1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/ADT/iterator_range.h" 18 #include "llvm/BinaryFormat/COFF.h" 19 #include "llvm/Object/Binary.h" 20 #include "llvm/Object/COFF.h" 21 #include "llvm/Object/Error.h" 22 #include "llvm/Object/ObjectFile.h" 23 #include "llvm/Support/BinaryStreamReader.h" 24 #include "llvm/Support/Endian.h" 25 #include "llvm/Support/Error.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cstddef> 32 #include <cstdint> 33 #include <cstring> 34 #include <limits> 35 #include <memory> 36 #include <system_error> 37 38 using namespace llvm; 39 using namespace object; 40 41 using support::ulittle16_t; 42 using support::ulittle32_t; 43 using support::ulittle64_t; 44 using support::little16_t; 45 46 // Returns false if size is greater than the buffer size. And sets ec. 47 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 48 if (M.getBufferSize() < Size) { 49 EC = object_error::unexpected_eof; 50 return false; 51 } 52 return true; 53 } 54 55 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 56 // Returns unexpected_eof if error. 57 template <typename T> 58 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 59 const void *Ptr, 60 const uint64_t Size = sizeof(T)) { 61 uintptr_t Addr = uintptr_t(Ptr); 62 if (std::error_code EC = Binary::checkOffset(M, Addr, Size)) 63 return EC; 64 Obj = reinterpret_cast<const T *>(Addr); 65 return std::error_code(); 66 } 67 68 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 69 // prefixed slashes. 70 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 71 assert(Str.size() <= 6 && "String too long, possible overflow."); 72 if (Str.size() > 6) 73 return true; 74 75 uint64_t Value = 0; 76 while (!Str.empty()) { 77 unsigned CharVal; 78 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 79 CharVal = Str[0] - 'A'; 80 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 81 CharVal = Str[0] - 'a' + 26; 82 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 83 CharVal = Str[0] - '0' + 52; 84 else if (Str[0] == '+') // 62 85 CharVal = 62; 86 else if (Str[0] == '/') // 63 87 CharVal = 63; 88 else 89 return true; 90 91 Value = (Value * 64) + CharVal; 92 Str = Str.substr(1); 93 } 94 95 if (Value > std::numeric_limits<uint32_t>::max()) 96 return true; 97 98 Result = static_cast<uint32_t>(Value); 99 return false; 100 } 101 102 template <typename coff_symbol_type> 103 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 104 const coff_symbol_type *Addr = 105 reinterpret_cast<const coff_symbol_type *>(Ref.p); 106 107 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 108 #ifndef NDEBUG 109 // Verify that the symbol points to a valid entry in the symbol table. 110 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 111 112 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 113 "Symbol did not point to the beginning of a symbol"); 114 #endif 115 116 return Addr; 117 } 118 119 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 120 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 121 122 #ifndef NDEBUG 123 // Verify that the section points to a valid entry in the section table. 124 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 125 report_fatal_error("Section was outside of section table."); 126 127 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 128 assert(Offset % sizeof(coff_section) == 0 && 129 "Section did not point to the beginning of a section"); 130 #endif 131 132 return Addr; 133 } 134 135 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 136 auto End = reinterpret_cast<uintptr_t>(StringTable); 137 if (SymbolTable16) { 138 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 139 Symb += 1 + Symb->NumberOfAuxSymbols; 140 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 141 } else if (SymbolTable32) { 142 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 143 Symb += 1 + Symb->NumberOfAuxSymbols; 144 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 145 } else { 146 llvm_unreachable("no symbol table pointer!"); 147 } 148 } 149 150 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 151 COFFSymbolRef Symb = getCOFFSymbol(Ref); 152 StringRef Result; 153 if (std::error_code EC = getSymbolName(Symb, Result)) 154 return errorCodeToError(EC); 155 return Result; 156 } 157 158 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 159 return getCOFFSymbol(Ref).getValue(); 160 } 161 162 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const { 163 // MSVC/link.exe seems to align symbols to the next-power-of-2 164 // up to 32 bytes. 165 COFFSymbolRef Symb = getCOFFSymbol(Ref); 166 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue())); 167 } 168 169 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 170 uint64_t Result = getSymbolValue(Ref); 171 COFFSymbolRef Symb = getCOFFSymbol(Ref); 172 int32_t SectionNumber = Symb.getSectionNumber(); 173 174 if (Symb.isAnyUndefined() || Symb.isCommon() || 175 COFF::isReservedSectionNumber(SectionNumber)) 176 return Result; 177 178 const coff_section *Section = nullptr; 179 if (std::error_code EC = getSection(SectionNumber, Section)) 180 return errorCodeToError(EC); 181 Result += Section->VirtualAddress; 182 183 // The section VirtualAddress does not include ImageBase, and we want to 184 // return virtual addresses. 185 Result += getImageBase(); 186 187 return Result; 188 } 189 190 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 191 COFFSymbolRef Symb = getCOFFSymbol(Ref); 192 int32_t SectionNumber = Symb.getSectionNumber(); 193 194 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 195 return SymbolRef::ST_Function; 196 if (Symb.isAnyUndefined()) 197 return SymbolRef::ST_Unknown; 198 if (Symb.isCommon()) 199 return SymbolRef::ST_Data; 200 if (Symb.isFileRecord()) 201 return SymbolRef::ST_File; 202 203 // TODO: perhaps we need a new symbol type ST_Section. 204 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 205 return SymbolRef::ST_Debug; 206 207 if (!COFF::isReservedSectionNumber(SectionNumber)) 208 return SymbolRef::ST_Data; 209 210 return SymbolRef::ST_Other; 211 } 212 213 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 214 COFFSymbolRef Symb = getCOFFSymbol(Ref); 215 uint32_t Result = SymbolRef::SF_None; 216 217 if (Symb.isExternal() || Symb.isWeakExternal()) 218 Result |= SymbolRef::SF_Global; 219 220 if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) { 221 Result |= SymbolRef::SF_Weak; 222 if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS) 223 Result |= SymbolRef::SF_Undefined; 224 } 225 226 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 227 Result |= SymbolRef::SF_Absolute; 228 229 if (Symb.isFileRecord()) 230 Result |= SymbolRef::SF_FormatSpecific; 231 232 if (Symb.isSectionDefinition()) 233 Result |= SymbolRef::SF_FormatSpecific; 234 235 if (Symb.isCommon()) 236 Result |= SymbolRef::SF_Common; 237 238 if (Symb.isUndefined()) 239 Result |= SymbolRef::SF_Undefined; 240 241 return Result; 242 } 243 244 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 245 COFFSymbolRef Symb = getCOFFSymbol(Ref); 246 return Symb.getValue(); 247 } 248 249 Expected<section_iterator> 250 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 251 COFFSymbolRef Symb = getCOFFSymbol(Ref); 252 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 253 return section_end(); 254 const coff_section *Sec = nullptr; 255 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 256 return errorCodeToError(EC); 257 DataRefImpl Ret; 258 Ret.p = reinterpret_cast<uintptr_t>(Sec); 259 return section_iterator(SectionRef(Ret, this)); 260 } 261 262 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 263 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 264 return Symb.getSectionNumber(); 265 } 266 267 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 268 const coff_section *Sec = toSec(Ref); 269 Sec += 1; 270 Ref.p = reinterpret_cast<uintptr_t>(Sec); 271 } 272 273 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 274 StringRef &Result) const { 275 const coff_section *Sec = toSec(Ref); 276 return getSectionName(Sec, Result); 277 } 278 279 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 280 const coff_section *Sec = toSec(Ref); 281 uint64_t Result = Sec->VirtualAddress; 282 283 // The section VirtualAddress does not include ImageBase, and we want to 284 // return virtual addresses. 