1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the COFFObjectFile class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/StringSwitch.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/ADT/iterator_range.h" 18 #include "llvm/BinaryFormat/COFF.h" 19 #include "llvm/Object/Binary.h" 20 #include "llvm/Object/COFF.h" 21 #include "llvm/Object/Error.h" 22 #include "llvm/Object/ObjectFile.h" 23 #include "llvm/Support/BinaryStreamReader.h" 24 #include "llvm/Support/Endian.h" 25 #include "llvm/Support/Error.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/MemoryBufferRef.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cinttypes> 32 #include <cstddef> 33 #include <cstring> 34 #include <limits> 35 #include <memory> 36 #include <system_error> 37 38 using namespace llvm; 39 using namespace object; 40 41 using support::ulittle16_t; 42 using support::ulittle32_t; 43 using support::ulittle64_t; 44 using support::little16_t; 45 46 // Returns false if size is greater than the buffer size. And sets ec. 47 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 48 if (M.getBufferSize() < Size) { 49 EC = object_error::unexpected_eof; 50 return false; 51 } 52 return true; 53 } 54 55 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 56 // Returns unexpected_eof if error. 57 template <typename T> 58 static Error getObject(const T *&Obj, MemoryBufferRef M, const void *Ptr, 59 const uint64_t Size = sizeof(T)) { 60 uintptr_t Addr = reinterpret_cast<uintptr_t>(Ptr); 61 if (Error E = Binary::checkOffset(M, Addr, Size)) 62 return E; 63 Obj = reinterpret_cast<const T *>(Addr); 64 return Error::success(); 65 } 66 67 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 68 // prefixed slashes. 69 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 70 assert(Str.size() <= 6 && "String too long, possible overflow."); 71 if (Str.size() > 6) 72 return true; 73 74 uint64_t Value = 0; 75 while (!Str.empty()) { 76 unsigned CharVal; 77 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 78 CharVal = Str[0] - 'A'; 79 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 80 CharVal = Str[0] - 'a' + 26; 81 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 82 CharVal = Str[0] - '0' + 52; 83 else if (Str[0] == '+') // 62 84 CharVal = 62; 85 else if (Str[0] == '/') // 63 86 CharVal = 63; 87 else 88 return true; 89 90 Value = (Value * 64) + CharVal; 91 Str = Str.substr(1); 92 } 93 94 if (Value > std::numeric_limits<uint32_t>::max()) 95 return true; 96 97 Result = static_cast<uint32_t>(Value); 98 return false; 99 } 100 101 template <typename coff_symbol_type> 102 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 103 const coff_symbol_type *Addr = 104 reinterpret_cast<const coff_symbol_type *>(Ref.p); 105 106 assert(!checkOffset(Data, reinterpret_cast<uintptr_t>(Addr), sizeof(*Addr))); 107 #ifndef NDEBUG 108 // Verify that the symbol points to a valid entry in the symbol table. 109 uintptr_t Offset = 110 reinterpret_cast<uintptr_t>(Addr) - reinterpret_cast<uintptr_t>(base()); 111 112 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 113 "Symbol did not point to the beginning of a symbol"); 114 #endif 115 116 return Addr; 117 } 118 119 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 120 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 121 122 #ifndef NDEBUG 123 // Verify that the section points to a valid entry in the section table. 124 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 125 report_fatal_error("Section was outside of section table."); 126 127 uintptr_t Offset = reinterpret_cast<uintptr_t>(Addr) - 128 reinterpret_cast<uintptr_t>(SectionTable); 129 assert(Offset % sizeof(coff_section) == 0 && 130 "Section did not point to the beginning of a section"); 131 #endif 132 133 return Addr; 134 } 135 136 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 137 auto End = reinterpret_cast<uintptr_t>(StringTable); 138 if (SymbolTable16) { 139 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 140 Symb += 1 + Symb->NumberOfAuxSymbols; 141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 142 } else if (SymbolTable32) { 143 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 144 Symb += 1 + Symb->NumberOfAuxSymbols; 145 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 146 } else { 147 llvm_unreachable("no symbol table pointer!"); 148 } 149 } 150 151 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 152 return getSymbolName(getCOFFSymbol(Ref)); 153 } 154 155 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 156 return getCOFFSymbol(Ref).getValue(); 157 } 158 159 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const { 160 // MSVC/link.exe seems to align symbols to the next-power-of-2 161 // up to 32 bytes. 162 COFFSymbolRef Symb = getCOFFSymbol(Ref); 163 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue())); 164 } 165 166 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 167 uint64_t Result = cantFail(getSymbolValue(Ref)); 168 COFFSymbolRef Symb = getCOFFSymbol(Ref); 169 int32_t SectionNumber = Symb.getSectionNumber(); 170 171 if (Symb.isAnyUndefined() || Symb.isCommon() || 172 COFF::isReservedSectionNumber(SectionNumber)) 173 return Result; 174 175 Expected<const coff_section *> Section = getSection(SectionNumber); 176 if (!Section) 177 return Section.takeError(); 178 Result += (*Section)->VirtualAddress; 179 180 // The section VirtualAddress does not include ImageBase, and we want to 181 // return virtual addresses. 182 Result += getImageBase(); 183 184 return Result; 185 } 186 187 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 188 COFFSymbolRef Symb = getCOFFSymbol(Ref); 189 int32_t SectionNumber = Symb.getSectionNumber(); 190 191 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 192 return SymbolRef::ST_Function; 193 if (Symb.isAnyUndefined()) 194 return SymbolRef::ST_Unknown; 195 if (Symb.isCommon()) 196 return SymbolRef::ST_Data; 197 if (Symb.isFileRecord()) 198 return SymbolRef::ST_File; 199 200 // TODO: perhaps we need a new symbol type ST_Section. 201 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 202 return SymbolRef::ST_Debug; 203 204 if (!COFF::isReservedSectionNumber(SectionNumber)) 205 return SymbolRef::ST_Data; 206 207 return SymbolRef::ST_Other; 208 } 209 210 Expected<uint32_t> COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 211 COFFSymbolRef Symb = getCOFFSymbol(Ref); 212 uint32_t Result = SymbolRef::SF_None; 213 214 if (Symb.isExternal() || Symb.isWeakExternal()) 215 Result |= SymbolRef::SF_Global; 216 217 if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) { 218 Result |= SymbolRef::SF_Weak; 219 if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS) 220 Result |= SymbolRef::SF_Undefined; 221 } 222 223 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 224 Result |= SymbolRef::SF_Absolute; 225 226 if (Symb.isFileRecord()) 227 Result |= SymbolRef::SF_FormatSpecific; 228 229 if (Symb.isSectionDefinition()) 230 Result |= SymbolRef::SF_FormatSpecific; 231 232 if (Symb.isCommon()) 233 Result |= SymbolRef::SF_Common; 234 235 if (Symb.isUndefined()) 236 Result |= SymbolRef::SF_Undefined; 237 238 return Result; 239 } 240 241 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 242 COFFSymbolRef Symb = getCOFFSymbol(Ref); 243 return Symb.getValue(); 244 } 245 246 Expected<section_iterator> 247 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 248 COFFSymbolRef Symb = getCOFFSymbol(Ref); 249 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 250 return section_end(); 251 Expected<const coff_section *> Sec = getSection(Symb.getSectionNumber()); 252 if (!Sec) 253 return Sec.takeError(); 254 DataRefImpl Ret; 255 Ret.p = reinterpret_cast<uintptr_t>(*Sec); 256 return section_iterator(SectionRef(Ret, this)); 257 } 258 259 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 260 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 261 return Symb.getSectionNumber(); 262 } 263 264 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 265 const coff_section *Sec = toSec(Ref); 266 Sec += 1; 267 Ref.p = reinterpret_cast<uintptr_t>(Sec); 268 } 269 270 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const { 271 const coff_section *Sec = toSec(Ref); 272 return getSectionName(Sec); 273 } 274 275 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 276 const coff_section *Sec = toSec(Ref); 277 uint64_t Result = Sec->VirtualAddress; 278 279 // The section VirtualAddress does not include ImageBase, and we want to 280 // return virtual addresses. 