1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Support/COFF.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <cctype> 23 #include <limits> 24 25 using namespace llvm; 26 using namespace object; 27 28 using support::ulittle16_t; 29 using support::ulittle32_t; 30 using support::ulittle64_t; 31 using support::little16_t; 32 33 // Returns false if size is greater than the buffer size. And sets ec. 34 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 35 if (M.getBufferSize() < Size) { 36 EC = object_error::unexpected_eof; 37 return false; 38 } 39 return true; 40 } 41 42 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 43 // Returns unexpected_eof if error. 44 template <typename T> 45 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 46 const uint8_t *Ptr, 47 const size_t Size = sizeof(T)) { 48 uintptr_t Addr = uintptr_t(Ptr); 49 if (Addr + Size < Addr || Addr + Size < Size || 50 Addr + Size > uintptr_t(M.getBufferEnd())) { 51 return object_error::unexpected_eof; 52 } 53 Obj = reinterpret_cast<const T *>(Addr); 54 return object_error::success; 55 } 56 57 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 58 // prefixed slashes. 59 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 60 assert(Str.size() <= 6 && "String too long, possible overflow."); 61 if (Str.size() > 6) 62 return true; 63 64 uint64_t Value = 0; 65 while (!Str.empty()) { 66 unsigned CharVal; 67 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 68 CharVal = Str[0] - 'A'; 69 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 70 CharVal = Str[0] - 'a' + 26; 71 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 72 CharVal = Str[0] - '0' + 52; 73 else if (Str[0] == '+') // 62 74 CharVal = 62; 75 else if (Str[0] == '/') // 63 76 CharVal = 63; 77 else 78 return true; 79 80 Value = (Value * 64) + CharVal; 81 Str = Str.substr(1); 82 } 83 84 if (Value > std::numeric_limits<uint32_t>::max()) 85 return true; 86 87 Result = static_cast<uint32_t>(Value); 88 return false; 89 } 90 91 template <typename coff_symbol_type> 92 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 93 const coff_symbol_type *Addr = 94 reinterpret_cast<const coff_symbol_type *>(Ref.p); 95 96 #ifndef NDEBUG 97 // Verify that the symbol points to a valid entry in the symbol table. 98 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 99 if (Offset < getPointerToSymbolTable() || 100 Offset >= getPointerToSymbolTable() + 101 (getNumberOfSymbols() * sizeof(coff_symbol_type))) 102 report_fatal_error("Symbol was outside of symbol table."); 103 104 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 105 "Symbol did not point to the beginning of a symbol"); 106 #endif 107 108 return Addr; 109 } 110 111 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 112 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 113 114 # ifndef NDEBUG 115 // Verify that the section points to a valid entry in the section table. 116 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 117 report_fatal_error("Section was outside of section table."); 118 119 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 120 assert(Offset % sizeof(coff_section) == 0 && 121 "Section did not point to the beginning of a section"); 122 # endif 123 124 return Addr; 125 } 126 127 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 128 if (SymbolTable16) { 129 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 130 Symb += 1 + Symb->NumberOfAuxSymbols; 131 Ref.p = reinterpret_cast<uintptr_t>(Symb); 132 } else if (SymbolTable32) { 133 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 134 Symb += 1 + Symb->NumberOfAuxSymbols; 135 Ref.p = reinterpret_cast<uintptr_t>(Symb); 136 } else { 137 llvm_unreachable("no symbol table pointer!"); 138 } 139 } 140 141 std::error_code COFFObjectFile::getSymbolName(DataRefImpl Ref, 142 StringRef &Result) const { 143 COFFSymbolRef Symb = getCOFFSymbol(Ref); 144 return getSymbolName(Symb, Result); 145 } 146 147 std::error_code COFFObjectFile::getSymbolAddress(DataRefImpl Ref, 148 uint64_t &Result) const { 149 COFFSymbolRef Symb = getCOFFSymbol(Ref); 150 const coff_section *Section = nullptr; 151 if (std::error_code EC = getSection(Symb.getSectionNumber(), Section)) 152 return EC; 153 154 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_UNDEFINED) 155 Result = UnknownAddressOrSize; 156 else if (Section) 157 Result = Section->VirtualAddress + Symb.getValue(); 158 else 159 Result = Symb.getValue(); 160 return object_error::success; 161 } 162 163 std::error_code COFFObjectFile::getSymbolType(DataRefImpl Ref, 164 SymbolRef::Type &Result) const { 165 COFFSymbolRef Symb = getCOFFSymbol(Ref); 166 Result = SymbolRef::ST_Other; 167 168 if (Symb.getStorageClass() == COFF::IMAGE_SYM_CLASS_EXTERNAL && 169 Symb.getSectionNumber() == COFF::IMAGE_SYM_UNDEFINED) { 170 Result = SymbolRef::ST_Unknown; 171 } else if (Symb.isFunctionDefinition()) { 172 Result = SymbolRef::ST_Function; 173 } else { 174 uint32_t Characteristics = 0; 175 if (!COFF::isReservedSectionNumber(Symb.getSectionNumber())) { 176 const coff_section *Section = nullptr; 177 if (std::error_code EC = getSection(Symb.getSectionNumber(), Section)) 178 return EC; 179 Characteristics = Section->Characteristics; 180 } 181 if (Characteristics & COFF::IMAGE_SCN_MEM_READ && 182 ~Characteristics & COFF::IMAGE_SCN_MEM_WRITE) // Read only. 183 Result = SymbolRef::ST_Data; 184 } 185 return object_error::success; 186 } 187 188 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 189 COFFSymbolRef Symb = getCOFFSymbol(Ref); 190 uint32_t Result = SymbolRef::SF_None; 191 192 // TODO: Correctly set SF_FormatSpecific, SF_Common 193 194 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_UNDEFINED) { 195 if (Symb.getValue() == 0) 196 Result |= SymbolRef::SF_Undefined; 197 else 198 Result |= SymbolRef::SF_Common; 199 } 200 201 202 // TODO: This are certainly too restrictive. 