1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the COFFObjectFile class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/BinaryFormat/COFF.h" 18 #include "llvm/Object/Binary.h" 19 #include "llvm/Object/COFF.h" 20 #include "llvm/Object/Error.h" 21 #include "llvm/Object/ObjectFile.h" 22 #include "llvm/Support/BinaryStreamReader.h" 23 #include "llvm/Support/Endian.h" 24 #include "llvm/Support/Error.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/MemoryBuffer.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <cstddef> 31 #include <cstdint> 32 #include <cstring> 33 #include <limits> 34 #include <memory> 35 #include <system_error> 36 37 using namespace llvm; 38 using namespace object; 39 40 using support::ulittle16_t; 41 using support::ulittle32_t; 42 using support::ulittle64_t; 43 using support::little16_t; 44 45 // Returns false if size is greater than the buffer size. And sets ec. 46 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 47 if (M.getBufferSize() < Size) { 48 EC = object_error::unexpected_eof; 49 return false; 50 } 51 return true; 52 } 53 54 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 55 // Returns unexpected_eof if error. 56 template <typename T> 57 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 58 const void *Ptr, 59 const uint64_t Size = sizeof(T)) { 60 uintptr_t Addr = uintptr_t(Ptr); 61 if (std::error_code EC = Binary::checkOffset(M, Addr, Size)) 62 return EC; 63 Obj = reinterpret_cast<const T *>(Addr); 64 return std::error_code(); 65 } 66 67 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 68 // prefixed slashes. 69 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 70 assert(Str.size() <= 6 && "String too long, possible overflow."); 71 if (Str.size() > 6) 72 return true; 73 74 uint64_t Value = 0; 75 while (!Str.empty()) { 76 unsigned CharVal; 77 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 78 CharVal = Str[0] - 'A'; 79 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 80 CharVal = Str[0] - 'a' + 26; 81 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 82 CharVal = Str[0] - '0' + 52; 83 else if (Str[0] == '+') // 62 84 CharVal = 62; 85 else if (Str[0] == '/') // 63 86 CharVal = 63; 87 else 88 return true; 89 90 Value = (Value * 64) + CharVal; 91 Str = Str.substr(1); 92 } 93 94 if (Value > std::numeric_limits<uint32_t>::max()) 95 return true; 96 97 Result = static_cast<uint32_t>(Value); 98 return false; 99 } 100 101 template <typename coff_symbol_type> 102 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 103 const coff_symbol_type *Addr = 104 reinterpret_cast<const coff_symbol_type *>(Ref.p); 105 106 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 107 #ifndef NDEBUG 108 // Verify that the symbol points to a valid entry in the symbol table. 109 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 110 111 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 112 "Symbol did not point to the beginning of a symbol"); 113 #endif 114 115 return Addr; 116 } 117 118 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 119 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 120 121 #ifndef NDEBUG 122 // Verify that the section points to a valid entry in the section table. 123 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 124 report_fatal_error("Section was outside of section table."); 125 126 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 127 assert(Offset % sizeof(coff_section) == 0 && 128 "Section did not point to the beginning of a section"); 129 #endif 130 131 return Addr; 132 } 133 134 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 135 auto End = reinterpret_cast<uintptr_t>(StringTable); 136 if (SymbolTable16) { 137 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 138 Symb += 1 + Symb->NumberOfAuxSymbols; 139 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 140 } else if (SymbolTable32) { 141 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 142 Symb += 1 + Symb->NumberOfAuxSymbols; 143 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 144 } else { 145 llvm_unreachable("no symbol table pointer!"); 146 } 147 } 148 149 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 150 return getSymbolName(getCOFFSymbol(Ref)); 151 } 152 153 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 154 return getCOFFSymbol(Ref).getValue(); 155 } 156 157 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const { 158 // MSVC/link.exe seems to align symbols to the next-power-of-2 159 // up to 32 bytes. 160 COFFSymbolRef Symb = getCOFFSymbol(Ref); 161 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue())); 162 } 163 164 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 165 uint64_t Result = cantFail(getSymbolValue(Ref)); 166 COFFSymbolRef Symb = getCOFFSymbol(Ref); 167 int32_t SectionNumber = Symb.getSectionNumber(); 168 169 if (Symb.isAnyUndefined() || Symb.isCommon() || 170 COFF::isReservedSectionNumber(SectionNumber)) 171 return Result; 172 173 Expected<const coff_section *> Section = getSection(SectionNumber); 174 if (!Section) 175 return Section.takeError(); 176 Result += (*Section)->VirtualAddress; 177 178 // The section VirtualAddress does not include ImageBase, and we want to 179 // return virtual addresses. 180 Result += getImageBase(); 181 182 return Result; 183 } 184 185 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 186 COFFSymbolRef Symb = getCOFFSymbol(Ref); 187 int32_t SectionNumber = Symb.getSectionNumber(); 188 189 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 190 return SymbolRef::ST_Function; 191 if (Symb.isAnyUndefined()) 192 return SymbolRef::ST_Unknown; 193 if (Symb.isCommon()) 194 return SymbolRef::ST_Data; 195 if (Symb.isFileRecord()) 196 return SymbolRef::ST_File; 197 198 // TODO: perhaps we need a new symbol type ST_Section. 199 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 200 return SymbolRef::ST_Debug; 201 202 if (!COFF::isReservedSectionNumber(SectionNumber)) 203 return SymbolRef::ST_Data; 204 205 return SymbolRef::ST_Other; 206 } 207 208 Expected<uint32_t> COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 209 COFFSymbolRef Symb = getCOFFSymbol(Ref); 210 uint32_t Result = SymbolRef::SF_None; 211 212 if (Symb.isExternal() || Symb.isWeakExternal()) 213 Result |= SymbolRef::SF_Global; 214 215 if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) { 216 Result |= SymbolRef::SF_Weak; 217 if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS) 218 Result |= SymbolRef::SF_Undefined; 219 } 220 221 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 222 Result |= SymbolRef::SF_Absolute; 223 224 if (Symb.isFileRecord()) 225 Result |= SymbolRef::SF_FormatSpecific; 226 227 if (Symb.isSectionDefinition()) 228 Result |= SymbolRef::SF_FormatSpecific; 229 230 if (Symb.isCommon()) 231 Result |= SymbolRef::SF_Common; 232 233 if (Symb.isUndefined()) 234 Result |= SymbolRef::SF_Undefined; 235 236 return Result; 237 } 238 239 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 240 COFFSymbolRef Symb = getCOFFSymbol(Ref); 241 return Symb.getValue(); 242 } 243 244 Expected<section_iterator> 245 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 246 COFFSymbolRef Symb = getCOFFSymbol(Ref); 247 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 248 return section_end(); 249 Expected<const coff_section *> Sec = getSection(Symb.getSectionNumber()); 250 if (!Sec) 251 return Sec.takeError(); 252 DataRefImpl Ret; 253 Ret.p = reinterpret_cast<uintptr_t>(*Sec); 254 return section_iterator(SectionRef(Ret, this)); 255 } 256 257 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 258 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 259 return Symb.getSectionNumber(); 260 } 261 262 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 263 const coff_section *Sec = toSec(Ref); 264 Sec += 1; 265 Ref.p = reinterpret_cast<uintptr_t>(Sec); 266 } 267 268 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const { 269 const coff_section *Sec = toSec(Ref); 270 return getSectionName(Sec); 271 } 272 273 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 274 const coff_section *Sec = toSec(Ref); 275 uint64_t Result = Sec->VirtualAddress; 276 277 // The section VirtualAddress does not include ImageBase, and we want to 278 // return virtual addresses. 