281 Result += getImageBase(); 282 return Result; 283 } 284 285 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const { 286 return toSec(Sec) - SectionTable; 287 } 288 289 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 290 return getSectionSize(toSec(Ref)); 291 } 292 293 Expected<ArrayRef<uint8_t>> 294 COFFObjectFile::getSectionContents(DataRefImpl Ref) const { 295 const coff_section *Sec = toSec(Ref); 296 ArrayRef<uint8_t> Res; 297 if (Error E = getSectionContents(Sec, Res)) 298 return std::move(E); 299 return Res; 300 } 301 302 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 303 const coff_section *Sec = toSec(Ref); 304 return Sec->getAlignment(); 305 } 306 307 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 308 return false; 309 } 310 311 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 312 const coff_section *Sec = toSec(Ref); 313 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 314 } 315 316 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 317 const coff_section *Sec = toSec(Ref); 318 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 319 } 320 321 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 322 const coff_section *Sec = toSec(Ref); 323 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 324 COFF::IMAGE_SCN_MEM_READ | 325 COFF::IMAGE_SCN_MEM_WRITE; 326 return (Sec->Characteristics & BssFlags) == BssFlags; 327 } 328 329 // The .debug sections are the only debug sections for COFF 330 // (\see MCObjectFileInfo.cpp). 331 bool COFFObjectFile::isDebugSection(DataRefImpl Ref) const { 332 Expected<StringRef> SectionNameOrErr = getSectionName(Ref); 333 if (!SectionNameOrErr) { 334 // TODO: Report the error message properly. 335 consumeError(SectionNameOrErr.takeError()); 336 return false; 337 } 338 StringRef SectionName = SectionNameOrErr.get(); 339 return SectionName.startswith(".debug"); 340 } 341 342 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 343 uintptr_t Offset = 344 Sec.getRawDataRefImpl().p - reinterpret_cast<uintptr_t>(SectionTable); 345 assert((Offset % sizeof(coff_section)) == 0); 346 return (Offset / sizeof(coff_section)) + 1; 347 } 348 349 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 350 const coff_section *Sec = toSec(Ref); 351 // In COFF, a virtual section won't have any in-file 352 // content, so the file pointer to the content will be zero. 353 return Sec->PointerToRawData == 0; 354 } 355 356 static uint32_t getNumberOfRelocations(const coff_section *Sec, 357 MemoryBufferRef M, const uint8_t *base) { 358 // The field for the number of relocations in COFF section table is only 359 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 360 // NumberOfRelocations field, and the actual relocation count is stored in the 361 // VirtualAddress field in the first relocation entry. 362 if (Sec->hasExtendedRelocations()) { 363 const coff_relocation *FirstReloc; 364 if (Error E = getObject(FirstReloc, M, 365 reinterpret_cast<const coff_relocation *>( 366 base + Sec->PointerToRelocations))) { 367 consumeError(std::move(E)); 368 return 0; 369 } 370 // -1 to exclude this first relocation entry. 371 return FirstReloc->VirtualAddress - 1; 372 } 373 return Sec->NumberOfRelocations; 374 } 375 376 static const coff_relocation * 377 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 378 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 379 if (!NumRelocs) 380 return nullptr; 381 auto begin = reinterpret_cast<const coff_relocation *>( 382 Base + Sec->PointerToRelocations); 383 if (Sec->hasExtendedRelocations()) { 384 // Skip the first relocation entry repurposed to store the number of 385 // relocations. 386 begin++; 387 } 388 if (auto E = Binary::checkOffset(M, reinterpret_cast<uintptr_t>(begin), 389 sizeof(coff_relocation) * NumRelocs)) { 390 consumeError(std::move(E)); 391 return nullptr; 392 } 393 return begin; 394 } 395 396 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 397 const coff_section *Sec = toSec(Ref); 398 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 399 if (begin && Sec->VirtualAddress != 0) 400 report_fatal_error("Sections with relocations should have an address of 0"); 401 DataRefImpl Ret; 402 Ret.p = reinterpret_cast<uintptr_t>(begin); 403 return relocation_iterator(RelocationRef(Ret, this)); 404 } 405 406 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 407 const coff_section *Sec = toSec(Ref); 408 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 409 if (I) 410 I += getNumberOfRelocations(Sec, Data, base()); 411 DataRefImpl Ret; 412 Ret.p = reinterpret_cast<uintptr_t>(I); 413 return relocation_iterator(RelocationRef(Ret, this)); 414 } 415 416 // Initialize the pointer to the symbol table. 417 Error COFFObjectFile::initSymbolTablePtr() { 418 if (COFFHeader) 419 if (Error E = getObject( 420 SymbolTable16, Data, base() + getPointerToSymbolTable(), 421 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 422 return E; 423 424 if (COFFBigObjHeader) 425 if (Error E = getObject( 426 SymbolTable32, Data, base() + getPointerToSymbolTable(), 427 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 428 return E; 429 430 // Find string table. The first four byte of the string table contains the 431 // total size of the string table, including the size field itself. If the 432 // string table is empty, the value of the first four byte would be 4. 433 uint32_t StringTableOffset = getPointerToSymbolTable() + 434 getNumberOfSymbols() * getSymbolTableEntrySize(); 435 const uint8_t *StringTableAddr = base() + StringTableOffset; 436 const ulittle32_t *StringTableSizePtr; 437 if (Error E = getObject(StringTableSizePtr, Data, StringTableAddr)) 438 return E; 439 StringTableSize = *StringTableSizePtr; 440 if (Error E = getObject(StringTable, Data, StringTableAddr, StringTableSize)) 441 return E; 442 443 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 444 // tools like cvtres write a size of 0 for an empty table instead of 4. 445 if (StringTableSize < 4) 446 StringTableSize = 4; 447 448 // Check that the string table is null terminated if has any in it. 449 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 450 return createStringError(object_error::parse_failed, 451 "string table missing null terminator"); 452 return Error::success(); 453 } 454 455 uint64_t COFFObjectFile::getImageBase() const { 456 if (PE32Header) 457 return PE32Header->ImageBase; 458 else if (PE32PlusHeader) 459 return PE32PlusHeader->ImageBase; 460 // This actually comes up in practice. 461 return 0; 462 } 463 464 // Returns the file offset for the given VA. 465 Error COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 466 uint64_t ImageBase = getImageBase(); 467 uint64_t Rva = Addr - ImageBase; 468 assert(Rva <= UINT32_MAX); 469 return getRvaPtr((uint32_t)Rva, Res); 470 } 471 472 // Returns the file offset for the given RVA. 473 Error COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res, 474 const char *ErrorContext) const { 475 for (const SectionRef &S : sections()) { 476 const coff_section *Section = getCOFFSection(S); 477 uint32_t SectionStart = Section->VirtualAddress; 478 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 479 if (SectionStart <= Addr && Addr < SectionEnd) { 480 // A table/directory entry can be pointing to somewhere in a stripped 481 // section, in an object that went through `objcopy --only-keep-debug`. 482 // In this case we don't want to cause the parsing of the object file to 483 // fail, otherwise it will be impossible to use this object as debug info 484 // in LLDB. Return SectionStrippedError here so that 485 // COFFObjectFile::initialize can ignore the error. 486 if (Section->SizeOfRawData == 0) 487 return make_error<SectionStrippedError>(); 488 if (Section->SizeOfRawData < Section->VirtualSize && 489 Addr >= SectionStart + Section->SizeOfRawData) { 490 if (ErrorContext) 491 return createStringError(object_error::parse_failed, 492 "RVA 0x%" PRIx32 493 " for %s found but data is incomplete", 494 Addr, ErrorContext); 495 return createStringError( 496 object_error::parse_failed, 497 "RVA 0x%" PRIx32 " found but data is incomplete", Addr); 498 } 499 uint32_t Offset = Addr - SectionStart; 500 Res = reinterpret_cast<uintptr_t>(base()) + Section->PointerToRawData + 501 Offset; 502 return Error::success(); 503 } 504 } 505 if (ErrorContext) 506 return createStringError(object_error::parse_failed, 507 "RVA 0x%" PRIx32 " for %s not found", Addr, 508 ErrorContext); 509 return createStringError(object_error::parse_failed, 510 "RVA 0x%" PRIx32 " not found", Addr); 511 } 512 513 Error COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 514 ArrayRef<uint8_t> &Contents, 515 const char *ErrorContext) const { 516 for (const SectionRef &S : sections()) { 517 const coff_section *Section = getCOFFSection(S); 518 uint32_t SectionStart = Section->VirtualAddress; 519 // Check if this RVA is within the section bounds. Be careful about integer 520 // overflow. 