1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/StringSwitch.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/ADT/iterator_range.h" 19 #include "llvm/Support/COFF.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <cctype> 23 #include <limits> 24 25 using namespace llvm; 26 using namespace object; 27 28 using support::ulittle16_t; 29 using support::ulittle32_t; 30 using support::ulittle64_t; 31 using support::little16_t; 32 33 // Returns false if size is greater than the buffer size. And sets ec. 34 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 35 if (M.getBufferSize() < Size) { 36 EC = object_error::unexpected_eof; 37 return false; 38 } 39 return true; 40 } 41 42 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 43 const uint64_t Size) { 44 if (Addr + Size < Addr || Addr + Size < Size || 45 Addr + Size > uintptr_t(M.getBufferEnd()) || 46 Addr < uintptr_t(M.getBufferStart())) { 47 return object_error::unexpected_eof; 48 } 49 return std::error_code(); 50 } 51 52 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 53 // Returns unexpected_eof if error. 54 template <typename T> 55 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 56 const void *Ptr, 57 const uint64_t Size = sizeof(T)) { 58 uintptr_t Addr = uintptr_t(Ptr); 59 if (std::error_code EC = checkOffset(M, Addr, Size)) 60 return EC; 61 Obj = reinterpret_cast<const T *>(Addr); 62 return std::error_code(); 63 } 64 65 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 66 // prefixed slashes. 67 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 68 assert(Str.size() <= 6 && "String too long, possible overflow."); 69 if (Str.size() > 6) 70 return true; 71 72 uint64_t Value = 0; 73 while (!Str.empty()) { 74 unsigned CharVal; 75 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 76 CharVal = Str[0] - 'A'; 77 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 78 CharVal = Str[0] - 'a' + 26; 79 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 80 CharVal = Str[0] - '0' + 52; 81 else if (Str[0] == '+') // 62 82 CharVal = 62; 83 else if (Str[0] == '/') // 63 84 CharVal = 63; 85 else 86 return true; 87 88 Value = (Value * 64) + CharVal; 89 Str = Str.substr(1); 90 } 91 92 if (Value > std::numeric_limits<uint32_t>::max()) 93 return true; 94 95 Result = static_cast<uint32_t>(Value); 96 return false; 97 } 98 99 template <typename coff_symbol_type> 100 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 101 const coff_symbol_type *Addr = 102 reinterpret_cast<const coff_symbol_type *>(Ref.p); 103 104 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 105 #ifndef NDEBUG 106 // Verify that the symbol points to a valid entry in the symbol table. 107 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 108 109 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 110 "Symbol did not point to the beginning of a symbol"); 111 #endif 112 113 return Addr; 114 } 115 116 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 117 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 118 119 # ifndef NDEBUG 120 // Verify that the section points to a valid entry in the section table. 121 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 122 report_fatal_error("Section was outside of section table."); 123 124 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 125 assert(Offset % sizeof(coff_section) == 0 && 126 "Section did not point to the beginning of a section"); 127 # endif 128 129 return Addr; 130 } 131 132 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 133 auto End = reinterpret_cast<uintptr_t>(StringTable); 134 if (SymbolTable16) { 135 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 136 Symb += 1 + Symb->NumberOfAuxSymbols; 137 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 138 } else if (SymbolTable32) { 139 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 140 Symb += 1 + Symb->NumberOfAuxSymbols; 141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 142 } else { 143 llvm_unreachable("no symbol table pointer!"); 144 } 145 } 146 147 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 148 COFFSymbolRef Symb = getCOFFSymbol(Ref); 149 StringRef Result; 150 std::error_code EC = getSymbolName(Symb, Result); 151 if (EC) 152 return errorCodeToError(EC); 153 return Result; 154 } 155 156 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 157 return getCOFFSymbol(Ref).getValue(); 158 } 159 160 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 161 uint64_t Result = getSymbolValue(Ref); 162 COFFSymbolRef Symb = getCOFFSymbol(Ref); 163 int32_t SectionNumber = Symb.getSectionNumber(); 164 165 if (Symb.isAnyUndefined() || Symb.isCommon() || 166 COFF::isReservedSectionNumber(SectionNumber)) 167 return Result; 168 169 const coff_section *Section = nullptr; 170 if (std::error_code EC = getSection(SectionNumber, Section)) 171 return errorCodeToError(EC); 172 Result += Section->VirtualAddress; 173 174 // The section VirtualAddress does not include ImageBase, and we want to 175 // return virtual addresses. 176 Result += getImageBase(); 177 178 return Result; 179 } 180 181 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 182 COFFSymbolRef Symb = getCOFFSymbol(Ref); 183 int32_t SectionNumber = Symb.getSectionNumber(); 184 185 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 186 return SymbolRef::ST_Function; 187 if (Symb.isAnyUndefined()) 188 return SymbolRef::ST_Unknown; 189 if (Symb.isCommon()) 190 return SymbolRef::ST_Data; 191 if (Symb.isFileRecord()) 192 return SymbolRef::ST_File; 193 194 // TODO: perhaps we need a new symbol type ST_Section. 195 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 196 return SymbolRef::ST_Debug; 197 198 if (!COFF::isReservedSectionNumber(SectionNumber)) 199 return SymbolRef::ST_Data; 200 201 return SymbolRef::ST_Other; 202 } 203 204 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 205 COFFSymbolRef Symb = getCOFFSymbol(Ref); 206 uint32_t Result = SymbolRef::SF_None; 207 208 if (Symb.isExternal() || Symb.isWeakExternal()) 209 Result |= SymbolRef::SF_Global; 210 211 if (Symb.isWeakExternal()) 212 Result |= SymbolRef::SF_Weak; 213 214 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 215 Result |= SymbolRef::SF_Absolute; 216 217 if (Symb.isFileRecord()) 218 Result |= SymbolRef::SF_FormatSpecific; 219 220 if (Symb.isSectionDefinition()) 221 Result |= SymbolRef::SF_FormatSpecific; 222 223 if (Symb.isCommon()) 224 Result |= SymbolRef::SF_Common; 225 226 if (Symb.isAnyUndefined()) 227 Result |= SymbolRef::SF_Undefined; 228 229 return Result; 230 } 231 232 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 233 COFFSymbolRef Symb = getCOFFSymbol(Ref); 