1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/StringSwitch.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/ADT/iterator_range.h" 19 #include "llvm/Support/COFF.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <cctype> 23 #include <limits> 24 25 using namespace llvm; 26 using namespace object; 27 28 using support::ulittle16_t; 29 using support::ulittle32_t; 30 using support::ulittle64_t; 31 using support::little16_t; 32 33 // Returns false if size is greater than the buffer size. And sets ec. 34 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 35 if (M.getBufferSize() < Size) { 36 EC = object_error::unexpected_eof; 37 return false; 38 } 39 return true; 40 } 41 42 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 43 const uint64_t Size) { 44 if (Addr + Size < Addr || Addr + Size < Size || 45 Addr + Size > uintptr_t(M.getBufferEnd()) || 46 Addr < uintptr_t(M.getBufferStart())) { 47 return object_error::unexpected_eof; 48 } 49 return std::error_code(); 50 } 51 52 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 53 // Returns unexpected_eof if error. 54 template <typename T> 55 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 56 const void *Ptr, 57 const uint64_t Size = sizeof(T)) { 58 uintptr_t Addr = uintptr_t(Ptr); 59 if (std::error_code EC = checkOffset(M, Addr, Size)) 60 return EC; 61 Obj = reinterpret_cast<const T *>(Addr); 62 return std::error_code(); 63 } 64 65 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 66 // prefixed slashes. 67 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 68 assert(Str.size() <= 6 && "String too long, possible overflow."); 69 if (Str.size() > 6) 70 return true; 71 72 uint64_t Value = 0; 73 while (!Str.empty()) { 74 unsigned CharVal; 75 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 76 CharVal = Str[0] - 'A'; 77 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 78 CharVal = Str[0] - 'a' + 26; 79 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 80 CharVal = Str[0] - '0' + 52; 81 else if (Str[0] == '+') // 62 82 CharVal = 62; 83 else if (Str[0] == '/') // 63 84 CharVal = 63; 85 else 86 return true; 87 88 Value = (Value * 64) + CharVal; 89 Str = Str.substr(1); 90 } 91 92 if (Value > std::numeric_limits<uint32_t>::max()) 93 return true; 94 95 Result = static_cast<uint32_t>(Value); 96 return false; 97 } 98 99 template <typename coff_symbol_type> 100 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 101 const coff_symbol_type *Addr = 102 reinterpret_cast<const coff_symbol_type *>(Ref.p); 103 104 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 105 #ifndef NDEBUG 106 // Verify that the symbol points to a valid entry in the symbol table. 107 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 108 109 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 110 "Symbol did not point to the beginning of a symbol"); 111 #endif 112 113 return Addr; 114 } 115 116 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 117 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 118 119 # ifndef NDEBUG 120 // Verify that the section points to a valid entry in the section table. 121 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 122 report_fatal_error("Section was outside of section table."); 123 124 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 125 assert(Offset % sizeof(coff_section) == 0 && 126 "Section did not point to the beginning of a section"); 127 # endif 128 129 return Addr; 130 } 131 132 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 133 auto End = reinterpret_cast<uintptr_t>(StringTable); 134 if (SymbolTable16) { 135 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 136 Symb += 1 + Symb->NumberOfAuxSymbols; 137 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 138 } else if (SymbolTable32) { 139 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 140 Symb += 1 + Symb->NumberOfAuxSymbols; 141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 142 } else { 143 llvm_unreachable("no symbol table pointer!"); 144 } 145 } 146 147 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 148 COFFSymbolRef Symb = getCOFFSymbol(Ref); 149 StringRef Result; 150 std::error_code EC = getSymbolName(Symb, Result); 151 if (EC) 152 return errorCodeToError(EC); 153 return Result; 154 } 155 156 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 157 return getCOFFSymbol(Ref).getValue(); 158 } 159 160 ErrorOr<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 161 uint64_t Result = getSymbolValue(Ref); 162 COFFSymbolRef Symb = getCOFFSymbol(Ref); 163 int32_t SectionNumber = Symb.getSectionNumber(); 164 165 if (Symb.isAnyUndefined() || Symb.isCommon() || 166 COFF::isReservedSectionNumber(SectionNumber)) 167 return Result; 168 169 const coff_section *Section = nullptr; 170 if (std::error_code EC = getSection(SectionNumber, Section)) 171 return EC; 172 Result += Section->VirtualAddress; 173 174 // The section VirtualAddress does not include ImageBase, and we want to 175 // return virtual addresses. 176 Result += getImageBase(); 177 178 return Result; 179 } 180 181 ErrorOr<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 182 COFFSymbolRef Symb = getCOFFSymbol(Ref); 183 int32_t SectionNumber = Symb.getSectionNumber(); 184 185 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 186 return SymbolRef::ST_Function; 187 if (Symb.isAnyUndefined()) 188 return SymbolRef::ST_Unknown; 189 if (Symb.isCommon()) 190 return SymbolRef::ST_Data; 191 if (Symb.isFileRecord()) 192 return SymbolRef::ST_File; 193 194 // TODO: perhaps we need a new symbol type ST_Section. 