521 uint32_t OffsetIntoSection = RVA - SectionStart; 522 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 523 Size <= Section->VirtualSize - OffsetIntoSection) { 524 uintptr_t Begin = reinterpret_cast<uintptr_t>(base()) + 525 Section->PointerToRawData + OffsetIntoSection; 526 Contents = 527 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 528 return Error::success(); 529 } 530 } 531 if (ErrorContext) 532 return createStringError(object_error::parse_failed, 533 "RVA 0x%" PRIx32 " for %s not found", RVA, 534 ErrorContext); 535 return createStringError(object_error::parse_failed, 536 "RVA 0x%" PRIx32 " not found", RVA); 537 } 538 539 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 540 // table entry. 541 Error COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 542 StringRef &Name) const { 543 uintptr_t IntPtr = 0; 544 if (Error E = getRvaPtr(Rva, IntPtr)) 545 return E; 546 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 547 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 548 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 549 return Error::success(); 550 } 551 552 Error COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 553 const codeview::DebugInfo *&PDBInfo, 554 StringRef &PDBFileName) const { 555 ArrayRef<uint8_t> InfoBytes; 556 if (Error E = 557 getRvaAndSizeAsBytes(DebugDir->AddressOfRawData, DebugDir->SizeOfData, 558 InfoBytes, "PDB info")) 559 return E; 560 if (InfoBytes.size() < sizeof(*PDBInfo) + 1) 561 return createStringError(object_error::parse_failed, "PDB info too small"); 562 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data()); 563 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); 564 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 565 InfoBytes.size()); 566 // Truncate the name at the first null byte. Ignore any padding. 567 PDBFileName = PDBFileName.split('\0').first; 568 return Error::success(); 569 } 570 571 Error COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, 572 StringRef &PDBFileName) const { 573 for (const debug_directory &D : debug_directories()) 574 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 575 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 576 // If we get here, there is no PDB info to return. 577 PDBInfo = nullptr; 578 PDBFileName = StringRef(); 579 return Error::success(); 580 } 581 582 // Find the import table. 583 Error COFFObjectFile::initImportTablePtr() { 584 // First, we get the RVA of the import table. If the file lacks a pointer to 585 // the import table, do nothing. 586 const data_directory *DataEntry = getDataDirectory(COFF::IMPORT_TABLE); 587 if (!DataEntry) 588 return Error::success(); 589 590 // Do nothing if the pointer to import table is NULL. 591 if (DataEntry->RelativeVirtualAddress == 0) 592 return Error::success(); 593 594 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 595 596 // Find the section that contains the RVA. This is needed because the RVA is 597 // the import table's memory address which is different from its file offset. 598 uintptr_t IntPtr = 0; 599 if (Error E = getRvaPtr(ImportTableRva, IntPtr, "import table")) 600 return E; 601 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 602 return E; 603 ImportDirectory = reinterpret_cast< 604 const coff_import_directory_table_entry *>(IntPtr); 605 return Error::success(); 606 } 607 608 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 609 Error COFFObjectFile::initDelayImportTablePtr() { 610 const data_directory *DataEntry = 611 getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR); 612 if (!DataEntry) 613 return Error::success(); 614 if (DataEntry->RelativeVirtualAddress == 0) 615 return Error::success(); 616 617 uint32_t RVA = DataEntry->RelativeVirtualAddress; 618 NumberOfDelayImportDirectory = DataEntry->Size / 619 sizeof(delay_import_directory_table_entry) - 1; 620 621 uintptr_t IntPtr = 0; 622 if (Error E = getRvaPtr(RVA, IntPtr, "delay import table")) 623 return E; 624 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 625 return E; 626 627 DelayImportDirectory = reinterpret_cast< 628 const delay_import_directory_table_entry *>(IntPtr); 629 return Error::success(); 630 } 631 632 // Find the export table. 633 Error COFFObjectFile::initExportTablePtr() { 634 // First, we get the RVA of the export table. If the file lacks a pointer to 635 // the export table, do nothing. 636 const data_directory *DataEntry = getDataDirectory(COFF::EXPORT_TABLE); 637 if (!DataEntry) 638 return Error::success(); 639 640 // Do nothing if the pointer to export table is NULL. 641 if (DataEntry->RelativeVirtualAddress == 0) 642 return Error::success(); 643 644 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 645 uintptr_t IntPtr = 0; 646 if (Error E = getRvaPtr(ExportTableRva, IntPtr, "export table")) 647 return E; 648 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 649 return E; 650 651 ExportDirectory = 652 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 653 return Error::success(); 654 } 655 656 Error COFFObjectFile::initBaseRelocPtr() { 657 const data_directory *DataEntry = 658 getDataDirectory(COFF::BASE_RELOCATION_TABLE); 659 if (!DataEntry) 660 return Error::success(); 661 if (DataEntry->RelativeVirtualAddress == 0) 662 return Error::success(); 663 664 uintptr_t IntPtr = 0; 665 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 666 "base reloc table")) 667 return E; 668 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 669 return E; 670 671 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 672 IntPtr); 673 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 674 IntPtr + DataEntry->Size); 675 // FIXME: Verify the section containing BaseRelocHeader has at least 676 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 677 return Error::success(); 678 } 679 680 Error COFFObjectFile::initDebugDirectoryPtr() { 681 // Get the RVA of the debug directory. Do nothing if it does not exist. 682 const data_directory *DataEntry = getDataDirectory(COFF::DEBUG_DIRECTORY); 683 if (!DataEntry) 684 return Error::success(); 685 686 // Do nothing if the RVA is NULL. 687 if (DataEntry->RelativeVirtualAddress == 0) 688 return Error::success(); 689 690 // Check that the size is a multiple of the entry size. 691 if (DataEntry->Size % sizeof(debug_directory) != 0) 692 return createStringError(object_error::parse_failed, 693 "debug directory has uneven size"); 694 695 uintptr_t IntPtr = 0; 696 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 697 "debug directory")) 698 return E; 699 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 700 return E; 701 702 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 703 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>( 704 IntPtr + DataEntry->Size); 705 // FIXME: Verify the section containing DebugDirectoryBegin has at least 706 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 707 return Error::success(); 708 } 709 710 Error COFFObjectFile::initTLSDirectoryPtr() { 711 // Get the RVA of the TLS directory. Do nothing if it does not exist. 712 const data_directory *DataEntry = getDataDirectory(COFF::TLS_TABLE); 713 if (!DataEntry) 714 return Error::success(); 715 716 // Do nothing if the RVA is NULL. 717 if (DataEntry->RelativeVirtualAddress == 0) 718 return Error::success(); 719 720 uint64_t DirSize = 721 is64() ? sizeof(coff_tls_directory64) : sizeof(coff_tls_directory32); 722 723 // Check that the size is correct. 724 if (DataEntry->Size != DirSize) 725 return createStringError( 726 object_error::parse_failed, 727 "TLS Directory size (%u) is not the expected size (%" PRIu64 ").", 728 static_cast<uint32_t>(DataEntry->Size), DirSize); 729 730 uintptr_t IntPtr = 0; 731 if (Error E = 732 getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, "TLS directory")) 733 return E; 734 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 735 return E; 736 737 if (is64()) 738 TLSDirectory64 = reinterpret_cast<const coff_tls_directory64 *>(IntPtr); 739 else 740 TLSDirectory32 = reinterpret_cast<const coff_tls_directory32 *>(IntPtr); 741 742 return Error::success(); 743 } 744 745 Error COFFObjectFile::initLoadConfigPtr() { 746 // Get the RVA of the debug directory. Do nothing if it does not exist. 