285 Result += getImageBase(); 286 return Result; 287 } 288 289 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const { 290 return toSec(Sec) - SectionTable; 291 } 292 293 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 294 return getSectionSize(toSec(Ref)); 295 } 296 297 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 298 StringRef &Result) const { 299 const coff_section *Sec = toSec(Ref); 300 ArrayRef<uint8_t> Res; 301 std::error_code EC = getSectionContents(Sec, Res); 302 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 303 return EC; 304 } 305 306 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 307 const coff_section *Sec = toSec(Ref); 308 return Sec->getAlignment(); 309 } 310 311 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 312 return false; 313 } 314 315 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 316 const coff_section *Sec = toSec(Ref); 317 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 318 } 319 320 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 321 const coff_section *Sec = toSec(Ref); 322 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 323 } 324 325 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 326 const coff_section *Sec = toSec(Ref); 327 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 328 COFF::IMAGE_SCN_MEM_READ | 329 COFF::IMAGE_SCN_MEM_WRITE; 330 return (Sec->Characteristics & BssFlags) == BssFlags; 331 } 332 333 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 334 uintptr_t Offset = 335 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 336 assert((Offset % sizeof(coff_section)) == 0); 337 return (Offset / sizeof(coff_section)) + 1; 338 } 339 340 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 341 const coff_section *Sec = toSec(Ref); 342 // In COFF, a virtual section won't have any in-file 343 // content, so the file pointer to the content will be zero. 344 return Sec->PointerToRawData == 0; 345 } 346 347 static uint32_t getNumberOfRelocations(const coff_section *Sec, 348 MemoryBufferRef M, const uint8_t *base) { 349 // The field for the number of relocations in COFF section table is only 350 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 351 // NumberOfRelocations field, and the actual relocation count is stored in the 352 // VirtualAddress field in the first relocation entry. 353 if (Sec->hasExtendedRelocations()) { 354 const coff_relocation *FirstReloc; 355 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 356 base + Sec->PointerToRelocations))) 357 return 0; 358 // -1 to exclude this first relocation entry. 359 return FirstReloc->VirtualAddress - 1; 360 } 361 return Sec->NumberOfRelocations; 362 } 363 364 static const coff_relocation * 365 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 366 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 367 if (!NumRelocs) 368 return nullptr; 369 auto begin = reinterpret_cast<const coff_relocation *>( 370 Base + Sec->PointerToRelocations); 371 if (Sec->hasExtendedRelocations()) { 372 // Skip the first relocation entry repurposed to store the number of 373 // relocations. 374 begin++; 375 } 376 if (Binary::checkOffset(M, uintptr_t(begin), 377 sizeof(coff_relocation) * NumRelocs)) 378 return nullptr; 379 return begin; 380 } 381 382 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 383 const coff_section *Sec = toSec(Ref); 384 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 385 if (begin && Sec->VirtualAddress != 0) 386 report_fatal_error("Sections with relocations should have an address of 0"); 387 DataRefImpl Ret; 388 Ret.p = reinterpret_cast<uintptr_t>(begin); 389 return relocation_iterator(RelocationRef(Ret, this)); 390 } 391 392 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 393 const coff_section *Sec = toSec(Ref); 394 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 395 if (I) 396 I += getNumberOfRelocations(Sec, Data, base()); 397 DataRefImpl Ret; 398 Ret.p = reinterpret_cast<uintptr_t>(I); 399 return relocation_iterator(RelocationRef(Ret, this)); 400 } 401 402 // Initialize the pointer to the symbol table. 403 std::error_code COFFObjectFile::initSymbolTablePtr() { 404 if (COFFHeader) 405 if (std::error_code EC = getObject( 406 SymbolTable16, Data, base() + getPointerToSymbolTable(), 407 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 408 return EC; 409 410 if (COFFBigObjHeader) 411 if (std::error_code EC = getObject( 412 SymbolTable32, Data, base() + getPointerToSymbolTable(), 413 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 414 return EC; 415 416 // Find string table. The first four byte of the string table contains the 417 // total size of the string table, including the size field itself. If the 418 // string table is empty, the value of the first four byte would be 4. 419 uint32_t StringTableOffset = getPointerToSymbolTable() + 420 getNumberOfSymbols() * getSymbolTableEntrySize(); 421 const uint8_t *StringTableAddr = base() + StringTableOffset; 422 const ulittle32_t *StringTableSizePtr; 423 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 424 return EC; 425 StringTableSize = *StringTableSizePtr; 426 if (std::error_code EC = 427 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 428 return EC; 429 430 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 431 // tools like cvtres write a size of 0 for an empty table instead of 4. 432 if (StringTableSize < 4) 433 StringTableSize = 4; 434 435 // Check that the string table is null terminated if has any in it. 436 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 437 return object_error::parse_failed; 438 return std::error_code(); 439 } 440 441 uint64_t COFFObjectFile::getImageBase() const { 442 if (PE32Header) 443 return PE32Header->ImageBase; 444 else if (PE32PlusHeader) 445 return PE32PlusHeader->ImageBase; 446 // This actually comes up in practice. 