195 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 196 return SymbolRef::ST_Debug; 197 198 if (!COFF::isReservedSectionNumber(SectionNumber)) 199 return SymbolRef::ST_Data; 200 201 return SymbolRef::ST_Other; 202 } 203 204 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 205 COFFSymbolRef Symb = getCOFFSymbol(Ref); 206 uint32_t Result = SymbolRef::SF_None; 207 208 if (Symb.isExternal() || Symb.isWeakExternal()) 209 Result |= SymbolRef::SF_Global; 210 211 if (Symb.isWeakExternal()) 212 Result |= SymbolRef::SF_Weak; 213 214 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 215 Result |= SymbolRef::SF_Absolute; 216 217 if (Symb.isFileRecord()) 218 Result |= SymbolRef::SF_FormatSpecific; 219 220 if (Symb.isSectionDefinition()) 221 Result |= SymbolRef::SF_FormatSpecific; 222 223 if (Symb.isCommon()) 224 Result |= SymbolRef::SF_Common; 225 226 if (Symb.isAnyUndefined()) 227 Result |= SymbolRef::SF_Undefined; 228 229 return Result; 230 } 231 232 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 233 COFFSymbolRef Symb = getCOFFSymbol(Ref); 234 return Symb.getValue(); 235 } 236 237 ErrorOr<section_iterator> 238 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 239 COFFSymbolRef Symb = getCOFFSymbol(Ref); 240 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 241 return section_end(); 242 const coff_section *Sec = nullptr; 243 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 244 return EC; 245 DataRefImpl Ret; 246 Ret.p = reinterpret_cast<uintptr_t>(Sec); 247 return section_iterator(SectionRef(Ret, this)); 248 } 249 250 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 251 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 252 return Symb.getSectionNumber(); 253 } 254 255 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 256 const coff_section *Sec = toSec(Ref); 257 Sec += 1; 258 Ref.p = reinterpret_cast<uintptr_t>(Sec); 259 } 260 261 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 262 StringRef &Result) const { 263 const coff_section *Sec = toSec(Ref); 264 return getSectionName(Sec, Result); 265 } 266 267 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 268 const coff_section *Sec = toSec(Ref); 269 uint64_t Result = Sec->VirtualAddress; 270 271 // The section VirtualAddress does not include ImageBase, and we want to 272 // return virtual addresses. 273 Result += getImageBase(); 274 return Result; 275 } 276 277 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 278 return getSectionSize(toSec(Ref)); 279 } 280 281 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 282 StringRef &Result) const { 283 const coff_section *Sec = toSec(Ref); 284 ArrayRef<uint8_t> Res; 285 std::error_code EC = getSectionContents(Sec, Res); 286 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 287 return EC; 288 } 289 290 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 291 const coff_section *Sec = toSec(Ref); 292 return Sec->getAlignment(); 293 } 294 295 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 296 const coff_section *Sec = toSec(Ref); 297 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 298 } 299 300 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 301 const coff_section *Sec = toSec(Ref); 302 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 303 } 304 305 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 306 const coff_section *Sec = toSec(Ref); 307 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 308 COFF::IMAGE_SCN_MEM_READ | 309 COFF::IMAGE_SCN_MEM_WRITE; 310 return (Sec->Characteristics & BssFlags) == BssFlags; 311 } 312 313 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 314 uintptr_t Offset = 315 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 316 assert((Offset % sizeof(coff_section)) == 0); 317 return (Offset / sizeof(coff_section)) + 1; 318 } 319 320 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 321 const coff_section *Sec = toSec(Ref); 322 // In COFF, a virtual section won't have any in-file 323 // content, so the file pointer to the content will be zero. 324 return Sec->PointerToRawData == 0; 325 } 326 327 static uint32_t getNumberOfRelocations(const coff_section *Sec, 328 MemoryBufferRef M, const uint8_t *base) { 329 // The field for the number of relocations in COFF section table is only 330 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 331 // NumberOfRelocations field, and the actual relocation count is stored in the 332 // VirtualAddress field in the first relocation entry. 333 if (Sec->hasExtendedRelocations()) { 334 const coff_relocation *FirstReloc; 335 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 336 base + Sec->PointerToRelocations))) 337 return 0; 338 // -1 to exclude this first relocation entry. 339 return FirstReloc->VirtualAddress - 1; 340 } 341 return Sec->NumberOfRelocations; 342 } 343 344 static const coff_relocation * 345 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 346 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 347 if (!NumRelocs) 348 return nullptr; 349 auto begin = reinterpret_cast<const coff_relocation *>( 350 Base + Sec->PointerToRelocations); 351 if (Sec->hasExtendedRelocations()) { 352 // Skip the first relocation entry repurposed to store the number of 353 // relocations. 354 begin++; 355 } 356 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 357 return nullptr; 358 return begin; 359 } 360 361 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 362 const coff_section *Sec = toSec(Ref); 363 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 364 if (begin && Sec->VirtualAddress != 0) 365 report_fatal_error("Sections with relocations should have an address of 0"); 366 DataRefImpl Ret; 367 Ret.p = reinterpret_cast<uintptr_t>(begin); 368 return relocation_iterator(RelocationRef(Ret, this)); 369 } 370 371 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 372 const coff_section *Sec = toSec(Ref); 373 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 374 if (I) 375 I += getNumberOfRelocations(Sec, Data, base()); 376 DataRefImpl Ret; 377 Ret.p = reinterpret_cast<uintptr_t>(I); 378 return relocation_iterator(RelocationRef(Ret, this)); 379 } 380 381 // Initialize the pointer to the symbol table. 382 std::error_code COFFObjectFile::initSymbolTablePtr() { 383 if (COFFHeader) 384 if (std::error_code EC = getObject( 385 SymbolTable16, Data, base() + getPointerToSymbolTable(), 386 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 387 return EC; 388 389 if (COFFBigObjHeader) 390 if (std::error_code EC = getObject( 391 SymbolTable32, Data, base() + getPointerToSymbolTable(), 392 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 393 return EC; 394 395 // Find string table. The first four byte of the string table contains the 396 // total size of the string table, including the size field itself. If the 397 // string table is empty, the value of the first four byte would be 4. 