234 return Symb.getValue(); 235 } 236 237 Expected<section_iterator> 238 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 239 COFFSymbolRef Symb = getCOFFSymbol(Ref); 240 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 241 return section_end(); 242 const coff_section *Sec = nullptr; 243 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 244 return errorCodeToError(EC); 245 DataRefImpl Ret; 246 Ret.p = reinterpret_cast<uintptr_t>(Sec); 247 return section_iterator(SectionRef(Ret, this)); 248 } 249 250 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 251 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 252 return Symb.getSectionNumber(); 253 } 254 255 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 256 const coff_section *Sec = toSec(Ref); 257 Sec += 1; 258 Ref.p = reinterpret_cast<uintptr_t>(Sec); 259 } 260 261 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 262 StringRef &Result) const { 263 const coff_section *Sec = toSec(Ref); 264 return getSectionName(Sec, Result); 265 } 266 267 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 268 const coff_section *Sec = toSec(Ref); 269 uint64_t Result = Sec->VirtualAddress; 270 271 // The section VirtualAddress does not include ImageBase, and we want to 272 // return virtual addresses. 273 Result += getImageBase(); 274 return Result; 275 } 276 277 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 278 return getSectionSize(toSec(Ref)); 279 } 280 281 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 282 StringRef &Result) const { 283 const coff_section *Sec = toSec(Ref); 284 ArrayRef<uint8_t> Res; 285 std::error_code EC = getSectionContents(Sec, Res); 286 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 287 return EC; 288 } 289 290 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 291 const coff_section *Sec = toSec(Ref); 292 return Sec->getAlignment(); 293 } 294 295 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 296 return false; 297 } 298 299 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 300 const coff_section *Sec = toSec(Ref); 301 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 302 } 303 304 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 305 const coff_section *Sec = toSec(Ref); 306 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 307 } 308 309 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 310 const coff_section *Sec = toSec(Ref); 311 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 312 COFF::IMAGE_SCN_MEM_READ | 313 COFF::IMAGE_SCN_MEM_WRITE; 314 return (Sec->Characteristics & BssFlags) == BssFlags; 315 } 316 317 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 318 uintptr_t Offset = 319 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 320 assert((Offset % sizeof(coff_section)) == 0); 321 return (Offset / sizeof(coff_section)) + 1; 322 } 323 324 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 325 const coff_section *Sec = toSec(Ref); 326 // In COFF, a virtual section won't have any in-file 327 // content, so the file pointer to the content will be zero. 328 return Sec->PointerToRawData == 0; 329 } 330 331 static uint32_t getNumberOfRelocations(const coff_section *Sec, 332 MemoryBufferRef M, const uint8_t *base) { 333 // The field for the number of relocations in COFF section table is only 334 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 335 // NumberOfRelocations field, and the actual relocation count is stored in the 336 // VirtualAddress field in the first relocation entry. 337 if (Sec->hasExtendedRelocations()) { 338 const coff_relocation *FirstReloc; 339 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 340 base + Sec->PointerToRelocations))) 341 return 0; 342 // -1 to exclude this first relocation entry. 343 return FirstReloc->VirtualAddress - 1; 344 } 345 return Sec->NumberOfRelocations; 346 } 347 348 static const coff_relocation * 349 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 350 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 351 if (!NumRelocs) 352 return nullptr; 353 auto begin = reinterpret_cast<const coff_relocation *>( 354 Base + Sec->PointerToRelocations); 355 if (Sec->hasExtendedRelocations()) { 356 // Skip the first relocation entry repurposed to store the number of 357 // relocations. 358 begin++; 359 } 360 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 361 return nullptr; 362 return begin; 363 } 364 365 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 366 const coff_section *Sec = toSec(Ref); 367 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 368 if (begin && Sec->VirtualAddress != 0) 369 report_fatal_error("Sections with relocations should have an address of 0"); 370 DataRefImpl Ret; 371 Ret.p = reinterpret_cast<uintptr_t>(begin); 372 return relocation_iterator(RelocationRef(Ret, this)); 373 } 374 375 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 376 const coff_section *Sec = toSec(Ref); 377 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 378 if (I) 379 I += getNumberOfRelocations(Sec, Data, base()); 380 DataRefImpl Ret; 381 Ret.p = reinterpret_cast<uintptr_t>(I); 382 return relocation_iterator(RelocationRef(Ret, this)); 383 } 384 385 // Initialize the pointer to the symbol table. 386 std::error_code COFFObjectFile::initSymbolTablePtr() { 387 if (COFFHeader) 388 if (std::error_code EC = getObject( 389 SymbolTable16, Data, base() + getPointerToSymbolTable(), 390 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 391 return EC; 392 393 if (COFFBigObjHeader) 394 if (std::error_code EC = getObject( 395 SymbolTable32, Data, base() + getPointerToSymbolTable(), 396 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 397 return EC; 398 399 // Find string table. The first four byte of the string table contains the 400 // total size of the string table, including the size field itself. If the 401 // string table is empty, the value of the first four byte would be 4. 402 uint32_t StringTableOffset = getPointerToSymbolTable() + 403 getNumberOfSymbols() * getSymbolTableEntrySize(); 404 const uint8_t *StringTableAddr = base() + StringTableOffset; 405 const ulittle32_t *StringTableSizePtr; 406 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 407 return EC; 408 StringTableSize = *StringTableSizePtr; 409 if (std::error_code EC = 410 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 411 return EC; 412 413 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 414 // tools like cvtres write a size of 0 for an empty table instead of 4. 