447 return 0; 448 } 449 450 // Returns the file offset for the given VA. 451 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 452 uint64_t ImageBase = getImageBase(); 453 uint64_t Rva = Addr - ImageBase; 454 assert(Rva <= UINT32_MAX); 455 return getRvaPtr((uint32_t)Rva, Res); 456 } 457 458 // Returns the file offset for the given RVA. 459 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 460 for (const SectionRef &S : sections()) { 461 const coff_section *Section = getCOFFSection(S); 462 uint32_t SectionStart = Section->VirtualAddress; 463 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 464 if (SectionStart <= Addr && Addr < SectionEnd) { 465 uint32_t Offset = Addr - SectionStart; 466 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 467 return std::error_code(); 468 } 469 } 470 return object_error::parse_failed; 471 } 472 473 std::error_code 474 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 475 ArrayRef<uint8_t> &Contents) const { 476 for (const SectionRef &S : sections()) { 477 const coff_section *Section = getCOFFSection(S); 478 uint32_t SectionStart = Section->VirtualAddress; 479 // Check if this RVA is within the section bounds. Be careful about integer 480 // overflow. 481 uint32_t OffsetIntoSection = RVA - SectionStart; 482 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 483 Size <= Section->VirtualSize - OffsetIntoSection) { 484 uintptr_t Begin = 485 uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection; 486 Contents = 487 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 488 return std::error_code(); 489 } 490 } 491 return object_error::parse_failed; 492 } 493 494 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 495 // table entry. 496 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 497 StringRef &Name) const { 498 uintptr_t IntPtr = 0; 499 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 500 return EC; 501 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 502 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 503 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 504 return std::error_code(); 505 } 506 507 std::error_code 508 COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 509 const codeview::DebugInfo *&PDBInfo, 510 StringRef &PDBFileName) const { 511 ArrayRef<uint8_t> InfoBytes; 512 if (std::error_code EC = getRvaAndSizeAsBytes( 513 DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes)) 514 return EC; 515 if (InfoBytes.size() < sizeof(*PDBInfo) + 1) 516 return object_error::parse_failed; 517 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data()); 518 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); 519 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 520 InfoBytes.size()); 521 // Truncate the name at the first null byte. Ignore any padding. 522 PDBFileName = PDBFileName.split('\0').first; 523 return std::error_code(); 524 } 525 526 std::error_code 527 COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, 528 StringRef &PDBFileName) const { 529 for (const debug_directory &D : debug_directories()) 530 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 531 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 532 // If we get here, there is no PDB info to return. 533 PDBInfo = nullptr; 534 PDBFileName = StringRef(); 535 return std::error_code(); 536 } 537 538 // Find the import table. 539 std::error_code COFFObjectFile::initImportTablePtr() { 540 // First, we get the RVA of the import table. If the file lacks a pointer to 541 // the import table, do nothing. 542 const data_directory *DataEntry; 543 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 544 return std::error_code(); 545 546 // Do nothing if the pointer to import table is NULL. 547 if (DataEntry->RelativeVirtualAddress == 0) 548 return std::error_code(); 549 550 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 551 552 // Find the section that contains the RVA. This is needed because the RVA is 553 // the import table's memory address which is different from its file offset. 554 uintptr_t IntPtr = 0; 555 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 556 return EC; 557 if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size)) 558 return EC; 559 ImportDirectory = reinterpret_cast< 560 const coff_import_directory_table_entry *>(IntPtr); 561 return std::error_code(); 562 } 563 564 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 565 std::error_code COFFObjectFile::initDelayImportTablePtr() { 566 const data_directory *DataEntry; 567 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 568 return std::error_code(); 569 if (DataEntry->RelativeVirtualAddress == 0) 570 return std::error_code(); 571 572 uint32_t RVA = DataEntry->RelativeVirtualAddress; 573 NumberOfDelayImportDirectory = DataEntry->Size / 574 sizeof(delay_import_directory_table_entry) - 1; 575 576 uintptr_t IntPtr = 0; 577 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 578 return EC; 579 DelayImportDirectory = reinterpret_cast< 580 const delay_import_directory_table_entry *>(IntPtr); 581 return std::error_code(); 582 } 583 584 // Find the export table. 585 std::error_code COFFObjectFile::initExportTablePtr() { 586 // First, we get the RVA of the export table. If the file lacks a pointer to 587 // the export table, do nothing. 588 const data_directory *DataEntry; 589 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 590 return std::error_code(); 591 592 // Do nothing if the pointer to export table is NULL. 593 if (DataEntry->RelativeVirtualAddress == 0) 594 return std::error_code(); 595 596 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 597 uintptr_t IntPtr = 0; 598 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 599 return EC; 600 ExportDirectory = 601 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 602 return std::error_code(); 603 } 604 605 std::error_code COFFObjectFile::initBaseRelocPtr() { 606 const data_directory *DataEntry; 607 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 608 return std::error_code(); 609 if (DataEntry->RelativeVirtualAddress == 0) 610 return std::error_code(); 611 612 uintptr_t IntPtr = 0; 613 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 614 return EC; 615 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 616 IntPtr); 617 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 618 IntPtr + DataEntry->Size); 619 // FIXME: Verify the section containing BaseRelocHeader has at least 620 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 621 return std::error_code(); 622 } 623 624 std::error_code COFFObjectFile::initDebugDirectoryPtr() { 625 // Get the RVA of the debug directory. Do nothing if it does not exist. 626 const data_directory *DataEntry; 627 if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry)) 628 return std::error_code(); 629 630 // Do nothing if the RVA is NULL. 631 if (DataEntry->RelativeVirtualAddress == 0) 632 return std::error_code(); 633 634 // Check that the size is a multiple of the entry size. 635 if (DataEntry->Size % sizeof(debug_directory) != 0) 636 return object_error::parse_failed; 637 638 uintptr_t IntPtr = 0; 639 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 640 return EC; 641 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 642 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>( 643 IntPtr + DataEntry->Size); 644 // FIXME: Verify the section containing DebugDirectoryBegin has at least 645 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 646 return std::error_code(); 647 } 648 649 std::error_code COFFObjectFile::initLoadConfigPtr() { 650 // Get the RVA of the debug directory. Do nothing if it does not exist. 