1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the COFFObjectFile class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/StringSwitch.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/ADT/iterator_range.h" 18 #include "llvm/BinaryFormat/COFF.h" 19 #include "llvm/Object/Binary.h" 20 #include "llvm/Object/COFF.h" 21 #include "llvm/Object/Error.h" 22 #include "llvm/Object/ObjectFile.h" 23 #include "llvm/Support/BinaryStreamReader.h" 24 #include "llvm/Support/Endian.h" 25 #include "llvm/Support/Error.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/MemoryBufferRef.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cinttypes> 32 #include <cstddef> 33 #include <cstring> 34 #include <limits> 35 #include <memory> 36 #include <system_error> 37 38 using namespace llvm; 39 using namespace object; 40 41 using support::ulittle16_t; 42 using support::ulittle32_t; 43 using support::ulittle64_t; 44 using support::little16_t; 45 46 // Returns false if size is greater than the buffer size. And sets ec. 47 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 48 if (M.getBufferSize() < Size) { 49 EC = object_error::unexpected_eof; 50 return false; 51 } 52 return true; 53 } 54 55 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 56 // Returns unexpected_eof if error. 57 template <typename T> 58 static Error getObject(const T *&Obj, MemoryBufferRef M, const void *Ptr, 59 const uint64_t Size = sizeof(T)) { 60 uintptr_t Addr = reinterpret_cast<uintptr_t>(Ptr); 61 if (Error E = Binary::checkOffset(M, Addr, Size)) 62 return E; 63 Obj = reinterpret_cast<const T *>(Addr); 64 return Error::success(); 65 } 66 67 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 68 // prefixed slashes. 69 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 70 assert(Str.size() <= 6 && "String too long, possible overflow."); 71 if (Str.size() > 6) 72 return true; 73 74 uint64_t Value = 0; 75 while (!Str.empty()) { 76 unsigned CharVal; 77 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 78 CharVal = Str[0] - 'A'; 79 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 80 CharVal = Str[0] - 'a' + 26; 81 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 82 CharVal = Str[0] - '0' + 52; 83 else if (Str[0] == '+') // 62 84 CharVal = 62; 85 else if (Str[0] == '/') // 63 86 CharVal = 63; 87 else 88 return true; 89 90 Value = (Value * 64) + CharVal; 91 Str = Str.substr(1); 92 } 93 94 if (Value > std::numeric_limits<uint32_t>::max()) 95 return true; 96 97 Result = static_cast<uint32_t>(Value); 98 return false; 99 } 100 101 template <typename coff_symbol_type> 102 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 103 const coff_symbol_type *Addr = 104 reinterpret_cast<const coff_symbol_type *>(Ref.p); 105 106 assert(!checkOffset(Data, reinterpret_cast<uintptr_t>(Addr), sizeof(*Addr))); 107 #ifndef NDEBUG 108 // Verify that the symbol points to a valid entry in the symbol table. 109 uintptr_t Offset = 110 reinterpret_cast<uintptr_t>(Addr) - reinterpret_cast<uintptr_t>(base()); 111 112 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 113 "Symbol did not point to the beginning of a symbol"); 114 #endif 115 116 return Addr; 117 } 118 119 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 120 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 121 122 #ifndef NDEBUG 123 // Verify that the section points to a valid entry in the section table. 124 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 125 report_fatal_error("Section was outside of section table."); 126 127 uintptr_t Offset = reinterpret_cast<uintptr_t>(Addr) - 128 reinterpret_cast<uintptr_t>(SectionTable); 129 assert(Offset % sizeof(coff_section) == 0 && 130 "Section did not point to the beginning of a section"); 131 #endif 132 133 return Addr; 134 } 135 136 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 137 auto End = reinterpret_cast<uintptr_t>(StringTable); 138 if (SymbolTable16) { 139 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 140 Symb += 1 + Symb->NumberOfAuxSymbols; 141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 142 } else if (SymbolTable32) { 143 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 144 Symb += 1 + Symb->NumberOfAuxSymbols; 145 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 146 } else { 147 llvm_unreachable("no symbol table pointer!"); 148 } 149 } 150 151 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 152 return getSymbolName(getCOFFSymbol(Ref)); 153 } 154 155 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 156 return getCOFFSymbol(Ref).getValue(); 157 } 158 159 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const { 160 // MSVC/link.exe seems to align symbols to the next-power-of-2 161 // up to 32 bytes. 