1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/iterator_range.h" 20 #include "llvm/Support/COFF.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include <cctype> 24 #include <limits> 25 26 using namespace llvm; 27 using namespace object; 28 29 using support::ulittle16_t; 30 using support::ulittle32_t; 31 using support::ulittle64_t; 32 using support::little16_t; 33 34 // Returns false if size is greater than the buffer size. And sets ec. 35 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 36 if (M.getBufferSize() < Size) { 37 EC = object_error::unexpected_eof; 38 return false; 39 } 40 return true; 41 } 42 43 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 44 const uint64_t Size) { 45 if (Addr + Size < Addr || Addr + Size < Size || 46 Addr + Size > uintptr_t(M.getBufferEnd()) || 47 Addr < uintptr_t(M.getBufferStart())) { 48 return object_error::unexpected_eof; 49 } 50 return std::error_code(); 51 } 52 53 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 54 // Returns unexpected_eof if error. 55 template <typename T> 56 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 57 const void *Ptr, 58 const uint64_t Size = sizeof(T)) { 59 uintptr_t Addr = uintptr_t(Ptr); 60 if (std::error_code EC = checkOffset(M, Addr, Size)) 61 return EC; 62 Obj = reinterpret_cast<const T *>(Addr); 63 return std::error_code(); 64 } 65 66 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 67 // prefixed slashes. 68 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 69 assert(Str.size() <= 6 && "String too long, possible overflow."); 70 if (Str.size() > 6) 71 return true; 72 73 uint64_t Value = 0; 74 while (!Str.empty()) { 75 unsigned CharVal; 76 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 77 CharVal = Str[0] - 'A'; 78 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 79 CharVal = Str[0] - 'a' + 26; 80 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 81 CharVal = Str[0] - '0' + 52; 82 else if (Str[0] == '+') // 62 83 CharVal = 62; 84 else if (Str[0] == '/') // 63 85 CharVal = 63; 86 else 87 return true; 88 89 Value = (Value * 64) + CharVal; 90 Str = Str.substr(1); 91 } 92 93 if (Value > std::numeric_limits<uint32_t>::max()) 94 return true; 95 96 Result = static_cast<uint32_t>(Value); 97 return false; 98 } 99 100 template <typename coff_symbol_type> 101 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 102 const coff_symbol_type *Addr = 103 reinterpret_cast<const coff_symbol_type *>(Ref.p); 104 105 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 106 #ifndef NDEBUG 107 // Verify that the symbol points to a valid entry in the symbol table. 108 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 109 110 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 111 "Symbol did not point to the beginning of a symbol"); 112 #endif 113 114 return Addr; 115 } 116 117 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 118 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 119 120 # ifndef NDEBUG 121 // Verify that the section points to a valid entry in the section table. 122 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 123 report_fatal_error("Section was outside of section table."); 124 125 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 126 assert(Offset % sizeof(coff_section) == 0 && 127 "Section did not point to the beginning of a section"); 128 # endif 129 130 return Addr; 131 } 132 133 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 134 auto End = reinterpret_cast<uintptr_t>(StringTable); 135 if (SymbolTable16) { 136 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 137 Symb += 1 + Symb->NumberOfAuxSymbols; 138 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 139 } else if (SymbolTable32) { 140 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 141 Symb += 1 + Symb->NumberOfAuxSymbols; 142 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 143 } else { 144 llvm_unreachable("no symbol table pointer!"); 145 } 146 } 147 148 std::error_code COFFObjectFile::getSymbolName(DataRefImpl Ref, 149 StringRef &Result) const { 150 COFFSymbolRef Symb = getCOFFSymbol(Ref); 151 return getSymbolName(Symb, Result); 152 } 153 154 uint64_t COFFObjectFile::getSymbolValue(DataRefImpl Ref) const { 155 COFFSymbolRef Sym = getCOFFSymbol(Ref); 156 157 if (Sym.isAnyUndefined() || Sym.isCommon()) 158 return UnknownAddress; 159 160 return Sym.getValue(); 161 } 162 163 std::error_code COFFObjectFile::getSymbolAddress(DataRefImpl Ref, 164 uint64_t &Result) const { 165 Result = getSymbolValue(Ref); 166 COFFSymbolRef Symb = getCOFFSymbol(Ref); 167 int32_t SectionNumber = Symb.getSectionNumber(); 168 169 if (Symb.isAnyUndefined() || Symb.isCommon() || 170 COFF::isReservedSectionNumber(SectionNumber)) 171 return std::error_code(); 172 173 const coff_section *Section = nullptr; 174 if (std::error_code EC = getSection(SectionNumber, Section)) 175 return EC; 176 Result += Section->VirtualAddress; 177 return std::error_code(); 178 } 179 180 SymbolRef::Type COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 181 COFFSymbolRef Symb = getCOFFSymbol(Ref); 182 int32_t SectionNumber = Symb.getSectionNumber(); 183 184 if (Symb.isAnyUndefined()) 185 return SymbolRef::ST_Unknown; 186 if (Symb.isFunctionDefinition()) 187 return SymbolRef::ST_Function; 188 if (Symb.isCommon()) 189 return SymbolRef::ST_Data; 190 if (Symb.isFileRecord()) 191 return SymbolRef::ST_File; 192 193 // TODO: perhaps we need a new symbol type ST_Section. 