1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/iterator_range.h" 20 #include "llvm/Support/COFF.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include <cctype> 24 #include <limits> 25 26 using namespace llvm; 27 using namespace object; 28 29 using support::ulittle16_t; 30 using support::ulittle32_t; 31 using support::ulittle64_t; 32 using support::little16_t; 33 34 // Returns false if size is greater than the buffer size. And sets ec. 35 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 36 if (M.getBufferSize() < Size) { 37 EC = object_error::unexpected_eof; 38 return false; 39 } 40 return true; 41 } 42 43 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 44 const uint64_t Size) { 45 if (Addr + Size < Addr || Addr + Size < Size || 46 Addr + Size > uintptr_t(M.getBufferEnd()) || 47 Addr < uintptr_t(M.getBufferStart())) { 48 return object_error::unexpected_eof; 49 } 50 return std::error_code(); 51 } 52 53 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 54 // Returns unexpected_eof if error. 55 template <typename T> 56 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 57 const void *Ptr, 58 const uint64_t Size = sizeof(T)) { 59 uintptr_t Addr = uintptr_t(Ptr); 60 if (std::error_code EC = checkOffset(M, Addr, Size)) 61 return EC; 62 Obj = reinterpret_cast<const T *>(Addr); 63 return std::error_code(); 64 } 65 66 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 67 // prefixed slashes. 68 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 69 assert(Str.size() <= 6 && "String too long, possible overflow."); 70 if (Str.size() > 6) 71 return true; 72 73 uint64_t Value = 0; 74 while (!Str.empty()) { 75 unsigned CharVal; 76 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 77 CharVal = Str[0] - 'A'; 78 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 79 CharVal = Str[0] - 'a' + 26; 80 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 81 CharVal = Str[0] - '0' + 52; 82 else if (Str[0] == '+') // 62 83 CharVal = 62; 84 else if (Str[0] == '/') // 63 85 CharVal = 63; 86 else 87 return true; 88 89 Value = (Value * 64) + CharVal; 90 Str = Str.substr(1); 91 } 92 93 if (Value > std::numeric_limits<uint32_t>::max()) 94 return true; 95 96 Result = static_cast<uint32_t>(Value); 97 return false; 98 } 99 100 template <typename coff_symbol_type> 101 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 102 const coff_symbol_type *Addr = 103 reinterpret_cast<const coff_symbol_type *>(Ref.p); 104 105 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 106 #ifndef NDEBUG 107 // Verify that the symbol points to a valid entry in the symbol table. 108 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 109 110 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 111 "Symbol did not point to the beginning of a symbol"); 112 #endif 113 114 return Addr; 115 } 116 117 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 118 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 119 120 # ifndef NDEBUG 121 // Verify that the section points to a valid entry in the section table. 122 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 123 report_fatal_error("Section was outside of section table."); 124 125 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 126 assert(Offset % sizeof(coff_section) == 0 && 127 "Section did not point to the beginning of a section"); 128 # endif 129 130 return Addr; 131 } 132 133 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 134 auto End = reinterpret_cast<uintptr_t>(StringTable); 135 if (SymbolTable16) { 136 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 137 Symb += 1 + Symb->NumberOfAuxSymbols; 138 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 139 } else if (SymbolTable32) { 140 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 141 Symb += 1 + Symb->NumberOfAuxSymbols; 142 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 143 } else { 144 llvm_unreachable("no symbol table pointer!"); 145 } 146 } 147 148 ErrorOr<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 149 COFFSymbolRef Symb = getCOFFSymbol(Ref); 150 StringRef Result; 151 std::error_code EC = getSymbolName(Symb, Result); 152 if (EC) 153 return EC; 154 return Result; 155 } 156 157 uint64_t COFFObjectFile::getSymbolValue(DataRefImpl Ref) const { 158 COFFSymbolRef Sym = getCOFFSymbol(Ref); 159 160 if (Sym.isAnyUndefined() || Sym.isCommon()) 161 return UnknownAddress; 162 163 return Sym.getValue(); 164 } 165 166 ErrorOr<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 167 uint64_t Result = getSymbolValue(Ref); 168 COFFSymbolRef Symb = getCOFFSymbol(Ref); 169 int32_t SectionNumber = Symb.getSectionNumber(); 170 171 if (Symb.isAnyUndefined() || Symb.isCommon() || 172 COFF::isReservedSectionNumber(SectionNumber)) 173 return Result; 174 175 const coff_section *Section = nullptr; 176 if (std::error_code EC = getSection(SectionNumber, Section)) 177 return EC; 178 Result += Section->VirtualAddress; 179 return Result; 180 } 181 182 SymbolRef::Type COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 183 COFFSymbolRef Symb = getCOFFSymbol(Ref); 184 int32_t SectionNumber = Symb.getSectionNumber(); 185 186 if (Symb.isAnyUndefined()) 187 return SymbolRef::ST_Unknown; 188 if (Symb.isFunctionDefinition()) 189 return SymbolRef::ST_Function; 190 if (Symb.isCommon()) 191 return SymbolRef::ST_Data; 192 if (Symb.isFileRecord()) 193 return SymbolRef::ST_File; 194 195 // TODO: perhaps we need a new symbol type ST_Section. 