651 const data_directory *DataEntry; 652 if (getDataDirectory(COFF::LOAD_CONFIG_TABLE, DataEntry)) 653 return std::error_code(); 654 655 // Do nothing if the RVA is NULL. 656 if (DataEntry->RelativeVirtualAddress == 0) 657 return std::error_code(); 658 uintptr_t IntPtr = 0; 659 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 660 return EC; 661 662 LoadConfig = (const void *)IntPtr; 663 return std::error_code(); 664 } 665 666 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 667 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 668 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 669 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 670 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 671 ImportDirectory(nullptr), 672 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 673 ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 674 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) { 675 // Check that we at least have enough room for a header. 676 if (!checkSize(Data, EC, sizeof(coff_file_header))) 677 return; 678 679 // The current location in the file where we are looking at. 680 uint64_t CurPtr = 0; 681 682 // PE header is optional and is present only in executables. If it exists, 683 // it is placed right after COFF header. 684 bool HasPEHeader = false; 685 686 // Check if this is a PE/COFF file. 687 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 688 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 689 // PE signature to find 'normal' COFF header. 690 const auto *DH = reinterpret_cast<const dos_header *>(base()); 691 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 692 CurPtr = DH->AddressOfNewExeHeader; 693 // Check the PE magic bytes. ("PE\0\0") 694 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 695 EC = object_error::parse_failed; 696 return; 697 } 698 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 699 HasPEHeader = true; 700 } 701 } 702 703 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 704 return; 705 706 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 707 // import libraries share a common prefix but bigobj is more restrictive. 708 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 709 COFFHeader->NumberOfSections == uint16_t(0xffff) && 710 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 711 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 712 return; 713 714 // Verify that we are dealing with bigobj. 715 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 716 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 717 sizeof(COFF::BigObjMagic)) == 0) { 718 COFFHeader = nullptr; 719 CurPtr += sizeof(coff_bigobj_file_header); 720 } else { 721 // It's not a bigobj. 722 COFFBigObjHeader = nullptr; 723 } 724 } 725 if (COFFHeader) { 726 // The prior checkSize call may have failed. This isn't a hard error 727 // because we were just trying to sniff out bigobj. 728 EC = std::error_code(); 729 CurPtr += sizeof(coff_file_header); 730 731 if (COFFHeader->isImportLibrary()) 732 return; 733 } 734 735 if (HasPEHeader) { 736 const pe32_header *Header; 737 if ((EC = getObject(Header, Data, base() + CurPtr))) 738 return; 739 740 const uint8_t *DataDirAddr; 741 uint64_t DataDirSize; 742 if (Header->Magic == COFF::PE32Header::PE32) { 743 PE32Header = Header; 744 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 745 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 746 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 747 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 748 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 749 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 750 } else { 751 // It's neither PE32 nor PE32+. 752 EC = object_error::parse_failed; 753 return; 754 } 755 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 756 return; 757 } 758 759 if (COFFHeader) 760 CurPtr += COFFHeader->SizeOfOptionalHeader; 761 762 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 763 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 764 return; 765 766 // Initialize the pointer to the symbol table. 767 if (getPointerToSymbolTable() != 0) { 768 if ((EC = initSymbolTablePtr())) { 769 SymbolTable16 = nullptr; 770 SymbolTable32 = nullptr; 771 StringTable = nullptr; 772 StringTableSize = 0; 773 } 774 } else { 775 // We had better not have any symbols if we don't have a symbol table. 776 if (getNumberOfSymbols() != 0) { 777 EC = object_error::parse_failed; 778 return; 779 } 780 } 781 782 // Initialize the pointer to the beginning of the import table. 783 if ((EC = initImportTablePtr())) 784 return; 785 if ((EC = initDelayImportTablePtr())) 786 return; 787 788 // Initialize the pointer to the export table. 789 if ((EC = initExportTablePtr())) 790 return; 791 792 // Initialize the pointer to the base relocation table. 793 if ((EC = initBaseRelocPtr())) 794 return; 795 796 // Initialize the pointer to the export table. 797 if ((EC = initDebugDirectoryPtr())) 798 return; 799 800 if ((EC = initLoadConfigPtr())) 801 return; 802 803 EC = std::error_code(); 804 } 805 806 basic_symbol_iterator COFFObjectFile::symbol_begin() const { 807 DataRefImpl Ret; 808 Ret.p = getSymbolTable(); 809 return basic_symbol_iterator(SymbolRef(Ret, this)); 810 } 811 812 basic_symbol_iterator COFFObjectFile::symbol_end() const { 813 // The symbol table ends where the string table begins. 814 DataRefImpl Ret; 815 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 816 return basic_symbol_iterator(SymbolRef(Ret, this)); 817 } 818 819 import_directory_iterator COFFObjectFile::import_directory_begin() const { 820 if (!ImportDirectory) 821 return import_directory_end(); 822 if (ImportDirectory->isNull()) 823 return import_directory_end(); 824 return import_directory_iterator( 825 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 826 } 827 828 import_directory_iterator COFFObjectFile::import_directory_end() const { 829 return import_directory_iterator( 830 ImportDirectoryEntryRef(nullptr, -1, this)); 831 } 832 833 delay_import_directory_iterator 834 COFFObjectFile::delay_import_directory_begin() const { 835 return delay_import_directory_iterator( 836 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 837 } 838 839 delay_import_directory_iterator 840 COFFObjectFile::delay_import_directory_end() const { 841 return delay_import_directory_iterator( 842 DelayImportDirectoryEntryRef( 843 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 844 } 845 846 export_directory_iterator COFFObjectFile::export_directory_begin() const { 847 return export_directory_iterator( 848 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 849 } 850 851 export_directory_iterator COFFObjectFile::export_directory_end() const { 852 if (!ExportDirectory) 853 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 854 ExportDirectoryEntryRef Ref(ExportDirectory, 855 ExportDirectory->AddressTableEntries, this); 856 return export_directory_iterator(Ref); 857 } 858 859 section_iterator COFFObjectFile::section_begin() const { 860 DataRefImpl Ret; 861 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 862 return section_iterator(SectionRef(Ret, this)); 863 } 864 865 section_iterator COFFObjectFile::section_end() const { 866 DataRefImpl Ret; 867 int NumSections = 868 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 869 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 870 return section_iterator(SectionRef(Ret, this)); 871 } 872 873 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 