194 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 195 return SymbolRef::ST_Debug; 196 197 if (!COFF::isReservedSectionNumber(SectionNumber)) 198 return SymbolRef::ST_Data; 199 200 return SymbolRef::ST_Other; 201 } 202 203 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 204 COFFSymbolRef Symb = getCOFFSymbol(Ref); 205 uint32_t Result = SymbolRef::SF_None; 206 207 if (Symb.isExternal() || Symb.isWeakExternal()) 208 Result |= SymbolRef::SF_Global; 209 210 if (Symb.isWeakExternal()) 211 Result |= SymbolRef::SF_Weak; 212 213 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 214 Result |= SymbolRef::SF_Absolute; 215 216 if (Symb.isFileRecord()) 217 Result |= SymbolRef::SF_FormatSpecific; 218 219 if (Symb.isSectionDefinition()) 220 Result |= SymbolRef::SF_FormatSpecific; 221 222 if (Symb.isCommon()) 223 Result |= SymbolRef::SF_Common; 224 225 if (Symb.isAnyUndefined()) 226 Result |= SymbolRef::SF_Undefined; 227 228 return Result; 229 } 230 231 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 232 COFFSymbolRef Symb = getCOFFSymbol(Ref); 233 return Symb.getValue(); 234 } 235 236 std::error_code 237 COFFObjectFile::getSymbolSection(DataRefImpl Ref, 238 section_iterator &Result) const { 239 COFFSymbolRef Symb = getCOFFSymbol(Ref); 240 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) { 241 Result = section_end(); 242 } else { 243 const coff_section *Sec = nullptr; 244 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 245 return EC; 246 DataRefImpl Ref; 247 Ref.p = reinterpret_cast<uintptr_t>(Sec); 248 Result = section_iterator(SectionRef(Ref, this)); 249 } 250 return std::error_code(); 251 } 252 253 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 254 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 255 return Symb.getSectionNumber(); 256 } 257 258 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 259 const coff_section *Sec = toSec(Ref); 260 Sec += 1; 261 Ref.p = reinterpret_cast<uintptr_t>(Sec); 262 } 263 264 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 265 StringRef &Result) const { 266 const coff_section *Sec = toSec(Ref); 267 return getSectionName(Sec, Result); 268 } 269 270 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 271 const coff_section *Sec = toSec(Ref); 272 return Sec->VirtualAddress; 273 } 274 275 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 276 return getSectionSize(toSec(Ref)); 277 } 278 279 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 280 StringRef &Result) const { 281 const coff_section *Sec = toSec(Ref); 282 ArrayRef<uint8_t> Res; 283 std::error_code EC = getSectionContents(Sec, Res); 284 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 285 return EC; 286 } 287 288 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 289 const coff_section *Sec = toSec(Ref); 290 return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1); 291 } 292 293 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 294 const coff_section *Sec = toSec(Ref); 295 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 296 } 297 298 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 299 const coff_section *Sec = toSec(Ref); 300 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 301 } 302 303 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 304 const coff_section *Sec = toSec(Ref); 305 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 306 COFF::IMAGE_SCN_MEM_READ | 307 COFF::IMAGE_SCN_MEM_WRITE; 308 return (Sec->Characteristics & BssFlags) == BssFlags; 309 } 310 311 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 312 uintptr_t Offset = 313 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 314 assert((Offset % sizeof(coff_section)) == 0); 315 return (Offset / sizeof(coff_section)) + 1; 316 } 317 318 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 319 const coff_section *Sec = toSec(Ref); 320 // In COFF, a virtual section won't have any in-file 321 // content, so the file pointer to the content will be zero. 322 return Sec->PointerToRawData == 0; 323 } 324 325 bool COFFObjectFile::sectionContainsSymbol(DataRefImpl SecRef, 326 DataRefImpl SymbRef) const { 327 const coff_section *Sec = toSec(SecRef); 328 COFFSymbolRef Symb = getCOFFSymbol(SymbRef); 329 int32_t SecNumber = (Sec - SectionTable) + 1; 330 return SecNumber == Symb.getSectionNumber(); 331 } 332 333 static uint32_t getNumberOfRelocations(const coff_section *Sec, 334 MemoryBufferRef M, const uint8_t *base) { 335 // The field for the number of relocations in COFF section table is only 336 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 337 // NumberOfRelocations field, and the actual relocation count is stored in the 338 // VirtualAddress field in the first relocation entry. 339 if (Sec->hasExtendedRelocations()) { 340 const coff_relocation *FirstReloc; 341 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 342 base + Sec->PointerToRelocations))) 343 return 0; 344 // -1 to exclude this first relocation entry. 345 return FirstReloc->VirtualAddress - 1; 346 } 347 return Sec->NumberOfRelocations; 348 } 349 350 static const coff_relocation * 351 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 352 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 353 if (!NumRelocs) 354 return nullptr; 355 auto begin = reinterpret_cast<const coff_relocation *>( 356 Base + Sec->PointerToRelocations); 357 if (Sec->hasExtendedRelocations()) { 358 // Skip the first relocation entry repurposed to store the number of 359 // relocations. 360 begin++; 361 } 362 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 363 return nullptr; 364 return begin; 365 } 366 367 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 368 const coff_section *Sec = toSec(Ref); 369 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 370 DataRefImpl Ret; 371 Ret.p = reinterpret_cast<uintptr_t>(begin); 372 return relocation_iterator(RelocationRef(Ret, this)); 373 } 374 375 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 376 const coff_section *Sec = toSec(Ref); 377 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 378 if (I) 379 I += getNumberOfRelocations(Sec, Data, base()); 380 DataRefImpl Ret; 381 Ret.p = reinterpret_cast<uintptr_t>(I); 382 return relocation_iterator(RelocationRef(Ret, this)); 383 } 384 385 // Initialize the pointer to the symbol table. 