415 if (StringTableSize < 4) 416 StringTableSize = 4; 417 418 // Check that the string table is null terminated if has any in it. 419 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 420 return object_error::parse_failed; 421 return std::error_code(); 422 } 423 424 uint64_t COFFObjectFile::getImageBase() const { 425 if (PE32Header) 426 return PE32Header->ImageBase; 427 else if (PE32PlusHeader) 428 return PE32PlusHeader->ImageBase; 429 // This actually comes up in practice. 430 return 0; 431 } 432 433 // Returns the file offset for the given VA. 434 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 435 uint64_t ImageBase = getImageBase(); 436 uint64_t Rva = Addr - ImageBase; 437 assert(Rva <= UINT32_MAX); 438 return getRvaPtr((uint32_t)Rva, Res); 439 } 440 441 // Returns the file offset for the given RVA. 442 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 443 for (const SectionRef &S : sections()) { 444 const coff_section *Section = getCOFFSection(S); 445 uint32_t SectionStart = Section->VirtualAddress; 446 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 447 if (SectionStart <= Addr && Addr < SectionEnd) { 448 uint32_t Offset = Addr - SectionStart; 449 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 450 return std::error_code(); 451 } 452 } 453 return object_error::parse_failed; 454 } 455 456 std::error_code 457 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 458 ArrayRef<uint8_t> &Contents) const { 459 for (const SectionRef &S : sections()) { 460 const coff_section *Section = getCOFFSection(S); 461 uint32_t SectionStart = Section->VirtualAddress; 462 // Check if this RVA is within the section bounds. Be careful about integer 463 // overflow. 464 uint32_t OffsetIntoSection = RVA - SectionStart; 465 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 466 Size <= Section->VirtualSize - OffsetIntoSection) { 467 uintptr_t Begin = 468 uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection; 469 Contents = 470 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 471 return std::error_code(); 472 } 473 } 474 return object_error::parse_failed; 475 } 476 477 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 478 // table entry. 479 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 480 StringRef &Name) const { 481 uintptr_t IntPtr = 0; 482 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 483 return EC; 484 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 485 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 486 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 487 return std::error_code(); 488 } 489 490 std::error_code COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 491 const debug_pdb_info *&PDBInfo, 492 StringRef &PDBFileName) const { 493 ArrayRef<uint8_t> InfoBytes; 494 if (std::error_code EC = getRvaAndSizeAsBytes( 495 DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes)) 496 return EC; 497 if (InfoBytes.size() < sizeof(debug_pdb_info) + 1) 498 return object_error::parse_failed; 499 PDBInfo = reinterpret_cast<const debug_pdb_info *>(InfoBytes.data()); 500 InfoBytes = InfoBytes.drop_front(sizeof(debug_pdb_info)); 501 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 502 InfoBytes.size()); 503 // Truncate the name at the first null byte. Ignore any padding. 504 PDBFileName = PDBFileName.split('\0').first; 505 return std::error_code(); 506 } 507 508 std::error_code COFFObjectFile::getDebugPDBInfo(const debug_pdb_info *&PDBInfo, 509 StringRef &PDBFileName) const { 510 for (const debug_directory &D : debug_directories()) 511 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 512 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 513 // If we get here, there is no PDB info to return. 514 PDBInfo = nullptr; 515 PDBFileName = StringRef(); 516 return std::error_code(); 517 } 518 519 // Find the import table. 520 std::error_code COFFObjectFile::initImportTablePtr() { 521 // First, we get the RVA of the import table. If the file lacks a pointer to 522 // the import table, do nothing. 523 const data_directory *DataEntry; 524 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 525 return std::error_code(); 526 527 // Do nothing if the pointer to import table is NULL. 528 if (DataEntry->RelativeVirtualAddress == 0) 529 return std::error_code(); 530 531 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 532 533 // Find the section that contains the RVA. This is needed because the RVA is 534 // the import table's memory address which is different from its file offset. 535 uintptr_t IntPtr = 0; 536 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 537 return EC; 538 if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size)) 539 return EC; 540 ImportDirectory = reinterpret_cast< 541 const coff_import_directory_table_entry *>(IntPtr); 542 return std::error_code(); 543 } 544 545 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 546 std::error_code COFFObjectFile::initDelayImportTablePtr() { 547 const data_directory *DataEntry; 548 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 549 return std::error_code(); 550 if (DataEntry->RelativeVirtualAddress == 0) 551 return std::error_code(); 552 553 uint32_t RVA = DataEntry->RelativeVirtualAddress; 554 NumberOfDelayImportDirectory = DataEntry->Size / 555 sizeof(delay_import_directory_table_entry) - 1; 556 557 uintptr_t IntPtr = 0; 558 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 559 return EC; 560 DelayImportDirectory = reinterpret_cast< 561 const delay_import_directory_table_entry *>(IntPtr); 562 return std::error_code(); 563 } 564 565 // Find the export table. 566 std::error_code COFFObjectFile::initExportTablePtr() { 567 // First, we get the RVA of the export table. If the file lacks a pointer to 568 // the export table, do nothing. 569 const data_directory *DataEntry; 570 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 571 return std::error_code(); 572 573 // Do nothing if the pointer to export table is NULL. 574 if (DataEntry->RelativeVirtualAddress == 0) 575 return std::error_code(); 576 577 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 578 uintptr_t IntPtr = 0; 579 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 580 return EC; 581 ExportDirectory = 582 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 583 return std::error_code(); 584 } 585 586 std::error_code COFFObjectFile::initBaseRelocPtr() { 587 const data_directory *DataEntry; 588 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 589 return std::error_code(); 590 if (DataEntry->RelativeVirtualAddress == 0) 591 return std::error_code(); 592 593 uintptr_t IntPtr = 0; 594 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 595 return EC; 596 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 597 IntPtr); 598 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 599 IntPtr + DataEntry->Size); 600 return std::error_code(); 601 } 602 603 std::error_code COFFObjectFile::initDebugDirectoryPtr() { 604 // Get the RVA of the debug directory. Do nothing if it does not exist. 