203 if (Symb.getStorageClass() == COFF::IMAGE_SYM_CLASS_EXTERNAL) 204 Result |= SymbolRef::SF_Global; 205 206 if (Symb.getStorageClass() == COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL) 207 Result |= SymbolRef::SF_Weak; 208 209 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 210 Result |= SymbolRef::SF_Absolute; 211 212 return Result; 213 } 214 215 std::error_code COFFObjectFile::getSymbolSize(DataRefImpl Ref, 216 uint64_t &Result) const { 217 // FIXME: Return the correct size. This requires looking at all the symbols 218 // in the same section as this symbol, and looking for either the next 219 // symbol, or the end of the section. 220 COFFSymbolRef Symb = getCOFFSymbol(Ref); 221 const coff_section *Section = nullptr; 222 if (std::error_code EC = getSection(Symb.getSectionNumber(), Section)) 223 return EC; 224 225 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_UNDEFINED) 226 Result = UnknownAddressOrSize; 227 else if (Section) 228 Result = Section->SizeOfRawData - Symb.getValue(); 229 else 230 Result = 0; 231 return object_error::success; 232 } 233 234 std::error_code 235 COFFObjectFile::getSymbolSection(DataRefImpl Ref, 236 section_iterator &Result) const { 237 COFFSymbolRef Symb = getCOFFSymbol(Ref); 238 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) { 239 Result = section_end(); 240 } else { 241 const coff_section *Sec = nullptr; 242 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 243 return EC; 244 DataRefImpl Ref; 245 Ref.p = reinterpret_cast<uintptr_t>(Sec); 246 Result = section_iterator(SectionRef(Ref, this)); 247 } 248 return object_error::success; 249 } 250 251 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 252 const coff_section *Sec = toSec(Ref); 253 Sec += 1; 254 Ref.p = reinterpret_cast<uintptr_t>(Sec); 255 } 256 257 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 258 StringRef &Result) const { 259 const coff_section *Sec = toSec(Ref); 260 return getSectionName(Sec, Result); 261 } 262 263 std::error_code COFFObjectFile::getSectionAddress(DataRefImpl Ref, 264 uint64_t &Result) const { 265 const coff_section *Sec = toSec(Ref); 266 Result = Sec->VirtualAddress; 267 return object_error::success; 268 } 269 270 std::error_code COFFObjectFile::getSectionSize(DataRefImpl Ref, 271 uint64_t &Result) const { 272 const coff_section *Sec = toSec(Ref); 273 Result = Sec->SizeOfRawData; 274 return object_error::success; 275 } 276 277 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 278 StringRef &Result) const { 279 const coff_section *Sec = toSec(Ref); 280 ArrayRef<uint8_t> Res; 281 std::error_code EC = getSectionContents(Sec, Res); 282 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 283 return EC; 284 } 285 286 std::error_code COFFObjectFile::getSectionAlignment(DataRefImpl Ref, 287 uint64_t &Res) const { 288 const coff_section *Sec = toSec(Ref); 289 if (!Sec) 290 return object_error::parse_failed; 291 Res = uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1); 292 return object_error::success; 293 } 294 295 std::error_code COFFObjectFile::isSectionText(DataRefImpl Ref, 296 bool &Result) const { 297 const coff_section *Sec = toSec(Ref); 298 Result = Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 299 return object_error::success; 300 } 301 302 std::error_code COFFObjectFile::isSectionData(DataRefImpl Ref, 303 bool &Result) const { 304 const coff_section *Sec = toSec(Ref); 305 Result = Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 306 return object_error::success; 307 } 308 309 std::error_code COFFObjectFile::isSectionBSS(DataRefImpl Ref, 310 bool &Result) const { 311 const coff_section *Sec = toSec(Ref); 312 Result = Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 313 return object_error::success; 314 } 315 316 std::error_code 317 COFFObjectFile::isSectionRequiredForExecution(DataRefImpl Ref, 318 bool &Result) const { 319 // FIXME: Unimplemented 320 Result = true; 321 return object_error::success; 322 } 323 324 std::error_code COFFObjectFile::isSectionVirtual(DataRefImpl Ref, 325 bool &Result) const { 326 const coff_section *Sec = toSec(Ref); 327 Result = Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 328 return object_error::success; 329 } 330 331 std::error_code COFFObjectFile::isSectionZeroInit(DataRefImpl Ref, 332 bool &Result) const { 333 // FIXME: Unimplemented. 334 Result = false; 335 return object_error::success; 336 } 337 338 std::error_code COFFObjectFile::isSectionReadOnlyData(DataRefImpl Ref, 339 bool &Result) const { 340 // FIXME: Unimplemented. 