874 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 875 } 876 877 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 878 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 879 } 880 881 uint8_t COFFObjectFile::getBytesInAddress() const { 882 return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4; 883 } 884 885 StringRef COFFObjectFile::getFileFormatName() const { 886 switch(getMachine()) { 887 case COFF::IMAGE_FILE_MACHINE_I386: 888 return "COFF-i386"; 889 case COFF::IMAGE_FILE_MACHINE_AMD64: 890 return "COFF-x86-64"; 891 case COFF::IMAGE_FILE_MACHINE_ARMNT: 892 return "COFF-ARM"; 893 case COFF::IMAGE_FILE_MACHINE_ARM64: 894 return "COFF-ARM64"; 895 default: 896 return "COFF-<unknown arch>"; 897 } 898 } 899 900 Triple::ArchType COFFObjectFile::getArch() const { 901 switch (getMachine()) { 902 case COFF::IMAGE_FILE_MACHINE_I386: 903 return Triple::x86; 904 case COFF::IMAGE_FILE_MACHINE_AMD64: 905 return Triple::x86_64; 906 case COFF::IMAGE_FILE_MACHINE_ARMNT: 907 return Triple::thumb; 908 case COFF::IMAGE_FILE_MACHINE_ARM64: 909 return Triple::aarch64; 910 default: 911 return Triple::UnknownArch; 912 } 913 } 914 915 Expected<uint64_t> COFFObjectFile::getStartAddress() const { 916 if (PE32Header) 917 return PE32Header->AddressOfEntryPoint; 918 return 0; 919 } 920 921 iterator_range<import_directory_iterator> 922 COFFObjectFile::import_directories() const { 923 return make_range(import_directory_begin(), import_directory_end()); 924 } 925 926 iterator_range<delay_import_directory_iterator> 927 COFFObjectFile::delay_import_directories() const { 928 return make_range(delay_import_directory_begin(), 929 delay_import_directory_end()); 930 } 931 932 iterator_range<export_directory_iterator> 933 COFFObjectFile::export_directories() const { 934 return make_range(export_directory_begin(), export_directory_end()); 935 } 936 937 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 938 return make_range(base_reloc_begin(), base_reloc_end()); 939 } 940 941 std::error_code 942 COFFObjectFile::getCOFFHeader(const coff_file_header *&Res) const { 943 Res = COFFHeader; 944 return std::error_code(); 945 } 946 947 std::error_code 948 COFFObjectFile::getCOFFBigObjHeader(const coff_bigobj_file_header *&Res) const { 949 Res = COFFBigObjHeader; 950 return std::error_code(); 951 } 952 953 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 954 Res = PE32Header; 955 return std::error_code(); 956 } 957 958 std::error_code 959 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 960 Res = PE32PlusHeader; 961 return std::error_code(); 962 } 963 964 std::error_code 965 COFFObjectFile::getDataDirectory(uint32_t Index, 966 const data_directory *&Res) const { 967 // Error if there's no data directory or the index is out of range. 968 if (!DataDirectory) { 969 Res = nullptr; 970 return object_error::parse_failed; 971 } 972 assert(PE32Header || PE32PlusHeader); 973 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 974 : PE32PlusHeader->NumberOfRvaAndSize; 975 if (Index >= NumEnt) { 976 Res = nullptr; 977 return object_error::parse_failed; 978 } 979 Res = &DataDirectory[Index]; 980 return std::error_code(); 981 } 982 983 std::error_code COFFObjectFile::getSection(int32_t Index, 984 const coff_section *&Result) const { 985 Result = nullptr; 986 if (COFF::isReservedSectionNumber(Index)) 987 return std::error_code(); 988 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 989 // We already verified the section table data, so no need to check again. 990 Result = SectionTable + (Index - 1); 991 return std::error_code(); 992 } 993 return object_error::parse_failed; 994 } 995 996 std::error_code COFFObjectFile::getSection(StringRef SectionName, 997 const coff_section *&Result) const { 998 Result = nullptr; 999 StringRef SecName; 1000 for (const SectionRef &Section : sections()) { 1001 if (std::error_code E = Section.getName(SecName)) 1002 return E; 1003 if (SecName == SectionName) { 1004 Result = getCOFFSection(Section); 1005 return std::error_code(); 1006 } 1007 } 1008 return object_error::parse_failed; 1009 } 1010 1011 std::error_code COFFObjectFile::getString(uint32_t Offset, 1012 StringRef &Result) const { 1013 if (StringTableSize <= 4) 1014 // Tried to get a string from an empty string table. 1015 return object_error::parse_failed; 1016 if (Offset >= StringTableSize) 1017 return object_error::unexpected_eof; 1018 Result = StringRef(StringTable + Offset); 1019 return std::error_code(); 1020 } 1021 1022 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 1023 StringRef &Res) const { 1024 return getSymbolName(Symbol.getGeneric(), Res); 1025 } 1026 1027 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol, 1028 StringRef &Res) const { 1029 // Check for string table entry. First 4 bytes are 0. 1030 if (Symbol->Name.Offset.Zeroes == 0) { 1031 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res)) 1032 return EC; 1033 return std::error_code(); 1034 } 1035 1036 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 1037 // Null terminated, let ::strlen figure out the length. 1038 Res = StringRef(Symbol->Name.ShortName); 1039 else 1040 // Not null terminated, use all 8 bytes. 1041 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize); 1042 return std::error_code(); 1043 } 1044 1045 ArrayRef<uint8_t> 1046 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 1047 const uint8_t *Aux = nullptr; 1048 1049 size_t SymbolSize = getSymbolTableEntrySize(); 1050 if (Symbol.getNumberOfAuxSymbols() > 0) { 1051 // AUX data comes immediately after the symbol in COFF 1052 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 1053 #ifndef NDEBUG 1054 // Verify that the Aux symbol points to a valid entry in the symbol table. 1055 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 1056 if (Offset < getPointerToSymbolTable() || 1057 Offset >= 1058 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 1059 report_fatal_error("Aux Symbol data was outside of symbol table."); 1060 1061 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 1062 "Aux Symbol data did not point to the beginning of a symbol"); 1063 #endif 1064 } 1065 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 1066 } 1067 1068 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const { 1069 uintptr_t Offset = 1070 reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable(); 1071 assert(Offset % getSymbolTableEntrySize() == 0 && 1072 "Symbol did not point to the beginning of a symbol"); 1073 size_t Index = Offset / getSymbolTableEntrySize(); 1074 assert(Index < getNumberOfSymbols()); 1075 return Index; 1076 } 1077 1078 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 1079 StringRef &Res) const { 1080 StringRef Name; 1081 if (Sec->Name[COFF::NameSize - 1] == 0) 1082 // Null terminated, let ::strlen figure out the length. 1083 Name = Sec->Name; 1084 else 1085 // Not null terminated, use all 8 bytes. 1086 Name = StringRef(Sec->Name, COFF::NameSize); 1087 1088 // Check for string table entry. First byte is '/'. 