entry32) { 1438 // If a symbol is imported only by ordinal, it has no name. 1439 if (Entry32[Index].isOrdinal()) 1440 return object_error::success; 1441 RVA = Entry32[Index].getHintNameRVA(); 1442 } else { 1443 if (Entry64[Index].isOrdinal()) 1444 return object_error::success; 1445 RVA = Entry64[Index].getHintNameRVA(); 1446 } 1447 uintptr_t IntPtr = 0; 1448 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1449 return EC; 1450 // +2 because the first two bytes is hint. 1451 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1452 return object_error::success; 1453 } 1454 1455 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1456 uint32_t RVA; 1457 if (Entry32) { 1458 if (Entry32[Index].isOrdinal()) { 1459 Result = Entry32[Index].getOrdinal(); 1460 return object_error::success; 1461 } 1462 RVA = Entry32[Index].getHintNameRVA(); 1463 } else { 1464 if (Entry64[Index].isOrdinal()) { 1465 Result = Entry64[Index].getOrdinal(); 1466 return object_error::success; 1467 } 1468 RVA = Entry64[Index].getHintNameRVA(); 1469 } 1470 uintptr_t IntPtr = 0; 1471 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1472 return EC; 1473 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1474 return object_error::success; 1475 } 1476 1477 ErrorOr<std::unique_ptr<COFFObjectFile>> 1478 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1479 std::error_code EC; 1480 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1481 if (EC) 1482 return EC; 1483 return std::move(Ret); 1484 } 1485 1486 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1487 return Header == Other.Header && Index == Other.Index; 1488 } 1489 1490 void BaseRelocRef::moveNext() { 1491 // Header->BlockSize is the size of the current block, including the 1492 // size of the header itself. 1493 uint32_t Size = sizeof(*Header) + 1494 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1495 if (Size == Header->BlockSize) { 1496 // .reloc contains a list of base relocation blocks. Each block 1497 // consists of the header followed by entries. The header contains 1498 // how many entories will follow. When we reach the end of the 1499 // current block, proceed to the next block. 1500 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1501 reinterpret_cast<const uint8_t *>(Header) + Size); 1502 Index = 0; 1503 } else { 1504 ++Index; 1505 } 1506 } 1507 1508 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1509 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1510 Type = Entry[Index].getType(); 1511 return object_error::success; 1512 } 1513 1514 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1515 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1516 Result = Header->PageRVA + Entry[Index].getOffset(); 1517 return object_error::success; 1518 } 1519