747 const data_directory *DataEntry = getDataDirectory(COFF::LOAD_CONFIG_TABLE); 748 if (!DataEntry) 749 return Error::success(); 750 751 // Do nothing if the RVA is NULL. 752 if (DataEntry->RelativeVirtualAddress == 0) 753 return Error::success(); 754 uintptr_t IntPtr = 0; 755 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 756 "load config table")) 757 return E; 758 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 759 return E; 760 761 LoadConfig = (const void *)IntPtr; 762 return Error::success(); 763 } 764 765 Expected<std::unique_ptr<COFFObjectFile>> 766 COFFObjectFile::create(MemoryBufferRef Object) { 767 std::unique_ptr<COFFObjectFile> Obj(new COFFObjectFile(std::move(Object))); 768 if (Error E = Obj->initialize()) 769 return std::move(E); 770 return std::move(Obj); 771 } 772 773 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object) 774 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 775 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 776 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 777 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 778 ImportDirectory(nullptr), DelayImportDirectory(nullptr), 779 NumberOfDelayImportDirectory(0), ExportDirectory(nullptr), 780 BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 781 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr), 782 TLSDirectory32(nullptr), TLSDirectory64(nullptr) {} 783 784 static Error ignoreStrippedErrors(Error E) { 785 if (E.isA<SectionStrippedError>()) { 786 consumeError(std::move(E)); 787 return Error::success(); 788 } 789 return std::move(E); 790 } 791 792 Error COFFObjectFile::initialize() { 793 // Check that we at least have enough room for a header. 794 std::error_code EC; 795 if (!checkSize(Data, EC, sizeof(coff_file_header))) 796 return errorCodeToError(EC); 797 798 // The current location in the file where we are looking at. 799 uint64_t CurPtr = 0; 800 801 // PE header is optional and is present only in executables. If it exists, 802 // it is placed right after COFF header. 803 bool HasPEHeader = false; 804 805 // Check if this is a PE/COFF file. 806 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 807 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 808 // PE signature to find 'normal' COFF header. 809 const auto *DH = reinterpret_cast<const dos_header *>(base()); 810 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 811 CurPtr = DH->AddressOfNewExeHeader; 812 // Check the PE magic bytes. ("PE\0\0") 813 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 814 return createStringError(object_error::parse_failed, 815 "incorrect PE magic"); 816 } 817 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 818 HasPEHeader = true; 819 } 820 } 821 822 if (Error E = getObject(COFFHeader, Data, base() + CurPtr)) 823 return E; 824 825 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 826 // import libraries share a common prefix but bigobj is more restrictive. 827 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 828 COFFHeader->NumberOfSections == uint16_t(0xffff) && 829 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 830 if (Error E = getObject(COFFBigObjHeader, Data, base() + CurPtr)) 831 return E; 832 833 // Verify that we are dealing with bigobj. 834 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 835 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 836 sizeof(COFF::BigObjMagic)) == 0) { 837 COFFHeader = nullptr; 838 CurPtr += sizeof(coff_bigobj_file_header); 839 } else { 840 // It's not a bigobj. 841 COFFBigObjHeader = nullptr; 842 } 843 } 844 if (COFFHeader) { 845 // The prior checkSize call may have failed. This isn't a hard error 846 // because we were just trying to sniff out bigobj. 847 EC = std::error_code(); 848 CurPtr += sizeof(coff_file_header); 849 850 if (COFFHeader->isImportLibrary()) 851 return errorCodeToError(EC); 852 } 853 854 if (HasPEHeader) { 855 const pe32_header *Header; 856 if (Error E = getObject(Header, Data, base() + CurPtr)) 857 return E; 858 859 const uint8_t *DataDirAddr; 860 uint64_t DataDirSize; 861 if (Header->Magic == COFF::PE32Header::PE32) { 862 PE32Header = Header; 863 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 864 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 865 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 866 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 867 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 868 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 869 } else { 870 // It's neither PE32 nor PE32+. 871 return createStringError(object_error::parse_failed, 872 "incorrect PE magic"); 873 } 874 if (Error E = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)) 875 return E; 876 } 877 878 if (COFFHeader) 879 CurPtr += COFFHeader->SizeOfOptionalHeader; 880 881 assert(COFFHeader || COFFBigObjHeader); 882 883 if (Error E = 884 getObject(SectionTable, Data, base() + CurPtr, 885 (uint64_t)getNumberOfSections() * sizeof(coff_section))) 886 return E; 887 888 // Initialize the pointer to the symbol table. 889 if (getPointerToSymbolTable() != 0) { 890 if (Error E = initSymbolTablePtr()) { 891 // Recover from errors reading the symbol table. 892 consumeError(std::move(E)); 893 SymbolTable16 = nullptr; 894 SymbolTable32 = nullptr; 895 StringTable = nullptr; 896 StringTableSize = 0; 897 } 898 } else { 899 // We had better not have any symbols if we don't have a symbol table. 900 if (getNumberOfSymbols() != 0) { 901 return createStringError(object_error::parse_failed, 902 "symbol table missing"); 903 } 904 } 905 906 // Initialize the pointer to the beginning of the import table. 907 if (Error E = ignoreStrippedErrors(initImportTablePtr())) 908 return E; 909 if (Error E = ignoreStrippedErrors(initDelayImportTablePtr())) 910 return E; 911 912 // Initialize the pointer to the export table. 913 if (Error E = ignoreStrippedErrors(initExportTablePtr())) 914 return E; 915 916 // Initialize the pointer to the base relocation table. 917 if (Error E = ignoreStrippedErrors(initBaseRelocPtr())) 918 return E; 919 920 // Initialize the pointer to the debug directory. 921 if (Error E = ignoreStrippedErrors(initDebugDirectoryPtr())) 922 return E; 923 924 // Initialize the pointer to the TLS directory. 925 if (Error E = ignoreStrippedErrors(initTLSDirectoryPtr())) 926 return E; 927 928 if (Error E = ignoreStrippedErrors(initLoadConfigPtr())) 929 return E; 930 931 return Error::success(); 932 } 933 934 basic_symbol_iterator COFFObjectFile::symbol_begin() const { 935 DataRefImpl Ret; 936 Ret.p = getSymbolTable(); 937 return basic_symbol_iterator(SymbolRef(Ret, this)); 938 } 939 940 basic_symbol_iterator COFFObjectFile::symbol_end() const { 941 // The symbol table ends where the string table begins. 942 DataRefImpl Ret; 943 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 944 return basic_symbol_iterator(SymbolRef(Ret, this)); 945 } 946 947 import_directory_iterator COFFObjectFile::import_directory_begin() const { 948 if (!ImportDirectory) 949 return import_directory_end(); 950 if (ImportDirectory->isNull()) 951 return import_directory_end(); 952 return import_directory_iterator( 953 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 954 } 955 956 import_directory_iterator COFFObjectFile::import_directory_end() const { 957 return import_directory_iterator( 958 ImportDirectoryEntryRef(nullptr, -1, this)); 959 } 960 961 delay_import_directory_iterator 962 COFFObjectFile::delay_import_directory_begin() const { 963 return delay_import_directory_iterator( 964 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 965 } 966 967 delay_import_directory_iterator 968 COFFObjectFile::delay_import_directory_end() const { 969 return delay_import_directory_iterator( 970 DelayImportDirectoryEntryRef( 971 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 972 } 973 974 export_directory_iterator COFFObjectFile::export_directory_begin() const { 975 return export_directory_iterator( 976 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 977 } 978 979 export_directory_iterator COFFObjectFile::export_directory_end() const { 980 if (!ExportDirectory) 981 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 982 ExportDirectoryEntryRef Ref(ExportDirectory, 983 ExportDirectory->AddressTableEntries, this); 984 return export_directory_iterator(Ref); 985 } 986 987 section_iterator COFFObjectFile::section_begin() const { 988 DataRefImpl Ret; 989 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 990 return section_iterator(SectionRef(Ret, this)); 991 } 992 993 section_iterator COFFObjectFile::section_end() const { 994 DataRefImpl Ret; 995 int NumSections = 996 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 997 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 998 return section_iterator(SectionRef(Ret, this)); 999 } 1000 1001 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 1002 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 1003 } 1004 1005 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 