1089 if (Name.startswith("/")) { 1090 uint32_t Offset; 1091 if (Name.startswith("//")) { 1092 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1093 return object_error::parse_failed; 1094 } else { 1095 if (Name.substr(1).getAsInteger(10, Offset)) 1096 return object_error::parse_failed; 1097 } 1098 if (std::error_code EC = getString(Offset, Name)) 1099 return EC; 1100 } 1101 1102 Res = Name; 1103 return std::error_code(); 1104 } 1105 1106 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1107 // SizeOfRawData and VirtualSize change what they represent depending on 1108 // whether or not we have an executable image. 1109 // 1110 // For object files, SizeOfRawData contains the size of section's data; 1111 // VirtualSize should be zero but isn't due to buggy COFF writers. 1112 // 1113 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1114 // actual section size is in VirtualSize. It is possible for VirtualSize to 1115 // be greater than SizeOfRawData; the contents past that point should be 1116 // considered to be zero. 1117 if (getDOSHeader()) 1118 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1119 return Sec->SizeOfRawData; 1120 } 1121 1122 std::error_code 1123 COFFObjectFile::getSectionContents(const coff_section *Sec, 1124 ArrayRef<uint8_t> &Res) const { 1125 // In COFF, a virtual section won't have any in-file 1126 // content, so the file pointer to the content will be zero. 1127 if (Sec->PointerToRawData == 0) 1128 return std::error_code(); 1129 // The only thing that we need to verify is that the contents is contained 1130 // within the file bounds. We don't need to make sure it doesn't cover other 1131 // data, as there's nothing that says that is not allowed. 1132 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 1133 uint32_t SectionSize = getSectionSize(Sec); 1134 if (checkOffset(Data, ConStart, SectionSize)) 1135 return object_error::parse_failed; 1136 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1137 return std::error_code(); 1138 } 1139 1140 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1141 return reinterpret_cast<const coff_relocation*>(Rel.p); 1142 } 1143 1144 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1145 Rel.p = reinterpret_cast<uintptr_t>( 1146 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1147 } 1148 1149 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1150 const coff_relocation *R = toRel(Rel); 1151 return R->VirtualAddress; 1152 } 1153 1154 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1155 const coff_relocation *R = toRel(Rel); 1156 DataRefImpl Ref; 1157 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1158 return symbol_end(); 1159 if (SymbolTable16) 1160 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1161 else if (SymbolTable32) 1162 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1163 else 1164 llvm_unreachable("no symbol table pointer!"); 1165 return symbol_iterator(SymbolRef(Ref, this)); 1166 } 1167 1168 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1169 const coff_relocation* R = toRel(Rel); 1170 return R->Type; 1171 } 1172 1173 const coff_section * 1174 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1175 return toSec(Section.getRawDataRefImpl()); 1176 } 1177 1178 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1179 if (SymbolTable16) 1180 return toSymb<coff_symbol16>(Ref); 1181 if (SymbolTable32) 1182 return toSymb<coff_symbol32>(Ref); 1183 llvm_unreachable("no symbol table pointer!"); 1184 } 1185 1186 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1187 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1188 } 1189 1190 const coff_relocation * 1191 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1192 return toRel(Reloc.getRawDataRefImpl()); 1193 } 1194 1195 ArrayRef<coff_relocation> 1196 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1197 return {getFirstReloc(Sec, Data, base()), 1198 getNumberOfRelocations(Sec, Data, base())}; 1199 } 1200 1201 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1202 case COFF::reloc_type: \ 1203 return #reloc_type; 1204 1205 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const { 1206 switch (getMachine()) { 1207 case COFF::IMAGE_FILE_MACHINE_AMD64: 1208 switch (Type) { 1209 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1210 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1211 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1212 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1213 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1214 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1215 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1216 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1217 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1218 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1219 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1220 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1221 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1222 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1223 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1224 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1225 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1226 default: 1227 return "Unknown"; 1228 } 1229 break; 1230 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1231 switch (Type) { 1232 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1233 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1234 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1235 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1236 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1237 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1238 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1239 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1240 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1241 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1242 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1243 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1244 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1245 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1246 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1247 default: 1248 return "Unknown"; 1249 } 1250 break; 1251 case COFF::IMAGE_FILE_MACHINE_ARM64: 1252 switch (Type) { 1253 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE); 1254 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32); 1255 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB); 1256 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26); 1257 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21); 1258 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21); 1259 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A); 1260 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L); 1261 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL); 1262 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A); 1263 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A); 1264 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L); 1265 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN); 1266 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION); 1267 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64); 1268 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19); 1269 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14); 1270 default: 1271 return "Unknown"; 1272 } 1273 break; 1274 case COFF::IMAGE_FILE_MACHINE_I386: 1275 switch (Type) { 1276 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1277 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1278 