279 Result += getImageBase(); 280 return Result; 281 } 282 283 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const { 284 return toSec(Sec) - SectionTable; 285 } 286 287 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 288 return getSectionSize(toSec(Ref)); 289 } 290 291 Expected<ArrayRef<uint8_t>> 292 COFFObjectFile::getSectionContents(DataRefImpl Ref) const { 293 const coff_section *Sec = toSec(Ref); 294 ArrayRef<uint8_t> Res; 295 if (Error E = getSectionContents(Sec, Res)) 296 return std::move(E); 297 return Res; 298 } 299 300 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 301 const coff_section *Sec = toSec(Ref); 302 return Sec->getAlignment(); 303 } 304 305 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 306 return false; 307 } 308 309 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 310 const coff_section *Sec = toSec(Ref); 311 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 312 } 313 314 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 315 const coff_section *Sec = toSec(Ref); 316 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 317 } 318 319 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 320 const coff_section *Sec = toSec(Ref); 321 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 322 COFF::IMAGE_SCN_MEM_READ | 323 COFF::IMAGE_SCN_MEM_WRITE; 324 return (Sec->Characteristics & BssFlags) == BssFlags; 325 } 326 327 // The .debug sections are the only debug sections for COFF 328 // (\see MCObjectFileInfo.cpp). 329 bool COFFObjectFile::isDebugSection(StringRef SectionName) const { 330 return SectionName.startswith(".debug"); 331 } 332 333 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 334 uintptr_t Offset = 335 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 336 assert((Offset % sizeof(coff_section)) == 0); 337 return (Offset / sizeof(coff_section)) + 1; 338 } 339 340 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 341 const coff_section *Sec = toSec(Ref); 342 // In COFF, a virtual section won't have any in-file 343 // content, so the file pointer to the content will be zero. 344 return Sec->PointerToRawData == 0; 345 } 346 347 static uint32_t getNumberOfRelocations(const coff_section *Sec, 348 MemoryBufferRef M, const uint8_t *base) { 349 // The field for the number of relocations in COFF section table is only 350 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 351 // NumberOfRelocations field, and the actual relocation count is stored in the 352 // VirtualAddress field in the first relocation entry. 353 if (Sec->hasExtendedRelocations()) { 354 const coff_relocation *FirstReloc; 355 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 356 base + Sec->PointerToRelocations))) 357 return 0; 358 // -1 to exclude this first relocation entry. 359 return FirstReloc->VirtualAddress - 1; 360 } 361 return Sec->NumberOfRelocations; 362 } 363 364 static const coff_relocation * 365 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 366 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 367 if (!NumRelocs) 368 return nullptr; 369 auto begin = reinterpret_cast<const coff_relocation *>( 370 Base + Sec->PointerToRelocations); 371 if (Sec->hasExtendedRelocations()) { 372 // Skip the first relocation entry repurposed to store the number of 373 // relocations. 374 begin++; 375 } 376 if (Binary::checkOffset(M, uintptr_t(begin), 377 sizeof(coff_relocation) * NumRelocs)) 378 return nullptr; 379 return begin; 380 } 381 382 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 383 const coff_section *Sec = toSec(Ref); 384 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 385 if (begin && Sec->VirtualAddress != 0) 386 report_fatal_error("Sections with relocations should have an address of 0"); 387 DataRefImpl Ret; 388 Ret.p = reinterpret_cast<uintptr_t>(begin); 389 return relocation_iterator(RelocationRef(Ret, this)); 390 } 391 392 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 393 const coff_section *Sec = toSec(Ref); 394 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 395 if (I) 396 I += getNumberOfRelocations(Sec, Data, base()); 397 DataRefImpl Ret; 398 Ret.p = reinterpret_cast<uintptr_t>(I); 399 return relocation_iterator(RelocationRef(Ret, this)); 400 } 401 402 // Initialize the pointer to the symbol table. 403 std::error_code COFFObjectFile::initSymbolTablePtr() { 404 if (COFFHeader) 405 if (std::error_code EC = getObject( 406 SymbolTable16, Data, base() + getPointerToSymbolTable(), 407 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 408 return EC; 409 410 if (COFFBigObjHeader) 411 if (std::error_code EC = getObject( 412 SymbolTable32, Data, base() + getPointerToSymbolTable(), 413 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 414 return EC; 415 416 // Find string table. The first four byte of the string table contains the 417 // total size of the string table, including the size field itself. If the 418 // string table is empty, the value of the first four byte would be 4. 419 uint32_t StringTableOffset = getPointerToSymbolTable() + 420 getNumberOfSymbols() * getSymbolTableEntrySize(); 421 const uint8_t *StringTableAddr = base() + StringTableOffset; 422 const ulittle32_t *StringTableSizePtr; 423 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 424 return EC; 425 StringTableSize = *StringTableSizePtr; 426 if (std::error_code EC = 427 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 428 return EC; 429 430 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 431 // tools like cvtres write a size of 0 for an empty table instead of 4. 432 if (StringTableSize < 4) 433 StringTableSize = 4; 434 435 // Check that the string table is null terminated if has any in it. 436 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 437 return object_error::parse_failed; 438 return std::error_code(); 439 } 440 441 uint64_t COFFObjectFile::getImageBase() const { 442 if (PE32Header) 443 return PE32Header->ImageBase; 444 else if (PE32PlusHeader) 445 return PE32PlusHeader->ImageBase; 446 // This actually comes up in practice. 447 return 0; 448 } 449 450 // Returns the file offset for the given VA. 451 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 452 uint64_t ImageBase = getImageBase(); 453 uint64_t Rva = Addr - ImageBase; 454 assert(Rva <= UINT32_MAX); 455 return getRvaPtr((uint32_t)Rva, Res); 456 } 457 458 // Returns the file offset for the given RVA. 459 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 460 for (const SectionRef &S : sections()) { 461 const coff_section *Section = getCOFFSection(S); 462 uint32_t SectionStart = Section->VirtualAddress; 463 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 464 if (SectionStart <= Addr && Addr < SectionEnd) { 465 uint32_t Offset = Addr - SectionStart; 466 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 467 return std::error_code(); 468 } 469 } 470 return object_error::parse_failed; 471 } 472 473 std::error_code 474 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 475 ArrayRef<uint8_t> &Contents) const { 476 for (const SectionRef &S : sections()) { 477 const coff_section *Section = getCOFFSection(S); 478 uint32_t SectionStart = Section->VirtualAddress; 479 // Check if this RVA is within the section bounds. Be careful about integer 480 // overflow. 481 uint32_t OffsetIntoSection = RVA - SectionStart; 482 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 483 Size <= Section->VirtualSize - OffsetIntoSection) { 484 uintptr_t Begin = 485 uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection; 486 Contents = 487 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 488 return std::error_code(); 489 } 490 } 491 return object_error::parse_failed; 492 } 493 494 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 495 // table entry. 