386 std::error_code COFFObjectFile::initSymbolTablePtr() { 387 if (COFFHeader) 388 if (std::error_code EC = getObject( 389 SymbolTable16, Data, base() + getPointerToSymbolTable(), 390 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 391 return EC; 392 393 if (COFFBigObjHeader) 394 if (std::error_code EC = getObject( 395 SymbolTable32, Data, base() + getPointerToSymbolTable(), 396 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 397 return EC; 398 399 // Find string table. The first four byte of the string table contains the 400 // total size of the string table, including the size field itself. If the 401 // string table is empty, the value of the first four byte would be 4. 402 uint32_t StringTableOffset = getPointerToSymbolTable() + 403 getNumberOfSymbols() * getSymbolTableEntrySize(); 404 const uint8_t *StringTableAddr = base() + StringTableOffset; 405 const ulittle32_t *StringTableSizePtr; 406 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 407 return EC; 408 StringTableSize = *StringTableSizePtr; 409 if (std::error_code EC = 410 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 411 return EC; 412 413 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 414 // tools like cvtres write a size of 0 for an empty table instead of 4. 415 if (StringTableSize < 4) 416 StringTableSize = 4; 417 418 // Check that the string table is null terminated if has any in it. 419 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 420 return object_error::parse_failed; 421 return std::error_code(); 422 } 423 424 // Returns the file offset for the given VA. 425 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 426 uint64_t ImageBase = PE32Header ? (uint64_t)PE32Header->ImageBase 427 : (uint64_t)PE32PlusHeader->ImageBase; 428 uint64_t Rva = Addr - ImageBase; 429 assert(Rva <= UINT32_MAX); 430 return getRvaPtr((uint32_t)Rva, Res); 431 } 432 433 // Returns the file offset for the given RVA. 434 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 435 for (const SectionRef &S : sections()) { 436 const coff_section *Section = getCOFFSection(S); 437 uint32_t SectionStart = Section->VirtualAddress; 438 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 439 if (SectionStart <= Addr && Addr < SectionEnd) { 440 uint32_t Offset = Addr - SectionStart; 441 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 442 return std::error_code(); 443 } 444 } 445 return object_error::parse_failed; 446 } 447 448 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 449 // table entry. 450 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 451 StringRef &Name) const { 452 uintptr_t IntPtr = 0; 453 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 454 return EC; 455 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 456 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 457 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 458 return std::error_code(); 459 } 460 461 // Find the import table. 462 std::error_code COFFObjectFile::initImportTablePtr() { 463 // First, we get the RVA of the import table. If the file lacks a pointer to 464 // the import table, do nothing. 465 const data_directory *DataEntry; 466 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 467 return std::error_code(); 468 469 // Do nothing if the pointer to import table is NULL. 470 if (DataEntry->RelativeVirtualAddress == 0) 471 return std::error_code(); 472 473 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 474 // -1 because the last entry is the null entry. 475 NumberOfImportDirectory = DataEntry->Size / 476 sizeof(import_directory_table_entry) - 1; 477 478 // Find the section that contains the RVA. This is needed because the RVA is 479 // the import table's memory address which is different from its file offset. 480 uintptr_t IntPtr = 0; 481 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 482 return EC; 483 ImportDirectory = reinterpret_cast< 484 const import_directory_table_entry *>(IntPtr); 485 return std::error_code(); 486 } 487 488 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 489 std::error_code COFFObjectFile::initDelayImportTablePtr() { 490 const data_directory *DataEntry; 491 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 492 return std::error_code(); 493 if (DataEntry->RelativeVirtualAddress == 0) 494 return std::error_code(); 495 496 uint32_t RVA = DataEntry->RelativeVirtualAddress; 497 NumberOfDelayImportDirectory = DataEntry->Size / 498 sizeof(delay_import_directory_table_entry) - 1; 499 500 uintptr_t IntPtr = 0; 501 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 502 return EC; 503 DelayImportDirectory = reinterpret_cast< 504 const delay_import_directory_table_entry *>(IntPtr); 505 return std::error_code(); 506 } 507 508 // Find the export table. 509 std::error_code COFFObjectFile::initExportTablePtr() { 510 // First, we get the RVA of the export table. If the file lacks a pointer to 511 // the export table, do nothing. 512 const data_directory *DataEntry; 513 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 514 return std::error_code(); 515 516 // Do nothing if the pointer to export table is NULL. 517 if (DataEntry->RelativeVirtualAddress == 0) 518 return std::error_code(); 519 520 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 521 uintptr_t IntPtr = 0; 522 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 523 return EC; 524 ExportDirectory = 525 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 526 return std::error_code(); 527 } 528 529 std::error_code COFFObjectFile::initBaseRelocPtr() { 530 const data_directory *DataEntry; 531 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 532 return std::error_code(); 533 if (DataEntry->RelativeVirtualAddress == 0) 534 return std::error_code(); 535 536 uintptr_t IntPtr = 0; 537 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 538 return EC; 539 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 540 IntPtr); 541 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 542 IntPtr + DataEntry->Size); 543 return std::error_code(); 544 } 545 546 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 547 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 548 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 549 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 550 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 551 ImportDirectory(nullptr), NumberOfImportDirectory(0), 552 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 553 ExportDirectory(nullptr), BaseRelocHeader(nullptr), 554 BaseRelocEnd(nullptr) { 555 // Check that we at least have enough room for a header. 