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1279 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1280 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1281 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1282 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1283 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1284 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1285 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1286 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1287 default: 1288 return "Unknown"; 1289 } 1290 break; 1291 default: 1292 return "Unknown"; 1293 } 1294 } 1295 1296 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1297 1298 void COFFObjectFile::getRelocationTypeName( 1299 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1300 const coff_relocation *Reloc = toRel(Rel); 1301 StringRef Res = getRelocationTypeName(Reloc->Type); 1302 Result.append(Res.begin(), Res.end()); 1303 } 1304 1305 bool COFFObjectFile::isRelocatableObject() const { 1306 return !DataDirectory; 1307 } 1308 1309 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const { 1310 return StringSwitch<StringRef>(Name) 1311 .Case("eh_fram", "eh_frame") 1312 .Default(Name); 1313 } 1314 1315 bool ImportDirectoryEntryRef:: 1316 operator==(const ImportDirectoryEntryRef &Other) const { 1317 return ImportTable == Other.ImportTable && Index == Other.Index; 1318 } 1319 1320 void ImportDirectoryEntryRef::moveNext() { 1321 ++Index; 1322 if (ImportTable[Index].isNull()) { 1323 Index = -1; 1324 ImportTable = nullptr; 1325 } 1326 } 1327 1328 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1329 const coff_import_directory_table_entry *&Result) const { 1330 return getObject(Result, OwningObject->Data, ImportTable + Index); 1331 } 1332 1333 static imported_symbol_iterator 1334 makeImportedSymbolIterator(const COFFObjectFile *Object, 1335 uintptr_t Ptr, int Index) { 1336 if (Object->getBytesInAddress() == 4) { 1337 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1338 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1339 } 1340 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1341 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1342 } 1343 1344 static imported_symbol_iterator 1345 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1346 uintptr_t IntPtr = 0; 1347 Object->getRvaPtr(RVA, IntPtr); 1348 return makeImportedSymbolIterator(Object, IntPtr, 0); 1349 } 1350 1351 static imported_symbol_iterator 1352 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1353 uintptr_t IntPtr = 0; 1354 Object->getRvaPtr(RVA, IntPtr); 1355 // Forward the pointer to the last entry which is null. 1356 int Index = 0; 1357 if (Object->getBytesInAddress() == 4) { 1358 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1359 while (*Entry++) 1360 ++Index; 1361 } else { 1362 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1363 while (*Entry++) 1364 ++Index; 1365 } 1366 return makeImportedSymbolIterator(Object, IntPtr, Index); 1367 } 1368 1369 imported_symbol_iterator 1370 ImportDirectoryEntryRef::imported_symbol_begin() const { 1371 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1372 OwningObject); 1373 } 1374 1375 imported_symbol_iterator 1376 ImportDirectoryEntryRef::imported_symbol_end() const { 1377 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1378 OwningObject); 1379 } 1380 1381 iterator_range<imported_symbol_iterator> 1382 ImportDirectoryEntryRef::imported_symbols() const { 1383 return make_range(imported_symbol_begin(), imported_symbol_end()); 1384 } 1385 1386 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1387 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1388 OwningObject); 1389 } 1390 1391 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1392 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1393 OwningObject); 1394 } 1395 1396 iterator_range<imported_symbol_iterator> 1397 ImportDirectoryEntryRef::lookup_table_symbols() const { 1398 return make_range(lookup_table_begin(), lookup_table_end()); 1399 } 1400 1401 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1402 uintptr_t IntPtr = 0; 1403 if (std::error_code EC = 1404 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1405 return EC; 1406 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1407 return std::error_code(); 1408 } 1409 1410 std::error_code 1411 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1412 Result = ImportTable[Index].ImportLookupTableRVA; 1413 return std::error_code(); 1414 } 1415 1416 std::error_code 1417 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1418 Result = ImportTable[Index].ImportAddressTableRVA; 1419 return std::error_code(); 1420 } 1421 1422 bool DelayImportDirectoryEntryRef:: 1423 operator==(const DelayImportDirectoryEntryRef &Other) const { 1424 return Table == Other.Table && Index == Other.Index; 1425 } 1426 1427 void DelayImportDirectoryEntryRef::moveNext() { 1428 ++Index; 1429 } 1430 1431 imported_symbol_iterator 1432 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1433 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1434 OwningObject); 1435 } 1436 1437 imported_symbol_iterator 1438 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1439 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1440 OwningObject); 1441 } 1442 1443 iterator_range<imported_symbol_iterator> 1444 DelayImportDirectoryEntryRef::imported_symbols() const { 1445 return make_range(imported_symbol_begin(), imported_symbol_end()); 1446 } 1447 1448 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1449 uintptr_t IntPtr = 0; 1450 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1451 return EC; 1452 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1453 return std::error_code(); 1454 } 1455 1456 std::error_code DelayImportDirectoryEntryRef:: 1457 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1458 Result = Table; 1459 return std::error_code(); 1460 } 1461 1462 std::error_code DelayImportDirectoryEntryRef:: 1463 getImportAddress(int AddrIndex, uint64_t &Result) const { 1464 uint32_t RVA = Table[Index].DelayImportAddressTable + 1465 AddrIndex * (OwningObject->is64() ? 8 : 4); 1466 uintptr_t IntPtr = 0; 1467 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1468 return EC; 1469 if (OwningObject->is64()) 1470 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1471 else 1472 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1473 return std::error_code(); 1474 } 1475 1476 bool ExportDirectoryEntryRef:: 1477 operator==(const ExportDirectoryEntryRef &Other) const { 1478 return ExportTable == Other.ExportTable && Index == Other.Index; 1479 } 1480 1481 void ExportDirectoryEntryRef::moveNext() { 1482 ++Index; 1483 } 1484 1485 // Returns the name of the current export symbol. If the symbol is exported only 1486 // by ordinal, the empty string is set as a result. 1487 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1488 uintptr_t IntPtr = 0; 1489 if (std::error_code EC = 1490 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1491 return EC; 1492 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1493 return std::error_code(); 1494 } 1495 1496 // Returns the starting ordinal number. 