341 Result = false; 342 return object_error::success; 343 } 344 345 std::error_code COFFObjectFile::sectionContainsSymbol(DataRefImpl SecRef, 346 DataRefImpl SymbRef, 347 bool &Result) const { 348 const coff_section *Sec = toSec(SecRef); 349 COFFSymbolRef Symb = getCOFFSymbol(SymbRef); 350 const coff_section *SymbSec = nullptr; 351 if (std::error_code EC = getSection(Symb.getSectionNumber(), SymbSec)) 352 return EC; 353 if (SymbSec == Sec) 354 Result = true; 355 else 356 Result = false; 357 return object_error::success; 358 } 359 360 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 361 const coff_section *Sec = toSec(Ref); 362 DataRefImpl Ret; 363 if (Sec->NumberOfRelocations == 0) { 364 Ret.p = 0; 365 } else { 366 auto begin = reinterpret_cast<const coff_relocation*>( 367 base() + Sec->PointerToRelocations); 368 if (Sec->hasExtendedRelocations()) { 369 // Skip the first relocation entry repurposed to store the number of 370 // relocations. 371 begin++; 372 } 373 Ret.p = reinterpret_cast<uintptr_t>(begin); 374 } 375 return relocation_iterator(RelocationRef(Ret, this)); 376 } 377 378 static uint32_t getNumberOfRelocations(const coff_section *Sec, 379 const uint8_t *base) { 380 // The field for the number of relocations in COFF section table is only 381 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 382 // NumberOfRelocations field, and the actual relocation count is stored in the 383 // VirtualAddress field in the first relocation entry. 384 if (Sec->hasExtendedRelocations()) { 385 auto *FirstReloc = reinterpret_cast<const coff_relocation*>( 386 base + Sec->PointerToRelocations); 387 return FirstReloc->VirtualAddress; 388 } 389 return Sec->NumberOfRelocations; 390 } 391 392 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 393 const coff_section *Sec = toSec(Ref); 394 DataRefImpl Ret; 395 if (Sec->NumberOfRelocations == 0) { 396 Ret.p = 0; 397 } else { 398 auto begin = reinterpret_cast<const coff_relocation*>( 399 base() + Sec->PointerToRelocations); 400 uint32_t NumReloc = getNumberOfRelocations(Sec, base()); 401 Ret.p = reinterpret_cast<uintptr_t>(begin + NumReloc); 402 } 403 return relocation_iterator(RelocationRef(Ret, this)); 404 } 405 406 // Initialize the pointer to the symbol table. 407 std::error_code COFFObjectFile::initSymbolTablePtr() { 408 if (COFFHeader) 409 if (std::error_code EC = 410 getObject(SymbolTable16, Data, base() + getPointerToSymbolTable(), 411 getNumberOfSymbols() * getSymbolTableEntrySize())) 412 return EC; 413 414 if (COFFBigObjHeader) 415 if (std::error_code EC = 416 getObject(SymbolTable32, Data, base() + getPointerToSymbolTable(), 417 getNumberOfSymbols() * getSymbolTableEntrySize())) 418 return EC; 419 420 // Find string table. The first four byte of the string table contains the 421 // total size of the string table, including the size field itself. If the 422 // string table is empty, the value of the first four byte would be 4. 423 const uint8_t *StringTableAddr = 424 base() + getPointerToSymbolTable() + 425 getNumberOfSymbols() * getSymbolTableEntrySize(); 426 const ulittle32_t *StringTableSizePtr; 427 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 428 return EC; 429 StringTableSize = *StringTableSizePtr; 430 if (std::error_code EC = 431 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 432 return EC; 433 434 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 435 // tools like cvtres write a size of 0 for an empty table instead of 4. 436 if (StringTableSize < 4) 437 StringTableSize = 4; 438 439 // Check that the string table is null terminated if has any in it. 440 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 441 return object_error::parse_failed; 442 return object_error::success; 443 } 444 445 // Returns the file offset for the given VA. 446 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 447 uint64_t ImageBase = PE32Header ? (uint64_t)PE32Header->ImageBase 448 : (uint64_t)PE32PlusHeader->ImageBase; 449 uint64_t Rva = Addr - ImageBase; 450 assert(Rva <= UINT32_MAX); 451 return getRvaPtr((uint32_t)Rva, Res); 452 } 453 454 // Returns the file offset for the given RVA. 455 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 456 for (const SectionRef &S : sections()) { 457 const coff_section *Section = getCOFFSection(S); 458 uint32_t SectionStart = Section->VirtualAddress; 459 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 460 if (SectionStart <= Addr && Addr < SectionEnd) { 461 uint32_t Offset = Addr - SectionStart; 462 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 463 return object_error::success; 464 } 465 } 466 return object_error::parse_failed; 467 } 468 469 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 470 // table entry. 471 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 472 StringRef &Name) const { 473 uintptr_t IntPtr = 0; 474 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 475 return EC; 476 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 477 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 478 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 479 return object_error::success; 480 } 481 482 // Find the import table. 483 std::error_code COFFObjectFile::initImportTablePtr() { 484 // First, we get the RVA of the import table. If the file lacks a pointer to 485 // the import table, do nothing. 