1006 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 1007 } 1008 1009 uint8_t COFFObjectFile::getBytesInAddress() const { 1010 return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4; 1011 } 1012 1013 StringRef COFFObjectFile::getFileFormatName() const { 1014 switch(getMachine()) { 1015 case COFF::IMAGE_FILE_MACHINE_I386: 1016 return "COFF-i386"; 1017 case COFF::IMAGE_FILE_MACHINE_AMD64: 1018 return "COFF-x86-64"; 1019 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1020 return "COFF-ARM"; 1021 case COFF::IMAGE_FILE_MACHINE_ARM64: 1022 return "COFF-ARM64"; 1023 default: 1024 return "COFF-<unknown arch>"; 1025 } 1026 } 1027 1028 Triple::ArchType COFFObjectFile::getArch() const { 1029 switch (getMachine()) { 1030 case COFF::IMAGE_FILE_MACHINE_I386: 1031 return Triple::x86; 1032 case COFF::IMAGE_FILE_MACHINE_AMD64: 1033 return Triple::x86_64; 1034 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1035 return Triple::thumb; 1036 case COFF::IMAGE_FILE_MACHINE_ARM64: 1037 return Triple::aarch64; 1038 default: 1039 return Triple::UnknownArch; 1040 } 1041 } 1042 1043 Expected<uint64_t> COFFObjectFile::getStartAddress() const { 1044 if (PE32Header) 1045 return PE32Header->AddressOfEntryPoint; 1046 return 0; 1047 } 1048 1049 iterator_range<import_directory_iterator> 1050 COFFObjectFile::import_directories() const { 1051 return make_range(import_directory_begin(), import_directory_end()); 1052 } 1053 1054 iterator_range<delay_import_directory_iterator> 1055 COFFObjectFile::delay_import_directories() const { 1056 return make_range(delay_import_directory_begin(), 1057 delay_import_directory_end()); 1058 } 1059 1060 iterator_range<export_directory_iterator> 1061 COFFObjectFile::export_directories() const { 1062 return make_range(export_directory_begin(), export_directory_end()); 1063 } 1064 1065 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 1066 return make_range(base_reloc_begin(), base_reloc_end()); 1067 } 1068 1069 const data_directory *COFFObjectFile::getDataDirectory(uint32_t Index) const { 1070 if (!DataDirectory) 1071 return nullptr; 1072 assert(PE32Header || PE32PlusHeader); 1073 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 1074 : PE32PlusHeader->NumberOfRvaAndSize; 1075 if (Index >= NumEnt) 1076 return nullptr; 1077 return &DataDirectory[Index]; 1078 } 1079 1080 Expected<const coff_section *> COFFObjectFile::getSection(int32_t Index) const { 1081 // Perhaps getting the section of a reserved section index should be an error, 1082 // but callers rely on this to return null. 1083 if (COFF::isReservedSectionNumber(Index)) 1084 return (const coff_section *)nullptr; 1085 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 1086 // We already verified the section table data, so no need to check again. 1087 return SectionTable + (Index - 1); 1088 } 1089 return createStringError(object_error::parse_failed, 1090 "section index out of bounds"); 1091 } 1092 1093 Expected<StringRef> COFFObjectFile::getString(uint32_t Offset) const { 1094 if (StringTableSize <= 4) 1095 // Tried to get a string from an empty string table. 1096 return createStringError(object_error::parse_failed, "string table empty"); 1097 if (Offset >= StringTableSize) 1098 return errorCodeToError(object_error::unexpected_eof); 1099 return StringRef(StringTable + Offset); 1100 } 1101 1102 Expected<StringRef> COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const { 1103 return getSymbolName(Symbol.getGeneric()); 1104 } 1105 1106 Expected<StringRef> 1107 COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const { 1108 // Check for string table entry. First 4 bytes are 0. 1109 if (Symbol->Name.Offset.Zeroes == 0) 1110 return getString(Symbol->Name.Offset.Offset); 1111 1112 // Null terminated, let ::strlen figure out the length. 1113 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 1114 return StringRef(Symbol->Name.ShortName); 1115 1116 // Not null terminated, use all 8 bytes. 1117 return StringRef(Symbol->Name.ShortName, COFF::NameSize); 1118 } 1119 1120 ArrayRef<uint8_t> 1121 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 1122 const uint8_t *Aux = nullptr; 1123 1124 size_t SymbolSize = getSymbolTableEntrySize(); 1125 if (Symbol.getNumberOfAuxSymbols() > 0) { 1126 // AUX data comes immediately after the symbol in COFF 1127 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 1128 #ifndef NDEBUG 1129 // Verify that the Aux symbol points to a valid entry in the symbol table. 1130 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 1131 if (Offset < getPointerToSymbolTable() || 1132 Offset >= 1133 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 1134 report_fatal_error("Aux Symbol data was outside of symbol table."); 1135 1136 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 1137 "Aux Symbol data did not point to the beginning of a symbol"); 1138 #endif 1139 } 1140 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 1141 } 1142 1143 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const { 1144 uintptr_t Offset = 1145 reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable(); 1146 assert(Offset % getSymbolTableEntrySize() == 0 && 1147 "Symbol did not point to the beginning of a symbol"); 1148 size_t Index = Offset / getSymbolTableEntrySize(); 1149 assert(Index < getNumberOfSymbols()); 1150 return Index; 1151 } 1152 1153 Expected<StringRef> 1154 COFFObjectFile::getSectionName(const coff_section *Sec) const { 1155 StringRef Name; 1156 if (Sec->Name[COFF::NameSize - 1] == 0) 1157 // Null terminated, let ::strlen figure out the length. 1158 Name = Sec->Name; 1159 else 1160 // Not null terminated, use all 8 bytes. 1161 Name = StringRef(Sec->Name, COFF::NameSize); 1162 1163 // Check for string table entry. First byte is '/'. 1164 if (Name.startswith("/")) { 1165 uint32_t Offset; 1166 if (Name.startswith("//")) { 1167 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1168 return createStringError(object_error::parse_failed, 1169 "invalid section name"); 1170 } else { 1171 if (Name.substr(1).getAsInteger(10, Offset)) 1172 return createStringError(object_error::parse_failed, 1173 "invalid section name"); 1174 } 1175 return getString(Offset); 1176 } 1177 1178 return Name; 1179 } 1180 1181 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1182 // SizeOfRawData and VirtualSize change what they represent depending on 1183 // whether or not we have an executable image. 1184 // 1185 // For object files, SizeOfRawData contains the size of section's data; 1186 // VirtualSize should be zero but isn't due to buggy COFF writers. 1187 // 1188 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1189 // actual section size is in VirtualSize. It is possible for VirtualSize to 1190 // be greater than SizeOfRawData; the contents past that point should be 1191 // considered to be zero. 1192 if (getDOSHeader()) 1193 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1194 return Sec->SizeOfRawData; 1195 } 1196 1197 Error COFFObjectFile::getSectionContents(const coff_section *Sec, 1198 ArrayRef<uint8_t> &Res) const { 1199 // In COFF, a virtual section won't have any in-file 1200 // content, so the file pointer to the content will be zero. 1201 if (Sec->PointerToRawData == 0) 1202 return Error::success(); 1203 // The only thing that we need to verify is that the contents is contained 1204 // within the file bounds. We don't need to make sure it doesn't cover other 1205 // data, as there's nothing that says that is not allowed. 