496 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 497 StringRef &Name) const { 498 uintptr_t IntPtr = 0; 499 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 500 return EC; 501 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 502 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 503 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 504 return std::error_code(); 505 } 506 507 std::error_code 508 COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 509 const codeview::DebugInfo *&PDBInfo, 510 StringRef &PDBFileName) const { 511 ArrayRef<uint8_t> InfoBytes; 512 if (std::error_code EC = getRvaAndSizeAsBytes( 513 DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes)) 514 return EC; 515 if (InfoBytes.size() < sizeof(*PDBInfo) + 1) 516 return object_error::parse_failed; 517 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data()); 518 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); 519 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 520 InfoBytes.size()); 521 // Truncate the name at the first null byte. Ignore any padding. 522 PDBFileName = PDBFileName.split('\0').first; 523 return std::error_code(); 524 } 525 526 std::error_code 527 COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, 528 StringRef &PDBFileName) const { 529 for (const debug_directory &D : debug_directories()) 530 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 531 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 532 // If we get here, there is no PDB info to return. 533 PDBInfo = nullptr; 534 PDBFileName = StringRef(); 535 return std::error_code(); 536 } 537 538 // Find the import table. 539 std::error_code COFFObjectFile::initImportTablePtr() { 540 // First, we get the RVA of the import table. If the file lacks a pointer to 541 // the import table, do nothing. 542 const data_directory *DataEntry; 543 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 544 return std::error_code(); 545 546 // Do nothing if the pointer to import table is NULL. 547 if (DataEntry->RelativeVirtualAddress == 0) 548 return std::error_code(); 549 550 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 551 552 // Find the section that contains the RVA. This is needed because the RVA is 553 // the import table's memory address which is different from its file offset. 554 uintptr_t IntPtr = 0; 555 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 556 return EC; 557 if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size)) 558 return EC; 559 ImportDirectory = reinterpret_cast< 560 const coff_import_directory_table_entry *>(IntPtr); 561 return std::error_code(); 562 } 563 564 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 565 std::error_code COFFObjectFile::initDelayImportTablePtr() { 566 const data_directory *DataEntry; 567 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 568 return std::error_code(); 569 if (DataEntry->RelativeVirtualAddress == 0) 570 return std::error_code(); 571 572 uint32_t RVA = DataEntry->RelativeVirtualAddress; 573 NumberOfDelayImportDirectory = DataEntry->Size / 574 sizeof(delay_import_directory_table_entry) - 1; 575 576 uintptr_t IntPtr = 0; 577 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 578 return EC; 579 DelayImportDirectory = reinterpret_cast< 580 const delay_import_directory_table_entry *>(IntPtr); 581 return std::error_code(); 582 } 583 584 // Find the export table. 585 std::error_code COFFObjectFile::initExportTablePtr() { 586 // First, we get the RVA of the export table. If the file lacks a pointer to 587 // the export table, do nothing. 588 const data_directory *DataEntry; 589 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 590 return std::error_code(); 591 592 // Do nothing if the pointer to export table is NULL. 593 if (DataEntry->RelativeVirtualAddress == 0) 594 return std::error_code(); 595 596 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 597 uintptr_t IntPtr = 0; 598 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 599 return EC; 600 ExportDirectory = 601 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 602 return std::error_code(); 603 } 604 605 std::error_code COFFObjectFile::initBaseRelocPtr() { 606 const data_directory *DataEntry; 607 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 608 return std::error_code(); 609 if (DataEntry->RelativeVirtualAddress == 0) 610 return std::error_code(); 611 612 uintptr_t IntPtr = 0; 613 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 614 return EC; 615 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 616 IntPtr); 617 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 618 IntPtr + DataEntry->Size); 619 // FIXME: Verify the section containing BaseRelocHeader has at least 620 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 621 return std::error_code(); 622 } 623 624 std::error_code COFFObjectFile::initDebugDirectoryPtr() { 625 // Get the RVA of the debug directory. Do nothing if it does not exist. 626 const data_directory *DataEntry; 627 if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry)) 628 return std::error_code(); 629 630 // Do nothing if the RVA is NULL. 631 if (DataEntry->RelativeVirtualAddress == 0) 632 return std::error_code(); 633 634 // Check that the size is a multiple of the entry size. 635 if (DataEntry->Size % sizeof(debug_directory) != 0) 636 return object_error::parse_failed; 637 638 uintptr_t IntPtr = 0; 639 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 640 return EC; 641 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 642 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>( 643 IntPtr + DataEntry->Size); 644 // FIXME: Verify the section containing DebugDirectoryBegin has at least 645 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 646 return std::error_code(); 647 } 648 649 std::error_code COFFObjectFile::initLoadConfigPtr() { 650 // Get the RVA of the debug directory. Do nothing if it does not exist. 651 const data_directory *DataEntry; 652 if (getDataDirectory(COFF::LOAD_CONFIG_TABLE, DataEntry)) 653 return std::error_code(); 654 655 // Do nothing if the RVA is NULL. 656 if (DataEntry->RelativeVirtualAddress == 0) 657 return std::error_code(); 658 uintptr_t IntPtr = 0; 659 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 660 return EC; 661 662 LoadConfig = (const void *)IntPtr; 663 return std::error_code(); 664 } 665 666 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 667 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 668 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 669 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 670 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 671 ImportDirectory(nullptr), 672 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 673 ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 674 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) { 675 // Check that we at least have enough room for a header. 676 if (!checkSize(Data, EC, sizeof(coff_file_header))) 677 return; 678 679 // The current location in the file where we are looking at. 680 uint64_t CurPtr = 0; 681 682 // PE header is optional and is present only in executables. If it exists, 683 // it is placed right after COFF header. 684 bool HasPEHeader = false; 685 686 // Check if this is a PE/COFF file. 687 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 688 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 689 // PE signature to find 'normal' COFF header. 690 const auto *DH = reinterpret_cast<const dos_header *>(base()); 691 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 692 CurPtr = DH->AddressOfNewExeHeader; 693 // Check the PE magic bytes. ("PE\0\0") 694 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 695 EC = object_error::parse_failed; 696 return; 697 } 698 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 699 HasPEHeader = true; 700 } 701 } 702 703 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 704 return; 705 706 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 707 // import libraries share a common prefix but bigobj is more restrictive. 