486 const data_directory *DataEntry; 487 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 488 return object_error::success; 489 490 // Do nothing if the pointer to import table is NULL. 491 if (DataEntry->RelativeVirtualAddress == 0) 492 return object_error::success; 493 494 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 495 // -1 because the last entry is the null entry. 496 NumberOfImportDirectory = DataEntry->Size / 497 sizeof(import_directory_table_entry) - 1; 498 499 // Find the section that contains the RVA. This is needed because the RVA is 500 // the import table's memory address which is different from its file offset. 501 uintptr_t IntPtr = 0; 502 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 503 return EC; 504 ImportDirectory = reinterpret_cast< 505 const import_directory_table_entry *>(IntPtr); 506 return object_error::success; 507 } 508 509 // Find the export table. 510 std::error_code COFFObjectFile::initExportTablePtr() { 511 // First, we get the RVA of the export table. If the file lacks a pointer to 512 // the export table, do nothing. 513 const data_directory *DataEntry; 514 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 515 return object_error::success; 516 517 // Do nothing if the pointer to export table is NULL. 518 if (DataEntry->RelativeVirtualAddress == 0) 519 return object_error::success; 520 521 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 522 uintptr_t IntPtr = 0; 523 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 524 return EC; 525 ExportDirectory = 526 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 527 return object_error::success; 528 } 529 530 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 531 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 532 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 533 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 534 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 535 ImportDirectory(nullptr), NumberOfImportDirectory(0), 536 ExportDirectory(nullptr) { 537 // Check that we at least have enough room for a header. 538 if (!checkSize(Data, EC, sizeof(coff_file_header))) 539 return; 540 541 // The current location in the file where we are looking at. 542 uint64_t CurPtr = 0; 543 544 // PE header is optional and is present only in executables. If it exists, 545 // it is placed right after COFF header. 546 bool HasPEHeader = false; 547 548 // Check if this is a PE/COFF file. 549 if (base()[0] == 0x4d && base()[1] == 0x5a) { 550 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 551 // PE signature to find 'normal' COFF header. 552 if (!checkSize(Data, EC, 0x3c + 8)) 553 return; 554 CurPtr = *reinterpret_cast<const ulittle16_t *>(base() + 0x3c); 555 // Check the PE magic bytes. ("PE\0\0") 556 if (std::memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 557 0) { 558 EC = object_error::parse_failed; 559 return; 560 } 561 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 562 HasPEHeader = true; 563 } 564 565 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 566 return; 567 568 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 569 // import libraries share a common prefix but bigobj is more restrictive. 570 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 571 COFFHeader->NumberOfSections == uint16_t(0xffff) && 572 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 573 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 574 return; 575 576 // Verify that we are dealing with bigobj. 577 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 578 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 579 sizeof(COFF::BigObjMagic)) == 0) { 580 COFFHeader = nullptr; 581 CurPtr += sizeof(coff_bigobj_file_header); 582 } else { 583 // It's not a bigobj. 584 COFFBigObjHeader = nullptr; 585 } 586 } 587 if (COFFHeader) { 588 // The prior checkSize call may have failed. This isn't a hard error 589 // because we were just trying to sniff out bigobj. 590 EC = object_error::success; 591 CurPtr += sizeof(coff_file_header); 592 593 if (COFFHeader->isImportLibrary()) 594 return; 595 } 596 597 if (HasPEHeader) { 598 const pe32_header *Header; 599 if ((EC = getObject(Header, Data, base() + CurPtr))) 600 return; 601 602 const uint8_t *DataDirAddr; 603 uint64_t DataDirSize; 604 if (Header->Magic == 0x10b) { 605 PE32Header = Header; 606 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 607 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 608 } else if (Header->Magic == 0x20b) { 609 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 610 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 611 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 612 } else { 613 // It's neither PE32 nor PE32+. 614 EC = object_error::parse_failed; 615 return; 616 } 617 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 618 return; 619 CurPtr += COFFHeader->SizeOfOptionalHeader; 620 } 621 622 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 623 getNumberOfSections() * sizeof(coff_section)))) 624 return; 625 626 // Initialize the pointer to the symbol table. 627 if (getPointerToSymbolTable() != 0) 628 if ((EC = initSymbolTablePtr())) 629 return; 630 631 // Initialize the pointer to the beginning of the import table. 