196 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 197 return SymbolRef::ST_Debug; 198 199 if (!COFF::isReservedSectionNumber(SectionNumber)) 200 return SymbolRef::ST_Data; 201 202 return SymbolRef::ST_Other; 203 } 204 205 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 206 COFFSymbolRef Symb = getCOFFSymbol(Ref); 207 uint32_t Result = SymbolRef::SF_None; 208 209 if (Symb.isExternal() || Symb.isWeakExternal()) 210 Result |= SymbolRef::SF_Global; 211 212 if (Symb.isWeakExternal()) 213 Result |= SymbolRef::SF_Weak; 214 215 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 216 Result |= SymbolRef::SF_Absolute; 217 218 if (Symb.isFileRecord()) 219 Result |= SymbolRef::SF_FormatSpecific; 220 221 if (Symb.isSectionDefinition()) 222 Result |= SymbolRef::SF_FormatSpecific; 223 224 if (Symb.isCommon()) 225 Result |= SymbolRef::SF_Common; 226 227 if (Symb.isAnyUndefined()) 228 Result |= SymbolRef::SF_Undefined; 229 230 return Result; 231 } 232 233 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 234 COFFSymbolRef Symb = getCOFFSymbol(Ref); 235 return Symb.getValue(); 236 } 237 238 std::error_code 239 COFFObjectFile::getSymbolSection(DataRefImpl Ref, 240 section_iterator &Result) const { 241 COFFSymbolRef Symb = getCOFFSymbol(Ref); 242 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) { 243 Result = section_end(); 244 } else { 245 const coff_section *Sec = nullptr; 246 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 247 return EC; 248 DataRefImpl Ref; 249 Ref.p = reinterpret_cast<uintptr_t>(Sec); 250 Result = section_iterator(SectionRef(Ref, this)); 251 } 252 return std::error_code(); 253 } 254 255 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 256 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 257 return Symb.getSectionNumber(); 258 } 259 260 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 261 const coff_section *Sec = toSec(Ref); 262 Sec += 1; 263 Ref.p = reinterpret_cast<uintptr_t>(Sec); 264 } 265 266 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 267 StringRef &Result) const { 268 const coff_section *Sec = toSec(Ref); 269 return getSectionName(Sec, Result); 270 } 271 272 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 273 const coff_section *Sec = toSec(Ref); 274 return Sec->VirtualAddress; 275 } 276 277 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 278 return getSectionSize(toSec(Ref)); 279 } 280 281 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 282 StringRef &Result) const { 283 const coff_section *Sec = toSec(Ref); 284 ArrayRef<uint8_t> Res; 285 std::error_code EC = getSectionContents(Sec, Res); 286 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 287 return EC; 288 } 289 290 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 291 const coff_section *Sec = toSec(Ref); 292 return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1); 293 } 294 295 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 296 const coff_section *Sec = toSec(Ref); 297 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 298 } 299 300 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 301 const coff_section *Sec = toSec(Ref); 302 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 303 } 304 305 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 306 const coff_section *Sec = toSec(Ref); 307 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 308 COFF::IMAGE_SCN_MEM_READ | 309 COFF::IMAGE_SCN_MEM_WRITE; 310 return (Sec->Characteristics & BssFlags) == BssFlags; 311 } 312 313 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 314 uintptr_t Offset = 315 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 316 assert((Offset % sizeof(coff_section)) == 0); 317 return (Offset / sizeof(coff_section)) + 1; 318 } 319 320 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 321 const coff_section *Sec = toSec(Ref); 322 // In COFF, a virtual section won't have any in-file 323 // content, so the file pointer to the content will be zero. 324 return Sec->PointerToRawData == 0; 325 } 326 327 static uint32_t getNumberOfRelocations(const coff_section *Sec, 328 MemoryBufferRef M, const uint8_t *base) { 329 // The field for the number of relocations in COFF section table is only 330 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 331 // NumberOfRelocations field, and the actual relocation count is stored in the 332 // VirtualAddress field in the first relocation entry. 333 if (Sec->hasExtendedRelocations()) { 334 const coff_relocation *FirstReloc; 335 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 336 base + Sec->PointerToRelocations))) 337 return 0; 338 // -1 to exclude this first relocation entry. 339 return FirstReloc->VirtualAddress - 1; 340 } 341 return Sec->NumberOfRelocations; 342 } 343 344 static const coff_relocation * 345 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 346 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 347 if (!NumRelocs) 348 return nullptr; 349 auto begin = reinterpret_cast<const coff_relocation *>( 350 Base + Sec->PointerToRelocations); 351 if (Sec->hasExtendedRelocations()) { 352 // Skip the first relocation entry repurposed to store the number of 353 // relocations. 354 begin++; 355 } 356 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 357 return nullptr; 358 return begin; 359 } 360 361 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 362 const coff_section *Sec = toSec(Ref); 363 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 364 if (begin && Sec->VirtualAddress != 0) 365 report_fatal_error("Sections with relocations should have an address of 0"); 366 DataRefImpl Ret; 367 Ret.p = reinterpret_cast<uintptr_t>(begin); 368 return relocation_iterator(RelocationRef(Ret, this)); 369 } 370 371 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 372 const coff_section *Sec = toSec(Ref); 373 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 374 if (I) 375 I += getNumberOfRelocations(Sec, Data, base()); 376 DataRefImpl Ret; 377 Ret.p = reinterpret_cast<uintptr_t>(I); 378 return relocation_iterator(RelocationRef(Ret, this)); 379 } 380 381 // Initialize the pointer to the symbol table. 382 std::error_code COFFObjectFile::initSymbolTablePtr() { 383 if (COFFHeader) 384 if (std::error_code EC = getObject( 385 SymbolTable16, Data, base() + getPointerToSymbolTable(), 386 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 387 return EC; 388 389 if (COFFBigObjHeader) 390 if (std::error_code EC = getObject( 391 SymbolTable32, Data, base() + getPointerToSymbolTable(), 392 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 393 return EC; 394 395 // Find string table. The first four byte of the string table contains the 396 // total size of the string table, including the size field itself. If the 397 // string table is empty, the value of the first four byte would be 4. 