398 uint32_t StringTableOffset = getPointerToSymbolTable() + 399 getNumberOfSymbols() * getSymbolTableEntrySize(); 400 const uint8_t *StringTableAddr = base() + StringTableOffset; 401 const ulittle32_t *StringTableSizePtr; 402 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 403 return EC; 404 StringTableSize = *StringTableSizePtr; 405 if (std::error_code EC = 406 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 407 return EC; 408 409 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 410 // tools like cvtres write a size of 0 for an empty table instead of 4. 411 if (StringTableSize < 4) 412 StringTableSize = 4; 413 414 // Check that the string table is null terminated if has any in it. 415 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 416 return object_error::parse_failed; 417 return std::error_code(); 418 } 419 420 uint64_t COFFObjectFile::getImageBase() const { 421 if (PE32Header) 422 return PE32Header->ImageBase; 423 else if (PE32PlusHeader) 424 return PE32PlusHeader->ImageBase; 425 // This actually comes up in practice. 426 return 0; 427 } 428 429 // Returns the file offset for the given VA. 430 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 431 uint64_t ImageBase = getImageBase(); 432 uint64_t Rva = Addr - ImageBase; 433 assert(Rva <= UINT32_MAX); 434 return getRvaPtr((uint32_t)Rva, Res); 435 } 436 437 // Returns the file offset for the given RVA. 438 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 439 for (const SectionRef &S : sections()) { 440 const coff_section *Section = getCOFFSection(S); 441 uint32_t SectionStart = Section->VirtualAddress; 442 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 443 if (SectionStart <= Addr && Addr < SectionEnd) { 444 uint32_t Offset = Addr - SectionStart; 445 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 446 return std::error_code(); 447 } 448 } 449 return object_error::parse_failed; 450 } 451 452 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 453 // table entry. 454 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 455 StringRef &Name) const { 456 uintptr_t IntPtr = 0; 457 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 458 return EC; 459 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 460 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 461 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 462 return std::error_code(); 463 } 464 465 // Find the import table. 466 std::error_code COFFObjectFile::initImportTablePtr() { 467 // First, we get the RVA of the import table. If the file lacks a pointer to 468 // the import table, do nothing. 469 const data_directory *DataEntry; 470 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 471 return std::error_code(); 472 473 // Do nothing if the pointer to import table is NULL. 474 if (DataEntry->RelativeVirtualAddress == 0) 475 return std::error_code(); 476 477 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 478 // -1 because the last entry is the null entry. 479 NumberOfImportDirectory = DataEntry->Size / 480 sizeof(import_directory_table_entry) - 1; 481 482 // Find the section that contains the RVA. This is needed because the RVA is 483 // the import table's memory address which is different from its file offset. 484 uintptr_t IntPtr = 0; 485 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 486 return EC; 487 ImportDirectory = reinterpret_cast< 488 const import_directory_table_entry *>(IntPtr); 489 return std::error_code(); 490 } 491 492 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 493 std::error_code COFFObjectFile::initDelayImportTablePtr() { 494 const data_directory *DataEntry; 495 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 496 return std::error_code(); 497 if (DataEntry->RelativeVirtualAddress == 0) 498 return std::error_code(); 499 500 uint32_t RVA = DataEntry->RelativeVirtualAddress; 501 NumberOfDelayImportDirectory = DataEntry->Size / 502 sizeof(delay_import_directory_table_entry) - 1; 503 504 uintptr_t IntPtr = 0; 505 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 506 return EC; 507 DelayImportDirectory = reinterpret_cast< 508 const delay_import_directory_table_entry *>(IntPtr); 509 return std::error_code(); 510 } 511 512 // Find the export table. 513 std::error_code COFFObjectFile::initExportTablePtr() { 514 // First, we get the RVA of the export table. If the file lacks a pointer to 515 // the export table, do nothing. 516 const data_directory *DataEntry; 517 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 518 return std::error_code(); 519 520 // Do nothing if the pointer to export table is NULL. 521 if (DataEntry->RelativeVirtualAddress == 0) 522 return std::error_code(); 523 524 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 525 uintptr_t IntPtr = 0; 526 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 527 return EC; 528 ExportDirectory = 529 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 530 return std::error_code(); 531 } 532 533 std::error_code COFFObjectFile::initBaseRelocPtr() { 534 const data_directory *DataEntry; 535 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 536 return std::error_code(); 537 if (DataEntry->RelativeVirtualAddress == 0) 538 return std::error_code(); 539 540 uintptr_t IntPtr = 0; 541 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 542 return EC; 543 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 544 IntPtr); 545 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 546 IntPtr + DataEntry->Size); 547 return std::error_code(); 548 } 549 550 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 551 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 552 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 553 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 554 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 555 ImportDirectory(nullptr), NumberOfImportDirectory(0), 556 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 557 ExportDirectory(nullptr), BaseRelocHeader(nullptr), 558 BaseRelocEnd(nullptr) { 559 // Check that we at least have enough room for a header. 