632 if ((EC = initImportTablePtr())) 633 return; 634 635 // Initialize the pointer to the export table. 636 if ((EC = initExportTablePtr())) 637 return; 638 639 EC = object_error::success; 640 } 641 642 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 643 DataRefImpl Ret; 644 Ret.p = getSymbolTable(); 645 return basic_symbol_iterator(SymbolRef(Ret, this)); 646 } 647 648 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 649 // The symbol table ends where the string table begins. 650 DataRefImpl Ret; 651 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 652 return basic_symbol_iterator(SymbolRef(Ret, this)); 653 } 654 655 import_directory_iterator COFFObjectFile::import_directory_begin() const { 656 return import_directory_iterator( 657 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 658 } 659 660 import_directory_iterator COFFObjectFile::import_directory_end() const { 661 return import_directory_iterator( 662 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); 663 } 664 665 export_directory_iterator COFFObjectFile::export_directory_begin() const { 666 return export_directory_iterator( 667 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 668 } 669 670 export_directory_iterator COFFObjectFile::export_directory_end() const { 671 if (!ExportDirectory) 672 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 673 ExportDirectoryEntryRef Ref(ExportDirectory, 674 ExportDirectory->AddressTableEntries, this); 675 return export_directory_iterator(Ref); 676 } 677 678 section_iterator COFFObjectFile::section_begin() const { 679 DataRefImpl Ret; 680 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 681 return section_iterator(SectionRef(Ret, this)); 682 } 683 684 section_iterator COFFObjectFile::section_end() const { 685 DataRefImpl Ret; 686 int NumSections = 687 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 688 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 689 return section_iterator(SectionRef(Ret, this)); 690 } 691 692 uint8_t COFFObjectFile::getBytesInAddress() const { 693 return getArch() == Triple::x86_64 ? 8 : 4; 694 } 695 696 StringRef COFFObjectFile::getFileFormatName() const { 697 switch(getMachine()) { 698 case COFF::IMAGE_FILE_MACHINE_I386: 699 return "COFF-i386"; 700 case COFF::IMAGE_FILE_MACHINE_AMD64: 701 return "COFF-x86-64"; 702 case COFF::IMAGE_FILE_MACHINE_ARMNT: 703 return "COFF-ARM"; 704 default: 705 return "COFF-<unknown arch>"; 706 } 707 } 708 709 unsigned COFFObjectFile::getArch() const { 710 switch (getMachine()) { 711 case COFF::IMAGE_FILE_MACHINE_I386: 712 return Triple::x86; 713 case COFF::IMAGE_FILE_MACHINE_AMD64: 714 return Triple::x86_64; 715 case COFF::IMAGE_FILE_MACHINE_ARMNT: 716 return Triple::thumb; 717 default: 718 return Triple::UnknownArch; 719 } 720 } 721 722 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 723 Res = PE32Header; 724 return object_error::success; 725 } 726 727 std::error_code 728 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 729 Res = PE32PlusHeader; 730 return object_error::success; 731 } 732 733 std::error_code 734 COFFObjectFile::getDataDirectory(uint32_t Index, 735 const data_directory *&Res) const { 736 // Error if if there's no data directory or the index is out of range. 737 if (!DataDirectory) 738 return object_error::parse_failed; 739 assert(PE32Header || PE32PlusHeader); 740 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 741 : PE32PlusHeader->NumberOfRvaAndSize; 742 if (Index > NumEnt) 743 return object_error::parse_failed; 744 Res = &DataDirectory[Index]; 745 return object_error::success; 746 } 747 748 std::error_code COFFObjectFile::getSection(int32_t Index, 749 const coff_section *&Result) const { 750 // Check for special index values. 751 if (COFF::isReservedSectionNumber(Index)) 752 Result = nullptr; 753 else if (Index > 0 && static_cast<uint32_t>(Index) <= getNumberOfSections()) 754 // We already verified the section table data, so no need to check again. 755 Result = SectionTable + (Index - 1); 756 else 757 return object_error::parse_failed; 758 return object_error::success; 759 } 760 761 std::error_code COFFObjectFile::getString(uint32_t Offset, 762 StringRef &Result) const { 763 if (StringTableSize <= 4) 764 // Tried to get a string from an empty string table. 765 return object_error::parse_failed; 766 if (Offset >= StringTableSize) 767 return object_error::unexpected_eof; 768 Result = StringRef(StringTable + Offset); 769 return object_error::success; 770 } 771 772 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 773 StringRef &Res) const { 774 // Check for string table entry. First 4 bytes are 0. 775 if (Symbol.getStringTableOffset().Zeroes == 0) { 776 uint32_t Offset = Symbol.getStringTableOffset().Offset; 777 if (std::error_code EC = getString(Offset, Res)) 778 return EC; 779 return object_error::success; 780 } 781 782 if (Symbol.getShortName()[COFF::NameSize - 1] == 0) 783 // Null terminated, let ::strlen figure out the length. 784 Res = StringRef(Symbol.getShortName()); 785 else 786 // Not null terminated, use all 8 bytes. 