398 uint32_t StringTableOffset = getPointerToSymbolTable() + 399 getNumberOfSymbols() * getSymbolTableEntrySize(); 400 const uint8_t *StringTableAddr = base() + StringTableOffset; 401 const ulittle32_t *StringTableSizePtr; 402 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 403 return EC; 404 StringTableSize = *StringTableSizePtr; 405 if (std::error_code EC = 406 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 407 return EC; 408 409 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 410 // tools like cvtres write a size of 0 for an empty table instead of 4. 411 if (StringTableSize < 4) 412 StringTableSize = 4; 413 414 // Check that the string table is null terminated if has any in it. 415 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 416 return object_error::parse_failed; 417 return std::error_code(); 418 } 419 420 // Returns the file offset for the given VA. 421 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 422 uint64_t ImageBase = PE32Header ? (uint64_t)PE32Header->ImageBase 423 : (uint64_t)PE32PlusHeader->ImageBase; 424 uint64_t Rva = Addr - ImageBase; 425 assert(Rva <= UINT32_MAX); 426 return getRvaPtr((uint32_t)Rva, Res); 427 } 428 429 // Returns the file offset for the given RVA. 430 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 431 for (const SectionRef &S : sections()) { 432 const coff_section *Section = getCOFFSection(S); 433 uint32_t SectionStart = Section->VirtualAddress; 434 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 435 if (SectionStart <= Addr && Addr < SectionEnd) { 436 uint32_t Offset = Addr - SectionStart; 437 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 438 return std::error_code(); 439 } 440 } 441 return object_error::parse_failed; 442 } 443 444 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 445 // table entry. 446 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 447 StringRef &Name) const { 448 uintptr_t IntPtr = 0; 449 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 450 return EC; 451 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 452 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 453 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 454 return std::error_code(); 455 } 456 457 // Find the import table. 458 std::error_code COFFObjectFile::initImportTablePtr() { 459 // First, we get the RVA of the import table. If the file lacks a pointer to 460 // the import table, do nothing. 461 const data_directory *DataEntry; 462 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 463 return std::error_code(); 464 465 // Do nothing if the pointer to import table is NULL. 466 if (DataEntry->RelativeVirtualAddress == 0) 467 return std::error_code(); 468 469 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 470 // -1 because the last entry is the null entry. 471 NumberOfImportDirectory = DataEntry->Size / 472 sizeof(import_directory_table_entry) - 1; 473 474 // Find the section that contains the RVA. This is needed because the RVA is 475 // the import table's memory address which is different from its file offset. 476 uintptr_t IntPtr = 0; 477 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 478 return EC; 479 ImportDirectory = reinterpret_cast< 480 const import_directory_table_entry *>(IntPtr); 481 return std::error_code(); 482 } 483 484 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 485 std::error_code COFFObjectFile::initDelayImportTablePtr() { 486 const data_directory *DataEntry; 487 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 488 return std::error_code(); 489 if (DataEntry->RelativeVirtualAddress == 0) 490 return std::error_code(); 491 492 uint32_t RVA = DataEntry->RelativeVirtualAddress; 493 NumberOfDelayImportDirectory = DataEntry->Size / 494 sizeof(delay_import_directory_table_entry) - 1; 495 496 uintptr_t IntPtr = 0; 497 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 498 return EC; 499 DelayImportDirectory = reinterpret_cast< 500 const delay_import_directory_table_entry *>(IntPtr); 501 return std::error_code(); 502 } 503 504 // Find the export table. 505 std::error_code COFFObjectFile::initExportTablePtr() { 506 // First, we get the RVA of the export table. If the file lacks a pointer to 507 // the export table, do nothing. 508 const data_directory *DataEntry; 509 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 510 return std::error_code(); 511 512 // Do nothing if the pointer to export table is NULL. 513 if (DataEntry->RelativeVirtualAddress == 0) 514 return std::error_code(); 515 516 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 517 uintptr_t IntPtr = 0; 518 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 519 return EC; 520 ExportDirectory = 521 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 522 return std::error_code(); 523 } 524 525 std::error_code COFFObjectFile::initBaseRelocPtr() { 526 const data_directory *DataEntry; 527 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 528 return std::error_code(); 529 if (DataEntry->RelativeVirtualAddress == 0) 530 return std::error_code(); 531 532 uintptr_t IntPtr = 0; 533 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 534 return EC; 535 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 536 IntPtr); 537 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 538 IntPtr + DataEntry->Size); 539 return std::error_code(); 540 } 541 542 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 543 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 544 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 545 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 546 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 547 ImportDirectory(nullptr), NumberOfImportDirectory(0), 548 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 549 ExportDirectory(nullptr), BaseRelocHeader(nullptr), 550 BaseRelocEnd(nullptr) { 551 // Check that we at least have enough room for a header. 