560 if (!checkSize(Data, EC, sizeof(coff_file_header))) 561 return; 562 563 // The current location in the file where we are looking at. 564 uint64_t CurPtr = 0; 565 566 // PE header is optional and is present only in executables. If it exists, 567 // it is placed right after COFF header. 568 bool HasPEHeader = false; 569 570 // Check if this is a PE/COFF file. 571 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 572 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 573 // PE signature to find 'normal' COFF header. 574 const auto *DH = reinterpret_cast<const dos_header *>(base()); 575 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 576 CurPtr = DH->AddressOfNewExeHeader; 577 // Check the PE magic bytes. ("PE\0\0") 578 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 579 EC = object_error::parse_failed; 580 return; 581 } 582 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 583 HasPEHeader = true; 584 } 585 } 586 587 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 588 return; 589 590 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 591 // import libraries share a common prefix but bigobj is more restrictive. 592 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 593 COFFHeader->NumberOfSections == uint16_t(0xffff) && 594 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 595 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 596 return; 597 598 // Verify that we are dealing with bigobj. 599 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 600 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 601 sizeof(COFF::BigObjMagic)) == 0) { 602 COFFHeader = nullptr; 603 CurPtr += sizeof(coff_bigobj_file_header); 604 } else { 605 // It's not a bigobj. 606 COFFBigObjHeader = nullptr; 607 } 608 } 609 if (COFFHeader) { 610 // The prior checkSize call may have failed. This isn't a hard error 611 // because we were just trying to sniff out bigobj. 612 EC = std::error_code(); 613 CurPtr += sizeof(coff_file_header); 614 615 if (COFFHeader->isImportLibrary()) 616 return; 617 } 618 619 if (HasPEHeader) { 620 const pe32_header *Header; 621 if ((EC = getObject(Header, Data, base() + CurPtr))) 622 return; 623 624 const uint8_t *DataDirAddr; 625 uint64_t DataDirSize; 626 if (Header->Magic == COFF::PE32Header::PE32) { 627 PE32Header = Header; 628 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 629 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 630 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 631 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 632 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 633 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 634 } else { 635 // It's neither PE32 nor PE32+. 636 EC = object_error::parse_failed; 637 return; 638 } 639 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 640 return; 641 CurPtr += COFFHeader->SizeOfOptionalHeader; 642 } 643 644 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 645 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 646 return; 647 648 // Initialize the pointer to the symbol table. 649 if (getPointerToSymbolTable() != 0) { 650 if ((EC = initSymbolTablePtr())) 651 return; 652 } else { 653 // We had better not have any symbols if we don't have a symbol table. 654 if (getNumberOfSymbols() != 0) { 655 EC = object_error::parse_failed; 656 return; 657 } 658 } 659 660 // Initialize the pointer to the beginning of the import table. 661 if ((EC = initImportTablePtr())) 662 return; 663 if ((EC = initDelayImportTablePtr())) 664 return; 665 666 // Initialize the pointer to the export table. 667 if ((EC = initExportTablePtr())) 668 return; 669 670 // Initialize the pointer to the base relocation table. 671 if ((EC = initBaseRelocPtr())) 672 return; 673 674 EC = std::error_code(); 675 } 676 677 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 678 DataRefImpl Ret; 679 Ret.p = getSymbolTable(); 680 return basic_symbol_iterator(SymbolRef(Ret, this)); 681 } 682 683 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 684 // The symbol table ends where the string table begins. 685 DataRefImpl Ret; 686 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 687 return basic_symbol_iterator(SymbolRef(Ret, this)); 688 } 689 690 import_directory_iterator COFFObjectFile::import_directory_begin() const { 691 return import_directory_iterator( 692 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 693 } 694 695 import_directory_iterator COFFObjectFile::import_directory_end() const { 696 return import_directory_iterator( 697 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); 698 } 699 700 delay_import_directory_iterator 701 COFFObjectFile::delay_import_directory_begin() const { 702 return delay_import_directory_iterator( 703 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 704 } 705 706 delay_import_directory_iterator 707 COFFObjectFile::delay_import_directory_end() const { 708 return delay_import_directory_iterator( 709 DelayImportDirectoryEntryRef( 710 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 711 } 712 713 export_directory_iterator COFFObjectFile::export_directory_begin() const { 714 return export_directory_iterator( 715 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 716 } 717 718 export_directory_iterator COFFObjectFile::export_directory_end() const { 719 if (!ExportDirectory) 720 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 721 ExportDirectoryEntryRef Ref(ExportDirectory, 722 ExportDirectory->AddressTableEntries, this); 723 return export_directory_iterator(Ref); 724 } 725 726 section_iterator COFFObjectFile::section_begin() const { 727 DataRefImpl Ret; 728 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 729 return section_iterator(SectionRef(Ret, this)); 730 } 731 732 section_iterator COFFObjectFile::section_end() const { 733 DataRefImpl Ret; 734 int NumSections = 735 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 736 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 737 return section_iterator(SectionRef(Ret, this)); 738 } 739 740 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 741 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 742 } 743 744 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 745 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 746 } 747 748 uint8_t COFFObjectFile::getBytesInAddress() const { 749 return getArch() == Triple::x86_64 ? 