787 Res = StringRef(Symbol.getShortName(), COFF::NameSize); 788 return object_error::success; 789 } 790 791 ArrayRef<uint8_t> 792 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 793 const uint8_t *Aux = nullptr; 794 795 size_t SymbolSize = getSymbolTableEntrySize(); 796 if (Symbol.getNumberOfAuxSymbols() > 0) { 797 // AUX data comes immediately after the symbol in COFF 798 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 799 # ifndef NDEBUG 800 // Verify that the Aux symbol points to a valid entry in the symbol table. 801 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 802 if (Offset < getPointerToSymbolTable() || 803 Offset >= 804 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 805 report_fatal_error("Aux Symbol data was outside of symbol table."); 806 807 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 808 "Aux Symbol data did not point to the beginning of a symbol"); 809 # endif 810 } 811 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 812 } 813 814 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 815 StringRef &Res) const { 816 StringRef Name; 817 if (Sec->Name[COFF::NameSize - 1] == 0) 818 // Null terminated, let ::strlen figure out the length. 819 Name = Sec->Name; 820 else 821 // Not null terminated, use all 8 bytes. 822 Name = StringRef(Sec->Name, COFF::NameSize); 823 824 // Check for string table entry. First byte is '/'. 825 if (Name[0] == '/') { 826 uint32_t Offset; 827 if (Name[1] == '/') { 828 if (decodeBase64StringEntry(Name.substr(2), Offset)) 829 return object_error::parse_failed; 830 } else { 831 if (Name.substr(1).getAsInteger(10, Offset)) 832 return object_error::parse_failed; 833 } 834 if (std::error_code EC = getString(Offset, Name)) 835 return EC; 836 } 837 838 Res = Name; 839 return object_error::success; 840 } 841 842 std::error_code 843 COFFObjectFile::getSectionContents(const coff_section *Sec, 844 ArrayRef<uint8_t> &Res) const { 845 // PointerToRawData and SizeOfRawData won't make sense for BSS sections, don't 846 // do anything interesting for them. 847 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && 848 "BSS sections don't have contents!"); 849 // The only thing that we need to verify is that the contents is contained 850 // within the file bounds. We don't need to make sure it doesn't cover other 851 // data, as there's nothing that says that is not allowed. 852 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 853 uintptr_t ConEnd = ConStart + Sec->SizeOfRawData; 854 if (ConEnd > uintptr_t(Data.getBufferEnd())) 855 return object_error::parse_failed; 856 Res = makeArrayRef(reinterpret_cast<const uint8_t*>(ConStart), 857 Sec->SizeOfRawData); 858 return object_error::success; 859 } 860 861 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 862 return reinterpret_cast<const coff_relocation*>(Rel.p); 863 } 864 865 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 866 Rel.p = reinterpret_cast<uintptr_t>( 867 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 868 } 869 870 std::error_code COFFObjectFile::getRelocationAddress(DataRefImpl Rel, 871 uint64_t &Res) const { 872 report_fatal_error("getRelocationAddress not implemented in COFFObjectFile"); 873 } 874 875 std::error_code COFFObjectFile::getRelocationOffset(DataRefImpl Rel, 876 uint64_t &Res) const { 877 Res = toRel(Rel)->VirtualAddress; 878 return object_error::success; 879 } 880 881 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 882 const coff_relocation *R = toRel(Rel); 883 DataRefImpl Ref; 884 if (SymbolTable16) 885 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 886 else if (SymbolTable32) 887 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 888 else 889 llvm_unreachable("no symbol table pointer!"); 890 return symbol_iterator(SymbolRef(Ref, this)); 891 } 892 893 std::error_code COFFObjectFile::getRelocationType(DataRefImpl Rel, 894 uint64_t &Res) const { 895 const coff_relocation* R = toRel(Rel); 896 Res = R->Type; 897 return object_error::success; 898 } 899 900 const coff_section * 901 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 902 return toSec(Section.getRawDataRefImpl()); 903 } 904 905 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 906 if (SymbolTable16) 907 return toSymb<coff_symbol16>(Ref); 908 if (SymbolTable32) 909 return toSymb<coff_symbol32>(Ref); 910 llvm_unreachable("no symbol table pointer!"); 911 } 912 913 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 914 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 915 } 916 917 const coff_relocation * 918 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 919 return toRel(Reloc.getRawDataRefImpl()); 920 } 921 922 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 923 case COFF::reloc_type: \ 924 Res = #reloc_type; \ 925 break; 926 927 std::error_code 928 COFFObjectFile::getRelocationTypeName(DataRefImpl Rel, 929 SmallVectorImpl<char> &Result) const { 930 const coff_relocation *Reloc = toRel(Rel); 931 StringRef Res; 932 switch (getMachine()) { 933 case COFF::IMAGE_FILE_MACHINE_AMD64: 934 switch (Reloc->Type) { 935 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 936 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 937 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 938 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 939 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 940 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 941 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 942 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 