605 const data_directory *DataEntry; 606 if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry)) 607 return std::error_code(); 608 609 // Do nothing if the RVA is NULL. 610 if (DataEntry->RelativeVirtualAddress == 0) 611 return std::error_code(); 612 613 // Check that the size is a multiple of the entry size. 614 if (DataEntry->Size % sizeof(debug_directory) != 0) 615 return object_error::parse_failed; 616 617 uintptr_t IntPtr = 0; 618 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 619 return EC; 620 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 621 if (std::error_code EC = getRvaPtr( 622 DataEntry->RelativeVirtualAddress + DataEntry->Size, IntPtr)) 623 return EC; 624 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(IntPtr); 625 return std::error_code(); 626 } 627 628 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 629 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 630 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 631 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 632 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 633 ImportDirectory(nullptr), 634 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 635 ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 636 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) { 637 // Check that we at least have enough room for a header. 638 if (!checkSize(Data, EC, sizeof(coff_file_header))) 639 return; 640 641 // The current location in the file where we are looking at. 642 uint64_t CurPtr = 0; 643 644 // PE header is optional and is present only in executables. If it exists, 645 // it is placed right after COFF header. 646 bool HasPEHeader = false; 647 648 // Check if this is a PE/COFF file. 649 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 650 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 651 // PE signature to find 'normal' COFF header. 652 const auto *DH = reinterpret_cast<const dos_header *>(base()); 653 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 654 CurPtr = DH->AddressOfNewExeHeader; 655 // Check the PE magic bytes. ("PE\0\0") 656 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 657 EC = object_error::parse_failed; 658 return; 659 } 660 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 661 HasPEHeader = true; 662 } 663 } 664 665 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 666 return; 667 668 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 669 // import libraries share a common prefix but bigobj is more restrictive. 670 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 671 COFFHeader->NumberOfSections == uint16_t(0xffff) && 672 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 673 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 674 return; 675 676 // Verify that we are dealing with bigobj. 677 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 678 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 679 sizeof(COFF::BigObjMagic)) == 0) { 680 COFFHeader = nullptr; 681 CurPtr += sizeof(coff_bigobj_file_header); 682 } else { 683 // It's not a bigobj. 684 COFFBigObjHeader = nullptr; 685 } 686 } 687 if (COFFHeader) { 688 // The prior checkSize call may have failed. This isn't a hard error 689 // because we were just trying to sniff out bigobj. 690 EC = std::error_code(); 691 CurPtr += sizeof(coff_file_header); 692 693 if (COFFHeader->isImportLibrary()) 694 return; 695 } 696 697 if (HasPEHeader) { 698 const pe32_header *Header; 699 if ((EC = getObject(Header, Data, base() + CurPtr))) 700 return; 701 702 const uint8_t *DataDirAddr; 703 uint64_t DataDirSize; 704 if (Header->Magic == COFF::PE32Header::PE32) { 705 PE32Header = Header; 706 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 707 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 708 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 709 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 710 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 711 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 712 } else { 713 // It's neither PE32 nor PE32+. 714 EC = object_error::parse_failed; 715 return; 716 } 717 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 718 return; 719 } 720 721 CurPtr += COFFHeader->SizeOfOptionalHeader; 722 723 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 724 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 725 return; 726 727 // Initialize the pointer to the symbol table. 728 if (getPointerToSymbolTable() != 0) { 729 if ((EC = initSymbolTablePtr())) 730 return; 731 } else { 732 // We had better not have any symbols if we don't have a symbol table. 733 if (getNumberOfSymbols() != 0) { 734 EC = object_error::parse_failed; 735 return; 736 } 737 } 738 739 // Initialize the pointer to the beginning of the import table. 740 if ((EC = initImportTablePtr())) 741 return; 742 if ((EC = initDelayImportTablePtr())) 743 return; 744 745 // Initialize the pointer to the export table. 746 if ((EC = initExportTablePtr())) 747 return; 748 749 // Initialize the pointer to the base relocation table. 750 if ((EC = initBaseRelocPtr())) 751 return; 752 753 // Initialize the pointer to the export table. 754 if ((EC = initDebugDirectoryPtr())) 755 return; 756 757 EC = std::error_code(); 758 } 759 760 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 761 DataRefImpl Ret; 762 Ret.p = getSymbolTable(); 763 return basic_symbol_iterator(SymbolRef(Ret, this)); 764 } 765 766 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 767 // The symbol table ends where the string table begins. 