552 if (!checkSize(Data, EC, sizeof(coff_file_header))) 553 return; 554 555 // The current location in the file where we are looking at. 556 uint64_t CurPtr = 0; 557 558 // PE header is optional and is present only in executables. If it exists, 559 // it is placed right after COFF header. 560 bool HasPEHeader = false; 561 562 // Check if this is a PE/COFF file. 563 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 564 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 565 // PE signature to find 'normal' COFF header. 566 const auto *DH = reinterpret_cast<const dos_header *>(base()); 567 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 568 CurPtr = DH->AddressOfNewExeHeader; 569 // Check the PE magic bytes. ("PE\0\0") 570 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 571 EC = object_error::parse_failed; 572 return; 573 } 574 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 575 HasPEHeader = true; 576 } 577 } 578 579 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 580 return; 581 582 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 583 // import libraries share a common prefix but bigobj is more restrictive. 584 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 585 COFFHeader->NumberOfSections == uint16_t(0xffff) && 586 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 587 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 588 return; 589 590 // Verify that we are dealing with bigobj. 591 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 592 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 593 sizeof(COFF::BigObjMagic)) == 0) { 594 COFFHeader = nullptr; 595 CurPtr += sizeof(coff_bigobj_file_header); 596 } else { 597 // It's not a bigobj. 598 COFFBigObjHeader = nullptr; 599 } 600 } 601 if (COFFHeader) { 602 // The prior checkSize call may have failed. This isn't a hard error 603 // because we were just trying to sniff out bigobj. 604 EC = std::error_code(); 605 CurPtr += sizeof(coff_file_header); 606 607 if (COFFHeader->isImportLibrary()) 608 return; 609 } 610 611 if (HasPEHeader) { 612 const pe32_header *Header; 613 if ((EC = getObject(Header, Data, base() + CurPtr))) 614 return; 615 616 const uint8_t *DataDirAddr; 617 uint64_t DataDirSize; 618 if (Header->Magic == COFF::PE32Header::PE32) { 619 PE32Header = Header; 620 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 621 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 622 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 623 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 624 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 625 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 626 } else { 627 // It's neither PE32 nor PE32+. 628 EC = object_error::parse_failed; 629 return; 630 } 631 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 632 return; 633 CurPtr += COFFHeader->SizeOfOptionalHeader; 634 } 635 636 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 637 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 638 return; 639 640 // Initialize the pointer to the symbol table. 641 if (getPointerToSymbolTable() != 0) { 642 if ((EC = initSymbolTablePtr())) 643 return; 644 } else { 645 // We had better not have any symbols if we don't have a symbol table. 646 if (getNumberOfSymbols() != 0) { 647 EC = object_error::parse_failed; 648 return; 649 } 650 } 651 652 // Initialize the pointer to the beginning of the import table. 653 if ((EC = initImportTablePtr())) 654 return; 655 if ((EC = initDelayImportTablePtr())) 656 return; 657 658 // Initialize the pointer to the export table. 659 if ((EC = initExportTablePtr())) 660 return; 661 662 // Initialize the pointer to the base relocation table. 663 if ((EC = initBaseRelocPtr())) 664 return; 665 666 EC = std::error_code(); 667 } 668 669 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 670 DataRefImpl Ret; 671 Ret.p = getSymbolTable(); 672 return basic_symbol_iterator(SymbolRef(Ret, this)); 673 } 674 675 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 676 // The symbol table ends where the string table begins. 677 DataRefImpl Ret; 678 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 679 return basic_symbol_iterator(SymbolRef(Ret, this)); 680 } 681 682 import_directory_iterator COFFObjectFile::import_directory_begin() const { 683 return import_directory_iterator( 684 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 685 } 686 687 import_directory_iterator COFFObjectFile::import_directory_end() const { 688 return import_directory_iterator( 689 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); 690 } 691 692 delay_import_directory_iterator 693 COFFObjectFile::delay_import_directory_begin() const { 694 return delay_import_directory_iterator( 695 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 696 } 697 698 delay_import_directory_iterator 699 COFFObjectFile::delay_import_directory_end() const { 700 return delay_import_directory_iterator( 701 DelayImportDirectoryEntryRef( 702 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 703 } 704 705 export_directory_iterator COFFObjectFile::export_directory_begin() const { 706 return export_directory_iterator( 707 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 708 } 709 710 export_directory_iterator COFFObjectFile::export_directory_end() const { 711 if (!ExportDirectory) 712 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 713 ExportDirectoryEntryRef Ref(ExportDirectory, 714 ExportDirectory->AddressTableEntries, this); 715 return export_directory_iterator(Ref); 716 } 717 718 section_iterator COFFObjectFile::section_begin() const { 719 DataRefImpl Ret; 720 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 721 return section_iterator(SectionRef(Ret, this)); 722 } 723 724 section_iterator COFFObjectFile::section_end() const { 725 DataRefImpl Ret; 726 int NumSections = 727 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 728 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 729 return section_iterator(SectionRef(Ret, this)); 730 } 731 732 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 733 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 734 } 735 736 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 737 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 738 } 739 740 uint8_t COFFObjectFile::getBytesInAddress() const { 741 return getArch() == Triple::x86_64 ? 