943 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 944 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 945 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 946 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 947 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 948 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 949 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 950 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 951 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 952 default: 953 Res = "Unknown"; 954 } 955 break; 956 case COFF::IMAGE_FILE_MACHINE_ARMNT: 957 switch (Reloc->Type) { 958 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 959 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 960 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 961 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 962 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 963 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 964 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 965 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 966 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 967 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 968 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 969 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 970 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 971 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 972 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 973 default: 974 Res = "Unknown"; 975 } 976 break; 977 case COFF::IMAGE_FILE_MACHINE_I386: 978 switch (Reloc->Type) { 979 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 980 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 981 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 982 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 983 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 984 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 985 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 986 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 987 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 988 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 989 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 990 default: 991 Res = "Unknown"; 992 } 993 break; 994 default: 995 Res = "Unknown"; 996 } 997 Result.append(Res.begin(), Res.end()); 998 return object_error::success; 999 } 1000 1001 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1002 1003 std::error_code 1004 COFFObjectFile::getRelocationValueString(DataRefImpl Rel, 1005 SmallVectorImpl<char> &Result) const { 1006 const coff_relocation *Reloc = toRel(Rel); 1007 DataRefImpl Sym; 1008 ErrorOr<COFFSymbolRef> Symb = getSymbol(Reloc->SymbolTableIndex); 1009 if (std::error_code EC = Symb.getError()) 1010 return EC; 1011 Sym.p = reinterpret_cast<uintptr_t>(Symb->getRawPtr()); 1012 StringRef SymName; 1013 if (std::error_code EC = getSymbolName(Sym, SymName)) 1014 return EC; 1015 Result.append(SymName.begin(), SymName.end()); 1016 return object_error::success; 1017 } 1018 1019 bool COFFObjectFile::isRelocatableObject() const { 1020 return !DataDirectory; 1021 } 1022 1023 bool ImportDirectoryEntryRef:: 1024 operator==(const ImportDirectoryEntryRef &Other) const { 1025 return ImportTable == Other.ImportTable && Index == Other.Index; 1026 } 1027 1028 void ImportDirectoryEntryRef::moveNext() { 1029 ++Index; 1030 } 1031 1032 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1033 const import_directory_table_entry *&Result) const { 1034 Result = ImportTable + Index; 1035 return object_error::success; 1036 } 1037 1038 static imported_symbol_iterator 1039 makeImportedSymbolIterator(const COFFObjectFile *OwningObject, 1040 uintptr_t Ptr, int Index) { 1041 if (OwningObject->getBytesInAddress() == 4) { 1042 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1043 return imported_symbol_iterator(ImportedSymbolRef(P, Index, OwningObject)); 1044 } 1045 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1046 return imported_symbol_iterator(ImportedSymbolRef(P, Index, OwningObject)); 1047 } 1048 1049 imported_symbol_iterator 1050 ImportDirectoryEntryRef::imported_symbol_begin() const { 1051 uintptr_t IntPtr = 0; 1052 OwningObject->getRvaPtr(ImportTable[Index].ImportLookupTableRVA, IntPtr); 1053 return makeImportedSymbolIterator(OwningObject, IntPtr, 0); 1054 } 1055 1056 imported_symbol_iterator 1057 ImportDirectoryEntryRef::imported_symbol_end() const { 1058 uintptr_t IntPtr = 0; 1059 OwningObject->getRvaPtr(ImportTable[Index].ImportLookupTableRVA, IntPtr); 1060 // Forward the pointer to the last entry which is null. 1061 int Index = 0; 1062 if (OwningObject->getBytesInAddress() == 4) { 1063 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1064 while (*Entry++) 1065 ++Index; 1066 } else { 1067 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1068 while (*Entry++) 1069 ++Index; 1070 } 1071 return makeImportedSymbolIterator(OwningObject, IntPtr, Index); 1072 } 1073 1074 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1075 uintptr_t IntPtr = 0; 1076 if (std::error_code EC = 1077 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1078 return EC; 1079 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1080 