768 DataRefImpl Ret; 769 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 770 return basic_symbol_iterator(SymbolRef(Ret, this)); 771 } 772 773 import_directory_iterator COFFObjectFile::import_directory_begin() const { 774 if (!ImportDirectory) 775 return import_directory_end(); 776 if (ImportDirectory->isNull()) 777 return import_directory_end(); 778 return import_directory_iterator( 779 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 780 } 781 782 import_directory_iterator COFFObjectFile::import_directory_end() const { 783 return import_directory_iterator( 784 ImportDirectoryEntryRef(nullptr, -1, this)); 785 } 786 787 delay_import_directory_iterator 788 COFFObjectFile::delay_import_directory_begin() const { 789 return delay_import_directory_iterator( 790 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 791 } 792 793 delay_import_directory_iterator 794 COFFObjectFile::delay_import_directory_end() const { 795 return delay_import_directory_iterator( 796 DelayImportDirectoryEntryRef( 797 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 798 } 799 800 export_directory_iterator COFFObjectFile::export_directory_begin() const { 801 return export_directory_iterator( 802 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 803 } 804 805 export_directory_iterator COFFObjectFile::export_directory_end() const { 806 if (!ExportDirectory) 807 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 808 ExportDirectoryEntryRef Ref(ExportDirectory, 809 ExportDirectory->AddressTableEntries, this); 810 return export_directory_iterator(Ref); 811 } 812 813 section_iterator COFFObjectFile::section_begin() const { 814 DataRefImpl Ret; 815 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 816 return section_iterator(SectionRef(Ret, this)); 817 } 818 819 section_iterator COFFObjectFile::section_end() const { 820 DataRefImpl Ret; 821 int NumSections = 822 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 823 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 824 return section_iterator(SectionRef(Ret, this)); 825 } 826 827 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 828 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 829 } 830 831 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 832 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 833 } 834 835 uint8_t COFFObjectFile::getBytesInAddress() const { 836 return getArch() == Triple::x86_64 ? 8 : 4; 837 } 838 839 StringRef COFFObjectFile::getFileFormatName() const { 840 switch(getMachine()) { 841 case COFF::IMAGE_FILE_MACHINE_I386: 842 return "COFF-i386"; 843 case COFF::IMAGE_FILE_MACHINE_AMD64: 844 return "COFF-x86-64"; 845 case COFF::IMAGE_FILE_MACHINE_ARMNT: 846 return "COFF-ARM"; 847 case COFF::IMAGE_FILE_MACHINE_ARM64: 848 return "COFF-ARM64"; 849 default: 850 return "COFF-<unknown arch>"; 851 } 852 } 853 854 unsigned COFFObjectFile::getArch() const { 855 switch (getMachine()) { 856 case COFF::IMAGE_FILE_MACHINE_I386: 857 return Triple::x86; 858 case COFF::IMAGE_FILE_MACHINE_AMD64: 859 return Triple::x86_64; 860 case COFF::IMAGE_FILE_MACHINE_ARMNT: 861 return Triple::thumb; 862 case COFF::IMAGE_FILE_MACHINE_ARM64: 863 return Triple::aarch64; 864 default: 865 return Triple::UnknownArch; 866 } 867 } 868 869 iterator_range<import_directory_iterator> 870 COFFObjectFile::import_directories() const { 871 return make_range(import_directory_begin(), import_directory_end()); 872 } 873 874 iterator_range<delay_import_directory_iterator> 875 COFFObjectFile::delay_import_directories() const { 876 return make_range(delay_import_directory_begin(), 877 delay_import_directory_end()); 878 } 879 880 iterator_range<export_directory_iterator> 881 COFFObjectFile::export_directories() const { 882 return make_range(export_directory_begin(), export_directory_end()); 883 } 884 885 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 886 return make_range(base_reloc_begin(), base_reloc_end()); 887 } 888 889 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 890 Res = PE32Header; 891 return std::error_code(); 892 } 893 894 std::error_code 895 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 896 Res = PE32PlusHeader; 897 return std::error_code(); 898 } 899 900 std::error_code 901 COFFObjectFile::getDataDirectory(uint32_t Index, 902 const data_directory *&Res) const { 903 // Error if if there's no data directory or the index is out of range. 904 if (!DataDirectory) { 905 Res = nullptr; 906 return object_error::parse_failed; 907 } 908 assert(PE32Header || PE32PlusHeader); 909 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 910 : PE32PlusHeader->NumberOfRvaAndSize; 911 if (Index >= NumEnt) { 912 Res = nullptr; 913 return object_error::parse_failed; 914 } 915 Res = &DataDirectory[Index]; 916 return std::error_code(); 917 } 918 919 std::error_code COFFObjectFile::getSection(int32_t Index, 920 const coff_section *&Result) const { 921 Result = nullptr; 922 if (COFF::isReservedSectionNumber(Index)) 923 return std::error_code(); 924 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 925 // We already verified the section table data, so no need to check again. 926 Result = SectionTable + (Index - 1); 927 return std::error_code(); 928 } 929 return object_error::parse_failed; 930 } 931 932 std::error_code COFFObjectFile::getString(uint32_t Offset, 933 StringRef &Result) const { 934 if (StringTableSize <= 4) 935 // Tried to get a string from an empty string table. 936 return object_error::parse_failed; 937 if (Offset >= StringTableSize) 938 return object_error::unexpected_eof; 939 Result = StringRef(StringTable + Offset); 940 return std::error_code(); 941 } 942 943 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 944 StringRef &Res) const { 945 return getSymbolName(Symbol.getGeneric(), Res); 946 } 947 948 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol, 949 StringRef &Res) const { 950 // Check for string table entry. First 4 bytes are 0. 951 if (Symbol->Name.Offset.Zeroes == 0) { 952 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res)) 953 return EC; 954 return std::error_code(); 955 } 956 957 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 958 // Null terminated, let ::strlen figure out the length. 959 Res = StringRef(Symbol->Name.ShortName); 960 else 961 // Not null terminated, use all 8 bytes. 962 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize); 963 return std::error_code(); 964 } 965 966 ArrayRef<uint8_t> 967 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 968 const uint8_t *Aux = nullptr; 969 970 size_t SymbolSize = getSymbolTableEntrySize(); 971 if (Symbol.getNumberOfAuxSymbols() > 0) { 972 // AUX data comes immediately after the symbol in COFF 973 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 974 # ifndef NDEBUG 975 // Verify that the Aux symbol points to a valid entry in the symbol table. 976 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 977 if (Offset < getPointerToSymbolTable() || 978 Offset >= 979 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 980 report_fatal_error("Aux Symbol data was outside of symbol table."); 981 982 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 983 "Aux Symbol data did not point to the beginning of a symbol"); 984 # endif 985 } 986 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 987 } 988 989 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 990 StringRef &Res) const { 991 StringRef Name; 992 if (Sec->Name[COFF::NameSize - 1] == 0) 993 // Null terminated, let ::strlen figure out the length. 