8 : 4; 750 } 751 752 StringRef COFFObjectFile::getFileFormatName() const { 753 switch(getMachine()) { 754 case COFF::IMAGE_FILE_MACHINE_I386: 755 return "COFF-i386"; 756 case COFF::IMAGE_FILE_MACHINE_AMD64: 757 return "COFF-x86-64"; 758 case COFF::IMAGE_FILE_MACHINE_ARMNT: 759 return "COFF-ARM"; 760 case COFF::IMAGE_FILE_MACHINE_ARM64: 761 return "COFF-ARM64"; 762 default: 763 return "COFF-<unknown arch>"; 764 } 765 } 766 767 unsigned COFFObjectFile::getArch() const { 768 switch (getMachine()) { 769 case COFF::IMAGE_FILE_MACHINE_I386: 770 return Triple::x86; 771 case COFF::IMAGE_FILE_MACHINE_AMD64: 772 return Triple::x86_64; 773 case COFF::IMAGE_FILE_MACHINE_ARMNT: 774 return Triple::thumb; 775 case COFF::IMAGE_FILE_MACHINE_ARM64: 776 return Triple::aarch64; 777 default: 778 return Triple::UnknownArch; 779 } 780 } 781 782 iterator_range<import_directory_iterator> 783 COFFObjectFile::import_directories() const { 784 return make_range(import_directory_begin(), import_directory_end()); 785 } 786 787 iterator_range<delay_import_directory_iterator> 788 COFFObjectFile::delay_import_directories() const { 789 return make_range(delay_import_directory_begin(), 790 delay_import_directory_end()); 791 } 792 793 iterator_range<export_directory_iterator> 794 COFFObjectFile::export_directories() const { 795 return make_range(export_directory_begin(), export_directory_end()); 796 } 797 798 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 799 return make_range(base_reloc_begin(), base_reloc_end()); 800 } 801 802 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 803 Res = PE32Header; 804 return std::error_code(); 805 } 806 807 std::error_code 808 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 809 Res = PE32PlusHeader; 810 return std::error_code(); 811 } 812 813 std::error_code 814 COFFObjectFile::getDataDirectory(uint32_t Index, 815 const data_directory *&Res) const { 816 // Error if if there's no data directory or the index is out of range. 817 if (!DataDirectory) { 818 Res = nullptr; 819 return object_error::parse_failed; 820 } 821 assert(PE32Header || PE32PlusHeader); 822 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 823 : PE32PlusHeader->NumberOfRvaAndSize; 824 if (Index >= NumEnt) { 825 Res = nullptr; 826 return object_error::parse_failed; 827 } 828 Res = &DataDirectory[Index]; 829 return std::error_code(); 830 } 831 832 std::error_code COFFObjectFile::getSection(int32_t Index, 833 const coff_section *&Result) const { 834 Result = nullptr; 835 if (COFF::isReservedSectionNumber(Index)) 836 return std::error_code(); 837 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 838 // We already verified the section table data, so no need to check again. 839 Result = SectionTable + (Index - 1); 840 return std::error_code(); 841 } 842 return object_error::parse_failed; 843 } 844 845 std::error_code COFFObjectFile::getString(uint32_t Offset, 846 StringRef &Result) const { 847 if (StringTableSize <= 4) 848 // Tried to get a string from an empty string table. 849 return object_error::parse_failed; 850 if (Offset >= StringTableSize) 851 return object_error::unexpected_eof; 852 Result = StringRef(StringTable + Offset); 853 return std::error_code(); 854 } 855 856 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 857 StringRef &Res) const { 858 return getSymbolName(Symbol.getGeneric(), Res); 859 } 860 861 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol, 862 StringRef &Res) const { 863 // Check for string table entry. First 4 bytes are 0. 864 if (Symbol->Name.Offset.Zeroes == 0) { 865 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res)) 866 return EC; 867 return std::error_code(); 868 } 869 870 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 871 // Null terminated, let ::strlen figure out the length. 872 Res = StringRef(Symbol->Name.ShortName); 873 else 874 // Not null terminated, use all 8 bytes. 875 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize); 876 return std::error_code(); 877 } 878 879 ArrayRef<uint8_t> 880 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 881 const uint8_t *Aux = nullptr; 882 883 size_t SymbolSize = getSymbolTableEntrySize(); 884 if (Symbol.getNumberOfAuxSymbols() > 0) { 885 // AUX data comes immediately after the symbol in COFF 886 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 887 # ifndef NDEBUG 888 // Verify that the Aux symbol points to a valid entry in the symbol table. 889 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 890 if (Offset < getPointerToSymbolTable() || 891 Offset >= 892 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 893 report_fatal_error("Aux Symbol data was outside of symbol table."); 894 895 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 896 "Aux Symbol data did not point to the beginning of a symbol"); 897 # endif 898 } 899 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 900 } 901 902 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 903 StringRef &Res) const { 904 StringRef Name; 905 if (Sec->Name[COFF::NameSize - 1] == 0) 906 // Null terminated, let ::strlen figure out the length. 907 Name = Sec->Name; 908 else 909 // Not null terminated, use all 8 bytes. 910 Name = StringRef(Sec->Name, COFF::NameSize); 911 912 // Check for string table entry. First byte is '/'. 913 if (Name.startswith("/")) { 914 uint32_t Offset; 915 if (Name.startswith("//")) { 916 if (decodeBase64StringEntry(Name.substr(2), Offset)) 917 return object_error::parse_failed; 918 } else { 919 if (Name.substr(1).getAsInteger(10, Offset)) 920 return object_error::parse_failed; 921 } 922 if (std::error_code EC = getString(Offset, Name)) 923 return EC; 924 } 925 926 Res = Name; 927 return std::error_code(); 928 } 929 930 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 931 // SizeOfRawData and VirtualSize change what they represent depending on 932 // whether or not we have an executable image. 