708 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 709 COFFHeader->NumberOfSections == uint16_t(0xffff) && 710 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 711 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 712 return; 713 714 // Verify that we are dealing with bigobj. 715 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 716 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 717 sizeof(COFF::BigObjMagic)) == 0) { 718 COFFHeader = nullptr; 719 CurPtr += sizeof(coff_bigobj_file_header); 720 } else { 721 // It's not a bigobj. 722 COFFBigObjHeader = nullptr; 723 } 724 } 725 if (COFFHeader) { 726 // The prior checkSize call may have failed. This isn't a hard error 727 // because we were just trying to sniff out bigobj. 728 EC = std::error_code(); 729 CurPtr += sizeof(coff_file_header); 730 731 if (COFFHeader->isImportLibrary()) 732 return; 733 } 734 735 if (HasPEHeader) { 736 const pe32_header *Header; 737 if ((EC = getObject(Header, Data, base() + CurPtr))) 738 return; 739 740 const uint8_t *DataDirAddr; 741 uint64_t DataDirSize; 742 if (Header->Magic == COFF::PE32Header::PE32) { 743 PE32Header = Header; 744 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 745 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 746 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 747 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 748 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 749 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 750 } else { 751 // It's neither PE32 nor PE32+. 752 EC = object_error::parse_failed; 753 return; 754 } 755 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 756 return; 757 } 758 759 if (COFFHeader) 760 CurPtr += COFFHeader->SizeOfOptionalHeader; 761 762 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 763 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 764 return; 765 766 // Initialize the pointer to the symbol table. 767 if (getPointerToSymbolTable() != 0) { 768 if ((EC = initSymbolTablePtr())) { 769 SymbolTable16 = nullptr; 770 SymbolTable32 = nullptr; 771 StringTable = nullptr; 772 StringTableSize = 0; 773 } 774 } else { 775 // We had better not have any symbols if we don't have a symbol table. 776 if (getNumberOfSymbols() != 0) { 777 EC = object_error::parse_failed; 778 return; 779 } 780 } 781 782 // Initialize the pointer to the beginning of the import table. 783 if ((EC = initImportTablePtr())) 784 return; 785 if ((EC = initDelayImportTablePtr())) 786 return; 787 788 // Initialize the pointer to the export table. 789 if ((EC = initExportTablePtr())) 790 return; 791 792 // Initialize the pointer to the base relocation table. 793 if ((EC = initBaseRelocPtr())) 794 return; 795 796 // Initialize the pointer to the export table. 797 if ((EC = initDebugDirectoryPtr())) 798 return; 799 800 if ((EC = initLoadConfigPtr())) 801 return; 802 803 EC = std::error_code(); 804 } 805 806 basic_symbol_iterator COFFObjectFile::symbol_begin() const { 807 DataRefImpl Ret; 808 Ret.p = getSymbolTable(); 809 return basic_symbol_iterator(SymbolRef(Ret, this)); 810 } 811 812 basic_symbol_iterator COFFObjectFile::symbol_end() const { 813 // The symbol table ends where the string table begins. 814 DataRefImpl Ret; 815 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 816 return basic_symbol_iterator(SymbolRef(Ret, this)); 817 } 818 819 import_directory_iterator COFFObjectFile::import_directory_begin() const { 820 if (!ImportDirectory) 821 return import_directory_end(); 822 if (ImportDirectory->isNull()) 823 return import_directory_end(); 824 return import_directory_iterator( 825 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 826 } 827 828 import_directory_iterator COFFObjectFile::import_directory_end() const { 829 return import_directory_iterator( 830 ImportDirectoryEntryRef(nullptr, -1, this)); 831 } 832 833 delay_import_directory_iterator 834 COFFObjectFile::delay_import_directory_begin() const { 835 return delay_import_directory_iterator( 836 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 837 } 838 839 delay_import_directory_iterator 840 COFFObjectFile::delay_import_directory_end() const { 841 return delay_import_directory_iterator( 842 DelayImportDirectoryEntryRef( 843 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 844 } 845 846 export_directory_iterator COFFObjectFile::export_directory_begin() const { 847 return export_directory_iterator( 848 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 849 } 850 851 export_directory_iterator COFFObjectFile::export_directory_end() const { 852 if (!ExportDirectory) 853 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 854 ExportDirectoryEntryRef Ref(ExportDirectory, 855 ExportDirectory->AddressTableEntries, this); 856 return export_directory_iterator(Ref); 857 } 858 859 section_iterator COFFObjectFile::section_begin() const { 860 DataRefImpl Ret; 861 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 862 return section_iterator(SectionRef(Ret, this)); 863 } 864 865 section_iterator COFFObjectFile::section_end() const { 866 DataRefImpl Ret; 867 int NumSections = 868 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 869 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 870 return section_iterator(SectionRef(Ret, this)); 871 } 872 873 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 874 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 875 } 876 877 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 878 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 879 } 880 881 uint8_t COFFObjectFile::getBytesInAddress() const { 882 return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4; 883 } 884 885 StringRef COFFObjectFile::getFileFormatName() const { 886 switch(getMachine()) { 887 case COFF::IMAGE_FILE_MACHINE_I386: 888 return "COFF-i386"; 889 case COFF::IMAGE_FILE_MACHINE_AMD64: 890 return "COFF-x86-64"; 891 case COFF::IMAGE_FILE_MACHINE_ARMNT: 892 return "COFF-ARM"; 893 case COFF::IMAGE_FILE_MACHINE_ARM64: 894 return "COFF-ARM64"; 895 default: 896 return "COFF-<unknown arch>"; 897 } 898 } 899 900 Triple::ArchType COFFObjectFile::getArch() const { 901 switch (getMachine()) { 902 case COFF::IMAGE_FILE_MACHINE_I386: 903 return Triple::x86; 904 case COFF::IMAGE_FILE_MACHINE_AMD64: 905 return Triple::x86_64; 906 case COFF::IMAGE_FILE_MACHINE_ARMNT: 907 return Triple::thumb; 908 case COFF::IMAGE_FILE_MACHINE_ARM64: 909 return Triple::aarch64; 910 default: 911 return Triple::UnknownArch; 912 } 913 } 914 915 Expected<uint64_t> COFFObjectFile::getStartAddress() const { 916 if (PE32Header) 917 return PE32Header->AddressOfEntryPoint; 918 return 0; 919 } 920 921 iterator_range<import_directory_iterator> 922 COFFObjectFile::import_directories() const { 923 return make_range(import_directory_begin(), import_directory_end()); 924 } 925 926 iterator_range<delay_import_directory_iterator> 927 COFFObjectFile::delay_import_directories() const { 928 return make_range(delay_import_directory_begin(), 929 delay_import_directory_end()); 930 } 931 932 iterator_range<export_directory_iterator> 933 COFFObjectFile::export_directories() const { 934 return make_range(export_directory_begin(), export_directory_end()); 935 } 936 937 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 938 return make_range(base_reloc_begin(), base_reloc_end()); 939 } 940 941 std::error_code 942 COFFObjectFile::getDataDirectory(uint32_t Index, 943 const data_directory *&Res) const { 944 // Error if there's no data directory or the index is out of range. 