994 Name = Sec->Name; 995 else 996 // Not null terminated, use all 8 bytes. 997 Name = StringRef(Sec->Name, COFF::NameSize); 998 999 // Check for string table entry. First byte is '/'. 1000 if (Name.startswith("/")) { 1001 uint32_t Offset; 1002 if (Name.startswith("//")) { 1003 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1004 return object_error::parse_failed; 1005 } else { 1006 if (Name.substr(1).getAsInteger(10, Offset)) 1007 return object_error::parse_failed; 1008 } 1009 if (std::error_code EC = getString(Offset, Name)) 1010 return EC; 1011 } 1012 1013 Res = Name; 1014 return std::error_code(); 1015 } 1016 1017 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1018 // SizeOfRawData and VirtualSize change what they represent depending on 1019 // whether or not we have an executable image. 1020 // 1021 // For object files, SizeOfRawData contains the size of section's data; 1022 // VirtualSize should be zero but isn't due to buggy COFF writers. 1023 // 1024 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1025 // actual section size is in VirtualSize. It is possible for VirtualSize to 1026 // be greater than SizeOfRawData; the contents past that point should be 1027 // considered to be zero. 1028 if (getDOSHeader()) 1029 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1030 return Sec->SizeOfRawData; 1031 } 1032 1033 std::error_code 1034 COFFObjectFile::getSectionContents(const coff_section *Sec, 1035 ArrayRef<uint8_t> &Res) const { 1036 // In COFF, a virtual section won't have any in-file 1037 // content, so the file pointer to the content will be zero. 1038 if (Sec->PointerToRawData == 0) 1039 return object_error::parse_failed; 1040 // The only thing that we need to verify is that the contents is contained 1041 // within the file bounds. We don't need to make sure it doesn't cover other 1042 // data, as there's nothing that says that is not allowed. 1043 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 1044 uint32_t SectionSize = getSectionSize(Sec); 1045 if (checkOffset(Data, ConStart, SectionSize)) 1046 return object_error::parse_failed; 1047 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1048 return std::error_code(); 1049 } 1050 1051 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1052 return reinterpret_cast<const coff_relocation*>(Rel.p); 1053 } 1054 1055 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1056 Rel.p = reinterpret_cast<uintptr_t>( 1057 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1058 } 1059 1060 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1061 const coff_relocation *R = toRel(Rel); 1062 return R->VirtualAddress; 1063 } 1064 1065 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1066 const coff_relocation *R = toRel(Rel); 1067 DataRefImpl Ref; 1068 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1069 return symbol_end(); 1070 if (SymbolTable16) 1071 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1072 else if (SymbolTable32) 1073 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1074 else 1075 llvm_unreachable("no symbol table pointer!"); 1076 return symbol_iterator(SymbolRef(Ref, this)); 1077 } 1078 1079 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1080 const coff_relocation* R = toRel(Rel); 1081 return R->Type; 1082 } 1083 1084 const coff_section * 1085 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1086 return toSec(Section.getRawDataRefImpl()); 1087 } 1088 1089 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1090 if (SymbolTable16) 1091 return toSymb<coff_symbol16>(Ref); 1092 if (SymbolTable32) 1093 return toSymb<coff_symbol32>(Ref); 1094 llvm_unreachable("no symbol table pointer!"); 1095 } 1096 1097 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1098 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1099 } 1100 1101 const coff_relocation * 1102 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1103 return toRel(Reloc.getRawDataRefImpl()); 1104 } 1105 1106 iterator_range<const coff_relocation *> 1107 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1108 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 1109 const coff_relocation *E = I; 1110 if (I) 1111 E += getNumberOfRelocations(Sec, Data, base()); 1112 return make_range(I, E); 1113 } 1114 1115 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1116 case COFF::reloc_type: \ 1117 Res = #reloc_type; \ 1118 break; 1119 1120 void COFFObjectFile::getRelocationTypeName( 1121 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1122 const coff_relocation *Reloc = toRel(Rel); 1123 StringRef Res; 1124 switch (getMachine()) { 1125 case COFF::IMAGE_FILE_MACHINE_AMD64: 1126 switch (Reloc->Type) { 1127 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1128 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1129 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1130 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1131 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1132 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1133 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1134 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1135 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1136 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1137 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1138 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1139 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1140 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1141 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1142 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1143 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1144 default: 1145 Res = "Unknown"; 1146 } 1147 break; 1148 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1149 switch (Reloc->Type) { 1150 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1151 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1152 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1153 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1154 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1155 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1156 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1157 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1158 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1159 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1160 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1161 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1162 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1163 