933 // 934 // For object files, SizeOfRawData contains the size of section's data; 935 // VirtualSize should be zero but isn't due to buggy COFF writers. 936 // 937 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 938 // actual section size is in VirtualSize. It is possible for VirtualSize to 939 // be greater than SizeOfRawData; the contents past that point should be 940 // considered to be zero. 941 if (getDOSHeader()) 942 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 943 return Sec->SizeOfRawData; 944 } 945 946 std::error_code 947 COFFObjectFile::getSectionContents(const coff_section *Sec, 948 ArrayRef<uint8_t> &Res) const { 949 // PointerToRawData and SizeOfRawData won't make sense for BSS sections, 950 // don't do anything interesting for them. 951 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && 952 "BSS sections don't have contents!"); 953 // The only thing that we need to verify is that the contents is contained 954 // within the file bounds. We don't need to make sure it doesn't cover other 955 // data, as there's nothing that says that is not allowed. 956 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 957 uint32_t SectionSize = getSectionSize(Sec); 958 if (checkOffset(Data, ConStart, SectionSize)) 959 return object_error::parse_failed; 960 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 961 return std::error_code(); 962 } 963 964 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 965 return reinterpret_cast<const coff_relocation*>(Rel.p); 966 } 967 968 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 969 Rel.p = reinterpret_cast<uintptr_t>( 970 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 971 } 972 973 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 974 const coff_relocation *R = toRel(Rel); 975 return R->VirtualAddress; 976 } 977 978 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 979 const coff_relocation *R = toRel(Rel); 980 DataRefImpl Ref; 981 if (R->SymbolTableIndex >= getNumberOfSymbols()) 982 return symbol_end(); 983 if (SymbolTable16) 984 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 985 else if (SymbolTable32) 986 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 987 else 988 llvm_unreachable("no symbol table pointer!"); 989 return symbol_iterator(SymbolRef(Ref, this)); 990 } 991 992 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 993 const coff_relocation* R = toRel(Rel); 994 return R->Type; 995 } 996 997 const coff_section * 998 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 999 return toSec(Section.getRawDataRefImpl()); 1000 } 1001 1002 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1003 if (SymbolTable16) 1004 return toSymb<coff_symbol16>(Ref); 1005 if (SymbolTable32) 1006 return toSymb<coff_symbol32>(Ref); 1007 llvm_unreachable("no symbol table pointer!"); 1008 } 1009 1010 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1011 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1012 } 1013 1014 const coff_relocation * 1015 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1016 return toRel(Reloc.getRawDataRefImpl()); 1017 } 1018 1019 iterator_range<const coff_relocation *> 1020 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1021 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 1022 const coff_relocation *E = I; 1023 if (I) 1024 E += getNumberOfRelocations(Sec, Data, base()); 1025 return make_range(I, E); 1026 } 1027 1028 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1029 case COFF::reloc_type: \ 1030 Res = #reloc_type; \ 1031 break; 1032 1033 void COFFObjectFile::getRelocationTypeName( 1034 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1035 const coff_relocation *Reloc = toRel(Rel); 1036 StringRef Res; 1037 switch (getMachine()) { 1038 case COFF::IMAGE_FILE_MACHINE_AMD64: 1039 switch (Reloc->Type) { 1040 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1041 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1042 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1043 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1044 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1045 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1046 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1047 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1048 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1049 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1050 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1051 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1052 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1053 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1054 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1055 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1056 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1057 default: 1058 Res = "Unknown"; 1059 } 1060 break; 1061 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1062 switch (Reloc->Type) { 1063 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1064 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1065 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1066 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1067 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1068 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1069 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1070 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1071 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1072 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1073 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1074 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1075 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1076 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1077 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1078 default: 1079 Res = "Unknown"; 1080 } 1081 break; 1082 case COFF::IMAGE_FILE_MACHINE_I386: 1083 switch (Reloc->Type) { 1084 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1085 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1086 