556 if (!checkSize(Data, EC, sizeof(coff_file_header))) 557 return; 558 559 // The current location in the file where we are looking at. 560 uint64_t CurPtr = 0; 561 562 // PE header is optional and is present only in executables. If it exists, 563 // it is placed right after COFF header. 564 bool HasPEHeader = false; 565 566 // Check if this is a PE/COFF file. 567 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 568 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 569 // PE signature to find 'normal' COFF header. 570 const auto *DH = reinterpret_cast<const dos_header *>(base()); 571 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 572 CurPtr = DH->AddressOfNewExeHeader; 573 // Check the PE magic bytes. ("PE\0\0") 574 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 575 EC = object_error::parse_failed; 576 return; 577 } 578 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 579 HasPEHeader = true; 580 } 581 } 582 583 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 584 return; 585 586 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 587 // import libraries share a common prefix but bigobj is more restrictive. 588 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 589 COFFHeader->NumberOfSections == uint16_t(0xffff) && 590 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 591 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 592 return; 593 594 // Verify that we are dealing with bigobj. 595 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 596 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 597 sizeof(COFF::BigObjMagic)) == 0) { 598 COFFHeader = nullptr; 599 CurPtr += sizeof(coff_bigobj_file_header); 600 } else { 601 // It's not a bigobj. 602 COFFBigObjHeader = nullptr; 603 } 604 } 605 if (COFFHeader) { 606 // The prior checkSize call may have failed. This isn't a hard error 607 // because we were just trying to sniff out bigobj. 608 EC = std::error_code(); 609 CurPtr += sizeof(coff_file_header); 610 611 if (COFFHeader->isImportLibrary()) 612 return; 613 } 614 615 if (HasPEHeader) { 616 const pe32_header *Header; 617 if ((EC = getObject(Header, Data, base() + CurPtr))) 618 return; 619 620 const uint8_t *DataDirAddr; 621 uint64_t DataDirSize; 622 if (Header->Magic == COFF::PE32Header::PE32) { 623 PE32Header = Header; 624 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 625 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 626 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 627 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 628 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 629 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 630 } else { 631 // It's neither PE32 nor PE32+. 632 EC = object_error::parse_failed; 633 return; 634 } 635 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 636 return; 637 CurPtr += COFFHeader->SizeOfOptionalHeader; 638 } 639 640 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 641 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 642 return; 643 644 // Initialize the pointer to the symbol table. 645 if (getPointerToSymbolTable() != 0) { 646 if ((EC = initSymbolTablePtr())) 647 return; 648 } else { 649 // We had better not have any symbols if we don't have a symbol table. 650 if (getNumberOfSymbols() != 0) { 651 EC = object_error::parse_failed; 652 return; 653 } 654 } 655 656 // Initialize the pointer to the beginning of the import table. 657 if ((EC = initImportTablePtr())) 658 return; 659 if ((EC = initDelayImportTablePtr())) 660 return; 661 662 // Initialize the pointer to the export table. 663 if ((EC = initExportTablePtr())) 664 return; 665 666 // Initialize the pointer to the base relocation table. 667 if ((EC = initBaseRelocPtr())) 668 return; 669 670 EC = std::error_code(); 671 } 672 673 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 674 DataRefImpl Ret; 675 Ret.p = getSymbolTable(); 676 return basic_symbol_iterator(SymbolRef(Ret, this)); 677 } 678 679 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 680 // The symbol table ends where the string table begins. 681 DataRefImpl Ret; 682 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 683 return basic_symbol_iterator(SymbolRef(Ret, this)); 684 } 685 686 import_directory_iterator COFFObjectFile::import_directory_begin() const { 687 return import_directory_iterator( 688 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 689 } 690 691 import_directory_iterator COFFObjectFile::import_directory_end() const { 692 return import_directory_iterator( 693 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); 694 } 695 696 delay_import_directory_iterator 697 COFFObjectFile::delay_import_directory_begin() const { 698 return delay_import_directory_iterator( 699 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 700 } 701 702 delay_import_directory_iterator 703 COFFObjectFile::delay_import_directory_end() const { 704 return delay_import_directory_iterator( 705 DelayImportDirectoryEntryRef( 706 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 707 } 708 709 export_directory_iterator COFFObjectFile::export_directory_begin() const { 710 return export_directory_iterator( 711 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 712 } 713 714 export_directory_iterator COFFObjectFile::export_directory_end() const { 715 if (!ExportDirectory) 716 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 717 ExportDirectoryEntryRef Ref(ExportDirectory, 718 ExportDirectory->AddressTableEntries, this); 719 return export_directory_iterator(Ref); 720 } 721 722 section_iterator COFFObjectFile::section_begin() const { 723 DataRefImpl Ret; 724 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 725 return section_iterator(SectionRef(Ret, this)); 726 } 727 728 section_iterator COFFObjectFile::section_end() const { 729 DataRefImpl Ret; 730 int NumSections = 731 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 732 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 733 return section_iterator(SectionRef(Ret, this)); 734 } 735 736 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 737 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 738 } 739 740 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 741 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 742 } 743 744 uint8_t COFFObjectFile::getBytesInAddress() const { 745 return getArch() == Triple::x86_64 ? 