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1164 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1165 default: 1166 Res = "Unknown"; 1167 } 1168 break; 1169 case COFF::IMAGE_FILE_MACHINE_I386: 1170 switch (Reloc->Type) { 1171 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1172 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1173 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1174 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1175 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1176 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1177 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1178 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1179 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1180 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1181 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1182 default: 1183 Res = "Unknown"; 1184 } 1185 break; 1186 default: 1187 Res = "Unknown"; 1188 } 1189 Result.append(Res.begin(), Res.end()); 1190 } 1191 1192 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1193 1194 bool COFFObjectFile::isRelocatableObject() const { 1195 return !DataDirectory; 1196 } 1197 1198 bool ImportDirectoryEntryRef:: 1199 operator==(const ImportDirectoryEntryRef &Other) const { 1200 return ImportTable == Other.ImportTable && Index == Other.Index; 1201 } 1202 1203 void ImportDirectoryEntryRef::moveNext() { 1204 ++Index; 1205 if (ImportTable[Index].isNull()) { 1206 Index = -1; 1207 ImportTable = nullptr; 1208 } 1209 } 1210 1211 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1212 const coff_import_directory_table_entry *&Result) const { 1213 return getObject(Result, OwningObject->Data, ImportTable + Index); 1214 } 1215 1216 static imported_symbol_iterator 1217 makeImportedSymbolIterator(const COFFObjectFile *Object, 1218 uintptr_t Ptr, int Index) { 1219 if (Object->getBytesInAddress() == 4) { 1220 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1221 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1222 } 1223 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1224 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1225 } 1226 1227 static imported_symbol_iterator 1228 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1229 uintptr_t IntPtr = 0; 1230 Object->getRvaPtr(RVA, IntPtr); 1231 return makeImportedSymbolIterator(Object, IntPtr, 0); 1232 } 1233 1234 static imported_symbol_iterator 1235 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1236 uintptr_t IntPtr = 0; 1237 Object->getRvaPtr(RVA, IntPtr); 1238 // Forward the pointer to the last entry which is null. 1239 int Index = 0; 1240 if (Object->getBytesInAddress() == 4) { 1241 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1242 while (*Entry++) 1243 ++Index; 1244 } else { 1245 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1246 while (*Entry++) 1247 ++Index; 1248 } 1249 return makeImportedSymbolIterator(Object, IntPtr, Index); 1250 } 1251 1252 imported_symbol_iterator 1253 ImportDirectoryEntryRef::imported_symbol_begin() const { 1254 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1255 OwningObject); 1256 } 1257 1258 imported_symbol_iterator 1259 ImportDirectoryEntryRef::imported_symbol_end() const { 1260 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1261 OwningObject); 1262 } 1263 1264 iterator_range<imported_symbol_iterator> 1265 ImportDirectoryEntryRef::imported_symbols() const { 1266 return make_range(imported_symbol_begin(), imported_symbol_end()); 1267 } 1268 1269 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1270 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1271 OwningObject); 1272 } 1273 1274 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1275 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1276 OwningObject); 1277 } 1278 1279 iterator_range<imported_symbol_iterator> 1280 ImportDirectoryEntryRef::lookup_table_symbols() const { 1281 return make_range(lookup_table_begin(), lookup_table_end()); 1282 } 1283 1284 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1285 uintptr_t IntPtr = 0; 1286 if (std::error_code EC = 1287 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1288 return EC; 1289 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1290 return std::error_code(); 1291 } 1292 1293 std::error_code 1294 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1295 Result = ImportTable[Index].ImportLookupTableRVA; 1296 return std::error_code(); 1297 } 1298 1299 std::error_code 1300 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1301 Result = ImportTable[Index].ImportAddressTableRVA; 1302 return std::error_code(); 1303 } 1304 1305 bool DelayImportDirectoryEntryRef:: 1306 operator==(const DelayImportDirectoryEntryRef &Other) const { 1307 return Table == Other.Table && Index == Other.Index; 1308 } 1309 1310 void DelayImportDirectoryEntryRef::moveNext() { 1311 ++Index; 1312 } 1313 1314 imported_symbol_iterator 1315 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1316 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1317 OwningObject); 1318 } 1319 1320 imported_symbol_iterator 1321 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1322 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1323 OwningObject); 1324 } 1325 1326 iterator_range<imported_symbol_iterator> 1327 DelayImportDirectoryEntryRef::imported_symbols() const { 1328 return make_range(imported_symbol_begin(), imported_symbol_end()); 1329 } 1330 1331 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1332 uintptr_t IntPtr = 0; 1333 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1334 return EC; 1335 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1336 return std::error_code(); 1337 } 1338 1339 std::error_code DelayImportDirectoryEntryRef:: 1340 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1341 Result = Table; 1342 return std::error_code(); 1343 } 1344 1345 std::error_code DelayImportDirectoryEntryRef:: 1346 getImportAddress(int AddrIndex, uint64_t &Result) const { 1347 uint32_t RVA = Table[Index].DelayImportAddressTable + 1348 AddrIndex * (OwningObject->is64() ? 8 : 4); 1349 uintptr_t IntPtr = 0; 1350 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1351 return EC; 1352 if (OwningObject->is64()) 1353 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1354 else 1355 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1356 return std::error_code(); 1357 } 1358 1359 bool ExportDirectoryEntryRef:: 1360 operator==(const ExportDirectoryEntryRef &Other) const { 1361 return ExportTable == Other.ExportTable && Index == Other.Index; 1362 } 1363 1364 void ExportDirectoryEntryRef::moveNext() { 1365 ++Index; 1366 } 1367 1368 // Returns the name of the current export symbol. If the symbol is exported only 1369 // by ordinal, the empty string is set as a result. 