1206 uintptr_t ConStart = 1207 reinterpret_cast<uintptr_t>(base()) + Sec->PointerToRawData; 1208 uint32_t SectionSize = getSectionSize(Sec); 1209 if (Error E = checkOffset(Data, ConStart, SectionSize)) 1210 return E; 1211 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1212 return Error::success(); 1213 } 1214 1215 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1216 return reinterpret_cast<const coff_relocation*>(Rel.p); 1217 } 1218 1219 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1220 Rel.p = reinterpret_cast<uintptr_t>( 1221 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1222 } 1223 1224 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1225 const coff_relocation *R = toRel(Rel); 1226 return R->VirtualAddress; 1227 } 1228 1229 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1230 const coff_relocation *R = toRel(Rel); 1231 DataRefImpl Ref; 1232 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1233 return symbol_end(); 1234 if (SymbolTable16) 1235 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1236 else if (SymbolTable32) 1237 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1238 else 1239 llvm_unreachable("no symbol table pointer!"); 1240 return symbol_iterator(SymbolRef(Ref, this)); 1241 } 1242 1243 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1244 const coff_relocation* R = toRel(Rel); 1245 return R->Type; 1246 } 1247 1248 const coff_section * 1249 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1250 return toSec(Section.getRawDataRefImpl()); 1251 } 1252 1253 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1254 if (SymbolTable16) 1255 return toSymb<coff_symbol16>(Ref); 1256 if (SymbolTable32) 1257 return toSymb<coff_symbol32>(Ref); 1258 llvm_unreachable("no symbol table pointer!"); 1259 } 1260 1261 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1262 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1263 } 1264 1265 const coff_relocation * 1266 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1267 return toRel(Reloc.getRawDataRefImpl()); 1268 } 1269 1270 ArrayRef<coff_relocation> 1271 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1272 return {getFirstReloc(Sec, Data, base()), 1273 getNumberOfRelocations(Sec, Data, base())}; 1274 } 1275 1276 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1277 case COFF::reloc_type: \ 1278 return #reloc_type; 1279 1280 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const { 1281 switch (getMachine()) { 1282 case COFF::IMAGE_FILE_MACHINE_AMD64: 1283 switch (Type) { 1284 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1285 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1286 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1287 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1288 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1289 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1290 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1291 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1292 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1293 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1294 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1295 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1296 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1297 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1298 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1299 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1300 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1301 default: 1302 return "Unknown"; 1303 } 1304 break; 1305 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1306 switch (Type) { 1307 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1308 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1309 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1310 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1311 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1312 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1313 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1314 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1315 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32); 1316 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1317 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1318 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1319 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1320 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1321 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1322 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1323 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR); 1324 default: 1325 return "Unknown"; 1326 } 1327 break; 1328 case COFF::IMAGE_FILE_MACHINE_ARM64: 1329 switch (Type) { 1330 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE); 1331 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32); 1332 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB); 1333 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26); 1334 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21); 1335 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21); 1336 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A); 1337 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L); 1338 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL); 1339 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A); 1340 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A); 1341 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L); 1342 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN); 1343 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION); 1344 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64); 1345 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19); 1346 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14); 1347 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32); 1348 default: 1349 return "Unknown"; 1350 } 1351 break; 1352 case COFF::IMAGE_FILE_MACHINE_I386: 1353 switch (Type) { 1354 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1355 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1356 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1357 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1358 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1359 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1360 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1361 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1362 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1363 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1364 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1365 default: 1366 return "Unknown"; 1367 } 1368 break; 1369 default: 1370 return "Unknown"; 1371 } 1372 } 1373 1374 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1375 1376 void COFFObjectFile::getRelocationTypeName( 1377 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1378 const coff_relocation *Reloc = toRel(Rel); 1379 StringRef Res = getRelocationTypeName(Reloc->Type); 1380 Result.append(Res.begin(), Res.end()); 1381 } 1382 1383 bool COFFObjectFile::isRelocatableObject() const { 1384 return !DataDirectory; 1385 } 1386 1387 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const { 1388 return StringSwitch<StringRef>(Name) 1389 .Case("eh_fram", "eh_frame") 1390 .Default(Name); 1391 } 1392 1393 bool ImportDirectoryEntryRef:: 1394 operator==(const ImportDirectoryEntryRef &Other) const { 1395 return ImportTable == Other.ImportTable && Index == Other.Index; 1396 } 1397 1398 void ImportDirectoryEntryRef::moveNext() { 1399 ++Index; 1400 if (ImportTable[Index].isNull()) { 1401 Index = -1; 1402 ImportTable = nullptr; 1403 } 1404 } 1405 1406 Error ImportDirectoryEntryRef::getImportTableEntry( 1407 const coff_import_directory_table_entry *&Result) const { 1408 return getObject(Result, OwningObject->Data, ImportTable + Index); 1409 } 1410 1411 static imported_symbol_iterator 1412 makeImportedSymbolIterator(const COFFObjectFile *Object, 1413 uintptr_t Ptr, int Index) { 1414 if (Object->getBytesInAddress() == 4) { 1415 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1416 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1417 } 1418 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1419 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1420 } 1421 1422 static imported_symbol_iterator 1423 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1424 uintptr_t IntPtr = 0; 1425 // FIXME: Handle errors. 1426 cantFail(Object->getRvaPtr(RVA, IntPtr)); 1427 return makeImportedSymbolIterator(Object, IntPtr, 0); 1428 } 1429 1430 static imported_symbol_iterator 1431 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1432 uintptr_t IntPtr = 0; 1433 // FIXME: Handle errors. 