8 : 4; 746 } 747 748 StringRef COFFObjectFile::getFileFormatName() const { 749 switch(getMachine()) { 750 case COFF::IMAGE_FILE_MACHINE_I386: 751 return "COFF-i386"; 752 case COFF::IMAGE_FILE_MACHINE_AMD64: 753 return "COFF-x86-64"; 754 case COFF::IMAGE_FILE_MACHINE_ARMNT: 755 return "COFF-ARM"; 756 default: 757 return "COFF-<unknown arch>"; 758 } 759 } 760 761 unsigned COFFObjectFile::getArch() const { 762 switch (getMachine()) { 763 case COFF::IMAGE_FILE_MACHINE_I386: 764 return Triple::x86; 765 case COFF::IMAGE_FILE_MACHINE_AMD64: 766 return Triple::x86_64; 767 case COFF::IMAGE_FILE_MACHINE_ARMNT: 768 return Triple::thumb; 769 default: 770 return Triple::UnknownArch; 771 } 772 } 773 774 iterator_range<import_directory_iterator> 775 COFFObjectFile::import_directories() const { 776 return make_range(import_directory_begin(), import_directory_end()); 777 } 778 779 iterator_range<delay_import_directory_iterator> 780 COFFObjectFile::delay_import_directories() const { 781 return make_range(delay_import_directory_begin(), 782 delay_import_directory_end()); 783 } 784 785 iterator_range<export_directory_iterator> 786 COFFObjectFile::export_directories() const { 787 return make_range(export_directory_begin(), export_directory_end()); 788 } 789 790 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 791 return make_range(base_reloc_begin(), base_reloc_end()); 792 } 793 794 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 795 Res = PE32Header; 796 return std::error_code(); 797 } 798 799 std::error_code 800 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 801 Res = PE32PlusHeader; 802 return std::error_code(); 803 } 804 805 std::error_code 806 COFFObjectFile::getDataDirectory(uint32_t Index, 807 const data_directory *&Res) const { 808 // Error if if there's no data directory or the index is out of range. 809 if (!DataDirectory) { 810 Res = nullptr; 811 return object_error::parse_failed; 812 } 813 assert(PE32Header || PE32PlusHeader); 814 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 815 : PE32PlusHeader->NumberOfRvaAndSize; 816 if (Index >= NumEnt) { 817 Res = nullptr; 818 return object_error::parse_failed; 819 } 820 Res = &DataDirectory[Index]; 821 return std::error_code(); 822 } 823 824 std::error_code COFFObjectFile::getSection(int32_t Index, 825 const coff_section *&Result) const { 826 Result = nullptr; 827 if (COFF::isReservedSectionNumber(Index)) 828 return std::error_code(); 829 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 830 // We already verified the section table data, so no need to check again. 831 Result = SectionTable + (Index - 1); 832 return std::error_code(); 833 } 834 return object_error::parse_failed; 835 } 836 837 std::error_code COFFObjectFile::getString(uint32_t Offset, 838 StringRef &Result) const { 839 if (StringTableSize <= 4) 840 // Tried to get a string from an empty string table. 841 return object_error::parse_failed; 842 if (Offset >= StringTableSize) 843 return object_error::unexpected_eof; 844 Result = StringRef(StringTable + Offset); 845 return std::error_code(); 846 } 847 848 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 849 StringRef &Res) const { 850 // Check for string table entry. First 4 bytes are 0. 851 if (Symbol.getStringTableOffset().Zeroes == 0) { 852 uint32_t Offset = Symbol.getStringTableOffset().Offset; 853 if (std::error_code EC = getString(Offset, Res)) 854 return EC; 855 return std::error_code(); 856 } 857 858 if (Symbol.getShortName()[COFF::NameSize - 1] == 0) 859 // Null terminated, let ::strlen figure out the length. 860 Res = StringRef(Symbol.getShortName()); 861 else 862 // Not null terminated, use all 8 bytes. 863 Res = StringRef(Symbol.getShortName(), COFF::NameSize); 864 return std::error_code(); 865 } 866 867 ArrayRef<uint8_t> 868 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 869 const uint8_t *Aux = nullptr; 870 871 size_t SymbolSize = getSymbolTableEntrySize(); 872 if (Symbol.getNumberOfAuxSymbols() > 0) { 873 // AUX data comes immediately after the symbol in COFF 874 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 875 # ifndef NDEBUG 876 // Verify that the Aux symbol points to a valid entry in the symbol table. 877 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 878 if (Offset < getPointerToSymbolTable() || 879 Offset >= 880 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 881 report_fatal_error("Aux Symbol data was outside of symbol table."); 882 883 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 884 "Aux Symbol data did not point to the beginning of a symbol"); 885 # endif 886 } 887 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 888 } 889 890 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 891 StringRef &Res) const { 892 StringRef Name; 893 if (Sec->Name[COFF::NameSize - 1] == 0) 894 // Null terminated, let ::strlen figure out the length. 895 Name = Sec->Name; 896 else 897 // Not null terminated, use all 8 bytes. 898 Name = StringRef(Sec->Name, COFF::NameSize); 899 900 // Check for string table entry. First byte is '/'. 901 if (Name.startswith("/")) { 902 uint32_t Offset; 903 if (Name.startswith("//")) { 904 if (decodeBase64StringEntry(Name.substr(2), Offset)) 905 return object_error::parse_failed; 906 } else { 907 if (Name.substr(1).getAsInteger(10, Offset)) 908 return object_error::parse_failed; 909 } 910 if (std::error_code EC = getString(Offset, Name)) 911 return EC; 912 } 913 914 Res = Name; 915 return std::error_code(); 916 } 917 918 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 919 // SizeOfRawData and VirtualSize change what they represent depending on 920 // whether or not we have an executable image. 