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1087 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1088 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1089 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1090 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1091 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1092 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1093 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1094 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1095 default: 1096 Res = "Unknown"; 1097 } 1098 break; 1099 default: 1100 Res = "Unknown"; 1101 } 1102 Result.append(Res.begin(), Res.end()); 1103 } 1104 1105 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1106 1107 bool COFFObjectFile::isRelocatableObject() const { 1108 return !DataDirectory; 1109 } 1110 1111 bool ImportDirectoryEntryRef:: 1112 operator==(const ImportDirectoryEntryRef &Other) const { 1113 return ImportTable == Other.ImportTable && Index == Other.Index; 1114 } 1115 1116 void ImportDirectoryEntryRef::moveNext() { 1117 ++Index; 1118 } 1119 1120 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1121 const import_directory_table_entry *&Result) const { 1122 Result = ImportTable + Index; 1123 return std::error_code(); 1124 } 1125 1126 static imported_symbol_iterator 1127 makeImportedSymbolIterator(const COFFObjectFile *Object, 1128 uintptr_t Ptr, int Index) { 1129 if (Object->getBytesInAddress() == 4) { 1130 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1131 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1132 } 1133 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1134 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1135 } 1136 1137 static imported_symbol_iterator 1138 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1139 uintptr_t IntPtr = 0; 1140 Object->getRvaPtr(RVA, IntPtr); 1141 return makeImportedSymbolIterator(Object, IntPtr, 0); 1142 } 1143 1144 static imported_symbol_iterator 1145 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1146 uintptr_t IntPtr = 0; 1147 Object->getRvaPtr(RVA, IntPtr); 1148 // Forward the pointer to the last entry which is null. 1149 int Index = 0; 1150 if (Object->getBytesInAddress() == 4) { 1151 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1152 while (*Entry++) 1153 ++Index; 1154 } else { 1155 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1156 while (*Entry++) 1157 ++Index; 1158 } 1159 return makeImportedSymbolIterator(Object, IntPtr, Index); 1160 } 1161 1162 imported_symbol_iterator 1163 ImportDirectoryEntryRef::imported_symbol_begin() const { 1164 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1165 OwningObject); 1166 } 1167 1168 imported_symbol_iterator 1169 ImportDirectoryEntryRef::imported_symbol_end() const { 1170 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1171 OwningObject); 1172 } 1173 1174 iterator_range<imported_symbol_iterator> 1175 ImportDirectoryEntryRef::imported_symbols() const { 1176 return make_range(imported_symbol_begin(), imported_symbol_end()); 1177 } 1178 1179 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1180 uintptr_t IntPtr = 0; 1181 if (std::error_code EC = 1182 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1183 return EC; 1184 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1185 return std::error_code(); 1186 } 1187 1188 std::error_code 1189 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1190 Result = ImportTable[Index].ImportLookupTableRVA; 1191 return std::error_code(); 1192 } 1193 1194 std::error_code 1195 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1196 Result = ImportTable[Index].ImportAddressTableRVA; 1197 return std::error_code(); 1198 } 1199 1200 std::error_code ImportDirectoryEntryRef::getImportLookupEntry( 1201 const import_lookup_table_entry32 *&Result) const { 1202 uintptr_t IntPtr = 0; 1203 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; 1204 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1205 return EC; 1206 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr); 1207 return std::error_code(); 1208 } 1209 1210 bool DelayImportDirectoryEntryRef:: 1211 operator==(const DelayImportDirectoryEntryRef &Other) const { 1212 return Table == Other.Table && Index == Other.Index; 1213 } 1214 1215 void DelayImportDirectoryEntryRef::moveNext() { 1216 ++Index; 1217 } 1218 1219 imported_symbol_iterator 1220 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1221 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1222 OwningObject); 1223 } 1224 1225 imported_symbol_iterator 1226 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1227 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1228 OwningObject); 1229 } 1230 1231 iterator_range<imported_symbol_iterator> 1232 DelayImportDirectoryEntryRef::imported_symbols() const { 1233 return make_range(imported_symbol_begin(), imported_symbol_end()); 1234 } 1235 1236 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1237 uintptr_t IntPtr = 0; 1238 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1239 return EC; 1240 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1241 return std::error_code(); 1242 } 1243 1244 std::error_code DelayImportDirectoryEntryRef:: 1245 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1246 Result = Table; 1247 return std::error_code(); 1248 } 1249 1250 std::error_code DelayImportDirectoryEntryRef:: 1251 getImportAddress(int AddrIndex, uint64_t &Result) const { 1252 uint32_t RVA = Table[Index].DelayImportAddressTable + 1253 AddrIndex * (OwningObject->is64() ? 8 : 4); 1254 uintptr_t IntPtr = 0; 1255 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1256 return EC; 1257 if (OwningObject->is64()) 1258 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1259 else 1260 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1261 return std::error_code(); 1262 } 1263 1264 bool ExportDirectoryEntryRef:: 1265 operator==(const ExportDirectoryEntryRef &Other) const { 1266 return ExportTable == Other.ExportTable && Index == Other.Index; 1267 } 1268 1269 void ExportDirectoryEntryRef::moveNext() { 1270 ++Index; 1271 } 1272 1273 // Returns the name of the current export symbol. If the symbol is exported only 1274 // by ordinal, the empty string is set as a result. 