8 : 4; 742 } 743 744 StringRef COFFObjectFile::getFileFormatName() const { 745 switch(getMachine()) { 746 case COFF::IMAGE_FILE_MACHINE_I386: 747 return "COFF-i386"; 748 case COFF::IMAGE_FILE_MACHINE_AMD64: 749 return "COFF-x86-64"; 750 case COFF::IMAGE_FILE_MACHINE_ARMNT: 751 return "COFF-ARM"; 752 default: 753 return "COFF-<unknown arch>"; 754 } 755 } 756 757 unsigned COFFObjectFile::getArch() const { 758 switch (getMachine()) { 759 case COFF::IMAGE_FILE_MACHINE_I386: 760 return Triple::x86; 761 case COFF::IMAGE_FILE_MACHINE_AMD64: 762 return Triple::x86_64; 763 case COFF::IMAGE_FILE_MACHINE_ARMNT: 764 return Triple::thumb; 765 default: 766 return Triple::UnknownArch; 767 } 768 } 769 770 iterator_range<import_directory_iterator> 771 COFFObjectFile::import_directories() const { 772 return make_range(import_directory_begin(), import_directory_end()); 773 } 774 775 iterator_range<delay_import_directory_iterator> 776 COFFObjectFile::delay_import_directories() const { 777 return make_range(delay_import_directory_begin(), 778 delay_import_directory_end()); 779 } 780 781 iterator_range<export_directory_iterator> 782 COFFObjectFile::export_directories() const { 783 return make_range(export_directory_begin(), export_directory_end()); 784 } 785 786 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 787 return make_range(base_reloc_begin(), base_reloc_end()); 788 } 789 790 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 791 Res = PE32Header; 792 return std::error_code(); 793 } 794 795 std::error_code 796 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 797 Res = PE32PlusHeader; 798 return std::error_code(); 799 } 800 801 std::error_code 802 COFFObjectFile::getDataDirectory(uint32_t Index, 803 const data_directory *&Res) const { 804 // Error if if there's no data directory or the index is out of range. 805 if (!DataDirectory) { 806 Res = nullptr; 807 return object_error::parse_failed; 808 } 809 assert(PE32Header || PE32PlusHeader); 810 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 811 : PE32PlusHeader->NumberOfRvaAndSize; 812 if (Index >= NumEnt) { 813 Res = nullptr; 814 return object_error::parse_failed; 815 } 816 Res = &DataDirectory[Index]; 817 return std::error_code(); 818 } 819 820 std::error_code COFFObjectFile::getSection(int32_t Index, 821 const coff_section *&Result) const { 822 Result = nullptr; 823 if (COFF::isReservedSectionNumber(Index)) 824 return std::error_code(); 825 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 826 // We already verified the section table data, so no need to check again. 827 Result = SectionTable + (Index - 1); 828 return std::error_code(); 829 } 830 return object_error::parse_failed; 831 } 832 833 std::error_code COFFObjectFile::getString(uint32_t Offset, 834 StringRef &Result) const { 835 if (StringTableSize <= 4) 836 // Tried to get a string from an empty string table. 837 return object_error::parse_failed; 838 if (Offset >= StringTableSize) 839 return object_error::unexpected_eof; 840 Result = StringRef(StringTable + Offset); 841 return std::error_code(); 842 } 843 844 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 845 StringRef &Res) const { 846 return getSymbolName(Symbol.getGeneric(), Res); 847 } 848 849 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol, 850 StringRef &Res) const { 851 // Check for string table entry. First 4 bytes are 0. 852 if (Symbol->Name.Offset.Zeroes == 0) { 853 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res)) 854 return EC; 855 return std::error_code(); 856 } 857 858 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 859 // Null terminated, let ::strlen figure out the length. 860 Res = StringRef(Symbol->Name.ShortName); 861 else 862 // Not null terminated, use all 8 bytes. 863 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize); 864 return std::error_code(); 865 } 866 867 ArrayRef<uint8_t> 868 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 869 const uint8_t *Aux = nullptr; 870 871 size_t SymbolSize = getSymbolTableEntrySize(); 872 if (Symbol.getNumberOfAuxSymbols() > 0) { 873 // AUX data comes immediately after the symbol in COFF 874 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 875 # ifndef NDEBUG 876 // Verify that the Aux symbol points to a valid entry in the symbol table. 877 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 878 if (Offset < getPointerToSymbolTable() || 879 Offset >= 880 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 881 report_fatal_error("Aux Symbol data was outside of symbol table."); 882 883 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 884 "Aux Symbol data did not point to the beginning of a symbol"); 885 # endif 886 } 887 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 888 } 889 890 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 891 StringRef &Res) const { 892 StringRef Name; 893 if (Sec->Name[COFF::NameSize - 1] == 0) 894 // Null terminated, let ::strlen figure out the length. 895 Name = Sec->Name; 896 else 897 // Not null terminated, use all 8 bytes. 898 Name = StringRef(Sec->Name, COFF::NameSize); 899 900 // Check for string table entry. First byte is '/'. 901 if (Name.startswith("/")) { 902 uint32_t Offset; 903 if (Name.startswith("//")) { 904 if (decodeBase64StringEntry(Name.substr(2), Offset)) 905 return object_error::parse_failed; 906 } else { 907 if (Name.substr(1).getAsInteger(10, Offset)) 908 return object_error::parse_failed; 909 } 910 if (std::error_code EC = getString(Offset, Name)) 911 return EC; 912 } 913 914 Res = Name; 915 return std::error_code(); 916 } 917 918 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 919 // SizeOfRawData and VirtualSize change what they represent depending on 920 // whether or not we have an executable image. 