921 // 922 // For object files, SizeOfRawData contains the size of section's data; 923 // VirtualSize is always zero. 924 // 925 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 926 // actual section size is in VirtualSize. It is possible for VirtualSize to 927 // be greater than SizeOfRawData; the contents past that point should be 928 // considered to be zero. 929 uint32_t SectionSize; 930 if (Sec->VirtualSize) 931 SectionSize = std::min(Sec->VirtualSize, Sec->SizeOfRawData); 932 else 933 SectionSize = Sec->SizeOfRawData; 934 935 return SectionSize; 936 } 937 938 std::error_code 939 COFFObjectFile::getSectionContents(const coff_section *Sec, 940 ArrayRef<uint8_t> &Res) const { 941 // PointerToRawData and SizeOfRawData won't make sense for BSS sections, 942 // don't do anything interesting for them. 943 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && 944 "BSS sections don't have contents!"); 945 // The only thing that we need to verify is that the contents is contained 946 // within the file bounds. We don't need to make sure it doesn't cover other 947 // data, as there's nothing that says that is not allowed. 948 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 949 uint32_t SectionSize = getSectionSize(Sec); 950 if (checkOffset(Data, ConStart, SectionSize)) 951 return object_error::parse_failed; 952 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 953 return std::error_code(); 954 } 955 956 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 957 return reinterpret_cast<const coff_relocation*>(Rel.p); 958 } 959 960 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 961 Rel.p = reinterpret_cast<uintptr_t>( 962 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 963 } 964 965 std::error_code COFFObjectFile::getRelocationAddress(DataRefImpl Rel, 966 uint64_t &Res) const { 967 report_fatal_error("getRelocationAddress not implemented in COFFObjectFile"); 968 } 969 970 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 971 const coff_relocation *R = toRel(Rel); 972 return R->VirtualAddress; 973 } 974 975 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 976 const coff_relocation *R = toRel(Rel); 977 DataRefImpl Ref; 978 if (R->SymbolTableIndex >= getNumberOfSymbols()) 979 return symbol_end(); 980 if (SymbolTable16) 981 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 982 else if (SymbolTable32) 983 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 984 else 985 llvm_unreachable("no symbol table pointer!"); 986 return symbol_iterator(SymbolRef(Ref, this)); 987 } 988 989 std::error_code COFFObjectFile::getRelocationType(DataRefImpl Rel, 990 uint64_t &Res) const { 991 const coff_relocation* R = toRel(Rel); 992 Res = R->Type; 993 return std::error_code(); 994 } 995 996 const coff_section * 997 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 998 return toSec(Section.getRawDataRefImpl()); 999 } 1000 1001 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1002 if (SymbolTable16) 1003 return toSymb<coff_symbol16>(Ref); 1004 if (SymbolTable32) 1005 return toSymb<coff_symbol32>(Ref); 1006 llvm_unreachable("no symbol table pointer!"); 1007 } 1008 1009 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1010 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1011 } 1012 1013 const coff_relocation * 1014 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1015 return toRel(Reloc.getRawDataRefImpl()); 1016 } 1017 1018 iterator_range<const coff_relocation *> 1019 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1020 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 1021 const coff_relocation *E = I; 1022 if (I) 1023 E += getNumberOfRelocations(Sec, Data, base()); 1024 return make_range(I, E); 1025 } 1026 1027 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1028 case COFF::reloc_type: \ 1029 Res = #reloc_type; \ 1030 break; 1031 1032 std::error_code 1033 COFFObjectFile::getRelocationTypeName(DataRefImpl Rel, 1034 SmallVectorImpl<char> &Result) const { 1035 const coff_relocation *Reloc = toRel(Rel); 1036 StringRef Res; 1037 switch (getMachine()) { 1038 case COFF::IMAGE_FILE_MACHINE_AMD64: 1039 switch (Reloc->Type) { 1040 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1041 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1042 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1043 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1044 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1045 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1046 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1047 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1048 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1049 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1050 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1051 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1052 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1053 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1054 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1055 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1056 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1057 default: 1058 Res = "Unknown"; 1059 } 1060 break; 1061 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1062 switch (Reloc->Type) { 1063 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1064 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1065 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1066 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1067 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1068 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1069 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1070 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1071 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1072 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1073 