1275 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1276 uintptr_t IntPtr = 0; 1277 if (std::error_code EC = 1278 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1279 return EC; 1280 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1281 return std::error_code(); 1282 } 1283 1284 // Returns the starting ordinal number. 1285 std::error_code 1286 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1287 Result = ExportTable->OrdinalBase; 1288 return std::error_code(); 1289 } 1290 1291 // Returns the export ordinal of the current export symbol. 1292 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1293 Result = ExportTable->OrdinalBase + Index; 1294 return std::error_code(); 1295 } 1296 1297 // Returns the address of the current export symbol. 1298 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1299 uintptr_t IntPtr = 0; 1300 if (std::error_code EC = 1301 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1302 return EC; 1303 const export_address_table_entry *entry = 1304 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1305 Result = entry[Index].ExportRVA; 1306 return std::error_code(); 1307 } 1308 1309 // Returns the name of the current export symbol. If the symbol is exported only 1310 // by ordinal, the empty string is set as a result. 1311 std::error_code 1312 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1313 uintptr_t IntPtr = 0; 1314 if (std::error_code EC = 1315 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1316 return EC; 1317 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1318 1319 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1320 int Offset = 0; 1321 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1322 I < E; ++I, ++Offset) { 1323 if (*I != Index) 1324 continue; 1325 if (std::error_code EC = 1326 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1327 return EC; 1328 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1329 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1330 return EC; 1331 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1332 return std::error_code(); 1333 } 1334 Result = ""; 1335 return std::error_code(); 1336 } 1337 1338 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1339 const data_directory *DataEntry; 1340 if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 1341 return EC; 1342 uint32_t RVA; 1343 if (auto EC = getExportRVA(RVA)) 1344 return EC; 1345 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1346 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1347 Result = (Begin <= RVA && RVA < End); 1348 return std::error_code(); 1349 } 1350 1351 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1352 uint32_t RVA; 1353 if (auto EC = getExportRVA(RVA)) 1354 return EC; 1355 uintptr_t IntPtr = 0; 1356 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1357 return EC; 1358 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1359 return std::error_code(); 1360 } 1361 1362 bool ImportedSymbolRef:: 1363 operator==(const ImportedSymbolRef &Other) const { 1364 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1365 && Index == Other.Index; 1366 } 1367 1368 void ImportedSymbolRef::moveNext() { 1369 ++Index; 1370 } 1371 1372 std::error_code 1373 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1374 uint32_t RVA; 1375 if (Entry32) { 1376 // If a symbol is imported only by ordinal, it has no name. 1377 if (Entry32[Index].isOrdinal()) 1378 return std::error_code(); 1379 RVA = Entry32[Index].getHintNameRVA(); 1380 } else { 1381 if (Entry64[Index].isOrdinal()) 1382 return std::error_code(); 1383 RVA = Entry64[Index].getHintNameRVA(); 1384 } 1385 uintptr_t IntPtr = 0; 1386 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1387 return EC; 1388 // +2 because the first two bytes is hint. 1389 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1390 return std::error_code(); 1391 } 1392 1393 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1394 uint32_t RVA; 1395 if (Entry32) { 1396 if (Entry32[Index].isOrdinal()) { 1397 Result = Entry32[Index].getOrdinal(); 1398 return std::error_code(); 1399 } 1400 RVA = Entry32[Index].getHintNameRVA(); 1401 } else { 1402 if (Entry64[Index].isOrdinal()) { 1403 Result = Entry64[Index].getOrdinal(); 1404 return std::error_code(); 1405 } 1406 RVA = Entry64[Index].getHintNameRVA(); 1407 } 1408 uintptr_t IntPtr = 0; 1409 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1410 return EC; 1411 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1412 return std::error_code(); 1413 } 1414 1415 ErrorOr<std::unique_ptr<COFFObjectFile>> 1416 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1417 std::error_code EC; 1418 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1419 if (EC) 1420 return EC; 1421 return std::move(Ret); 1422 } 1423 1424 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1425 return Header == Other.Header && Index == Other.Index; 1426 } 1427 1428 void BaseRelocRef::moveNext() { 1429 // Header->BlockSize is the size of the current block, including the 1430 // size of the header itself. 1431 uint32_t Size = sizeof(*Header) + 1432 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1433 if (Size == Header->BlockSize) { 1434 // .reloc contains a list of base relocation blocks. Each block 1435 // consists of the header followed by entries. The header contains 1436 // how many entories will follow. When we reach the end of the 1437 // current block, proceed to the next block. 1438 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1439 reinterpret_cast<const uint8_t *>(Header) + Size); 1440 Index = 0; 1441 } else { 1442 ++Index; 1443 } 1444 } 1445 1446 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1447 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1448 Type = Entry[Index].getType(); 1449 return std::error_code(); 1450 } 1451 1452 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1453 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1454 Result = Header->PageRVA + Entry[Index].getOffset(); 1455 return std::error_code(); 1456 } 1457