1434 cantFail(Object->getRvaPtr(RVA, IntPtr)); 1435 // Forward the pointer to the last entry which is null. 1436 int Index = 0; 1437 if (Object->getBytesInAddress() == 4) { 1438 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1439 while (*Entry++) 1440 ++Index; 1441 } else { 1442 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1443 while (*Entry++) 1444 ++Index; 1445 } 1446 return makeImportedSymbolIterator(Object, IntPtr, Index); 1447 } 1448 1449 imported_symbol_iterator 1450 ImportDirectoryEntryRef::imported_symbol_begin() const { 1451 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1452 OwningObject); 1453 } 1454 1455 imported_symbol_iterator 1456 ImportDirectoryEntryRef::imported_symbol_end() const { 1457 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1458 OwningObject); 1459 } 1460 1461 iterator_range<imported_symbol_iterator> 1462 ImportDirectoryEntryRef::imported_symbols() const { 1463 return make_range(imported_symbol_begin(), imported_symbol_end()); 1464 } 1465 1466 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1467 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1468 OwningObject); 1469 } 1470 1471 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1472 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1473 OwningObject); 1474 } 1475 1476 iterator_range<imported_symbol_iterator> 1477 ImportDirectoryEntryRef::lookup_table_symbols() const { 1478 return make_range(lookup_table_begin(), lookup_table_end()); 1479 } 1480 1481 Error ImportDirectoryEntryRef::getName(StringRef &Result) const { 1482 uintptr_t IntPtr = 0; 1483 if (Error E = OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr, 1484 "import directory name")) 1485 return E; 1486 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1487 return Error::success(); 1488 } 1489 1490 Error 1491 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1492 Result = ImportTable[Index].ImportLookupTableRVA; 1493 return Error::success(); 1494 } 1495 1496 Error ImportDirectoryEntryRef::getImportAddressTableRVA( 1497 uint32_t &Result) const { 1498 Result = ImportTable[Index].ImportAddressTableRVA; 1499 return Error::success(); 1500 } 1501 1502 bool DelayImportDirectoryEntryRef:: 1503 operator==(const DelayImportDirectoryEntryRef &Other) const { 1504 return Table == Other.Table && Index == Other.Index; 1505 } 1506 1507 void DelayImportDirectoryEntryRef::moveNext() { 1508 ++Index; 1509 } 1510 1511 imported_symbol_iterator 1512 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1513 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1514 OwningObject); 1515 } 1516 1517 imported_symbol_iterator 1518 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1519 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1520 OwningObject); 1521 } 1522 1523 iterator_range<imported_symbol_iterator> 1524 DelayImportDirectoryEntryRef::imported_symbols() const { 1525 return make_range(imported_symbol_begin(), imported_symbol_end()); 1526 } 1527 1528 Error DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1529 uintptr_t IntPtr = 0; 1530 if (Error E = OwningObject->getRvaPtr(Table[Index].Name, IntPtr, 1531 "delay import directory name")) 1532 return E; 1533 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1534 return Error::success(); 1535 } 1536 1537 Error DelayImportDirectoryEntryRef::getDelayImportTable( 1538 const delay_import_directory_table_entry *&Result) const { 1539 Result = &Table[Index]; 1540 return Error::success(); 1541 } 1542 1543 Error DelayImportDirectoryEntryRef::getImportAddress(int AddrIndex, 1544 uint64_t &Result) const { 1545 uint32_t RVA = Table[Index].DelayImportAddressTable + 1546 AddrIndex * (OwningObject->is64() ? 8 : 4); 1547 uintptr_t IntPtr = 0; 1548 if (Error E = OwningObject->getRvaPtr(RVA, IntPtr, "import address")) 1549 return E; 1550 if (OwningObject->is64()) 1551 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1552 else 1553 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1554 return Error::success(); 1555 } 1556 1557 bool ExportDirectoryEntryRef:: 1558 operator==(const ExportDirectoryEntryRef &Other) const { 1559 return ExportTable == Other.ExportTable && Index == Other.Index; 1560 } 1561 1562 void ExportDirectoryEntryRef::moveNext() { 1563 ++Index; 1564 } 1565 1566 // Returns the name of the current export symbol. If the symbol is exported only 1567 // by ordinal, the empty string is set as a result. 1568 Error ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1569 uintptr_t IntPtr = 0; 1570 if (Error E = 1571 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr, "dll name")) 1572 return E; 1573 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1574 return Error::success(); 1575 } 1576 1577 // Returns the starting ordinal number. 1578 Error ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1579 Result = ExportTable->OrdinalBase; 1580 return Error::success(); 1581 } 1582 1583 // Returns the export ordinal of the current export symbol. 1584 Error ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1585 Result = ExportTable->OrdinalBase + Index; 1586 return Error::success(); 1587 } 1588 1589 // Returns the address of the current export symbol. 1590 Error ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1591 uintptr_t IntPtr = 0; 1592 if (Error EC = OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, 1593 IntPtr, "export address")) 1594 return EC; 1595 const export_address_table_entry *entry = 1596 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1597 Result = entry[Index].ExportRVA; 1598 return Error::success(); 1599 } 1600 1601 // Returns the name of the current export symbol. If the symbol is exported only 1602 // by ordinal, the empty string is set as a result. 1603 Error 1604 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1605 uintptr_t IntPtr = 0; 1606 if (Error EC = OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr, 1607 "export ordinal table")) 1608 return EC; 1609 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1610 1611 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1612 int Offset = 0; 1613 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1614 I < E; ++I, ++Offset) { 1615 if (*I != Index) 1616 continue; 1617 if (Error EC = OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr, 1618 "export table entry")) 1619 return EC; 1620 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1621 if (Error EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr, 1622 "export symbol name")) 1623 return EC; 1624 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1625 return Error::success(); 1626 } 1627 Result = ""; 1628 return Error::success(); 1629 } 1630 1631 Error ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1632 const data_directory *DataEntry = 1633 OwningObject->getDataDirectory(COFF::EXPORT_TABLE); 1634 if (!DataEntry) 1635 return createStringError(object_error::parse_failed, 1636 "export table missing"); 1637 uint32_t RVA; 1638 if (auto EC = getExportRVA(RVA)) 1639 return EC; 1640 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1641 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1642 Result = (Begin <= RVA && RVA < End); 1643 return Error::success(); 1644 } 1645 1646 Error ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1647 uint32_t RVA; 1648 if (auto EC = getExportRVA(RVA)) 1649 return EC; 1650 uintptr_t IntPtr = 0; 1651 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr, "export forward target")) 1652 return EC; 1653 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1654 return Error::success(); 1655 } 1656 1657 bool ImportedSymbolRef:: 1658 operator==(const ImportedSymbolRef &Other) const { 1659 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1660 && Index == Other.Index; 1661 } 1662 1663 void ImportedSymbolRef::moveNext() { 1664 ++Index; 1665 } 1666 1667 Error ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1668 uint32_t RVA; 1669 if (Entry32) { 1670 // If a symbol is imported only by ordinal, it has no name. 1671 if (Entry32[Index].isOrdinal()) 1672 return Error::success(); 1673 RVA = Entry32[Index].getHintNameRVA(); 1674 } else { 1675 if (Entry64[Index].isOrdinal()) 1676 return Error::success(); 1677 RVA = Entry64[Index].getHintNameRVA(); 1678 } 1679 uintptr_t IntPtr = 0; 1680 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol name")) 1681 return EC; 1682 // +2 because the first two bytes is hint. 1683 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1684 return Error::success(); 1685 } 1686 1687 Error ImportedSymbolRef::isOrdinal(bool &Result) const { 1688 if (Entry32) 1689 Result = Entry32[Index].isOrdinal(); 1690 else 1691 Result = Entry64[Index].isOrdinal(); 1692 return Error::success(); 1693 } 1694 1695 Error ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1696 if (Entry32) 1697 Result = Entry32[Index].getHintNameRVA(); 1698 else 1699 Result = Entry64[Index].getHintNameRVA(); 1700 return Error::success(); 1701 } 1702 1703 Error ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1704 uint32_t RVA; 1705 if (Entry32) { 1706 if (Entry32[Index].isOrdinal()) { 1707 Result = Entry32[Index].getOrdinal(); 1708 return Error::success(); 1709 } 1710 RVA = Entry32[Index].getHintNameRVA(); 1711 } else { 1712 if (Entry64[Index].isOrdinal()) { 1713 Result = Entry64[Index].getOrdinal(); 1714 return Error::success(); 1715 } 1716 RVA = Entry64[Index].getHintNameRVA(); 1717 } 1718 uintptr_t IntPtr = 0; 1719 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol ordinal")) 1720 return EC; 1721 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1722 return Error::success(); 1723 } 1724 1725 Expected<std::unique_ptr<COFFObjectFile>> 1726 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1727 return COFFObjectFile::create(Object); 1728 } 1729 1730 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1731 return Header == Other.Header && Index == Other.Index; 1732 } 1733 1734 void BaseRelocRef::moveNext() { 1735 // Header->BlockSize is the size of the current block, including the 1736 // size of the header itself. 