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1074 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1075 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1076 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1077 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1078 default: 1079 Res = "Unknown"; 1080 } 1081 break; 1082 case COFF::IMAGE_FILE_MACHINE_I386: 1083 switch (Reloc->Type) { 1084 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1085 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1086 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1087 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1088 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1089 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1090 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1091 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1092 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1093 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1094 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1095 default: 1096 Res = "Unknown"; 1097 } 1098 break; 1099 default: 1100 Res = "Unknown"; 1101 } 1102 Result.append(Res.begin(), Res.end()); 1103 return std::error_code(); 1104 } 1105 1106 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1107 1108 bool COFFObjectFile::isRelocatableObject() const { 1109 return !DataDirectory; 1110 } 1111 1112 bool ImportDirectoryEntryRef:: 1113 operator==(const ImportDirectoryEntryRef &Other) const { 1114 return ImportTable == Other.ImportTable && Index == Other.Index; 1115 } 1116 1117 void ImportDirectoryEntryRef::moveNext() { 1118 ++Index; 1119 } 1120 1121 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1122 const import_directory_table_entry *&Result) const { 1123 Result = ImportTable + Index; 1124 return std::error_code(); 1125 } 1126 1127 static imported_symbol_iterator 1128 makeImportedSymbolIterator(const COFFObjectFile *Object, 1129 uintptr_t Ptr, int Index) { 1130 if (Object->getBytesInAddress() == 4) { 1131 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1132 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1133 } 1134 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1135 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1136 } 1137 1138 static imported_symbol_iterator 1139 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1140 uintptr_t IntPtr = 0; 1141 Object->getRvaPtr(RVA, IntPtr); 1142 return makeImportedSymbolIterator(Object, IntPtr, 0); 1143 } 1144 1145 static imported_symbol_iterator 1146 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1147 uintptr_t IntPtr = 0; 1148 Object->getRvaPtr(RVA, IntPtr); 1149 // Forward the pointer to the last entry which is null. 1150 int Index = 0; 1151 if (Object->getBytesInAddress() == 4) { 1152 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1153 while (*Entry++) 1154 ++Index; 1155 } else { 1156 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1157 while (*Entry++) 1158 ++Index; 1159 } 1160 return makeImportedSymbolIterator(Object, IntPtr, Index); 1161 } 1162 1163 imported_symbol_iterator 1164 ImportDirectoryEntryRef::imported_symbol_begin() const { 1165 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1166 OwningObject); 1167 } 1168 1169 imported_symbol_iterator 1170 ImportDirectoryEntryRef::imported_symbol_end() const { 1171 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1172 OwningObject); 1173 } 1174 1175 iterator_range<imported_symbol_iterator> 1176 ImportDirectoryEntryRef::imported_symbols() const { 1177 return make_range(imported_symbol_begin(), imported_symbol_end()); 1178 } 1179 1180 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1181 uintptr_t IntPtr = 0; 1182 if (std::error_code EC = 1183 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1184 return EC; 1185 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1186 return std::error_code(); 1187 } 1188 1189 std::error_code 1190 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1191 Result = ImportTable[Index].ImportLookupTableRVA; 1192 return std::error_code(); 1193 } 1194 1195 std::error_code 1196 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1197 Result = ImportTable[Index].ImportAddressTableRVA; 1198 return std::error_code(); 1199 } 1200 1201 std::error_code ImportDirectoryEntryRef::getImportLookupEntry( 1202 const import_lookup_table_entry32 *&Result) const { 1203 uintptr_t IntPtr = 0; 1204 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; 1205 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1206 return EC; 1207 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr); 1208 return std::error_code(); 1209 } 1210 1211 bool DelayImportDirectoryEntryRef:: 1212 operator==(const DelayImportDirectoryEntryRef &Other) const { 1213 return Table == Other.Table && Index == Other.Index; 1214 } 1215 1216 void DelayImportDirectoryEntryRef::moveNext() { 1217 ++Index; 1218 } 1219 1220 imported_symbol_iterator 1221 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1222 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1223 OwningObject); 1224 } 1225 1226 imported_symbol_iterator 1227 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1228 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1229 OwningObject); 1230 } 1231 1232 iterator_range<imported_symbol_iterator> 1233 DelayImportDirectoryEntryRef::imported_symbols() const { 1234 return make_range(imported_symbol_begin(), imported_symbol_end()); 1235 } 1236 1237 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1238 uintptr_t IntPtr = 0; 1239 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1240 return EC; 1241 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1242 return std::error_code(); 1243 } 1244 1245 std::error_code DelayImportDirectoryEntryRef:: 1246 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1247 Result = Table; 1248 return std::error_code(); 1249 } 1250 1251 std::error_code DelayImportDirectoryEntryRef:: 1252 getImportAddress(int AddrIndex, uint64_t &Result) const { 1253 uint32_t RVA = Table[Index].DelayImportAddressTable + 1254 AddrIndex * (OwningObject->is64() ? 