return object_error::success; 1081 } 1082 1083 std::error_code 1084 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1085 Result = ImportTable[Index].ImportLookupTableRVA; 1086 return object_error::success; 1087 } 1088 1089 std::error_code 1090 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1091 Result = ImportTable[Index].ImportAddressTableRVA; 1092 return object_error::success; 1093 } 1094 1095 std::error_code ImportDirectoryEntryRef::getImportLookupEntry( 1096 const import_lookup_table_entry32 *&Result) const { 1097 uintptr_t IntPtr = 0; 1098 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; 1099 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1100 return EC; 1101 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr); 1102 return object_error::success; 1103 } 1104 1105 bool ExportDirectoryEntryRef:: 1106 operator==(const ExportDirectoryEntryRef &Other) const { 1107 return ExportTable == Other.ExportTable && Index == Other.Index; 1108 } 1109 1110 void ExportDirectoryEntryRef::moveNext() { 1111 ++Index; 1112 } 1113 1114 // Returns the name of the current export symbol. If the symbol is exported only 1115 // by ordinal, the empty string is set as a result. 1116 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1117 uintptr_t IntPtr = 0; 1118 if (std::error_code EC = 1119 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1120 return EC; 1121 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1122 return object_error::success; 1123 } 1124 1125 // Returns the starting ordinal number. 1126 std::error_code 1127 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1128 Result = ExportTable->OrdinalBase; 1129 return object_error::success; 1130 } 1131 1132 // Returns the export ordinal of the current export symbol. 1133 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1134 Result = ExportTable->OrdinalBase + Index; 1135 return object_error::success; 1136 } 1137 1138 // Returns the address of the current export symbol. 1139 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1140 uintptr_t IntPtr = 0; 1141 if (std::error_code EC = 1142 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1143 return EC; 1144 const export_address_table_entry *entry = 1145 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1146 Result = entry[Index].ExportRVA; 1147 return object_error::success; 1148 } 1149 1150 // Returns the name of the current export symbol. If the symbol is exported only 1151 // by ordinal, the empty string is set as a result. 1152 std::error_code 1153 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1154 uintptr_t IntPtr = 0; 1155 if (std::error_code EC = 1156 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1157 return EC; 1158 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1159 1160 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1161 int Offset = 0; 1162 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1163 I < E; ++I, ++Offset) { 1164 if (*I != Index) 1165 continue; 1166 if (std::error_code EC = 1167 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1168 return EC; 1169 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1170 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1171 return EC; 1172 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1173 return object_error::success; 1174 } 1175 Result = ""; 1176 return object_error::success; 1177 } 1178 1179 bool ImportedSymbolRef:: 1180 operator==(const ImportedSymbolRef &Other) const { 1181 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1182 && Index == Other.Index; 1183 } 1184 1185 void ImportedSymbolRef::moveNext() { 1186 ++Index; 1187 } 1188 1189 std::error_code 1190 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1191 uint32_t RVA; 1192 if (Entry32) { 1193 // If a symbol is imported only by ordinal, it has no name. 1194 if (Entry32[Index].isOrdinal()) 1195 return object_error::success; 1196 RVA = Entry32[Index].getHintNameRVA(); 1197 } else { 1198 if (Entry64[Index].isOrdinal()) 1199 return object_error::success; 1200 RVA = Entry64[Index].getHintNameRVA(); 1201 } 1202 uintptr_t IntPtr = 0; 1203 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1204 return EC; 1205 // +2 because the first two bytes is hint. 1206 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1207 return object_error::success; 1208 } 1209 1210 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1211 uint32_t RVA; 1212 if (Entry32) { 1213 if (Entry32[Index].isOrdinal()) { 1214 Result = Entry32[Index].getOrdinal(); 1215 return object_error::success; 1216 } 1217 RVA = Entry32[Index].getHintNameRVA(); 1218 } else { 1219 if (Entry64[Index].isOrdinal()) { 1220 Result = Entry64[Index].getOrdinal(); 1221 return object_error::success; 1222 } 1223 RVA = Entry64[Index].getHintNameRVA(); 1224 } 1225 uintptr_t IntPtr = 0; 1226 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1227 return EC; 1228 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1229 return object_error::success; 1230 } 1231 1232 ErrorOr<std::unique_ptr<COFFObjectFile>> 1233 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1234 std::error_code EC; 1235 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1236 if (EC) 1237 return EC; 1238 return std::move(Ret); 1239 } 1240