1497 std::error_code 1498 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1499 Result = ExportTable->OrdinalBase; 1500 return std::error_code(); 1501 } 1502 1503 // Returns the export ordinal of the current export symbol. 1504 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1505 Result = ExportTable->OrdinalBase + Index; 1506 return std::error_code(); 1507 } 1508 1509 // Returns the address of the current export symbol. 1510 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1511 uintptr_t IntPtr = 0; 1512 if (std::error_code EC = 1513 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1514 return EC; 1515 const export_address_table_entry *entry = 1516 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1517 Result = entry[Index].ExportRVA; 1518 return std::error_code(); 1519 } 1520 1521 // Returns the name of the current export symbol. If the symbol is exported only 1522 // by ordinal, the empty string is set as a result. 1523 std::error_code 1524 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1525 uintptr_t IntPtr = 0; 1526 if (std::error_code EC = 1527 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1528 return EC; 1529 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1530 1531 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1532 int Offset = 0; 1533 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1534 I < E; ++I, ++Offset) { 1535 if (*I != Index) 1536 continue; 1537 if (std::error_code EC = 1538 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1539 return EC; 1540 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1541 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1542 return EC; 1543 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1544 return std::error_code(); 1545 } 1546 Result = ""; 1547 return std::error_code(); 1548 } 1549 1550 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1551 const data_directory *DataEntry; 1552 if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 1553 return EC; 1554 uint32_t RVA; 1555 if (auto EC = getExportRVA(RVA)) 1556 return EC; 1557 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1558 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1559 Result = (Begin <= RVA && RVA < End); 1560 return std::error_code(); 1561 } 1562 1563 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1564 uint32_t RVA; 1565 if (auto EC = getExportRVA(RVA)) 1566 return EC; 1567 uintptr_t IntPtr = 0; 1568 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1569 return EC; 1570 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1571 return std::error_code(); 1572 } 1573 1574 bool ImportedSymbolRef:: 1575 operator==(const ImportedSymbolRef &Other) const { 1576 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1577 && Index == Other.Index; 1578 } 1579 1580 void ImportedSymbolRef::moveNext() { 1581 ++Index; 1582 } 1583 1584 std::error_code 1585 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1586 uint32_t RVA; 1587 if (Entry32) { 1588 // If a symbol is imported only by ordinal, it has no name. 1589 if (Entry32[Index].isOrdinal()) 1590 return std::error_code(); 1591 RVA = Entry32[Index].getHintNameRVA(); 1592 } else { 1593 if (Entry64[Index].isOrdinal()) 1594 return std::error_code(); 1595 RVA = Entry64[Index].getHintNameRVA(); 1596 } 1597 uintptr_t IntPtr = 0; 1598 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1599 return EC; 1600 // +2 because the first two bytes is hint. 1601 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1602 return std::error_code(); 1603 } 1604 1605 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const { 1606 if (Entry32) 1607 Result = Entry32[Index].isOrdinal(); 1608 else 1609 Result = Entry64[Index].isOrdinal(); 1610 return std::error_code(); 1611 } 1612 1613 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1614 if (Entry32) 1615 Result = Entry32[Index].getHintNameRVA(); 1616 else 1617 Result = Entry64[Index].getHintNameRVA(); 1618 return std::error_code(); 1619 } 1620 1621 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1622 uint32_t RVA; 1623 if (Entry32) { 1624 if (Entry32[Index].isOrdinal()) { 1625 Result = Entry32[Index].getOrdinal(); 1626 return std::error_code(); 1627 } 1628 RVA = Entry32[Index].getHintNameRVA(); 1629 } else { 1630 if (Entry64[Index].isOrdinal()) { 1631 Result = Entry64[Index].getOrdinal(); 1632 return std::error_code(); 1633 } 1634 RVA = Entry64[Index].getHintNameRVA(); 1635 } 1636 uintptr_t IntPtr = 0; 1637 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1638 return EC; 1639 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1640 return std::error_code(); 1641 } 1642 1643 Expected<std::unique_ptr<COFFObjectFile>> 1644 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1645 std::error_code EC; 1646 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1647 if (EC) 1648 return errorCodeToError(EC); 1649 return std::move(Ret); 1650 } 1651 1652 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1653 return Header == Other.Header && Index == Other.Index; 1654 } 1655 1656 void BaseRelocRef::moveNext() { 1657 // Header->BlockSize is the size of the current block, including the 1658 // size of the header itself. 1659 uint32_t Size = sizeof(*Header) + 1660 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1661 if (Size == Header->BlockSize) { 1662 // .reloc contains a list of base relocation blocks. Each block 1663 // consists of the header followed by entries. The header contains 1664 // how many entories will follow. When we reach the end of the 1665 // current block, proceed to the next block. 1666 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1667 reinterpret_cast<const uint8_t *>(Header) + Size); 1668 Index = 0; 1669 } else { 1670 ++Index; 1671 } 1672 } 1673 1674 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1675 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1676 Type = Entry[Index].getType(); 1677 return std::error_code(); 1678 } 1679 1680 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1681 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1682 Result = Header->PageRVA + Entry[Index].getOffset(); 1683 return std::error_code(); 1684 } 1685 1686 #define RETURN_IF_ERROR(E) \ 1687 if (E) \ 1688 return E; 1689 1690 Expected<ArrayRef<UTF16>> 1691 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) { 1692 BinaryStreamReader Reader = BinaryStreamReader(BBS); 1693 Reader.setOffset(Offset); 1694 uint16_t Length; 1695 RETURN_IF_ERROR(Reader.readInteger(Length)); 1696 ArrayRef<UTF16> RawDirString; 1697 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length)); 1698 return RawDirString; 1699 } 1700 1701 Expected<ArrayRef<UTF16>> 1702 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) { 1703 return getDirStringAtOffset(Entry.Identifier.getNameOffset()); 1704 } 1705 1706 Expected<const coff_resource_dir_table &> 1707 ResourceSectionRef::getTableAtOffset(uint32_t Offset) { 1708 const coff_resource_dir_table *Table = nullptr; 1709 1710 BinaryStreamReader Reader(BBS); 1711 Reader.setOffset(Offset); 1712 RETURN_IF_ERROR(Reader.readObject(Table)); 1713 assert(Table != nullptr); 1714 return *Table; 1715 } 1716 1717 Expected<const coff_resource_dir_table &> 1718 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) { 1719 return getTableAtOffset(Entry.Offset.value()); 1720 } 1721 1722 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() { 1723 return getTableAtOffset(0); 1724 } 1725