921 // 922 // For object files, SizeOfRawData contains the size of section's data; 923 // VirtualSize should be zero but isn't due to buggy COFF writers. 924 // 925 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 926 // actual section size is in VirtualSize. It is possible for VirtualSize to 927 // be greater than SizeOfRawData; the contents past that point should be 928 // considered to be zero. 929 if (getDOSHeader()) 930 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 931 return Sec->SizeOfRawData; 932 } 933 934 std::error_code 935 COFFObjectFile::getSectionContents(const coff_section *Sec, 936 ArrayRef<uint8_t> &Res) const { 937 // PointerToRawData and SizeOfRawData won't make sense for BSS sections, 938 // don't do anything interesting for them. 939 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && 940 "BSS sections don't have contents!"); 941 // The only thing that we need to verify is that the contents is contained 942 // within the file bounds. We don't need to make sure it doesn't cover other 943 // data, as there's nothing that says that is not allowed. 944 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 945 uint32_t SectionSize = getSectionSize(Sec); 946 if (checkOffset(Data, ConStart, SectionSize)) 947 return object_error::parse_failed; 948 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 949 return std::error_code(); 950 } 951 952 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 953 return reinterpret_cast<const coff_relocation*>(Rel.p); 954 } 955 956 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 957 Rel.p = reinterpret_cast<uintptr_t>( 958 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 959 } 960 961 ErrorOr<uint64_t> COFFObjectFile::getRelocationAddress(DataRefImpl Rel) const { 962 report_fatal_error("getRelocationAddress not implemented in COFFObjectFile"); 963 } 964 965 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 966 const coff_relocation *R = toRel(Rel); 967 return R->VirtualAddress; 968 } 969 970 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 971 const coff_relocation *R = toRel(Rel); 972 DataRefImpl Ref; 973 if (R->SymbolTableIndex >= getNumberOfSymbols()) 974 return symbol_end(); 975 if (SymbolTable16) 976 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 977 else if (SymbolTable32) 978 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 979 else 980 llvm_unreachable("no symbol table pointer!"); 981 return symbol_iterator(SymbolRef(Ref, this)); 982 } 983 984 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 985 const coff_relocation* R = toRel(Rel); 986 return R->Type; 987 } 988 989 const coff_section * 990 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 991 return toSec(Section.getRawDataRefImpl()); 992 } 993 994 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 995 if (SymbolTable16) 996 return toSymb<coff_symbol16>(Ref); 997 if (SymbolTable32) 998 return toSymb<coff_symbol32>(Ref); 999 llvm_unreachable("no symbol table pointer!"); 1000 } 1001 1002 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1003 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1004 } 1005 1006 const coff_relocation * 1007 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1008 return toRel(Reloc.getRawDataRefImpl()); 1009 } 1010 1011 iterator_range<const coff_relocation *> 1012 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1013 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 1014 const coff_relocation *E = I; 1015 if (I) 1016 E += getNumberOfRelocations(Sec, Data, base()); 1017 return make_range(I, E); 1018 } 1019 1020 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1021 case COFF::reloc_type: \ 1022 Res = #reloc_type; \ 1023 break; 1024 1025 void COFFObjectFile::getRelocationTypeName( 1026 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1027 const coff_relocation *Reloc = toRel(Rel); 1028 StringRef Res; 1029 switch (getMachine()) { 1030 case COFF::IMAGE_FILE_MACHINE_AMD64: 1031 switch (Reloc->Type) { 1032 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1033 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1034 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1035 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1036 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1037 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1038 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1039 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1040 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1041 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1042 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1043 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1044 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1045 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1046 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1047 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1048 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1049 default: 1050 Res = "Unknown"; 1051 } 1052 break; 1053 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1054 switch (Reloc->Type) { 1055 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1056 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1057 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1058 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1059 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1060 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1061 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1062 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1063 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1064 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1065 