1370 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1371 uintptr_t IntPtr = 0; 1372 if (std::error_code EC = 1373 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1374 return EC; 1375 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1376 return std::error_code(); 1377 } 1378 1379 // Returns the starting ordinal number. 1380 std::error_code 1381 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1382 Result = ExportTable->OrdinalBase; 1383 return std::error_code(); 1384 } 1385 1386 // Returns the export ordinal of the current export symbol. 1387 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1388 Result = ExportTable->OrdinalBase + Index; 1389 return std::error_code(); 1390 } 1391 1392 // Returns the address of the current export symbol. 1393 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1394 uintptr_t IntPtr = 0; 1395 if (std::error_code EC = 1396 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1397 return EC; 1398 const export_address_table_entry *entry = 1399 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1400 Result = entry[Index].ExportRVA; 1401 return std::error_code(); 1402 } 1403 1404 // Returns the name of the current export symbol. If the symbol is exported only 1405 // by ordinal, the empty string is set as a result. 1406 std::error_code 1407 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1408 uintptr_t IntPtr = 0; 1409 if (std::error_code EC = 1410 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1411 return EC; 1412 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1413 1414 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1415 int Offset = 0; 1416 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1417 I < E; ++I, ++Offset) { 1418 if (*I != Index) 1419 continue; 1420 if (std::error_code EC = 1421 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1422 return EC; 1423 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1424 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1425 return EC; 1426 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1427 return std::error_code(); 1428 } 1429 Result = ""; 1430 return std::error_code(); 1431 } 1432 1433 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1434 const data_directory *DataEntry; 1435 if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 1436 return EC; 1437 uint32_t RVA; 1438 if (auto EC = getExportRVA(RVA)) 1439 return EC; 1440 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1441 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1442 Result = (Begin <= RVA && RVA < End); 1443 return std::error_code(); 1444 } 1445 1446 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1447 uint32_t RVA; 1448 if (auto EC = getExportRVA(RVA)) 1449 return EC; 1450 uintptr_t IntPtr = 0; 1451 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1452 return EC; 1453 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1454 return std::error_code(); 1455 } 1456 1457 bool ImportedSymbolRef:: 1458 operator==(const ImportedSymbolRef &Other) const { 1459 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1460 && Index == Other.Index; 1461 } 1462 1463 void ImportedSymbolRef::moveNext() { 1464 ++Index; 1465 } 1466 1467 std::error_code 1468 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1469 uint32_t RVA; 1470 if (Entry32) { 1471 // If a symbol is imported only by ordinal, it has no name. 1472 if (Entry32[Index].isOrdinal()) 1473 return std::error_code(); 1474 RVA = Entry32[Index].getHintNameRVA(); 1475 } else { 1476 if (Entry64[Index].isOrdinal()) 1477 return std::error_code(); 1478 RVA = Entry64[Index].getHintNameRVA(); 1479 } 1480 uintptr_t IntPtr = 0; 1481 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1482 return EC; 1483 // +2 because the first two bytes is hint. 1484 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1485 return std::error_code(); 1486 } 1487 1488 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const { 1489 if (Entry32) 1490 Result = Entry32[Index].isOrdinal(); 1491 else 1492 Result = Entry64[Index].isOrdinal(); 1493 return std::error_code(); 1494 } 1495 1496 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1497 if (Entry32) 1498 Result = Entry32[Index].getHintNameRVA(); 1499 else 1500 Result = Entry64[Index].getHintNameRVA(); 1501 return std::error_code(); 1502 } 1503 1504 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1505 uint32_t RVA; 1506 if (Entry32) { 1507 if (Entry32[Index].isOrdinal()) { 1508 Result = Entry32[Index].getOrdinal(); 1509 return std::error_code(); 1510 } 1511 RVA = Entry32[Index].getHintNameRVA(); 1512 } else { 1513 if (Entry64[Index].isOrdinal()) { 1514 Result = Entry64[Index].getOrdinal(); 1515 return std::error_code(); 1516 } 1517 RVA = Entry64[Index].getHintNameRVA(); 1518 } 1519 uintptr_t IntPtr = 0; 1520 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1521 return EC; 1522 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1523 return std::error_code(); 1524 } 1525 1526 ErrorOr<std::unique_ptr<COFFObjectFile>> 1527 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1528 std::error_code EC; 1529 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1530 if (EC) 1531 return EC; 1532 return std::move(Ret); 1533 } 1534 1535 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1536 return Header == Other.Header && Index == Other.Index; 1537 } 1538 1539 void BaseRelocRef::moveNext() { 1540 // Header->BlockSize is the size of the current block, including the 1541 // size of the header itself. 1542 uint32_t Size = sizeof(*Header) + 1543 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1544 if (Size == Header->BlockSize) { 1545 // .reloc contains a list of base relocation blocks. Each block 1546 // consists of the header followed by entries. The header contains 1547 // how many entories will follow. When we reach the end of the 1548 // current block, proceed to the next block. 1549 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1550 reinterpret_cast<const uint8_t *>(Header) + Size); 1551 Index = 0; 1552 } else { 1553 ++Index; 1554 } 1555 } 1556 1557 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1558 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1559 Type = Entry[Index].getType(); 1560 return std::error_code(); 1561 } 1562 1563 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1564 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1565 Result = Header->PageRVA + Entry[Index].getOffset(); 1566 return std::error_code(); 1567 } 1568