945 if (!DataDirectory) { 946 Res = nullptr; 947 return object_error::parse_failed; 948 } 949 assert(PE32Header || PE32PlusHeader); 950 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 951 : PE32PlusHeader->NumberOfRvaAndSize; 952 if (Index >= NumEnt) { 953 Res = nullptr; 954 return object_error::parse_failed; 955 } 956 Res = &DataDirectory[Index]; 957 return std::error_code(); 958 } 959 960 Expected<const coff_section *> COFFObjectFile::getSection(int32_t Index) const { 961 // Perhaps getting the section of a reserved section index should be an error, 962 // but callers rely on this to return null. 963 if (COFF::isReservedSectionNumber(Index)) 964 return (const coff_section *)nullptr; 965 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 966 // We already verified the section table data, so no need to check again. 967 return SectionTable + (Index - 1); 968 } 969 return errorCodeToError(object_error::parse_failed); 970 } 971 972 Expected<StringRef> COFFObjectFile::getString(uint32_t Offset) const { 973 if (StringTableSize <= 4) 974 // Tried to get a string from an empty string table. 975 return errorCodeToError(object_error::parse_failed); 976 if (Offset >= StringTableSize) 977 return errorCodeToError(object_error::unexpected_eof); 978 return StringRef(StringTable + Offset); 979 } 980 981 Expected<StringRef> COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const { 982 return getSymbolName(Symbol.getGeneric()); 983 } 984 985 Expected<StringRef> 986 COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const { 987 // Check for string table entry. First 4 bytes are 0. 988 if (Symbol->Name.Offset.Zeroes == 0) 989 return getString(Symbol->Name.Offset.Offset); 990 991 // Null terminated, let ::strlen figure out the length. 992 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 993 return StringRef(Symbol->Name.ShortName); 994 995 // Not null terminated, use all 8 bytes. 996 return StringRef(Symbol->Name.ShortName, COFF::NameSize); 997 } 998 999 ArrayRef<uint8_t> 1000 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 1001 const uint8_t *Aux = nullptr; 1002 1003 size_t SymbolSize = getSymbolTableEntrySize(); 1004 if (Symbol.getNumberOfAuxSymbols() > 0) { 1005 // AUX data comes immediately after the symbol in COFF 1006 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 1007 #ifndef NDEBUG 1008 // Verify that the Aux symbol points to a valid entry in the symbol table. 1009 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 1010 if (Offset < getPointerToSymbolTable() || 1011 Offset >= 1012 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 1013 report_fatal_error("Aux Symbol data was outside of symbol table."); 1014 1015 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 1016 "Aux Symbol data did not point to the beginning of a symbol"); 1017 #endif 1018 } 1019 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 1020 } 1021 1022 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const { 1023 uintptr_t Offset = 1024 reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable(); 1025 assert(Offset % getSymbolTableEntrySize() == 0 && 1026 "Symbol did not point to the beginning of a symbol"); 1027 size_t Index = Offset / getSymbolTableEntrySize(); 1028 assert(Index < getNumberOfSymbols()); 1029 return Index; 1030 } 1031 1032 Expected<StringRef> 1033 COFFObjectFile::getSectionName(const coff_section *Sec) const { 1034 StringRef Name; 1035 if (Sec->Name[COFF::NameSize - 1] == 0) 1036 // Null terminated, let ::strlen figure out the length. 1037 Name = Sec->Name; 1038 else 1039 // Not null terminated, use all 8 bytes. 1040 Name = StringRef(Sec->Name, COFF::NameSize); 1041 1042 // Check for string table entry. First byte is '/'. 1043 if (Name.startswith("/")) { 1044 uint32_t Offset; 1045 if (Name.startswith("//")) { 1046 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1047 return createStringError(object_error::parse_failed, 1048 "invalid section name"); 1049 } else { 1050 if (Name.substr(1).getAsInteger(10, Offset)) 1051 return createStringError(object_error::parse_failed, 1052 "invalid section name"); 1053 } 1054 return getString(Offset); 1055 } 1056 1057 return Name; 1058 } 1059 1060 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1061 // SizeOfRawData and VirtualSize change what they represent depending on 1062 // whether or not we have an executable image. 1063 // 1064 // For object files, SizeOfRawData contains the size of section's data; 1065 // VirtualSize should be zero but isn't due to buggy COFF writers. 1066 // 1067 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1068 // actual section size is in VirtualSize. It is possible for VirtualSize to 1069 // be greater than SizeOfRawData; the contents past that point should be 1070 // considered to be zero. 1071 if (getDOSHeader()) 1072 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1073 return Sec->SizeOfRawData; 1074 } 1075 1076 Error COFFObjectFile::getSectionContents(const coff_section *Sec, 1077 ArrayRef<uint8_t> &Res) const { 1078 // In COFF, a virtual section won't have any in-file 1079 // content, so the file pointer to the content will be zero. 1080 if (Sec->PointerToRawData == 0) 1081 return Error::success(); 1082 // The only thing that we need to verify is that the contents is contained 1083 // within the file bounds. We don't need to make sure it doesn't cover other 1084 // data, as there's nothing that says that is not allowed. 1085 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 1086 uint32_t SectionSize = getSectionSize(Sec); 1087 if (checkOffset(Data, ConStart, SectionSize)) 1088 return make_error<BinaryError>(); 1089 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1090 return Error::success(); 1091 } 1092 1093 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1094 return reinterpret_cast<const coff_relocation*>(Rel.p); 1095 } 1096 1097 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1098 Rel.p = reinterpret_cast<uintptr_t>( 1099 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1100 } 1101 1102 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1103 const coff_relocation *R = toRel(Rel); 1104 return R->VirtualAddress; 1105 } 1106 1107 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1108 const coff_relocation *R = toRel(Rel); 1109 DataRefImpl Ref; 1110 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1111 return symbol_end(); 1112 if (SymbolTable16) 1113 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1114 else if (SymbolTable32) 1115 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1116 else 1117 llvm_unreachable("no symbol table pointer!"); 1118 return symbol_iterator(SymbolRef(Ref, this)); 1119 } 1120 1121 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1122 const coff_relocation* R = toRel(Rel); 1123 return R->Type; 1124 } 1125 1126 const coff_section * 1127 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1128 return toSec(Section.getRawDataRefImpl()); 1129 } 1130 1131 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1132 if (SymbolTable16) 1133 return toSymb<coff_symbol16>(Ref); 1134 if (SymbolTable32) 1135 return toSymb<coff_symbol32>(Ref); 1136 llvm_unreachable("no symbol table pointer!"); 1137 } 1138 1139 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1140 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1141 } 1142 1143 const coff_relocation * 1144 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1145 return toRel(Reloc.getRawDataRefImpl()); 1146 } 1147 1148 ArrayRef<coff_relocation> 1149 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1150 return {getFirstReloc(Sec, Data, base()), 1151 getNumberOfRelocations(Sec, Data, base())}; 1152 } 1153 1154 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1155 case COFF::reloc_type: \ 1156 return #reloc_type; 1157 1158 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const { 1159 switch (getMachine()) { 1160 case COFF::IMAGE_FILE_MACHINE_AMD64: 1161 switch (Type) { 1162 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1163 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1164 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1165 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1166 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1167 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1168 