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1066 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1067 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1068 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1069 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1070 default: 1071 Res = "Unknown"; 1072 } 1073 break; 1074 case COFF::IMAGE_FILE_MACHINE_I386: 1075 switch (Reloc->Type) { 1076 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1077 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1078 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1079 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1080 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1081 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1082 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1083 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1084 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1085 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1086 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1087 default: 1088 Res = "Unknown"; 1089 } 1090 break; 1091 default: 1092 Res = "Unknown"; 1093 } 1094 Result.append(Res.begin(), Res.end()); 1095 } 1096 1097 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1098 1099 bool COFFObjectFile::isRelocatableObject() const { 1100 return !DataDirectory; 1101 } 1102 1103 bool ImportDirectoryEntryRef:: 1104 operator==(const ImportDirectoryEntryRef &Other) const { 1105 return ImportTable == Other.ImportTable && Index == Other.Index; 1106 } 1107 1108 void ImportDirectoryEntryRef::moveNext() { 1109 ++Index; 1110 } 1111 1112 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1113 const import_directory_table_entry *&Result) const { 1114 Result = ImportTable + Index; 1115 return std::error_code(); 1116 } 1117 1118 static imported_symbol_iterator 1119 makeImportedSymbolIterator(const COFFObjectFile *Object, 1120 uintptr_t Ptr, int Index) { 1121 if (Object->getBytesInAddress() == 4) { 1122 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1123 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1124 } 1125 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1126 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1127 } 1128 1129 static imported_symbol_iterator 1130 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1131 uintptr_t IntPtr = 0; 1132 Object->getRvaPtr(RVA, IntPtr); 1133 return makeImportedSymbolIterator(Object, IntPtr, 0); 1134 } 1135 1136 static imported_symbol_iterator 1137 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1138 uintptr_t IntPtr = 0; 1139 Object->getRvaPtr(RVA, IntPtr); 1140 // Forward the pointer to the last entry which is null. 1141 int Index = 0; 1142 if (Object->getBytesInAddress() == 4) { 1143 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1144 while (*Entry++) 1145 ++Index; 1146 } else { 1147 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1148 while (*Entry++) 1149 ++Index; 1150 } 1151 return makeImportedSymbolIterator(Object, IntPtr, Index); 1152 } 1153 1154 imported_symbol_iterator 1155 ImportDirectoryEntryRef::imported_symbol_begin() const { 1156 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1157 OwningObject); 1158 } 1159 1160 imported_symbol_iterator 1161 ImportDirectoryEntryRef::imported_symbol_end() const { 1162 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1163 OwningObject); 1164 } 1165 1166 iterator_range<imported_symbol_iterator> 1167 ImportDirectoryEntryRef::imported_symbols() const { 1168 return make_range(imported_symbol_begin(), imported_symbol_end()); 1169 } 1170 1171 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1172 uintptr_t IntPtr = 0; 1173 if (std::error_code EC = 1174 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1175 return EC; 1176 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1177 return std::error_code(); 1178 } 1179 1180 std::error_code 1181 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1182 Result = ImportTable[Index].ImportLookupTableRVA; 1183 return std::error_code(); 1184 } 1185 1186 std::error_code 1187 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1188 Result = ImportTable[Index].ImportAddressTableRVA; 1189 return std::error_code(); 1190 } 1191 1192 std::error_code ImportDirectoryEntryRef::getImportLookupEntry( 1193 const import_lookup_table_entry32 *&Result) const { 1194 uintptr_t IntPtr = 0; 1195 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; 1196 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1197 return EC; 1198 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr); 1199 return std::error_code(); 1200 } 1201 1202 bool DelayImportDirectoryEntryRef:: 1203 operator==(const DelayImportDirectoryEntryRef &Other) const { 1204 return Table == Other.Table && Index == Other.Index; 1205 } 1206 1207 void DelayImportDirectoryEntryRef::moveNext() { 1208 ++Index; 1209 } 1210 1211 imported_symbol_iterator 1212 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1213 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1214 OwningObject); 1215 } 1216 1217 imported_symbol_iterator 1218 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1219 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1220 OwningObject); 1221 } 1222 1223 iterator_range<imported_symbol_iterator> 1224 DelayImportDirectoryEntryRef::imported_symbols() const { 1225 return make_range(imported_symbol_begin(), imported_symbol_end()); 1226 } 1227 1228 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1229 uintptr_t IntPtr = 0; 1230 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1231 return EC; 1232 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1233 return std::error_code(); 1234 } 1235 1236 std::error_code DelayImportDirectoryEntryRef:: 1237 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1238 Result = Table; 1239 return std::error_code(); 1240 } 1241 1242 std::error_code DelayImportDirectoryEntryRef:: 1243 getImportAddress(int AddrIndex, uint64_t &Result) const { 1244 uint32_t RVA = Table[Index].DelayImportAddressTable + 1245 AddrIndex * (OwningObject->is64() ? 