1737 uint32_t Size = sizeof(*Header) + 1738 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1739 if (Size == Header->BlockSize) { 1740 // .reloc contains a list of base relocation blocks. Each block 1741 // consists of the header followed by entries. The header contains 1742 // how many entories will follow. When we reach the end of the 1743 // current block, proceed to the next block. 1744 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1745 reinterpret_cast<const uint8_t *>(Header) + Size); 1746 Index = 0; 1747 } else { 1748 ++Index; 1749 } 1750 } 1751 1752 Error BaseRelocRef::getType(uint8_t &Type) const { 1753 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1754 Type = Entry[Index].getType(); 1755 return Error::success(); 1756 } 1757 1758 Error BaseRelocRef::getRVA(uint32_t &Result) const { 1759 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1760 Result = Header->PageRVA + Entry[Index].getOffset(); 1761 return Error::success(); 1762 } 1763 1764 #define RETURN_IF_ERROR(Expr) \ 1765 do { \ 1766 Error E = (Expr); \ 1767 if (E) \ 1768 return std::move(E); \ 1769 } while (0) 1770 1771 Expected<ArrayRef<UTF16>> 1772 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) { 1773 BinaryStreamReader Reader = BinaryStreamReader(BBS); 1774 Reader.setOffset(Offset); 1775 uint16_t Length; 1776 RETURN_IF_ERROR(Reader.readInteger(Length)); 1777 ArrayRef<UTF16> RawDirString; 1778 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length)); 1779 return RawDirString; 1780 } 1781 1782 Expected<ArrayRef<UTF16>> 1783 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) { 1784 return getDirStringAtOffset(Entry.Identifier.getNameOffset()); 1785 } 1786 1787 Expected<const coff_resource_dir_table &> 1788 ResourceSectionRef::getTableAtOffset(uint32_t Offset) { 1789 const coff_resource_dir_table *Table = nullptr; 1790 1791 BinaryStreamReader Reader(BBS); 1792 Reader.setOffset(Offset); 1793 RETURN_IF_ERROR(Reader.readObject(Table)); 1794 assert(Table != nullptr); 1795 return *Table; 1796 } 1797 1798 Expected<const coff_resource_dir_entry &> 1799 ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) { 1800 const coff_resource_dir_entry *Entry = nullptr; 1801 1802 BinaryStreamReader Reader(BBS); 1803 Reader.setOffset(Offset); 1804 RETURN_IF_ERROR(Reader.readObject(Entry)); 1805 assert(Entry != nullptr); 1806 return *Entry; 1807 } 1808 1809 Expected<const coff_resource_data_entry &> 1810 ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) { 1811 const coff_resource_data_entry *Entry = nullptr; 1812 1813 BinaryStreamReader Reader(BBS); 1814 Reader.setOffset(Offset); 1815 RETURN_IF_ERROR(Reader.readObject(Entry)); 1816 assert(Entry != nullptr); 1817 return *Entry; 1818 } 1819 1820 Expected<const coff_resource_dir_table &> 1821 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) { 1822 assert(Entry.Offset.isSubDir()); 1823 return getTableAtOffset(Entry.Offset.value()); 1824 } 1825 1826 Expected<const coff_resource_data_entry &> 1827 ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) { 1828 assert(!Entry.Offset.isSubDir()); 1829 return getDataEntryAtOffset(Entry.Offset.value()); 1830 } 1831 1832 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() { 1833 return getTableAtOffset(0); 1834 } 1835 1836 Expected<const coff_resource_dir_entry &> 1837 ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table, 1838 uint32_t Index) { 1839 if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries)) 1840 return createStringError(object_error::parse_failed, "index out of range"); 1841 const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table); 1842 ptrdiff_t TableOffset = TablePtr - BBS.data().data(); 1843 return getTableEntryAtOffset(TableOffset + sizeof(Table) + 1844 Index * sizeof(coff_resource_dir_entry)); 1845 } 1846 1847 Error ResourceSectionRef::load(const COFFObjectFile *O) { 1848 for (const SectionRef &S : O->sections()) { 1849 Expected<StringRef> Name = S.getName(); 1850 if (!Name) 1851 return Name.takeError(); 1852 1853 if (*Name == ".rsrc" || *Name == ".rsrc$01") 1854 return load(O, S); 1855 } 1856 return createStringError(object_error::parse_failed, 1857 "no resource section found"); 1858 } 1859 1860 Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) { 1861 Obj = O; 1862 Section = S; 1863 Expected<StringRef> Contents = Section.getContents(); 1864 if (!Contents) 1865 return Contents.takeError(); 1866 BBS = BinaryByteStream(*Contents, support::little); 1867 const coff_section *COFFSect = Obj->getCOFFSection(Section); 1868 ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect); 1869 Relocs.reserve(OrigRelocs.size()); 1870 for (const coff_relocation &R : OrigRelocs) 1871 Relocs.push_back(&R); 1872 llvm::sort(Relocs, [](const coff_relocation *A, const coff_relocation *B) { 1873 return A->VirtualAddress < B->VirtualAddress; 1874 }); 1875 return Error::success(); 1876 } 1877 1878 Expected<StringRef> 1879 ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) { 1880 if (!Obj) 1881 return createStringError(object_error::parse_failed, "no object provided"); 1882 1883 // Find a potential relocation at the DataRVA field (first member of 1884 // the coff_resource_data_entry struct). 1885 const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry); 1886 ptrdiff_t EntryOffset = EntryPtr - BBS.data().data(); 1887 coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0), 1888 ulittle16_t(0)}; 1889 auto RelocsForOffset = 1890 std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget, 1891 [](const coff_relocation *A, const coff_relocation *B) { 1892 return A->VirtualAddress < B->VirtualAddress; 1893 }); 1894 1895 if (RelocsForOffset.first != RelocsForOffset.second) { 1896 // We found a relocation with the right offset. Check that it does have 1897 // the expected type. 1898 const coff_relocation &R = **RelocsForOffset.first; 1899 uint16_t RVAReloc; 1900 switch (Obj->getMachine()) { 1901 case COFF::IMAGE_FILE_MACHINE_I386: 1902 RVAReloc = COFF::IMAGE_REL_I386_DIR32NB; 1903 break; 1904 case COFF::IMAGE_FILE_MACHINE_AMD64: 1905 RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB; 1906 break; 1907 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1908 RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB; 1909 break; 1910 case COFF::IMAGE_FILE_MACHINE_ARM64: 1911 RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB; 1912 break; 1913 default: 1914 return createStringError(object_error::parse_failed, 1915 "unsupported architecture"); 1916 } 1917 if (R.Type != RVAReloc) 1918 return createStringError(object_error::parse_failed, 1919 "unexpected relocation type"); 1920 // Get the relocation's symbol 1921 Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex); 1922 if (!Sym) 1923 return Sym.takeError(); 1924 // And the symbol's section 1925 Expected<const coff_section *> Section = 1926 Obj->getSection(Sym->getSectionNumber()); 1927 if (!Section) 1928 return Section.takeError(); 1929 // Add the initial value of DataRVA to the symbol's offset to find the 1930 // data it points at. 1931 uint64_t Offset = Entry.DataRVA + Sym->getValue(); 1932 ArrayRef<uint8_t> Contents; 1933 if (Error E = Obj->getSectionContents(*Section, Contents)) 1934 return std::move(E); 1935 if (Offset + Entry.DataSize > Contents.size()) 1936 return createStringError(object_error::parse_failed, 1937 "data outside of section"); 1938 // Return a reference to the data inside the section. 1939 return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset, 1940 Entry.DataSize); 1941 } else { 1942 // Relocatable objects need a relocation for the DataRVA field. 1943 if (Obj->isRelocatableObject()) 1944 return createStringError(object_error::parse_failed, 1945 "no relocation found for DataRVA"); 1946 1947 // Locate the section that contains the address that DataRVA points at. 1948 uint64_t VA = Entry.DataRVA + Obj->getImageBase(); 1949 for (const SectionRef &S : Obj->sections()) { 1950 if (VA >= S.getAddress() && 1951 VA + Entry.DataSize <= S.getAddress() + S.getSize()) { 1952 uint64_t Offset = VA - S.getAddress(); 1953 Expected<StringRef> Contents = S.getContents(); 1954 if (!Contents) 1955 return Contents.takeError(); 1956 return Contents->slice(Offset, Offset + Entry.DataSize); 1957 } 1958 } 1959 return createStringError(object_error::parse_failed, 1960 "address not found in image"); 1961 } 1962 } 1963