8 : 4); 1255 uintptr_t IntPtr = 0; 1256 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1257 return EC; 1258 if (OwningObject->is64()) 1259 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1260 else 1261 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1262 return std::error_code(); 1263 } 1264 1265 bool ExportDirectoryEntryRef:: 1266 operator==(const ExportDirectoryEntryRef &Other) const { 1267 return ExportTable == Other.ExportTable && Index == Other.Index; 1268 } 1269 1270 void ExportDirectoryEntryRef::moveNext() { 1271 ++Index; 1272 } 1273 1274 // Returns the name of the current export symbol. If the symbol is exported only 1275 // by ordinal, the empty string is set as a result. 1276 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1277 uintptr_t IntPtr = 0; 1278 if (std::error_code EC = 1279 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1280 return EC; 1281 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1282 return std::error_code(); 1283 } 1284 1285 // Returns the starting ordinal number. 1286 std::error_code 1287 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1288 Result = ExportTable->OrdinalBase; 1289 return std::error_code(); 1290 } 1291 1292 // Returns the export ordinal of the current export symbol. 1293 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1294 Result = ExportTable->OrdinalBase + Index; 1295 return std::error_code(); 1296 } 1297 1298 // Returns the address of the current export symbol. 1299 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1300 uintptr_t IntPtr = 0; 1301 if (std::error_code EC = 1302 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1303 return EC; 1304 const export_address_table_entry *entry = 1305 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1306 Result = entry[Index].ExportRVA; 1307 return std::error_code(); 1308 } 1309 1310 // Returns the name of the current export symbol. If the symbol is exported only 1311 // by ordinal, the empty string is set as a result. 1312 std::error_code 1313 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1314 uintptr_t IntPtr = 0; 1315 if (std::error_code EC = 1316 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1317 return EC; 1318 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1319 1320 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1321 int Offset = 0; 1322 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1323 I < E; ++I, ++Offset) { 1324 if (*I != Index) 1325 continue; 1326 if (std::error_code EC = 1327 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1328 return EC; 1329 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1330 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1331 return EC; 1332 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1333 return std::error_code(); 1334 } 1335 Result = ""; 1336 return std::error_code(); 1337 } 1338 1339 bool ImportedSymbolRef:: 1340 operator==(const ImportedSymbolRef &Other) const { 1341 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1342 && Index == Other.Index; 1343 } 1344 1345 void ImportedSymbolRef::moveNext() { 1346 ++Index; 1347 } 1348 1349 std::error_code 1350 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1351 uint32_t RVA; 1352 if (Entry32) { 1353 // If a symbol is imported only by ordinal, it has no name. 1354 if (Entry32[Index].isOrdinal()) 1355 return std::error_code(); 1356 RVA = Entry32[Index].getHintNameRVA(); 1357 } else { 1358 if (Entry64[Index].isOrdinal()) 1359 return std::error_code(); 1360 RVA = Entry64[Index].getHintNameRVA(); 1361 } 1362 uintptr_t IntPtr = 0; 1363 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1364 return EC; 1365 // +2 because the first two bytes is hint. 1366 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1367 return std::error_code(); 1368 } 1369 1370 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1371 uint32_t RVA; 1372 if (Entry32) { 1373 if (Entry32[Index].isOrdinal()) { 1374 Result = Entry32[Index].getOrdinal(); 1375 return std::error_code(); 1376 } 1377 RVA = Entry32[Index].getHintNameRVA(); 1378 } else { 1379 if (Entry64[Index].isOrdinal()) { 1380 Result = Entry64[Index].getOrdinal(); 1381 return std::error_code(); 1382 } 1383 RVA = Entry64[Index].getHintNameRVA(); 1384 } 1385 uintptr_t IntPtr = 0; 1386 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1387 return EC; 1388 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1389 return std::error_code(); 1390 } 1391 1392 ErrorOr<std::unique_ptr<COFFObjectFile>> 1393 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1394 std::error_code EC; 1395 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1396 if (EC) 1397 return EC; 1398 return std::move(Ret); 1399 } 1400 1401 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1402 return Header == Other.Header && Index == Other.Index; 1403 } 1404 1405 void BaseRelocRef::moveNext() { 1406 // Header->BlockSize is the size of the current block, including the 1407 // size of the header itself. 1408 uint32_t Size = sizeof(*Header) + 1409 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1410 if (Size == Header->BlockSize) { 1411 // .reloc contains a list of base relocation blocks. Each block 1412 // consists of the header followed by entries. The header contains 1413 // how many entories will follow. When we reach the end of the 1414 // current block, proceed to the next block. 1415 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1416 reinterpret_cast<const uint8_t *>(Header) + Size); 1417 Index = 0; 1418 } else { 1419 ++Index; 1420 } 1421 } 1422 1423 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1424 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1425 Type = Entry[Index].getType(); 1426 return std::error_code(); 1427 } 1428 1429 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1430 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1431 Result = Header->PageRVA + Entry[Index].getOffset(); 1432 return std::error_code(); 1433 } 1434