8 : 4); 1246 uintptr_t IntPtr = 0; 1247 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1248 return EC; 1249 if (OwningObject->is64()) 1250 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1251 else 1252 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1253 return std::error_code(); 1254 } 1255 1256 bool ExportDirectoryEntryRef:: 1257 operator==(const ExportDirectoryEntryRef &Other) const { 1258 return ExportTable == Other.ExportTable && Index == Other.Index; 1259 } 1260 1261 void ExportDirectoryEntryRef::moveNext() { 1262 ++Index; 1263 } 1264 1265 // Returns the name of the current export symbol. If the symbol is exported only 1266 // by ordinal, the empty string is set as a result. 1267 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1268 uintptr_t IntPtr = 0; 1269 if (std::error_code EC = 1270 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1271 return EC; 1272 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1273 return std::error_code(); 1274 } 1275 1276 // Returns the starting ordinal number. 1277 std::error_code 1278 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1279 Result = ExportTable->OrdinalBase; 1280 return std::error_code(); 1281 } 1282 1283 // Returns the export ordinal of the current export symbol. 1284 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1285 Result = ExportTable->OrdinalBase + Index; 1286 return std::error_code(); 1287 } 1288 1289 // Returns the address of the current export symbol. 1290 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1291 uintptr_t IntPtr = 0; 1292 if (std::error_code EC = 1293 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1294 return EC; 1295 const export_address_table_entry *entry = 1296 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1297 Result = entry[Index].ExportRVA; 1298 return std::error_code(); 1299 } 1300 1301 // Returns the name of the current export symbol. If the symbol is exported only 1302 // by ordinal, the empty string is set as a result. 1303 std::error_code 1304 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1305 uintptr_t IntPtr = 0; 1306 if (std::error_code EC = 1307 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1308 return EC; 1309 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1310 1311 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1312 int Offset = 0; 1313 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1314 I < E; ++I, ++Offset) { 1315 if (*I != Index) 1316 continue; 1317 if (std::error_code EC = 1318 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1319 return EC; 1320 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1321 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1322 return EC; 1323 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1324 return std::error_code(); 1325 } 1326 Result = ""; 1327 return std::error_code(); 1328 } 1329 1330 bool ImportedSymbolRef:: 1331 operator==(const ImportedSymbolRef &Other) const { 1332 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1333 && Index == Other.Index; 1334 } 1335 1336 void ImportedSymbolRef::moveNext() { 1337 ++Index; 1338 } 1339 1340 std::error_code 1341 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1342 uint32_t RVA; 1343 if (Entry32) { 1344 // If a symbol is imported only by ordinal, it has no name. 1345 if (Entry32[Index].isOrdinal()) 1346 return std::error_code(); 1347 RVA = Entry32[Index].getHintNameRVA(); 1348 } else { 1349 if (Entry64[Index].isOrdinal()) 1350 return std::error_code(); 1351 RVA = Entry64[Index].getHintNameRVA(); 1352 } 1353 uintptr_t IntPtr = 0; 1354 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1355 return EC; 1356 // +2 because the first two bytes is hint. 1357 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1358 return std::error_code(); 1359 } 1360 1361 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1362 uint32_t RVA; 1363 if (Entry32) { 1364 if (Entry32[Index].isOrdinal()) { 1365 Result = Entry32[Index].getOrdinal(); 1366 return std::error_code(); 1367 } 1368 RVA = Entry32[Index].getHintNameRVA(); 1369 } else { 1370 if (Entry64[Index].isOrdinal()) { 1371 Result = Entry64[Index].getOrdinal(); 1372 return std::error_code(); 1373 } 1374 RVA = Entry64[Index].getHintNameRVA(); 1375 } 1376 uintptr_t IntPtr = 0; 1377 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1378 return EC; 1379 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1380 return std::error_code(); 1381 } 1382 1383 ErrorOr<std::unique_ptr<COFFObjectFile>> 1384 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1385 std::error_code EC; 1386 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1387 if (EC) 1388 return EC; 1389 return std::move(Ret); 1390 } 1391 1392 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1393 return Header == Other.Header && Index == Other.Index; 1394 } 1395 1396 void BaseRelocRef::moveNext() { 1397 // Header->BlockSize is the size of the current block, including the 1398 // size of the header itself. 1399 uint32_t Size = sizeof(*Header) + 1400 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1401 if (Size == Header->BlockSize) { 1402 // .reloc contains a list of base relocation blocks. Each block 1403 // consists of the header followed by entries. The header contains 1404 // how many entories will follow. When we reach the end of the 1405 // current block, proceed to the next block. 1406 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1407 reinterpret_cast<const uint8_t *>(Header) + Size); 1408 Index = 0; 1409 } else { 1410 ++Index; 1411 } 1412 } 1413 1414 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1415 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1416 Type = Entry[Index].getType(); 1417 return std::error_code(); 1418 } 1419 1420 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1421 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1422 Result = Header->PageRVA + Entry[Index].getOffset(); 1423 return std::error_code(); 1424 } 1425