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1169 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1170 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1171 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1172 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1173 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1174 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1175 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1176 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1177 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1178 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1179 default: 1180 return "Unknown"; 1181 } 1182 break; 1183 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1184 switch (Type) { 1185 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1186 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1187 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1188 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1189 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1190 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1191 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1192 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1193 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32); 1194 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1195 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1196 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1197 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1198 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1199 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1200 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1201 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR); 1202 default: 1203 return "Unknown"; 1204 } 1205 break; 1206 case COFF::IMAGE_FILE_MACHINE_ARM64: 1207 switch (Type) { 1208 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE); 1209 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32); 1210 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB); 1211 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26); 1212 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21); 1213 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21); 1214 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A); 1215 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L); 1216 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL); 1217 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A); 1218 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A); 1219 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L); 1220 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN); 1221 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION); 1222 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64); 1223 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19); 1224 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14); 1225 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32); 1226 default: 1227 return "Unknown"; 1228 } 1229 break; 1230 case COFF::IMAGE_FILE_MACHINE_I386: 1231 switch (Type) { 1232 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1233 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1234 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1235 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1236 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1237 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1238 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1239 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1240 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1241 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1242 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1243 default: 1244 return "Unknown"; 1245 } 1246 break; 1247 default: 1248 return "Unknown"; 1249 } 1250 } 1251 1252 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1253 1254 void COFFObjectFile::getRelocationTypeName( 1255 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1256 const coff_relocation *Reloc = toRel(Rel); 1257 StringRef Res = getRelocationTypeName(Reloc->Type); 1258 Result.append(Res.begin(), Res.end()); 1259 } 1260 1261 bool COFFObjectFile::isRelocatableObject() const { 1262 return !DataDirectory; 1263 } 1264 1265 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const { 1266 return StringSwitch<StringRef>(Name) 1267 .Case("eh_fram", "eh_frame") 1268 .Default(Name); 1269 } 1270 1271 bool ImportDirectoryEntryRef:: 1272 operator==(const ImportDirectoryEntryRef &Other) const { 1273 return ImportTable == Other.ImportTable && Index == Other.Index; 1274 } 1275 1276 void ImportDirectoryEntryRef::moveNext() { 1277 ++Index; 1278 if (ImportTable[Index].isNull()) { 1279 Index = -1; 1280 ImportTable = nullptr; 1281 } 1282 } 1283 1284 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1285 const coff_import_directory_table_entry *&Result) const { 1286 return getObject(Result, OwningObject->Data, ImportTable + Index); 1287 } 1288 1289 static imported_symbol_iterator 1290 makeImportedSymbolIterator(const COFFObjectFile *Object, 1291 uintptr_t Ptr, int Index) { 1292 if (Object->getBytesInAddress() == 4) { 1293 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1294 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1295 } 1296 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1297 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1298 } 1299 1300 static imported_symbol_iterator 1301 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1302 uintptr_t IntPtr = 0; 1303 Object->getRvaPtr(RVA, IntPtr); 1304 return makeImportedSymbolIterator(Object, IntPtr, 0); 1305 } 1306 1307 static imported_symbol_iterator 1308 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1309 uintptr_t IntPtr = 0; 1310 Object->getRvaPtr(RVA, IntPtr); 1311 // Forward the pointer to the last entry which is null. 1312 int Index = 0; 1313 if (Object->getBytesInAddress() == 4) { 1314 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1315 while (*Entry++) 1316 ++Index; 1317 } else { 1318 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1319 while (*Entry++) 1320 ++Index; 1321 } 1322 return makeImportedSymbolIterator(Object, IntPtr, Index); 1323 } 1324 1325 imported_symbol_iterator 1326 ImportDirectoryEntryRef::imported_symbol_begin() const { 1327 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1328 OwningObject); 1329 } 1330 1331 imported_symbol_iterator 1332 ImportDirectoryEntryRef::imported_symbol_end() const { 1333 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1334 OwningObject); 1335 } 1336 1337 iterator_range<imported_symbol_iterator> 1338 ImportDirectoryEntryRef::imported_symbols() const { 1339 return make_range(imported_symbol_begin(), imported_symbol_end()); 1340 } 1341 1342 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1343 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1344 OwningObject); 1345 } 1346 1347 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1348 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1349 OwningObject); 1350 } 1351 1352 iterator_range<imported_symbol_iterator> 1353 ImportDirectoryEntryRef::lookup_table_symbols() const { 1354 return make_range(lookup_table_begin(), lookup_table_end()); 1355 } 1356 1357 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1358 uintptr_t IntPtr = 0; 1359 if (std::error_code EC = 1360 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1361 return EC; 1362 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1363 return std::error_code(); 1364 } 1365 1366 std::error_code 1367 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1368 Result = ImportTable[Index].ImportLookupTableRVA; 1369 return std::error_code(); 1370 } 1371 1372 std::error_code 1373 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1374 Result = ImportTable[Index].ImportAddressTableRVA; 1375 return std::error_code(); 1376 } 1377 1378 bool DelayImportDirectoryEntryRef:: 1379 operator==(const DelayImportDirectoryEntryRef &Other) const { 1380 return Table == Other.Table && Index == Other.Index; 1381 } 1382 1383 void DelayImportDirectoryEntryRef::moveNext() { 1384 ++Index; 1385 } 1386 1387 imported_symbol_iterator 1388 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1389 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1390 OwningObject); 1391 } 1392 1393 imported_symbol_iterator 1394 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1395 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1396 OwningObject); 1397 } 1398 1399 iterator_range<imported_symbol_iterator> 1400 DelayImportDirectoryEntryRef::imported_symbols() const { 1401 return make_range(imported_symbol_begin(), imported_symbol_end()); 1402 } 1403 1404 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1405 uintptr_t IntPtr = 0; 1406 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1407 return EC; 1408 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1409 return std::error_code(); 1410 } 1411 1412 std::error_code DelayImportDirectoryEntryRef:: 1413 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1414 Result = &Table[Index]; 1415 return std::error_code(); 1416 } 1417 1418 std::error_code DelayImportDirectoryEntryRef:: 1419 getImportAddress(int AddrIndex, uint64_t &Result) const { 1420 uint32_t RVA = Table[Index].DelayImportAddressTable + 1421 AddrIndex * (OwningObject->is64() ? 8 : 4); 1422 uintptr_t IntPtr = 0; 1423 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1424 return EC; 1425 if (OwningObject->is64()) 1426 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1427 else 1428 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1429 return std::error_code(); 1430 } 1431 1432 bool ExportDirectoryEntryRef:: 1433 operator==(const ExportDirectoryEntryRef &Other) const { 1434 return ExportTable == Other.ExportTable && Index == Other.Index; 1435 } 1436 1437 void ExportDirectoryEntryRef::moveNext() { 1438 ++Index; 1439 } 1440 1441 // Returns the name of the current export symbol. If the symbol is exported only 1442 // by ordinal, the empty string is set as a result. 1443 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1444 uintptr_t IntPtr = 0; 1445 if (std::error_code EC = 1446 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1447 return EC; 1448 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1449 return std::error_code(); 1450 } 1451 1452 // Returns the starting ordinal number. 1453 std::error_code 1454 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1455 Result = ExportTable->OrdinalBase; 1456 return std::error_code(); 1457 } 1458 1459 // Returns the export ordinal of the current export symbol. 1460 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1461 Result = ExportTable->OrdinalBase + Index; 1462 return std::error_code(); 1463 } 1464 1465 // Returns the address of the current export symbol. 1466 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1467 uintptr_t IntPtr = 0; 1468 if (std::error_code EC = 1469 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1470 return EC; 1471 const export_address_table_entry *entry = 1472 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1473 Result = entry[Index].ExportRVA; 1474 return std::error_code(); 1475 } 1476 1477 // Returns the name of the current export symbol. If the symbol is exported only 1478 // by ordinal, the empty string is set as a result. 1479 std::error_code 1480 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1481 uintptr_t IntPtr = 0; 1482 if (std::error_code EC = 1483 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1484 return EC; 1485 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1486 1487 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1488 int Offset = 0; 1489 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1490 I < E; ++I, ++Offset) { 1491 if (*I != Index) 1492 continue; 1493 if (std::error_code EC = 1494 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1495 return EC; 1496 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1497 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1498 return EC; 1499 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1500 return std::error_code(); 1501 } 1502 Result = ""; 1503 return std::error_code(); 1504 } 1505 1506 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1507 const data_directory *DataEntry; 1508 if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 1509 return EC; 1510 uint32_t RVA; 1511 if (auto EC = getExportRVA(RVA)) 1512 return EC; 1513 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1514 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1515 Result = (Begin <= RVA && RVA < End); 1516 return std::error_code(); 1517 } 1518 1519 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1520 uint32_t RVA; 1521 if (auto EC = getExportRVA(RVA)) 1522 return EC; 1523 uintptr_t IntPtr = 0; 1524 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1525 return EC; 1526 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1527 return std::error_code(); 1528 } 1529 1530 bool ImportedSymbolRef:: 1531 operator==(const ImportedSymbolRef &Other) const { 1532 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1533 && Index == Other.Index; 1534 } 1535 1536 void ImportedSymbolRef::moveNext() { 1537 ++Index; 1538 } 1539 1540 std::error_code 1541 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1542 uint32_t RVA; 1543 if (Entry32) { 1544 // If a symbol is imported only by ordinal, it has no name. 1545 if (Entry32[Index].isOrdinal()) 1546 return std::error_code(); 1547 RVA = Entry32[Index].getHintNameRVA(); 1548 } else { 1549 if (Entry64[Index].isOrdinal()) 1550 return std::error_code(); 1551 RVA = Entry64[Index].getHintNameRVA(); 1552 } 1553 uintptr_t IntPtr = 0; 1554 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1555 return EC; 1556 // +2 because the first two bytes is hint. 1557 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1558 return std::error_code(); 1559 } 1560 1561 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const { 1562 if (Entry32) 1563 Result = Entry32[Index].isOrdinal(); 1564 else 1565 Result = Entry64[Index].isOrdinal(); 1566 return std::error_code(); 1567 } 1568 1569 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1570 if (Entry32) 1571 Result = Entry32[Index].getHintNameRVA(); 1572 else 1573 Result = Entry64[Index].getHintNameRVA(); 1574 return std::error_code(); 1575 } 1576 1577 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1578 uint32_t RVA; 1579 if (Entry32) { 1580 if (Entry32[Index].isOrdinal()) { 1581 Result = Entry32[Index].getOrdinal(); 1582 return std::error_code(); 1583 } 1584 RVA = Entry32[Index].getHintNameRVA(); 1585 } else { 1586 if (Entry64[Index].isOrdinal()) { 1587 Result = Entry64[Index].getOrdinal(); 1588 return std::error_code(); 1589 } 1590 RVA = Entry64[Index].getHintNameRVA(); 1591 } 1592 uintptr_t IntPtr = 0; 1593 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1594 return EC; 1595 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1596 return std::error_code(); 1597 } 1598 1599 Expected<std::unique_ptr<COFFObjectFile>> 1600 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1601 std::error_code EC; 1602 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1603 if (EC) 1604 return errorCodeToError(EC); 1605 return std::move(Ret); 1606 } 1607 1608 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1609 return Header == Other.Header && Index == Other.Index; 1610 } 1611 1612 void BaseRelocRef::moveNext() { 1613 // Header->BlockSize is the size of the current block, including the 1614 // size of the header itself. 1615 uint32_t Size = sizeof(*Header) + 1616 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1617 if (Size == Header->BlockSize) { 1618 // .reloc contains a list of base relocation blocks. Each block 1619 // consists of the header followed by entries. The header contains 1620 // how many entories will follow. When we reach the end of the 1621 // current block, proceed to the next block. 1622 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1623 reinterpret_cast<const uint8_t *>(Header) + Size); 1624 Index = 0; 1625 } else { 1626 ++Index; 1627 } 1628 } 1629 1630 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1631 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1632 Type = Entry[Index].getType(); 1633 return std::error_code(); 1634 } 1635 1636 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1637 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1638 Result = Header->PageRVA + Entry[Index].getOffset(); 1639 return std::error_code(); 1640 } 1641 1642 #define RETURN_IF_ERROR(Expr) \ 1643 do { \ 1644 Error E = (Expr); \ 1645 if (E) \ 1646 return std::move(E); \ 1647 } while (0) 1648 1649 Expected<ArrayRef<UTF16>> 1650 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) { 1651 BinaryStreamReader Reader = BinaryStreamReader(BBS); 1652 Reader.setOffset(Offset); 1653 uint16_t Length; 1654 RETURN_IF_ERROR(Reader.readInteger(Length)); 1655 ArrayRef<UTF16> RawDirString; 1656 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length)); 1657 return RawDirString; 1658 } 1659 1660 Expected<ArrayRef<UTF16>> 1661 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) { 1662 return getDirStringAtOffset(Entry.Identifier.getNameOffset()); 1663 } 1664 1665 Expected<const coff_resource_dir_table &> 1666 ResourceSectionRef::getTableAtOffset(uint32_t Offset) { 1667 const coff_resource_dir_table *Table = nullptr; 1668 1669 BinaryStreamReader Reader(BBS); 1670 Reader.setOffset(Offset); 1671 RETURN_IF_ERROR(Reader.readObject(Table)); 1672 assert(Table != nullptr); 1673 return *Table; 1674 } 1675 1676 Expected<const coff_resource_dir_entry &> 1677 ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) { 1678 const coff_resource_dir_entry *Entry = nullptr; 1679 1680 BinaryStreamReader Reader(BBS); 1681 Reader.setOffset(Offset); 1682 RETURN_IF_ERROR(Reader.readObject(Entry)); 1683 assert(Entry != nullptr); 1684 return *Entry; 1685 } 1686 1687 Expected<const coff_resource_data_entry &> 1688 ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) { 1689 const coff_resource_data_entry *Entry = nullptr; 1690 1691 BinaryStreamReader Reader(BBS); 1692 Reader.setOffset(Offset); 1693 RETURN_IF_ERROR(Reader.readObject(Entry)); 1694 assert(Entry != nullptr); 1695 return *Entry; 1696 } 1697 1698 Expected<const coff_resource_dir_table &> 1699 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) { 1700 assert(Entry.Offset.isSubDir()); 1701 return getTableAtOffset(Entry.Offset.value()); 1702 } 1703 1704 Expected<const coff_resource_data_entry &> 1705 ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) { 1706 assert(!Entry.Offset.isSubDir()); 1707 return getDataEntryAtOffset(Entry.Offset.value()); 1708 } 1709 1710 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() { 1711 return getTableAtOffset(0); 1712 } 1713 1714 Expected<const coff_resource_dir_entry &> 1715 ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table, 1716 uint32_t Index) { 1717 if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries)) 1718 return createStringError(object_error::parse_failed, "index out of range"); 1719 const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table); 1720 ptrdiff_t TableOffset = TablePtr - BBS.data().data(); 1721 return getTableEntryAtOffset(TableOffset + sizeof(Table) + 1722 Index * sizeof(coff_resource_dir_entry)); 1723 } 1724 1725 Error ResourceSectionRef::load(const COFFObjectFile *O) { 1726 for (const SectionRef &S : O->sections()) { 1727 Expected<StringRef> Name = S.getName(); 1728 if (!Name) 1729 return Name.takeError(); 1730 1731 if (*Name == ".rsrc" || *Name == ".rsrc$01") 1732 return load(O, S); 1733 } 1734 return createStringError(object_error::parse_failed, 1735 "no resource section found"); 1736 } 1737 1738 Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) { 1739 Obj = O; 1740 Section = S; 1741 Expected<StringRef> Contents = Section.getContents(); 1742 if (!Contents) 1743 return Contents.takeError(); 1744 BBS = BinaryByteStream(*Contents, support::little); 1745 const coff_section *COFFSect = Obj->getCOFFSection(Section); 1746 ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect); 1747 Relocs.reserve(OrigRelocs.size()); 1748 for (const coff_relocation &R : OrigRelocs) 1749 Relocs.push_back(&R); 1750 std::sort(Relocs.begin(), Relocs.end(), 1751 [](const coff_relocation *A, const coff_relocation *B) { 1752 return A->VirtualAddress < B->VirtualAddress; 1753 }); 1754 return Error::success(); 1755 } 1756 1757 Expected<StringRef> 1758 ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) { 1759 if (!Obj) 1760 return createStringError(object_error::parse_failed, "no object provided"); 1761 1762 // Find a potential relocation at the DataRVA field (first member of 1763 // the coff_resource_data_entry struct). 1764 const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry); 1765 ptrdiff_t EntryOffset = EntryPtr - BBS.data().data(); 1766 coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0), 1767 ulittle16_t(0)}; 1768 auto RelocsForOffset = 1769 std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget, 1770 [](const coff_relocation *A, const coff_relocation *B) { 1771 return A->VirtualAddress < B->VirtualAddress; 1772 }); 1773 1774 if (RelocsForOffset.first != RelocsForOffset.second) { 1775 // We found a relocation with the right offset. Check that it does have 1776 // the expected type. 1777 const coff_relocation &R = **RelocsForOffset.first; 1778 uint16_t RVAReloc; 1779 switch (Obj->getMachine()) { 1780 case COFF::IMAGE_FILE_MACHINE_I386: 1781 RVAReloc = COFF::IMAGE_REL_I386_DIR32NB; 1782 break; 1783 case COFF::IMAGE_FILE_MACHINE_AMD64: 1784 RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB; 1785 break; 1786 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1787 RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB; 1788 break; 1789 case COFF::IMAGE_FILE_MACHINE_ARM64: 1790 RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB; 1791 break; 1792 default: 1793 return createStringError(object_error::parse_failed, 1794 "unsupported architecture"); 1795 } 1796 if (R.Type != RVAReloc) 1797 return createStringError(object_error::parse_failed, 1798 "unexpected relocation type"); 1799 // Get the relocation's symbol 1800 Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex); 1801 if (!Sym) 1802 return Sym.takeError(); 1803 // And the symbol's section 1804 Expected<const coff_section *> Section = 1805 Obj->getSection(Sym->getSectionNumber()); 1806 if (!Section) 1807 return Section.takeError(); 1808 // Add the initial value of DataRVA to the symbol's offset to find the 1809 // data it points at. 1810 uint64_t Offset = Entry.DataRVA + Sym->getValue(); 1811 ArrayRef<uint8_t> Contents; 1812 if (Error E = Obj->getSectionContents(*Section, Contents)) 1813 return std::move(E); 1814 if (Offset + Entry.DataSize > Contents.size()) 1815 return createStringError(object_error::parse_failed, 1816 "data outside of section"); 1817 // Return a reference to the data inside the section. 1818 return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset, 1819 Entry.DataSize); 1820 } else { 1821 // Relocatable objects need a relocation for the DataRVA field. 1822 if (Obj->isRelocatableObject()) 1823 return createStringError(object_error::parse_failed, 1824 "no relocation found for DataRVA"); 1825 1826 // Locate the section that contains the address that DataRVA points at. 1827 uint64_t VA = Entry.DataRVA + Obj->getImageBase(); 1828 for (const SectionRef &S : Obj->sections()) { 1829 if (VA >= S.getAddress() && 1830 VA + Entry.DataSize <= S.getAddress() + S.getSize()) { 1831 uint64_t Offset = VA - S.getAddress(); 1832 Expected<StringRef> Contents = S.getContents(); 1833 if (!Contents) 1834 return Contents.takeError(); 1835 return Contents->slice(Offset, Offset + Entry.DataSize); 1836 } 1837 } 1838 return createStringError(object_error::parse_failed, 1839 "address not found in image"); 1840 } 1841 } 1842