162 COFFSymbolRef Symb = getCOFFSymbol(Ref); 163 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue())); 164 } 165 166 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 167 uint64_t Result = cantFail(getSymbolValue(Ref)); 168 COFFSymbolRef Symb = getCOFFSymbol(Ref); 169 int32_t SectionNumber = Symb.getSectionNumber(); 170 171 if (Symb.isAnyUndefined() || Symb.isCommon() || 172 COFF::isReservedSectionNumber(SectionNumber)) 173 return Result; 174 175 Expected<const coff_section *> Section = getSection(SectionNumber); 176 if (!Section) 177 return Section.takeError(); 178 Result += (*Section)->VirtualAddress; 179 180 // The section VirtualAddress does not include ImageBase, and we want to 181 // return virtual addresses. 182 Result += getImageBase(); 183 184 return Result; 185 } 186 187 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 188 COFFSymbolRef Symb = getCOFFSymbol(Ref); 189 int32_t SectionNumber = Symb.getSectionNumber(); 190 191 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 192 return SymbolRef::ST_Function; 193 if (Symb.isAnyUndefined()) 194 return SymbolRef::ST_Unknown; 195 if (Symb.isCommon()) 196 return SymbolRef::ST_Data; 197 if (Symb.isFileRecord()) 198 return SymbolRef::ST_File; 199 200 // TODO: perhaps we need a new symbol type ST_Section. 201 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 202 return SymbolRef::ST_Debug; 203 204 if (!COFF::isReservedSectionNumber(SectionNumber)) 205 return SymbolRef::ST_Data; 206 207 return SymbolRef::ST_Other; 208 } 209 210 Expected<uint32_t> COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 211 COFFSymbolRef Symb = getCOFFSymbol(Ref); 212 uint32_t Result = SymbolRef::SF_None; 213 214 if (Symb.isExternal() || Symb.isWeakExternal()) 215 Result |= SymbolRef::SF_Global; 216 217 if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) { 218 Result |= SymbolRef::SF_Weak; 219 if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS) 220 Result |= SymbolRef::SF_Undefined; 221 } 222 223 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 224 Result |= SymbolRef::SF_Absolute; 225 226 if (Symb.isFileRecord()) 227 Result |= SymbolRef::SF_FormatSpecific; 228 229 if (Symb.isSectionDefinition()) 230 Result |= SymbolRef::SF_FormatSpecific; 231 232 if (Symb.isCommon()) 233 Result |= SymbolRef::SF_Common; 234 235 if (Symb.isUndefined()) 236 Result |= SymbolRef::SF_Undefined; 237 238 return Result; 239 } 240 241 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 242 COFFSymbolRef Symb = getCOFFSymbol(Ref); 243 return Symb.getValue(); 244 } 245 246 Expected<section_iterator> 247 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 248 COFFSymbolRef Symb = getCOFFSymbol(Ref); 249 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 250 return section_end(); 251 Expected<const coff_section *> Sec = getSection(Symb.getSectionNumber()); 252 if (!Sec) 253 return Sec.takeError(); 254 DataRefImpl Ret; 255 Ret.p = reinterpret_cast<uintptr_t>(*Sec); 256 return section_iterator(SectionRef(Ret, this)); 257 } 258 259 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 260 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 261 return Symb.getSectionNumber(); 262 } 263 264 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 265 const coff_section *Sec = toSec(Ref); 266 Sec += 1; 267 Ref.p = reinterpret_cast<uintptr_t>(Sec); 268 } 269 270 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const { 271 const coff_section *Sec = toSec(Ref); 272 return getSectionName(Sec); 273 } 274 275 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 276 const coff_section *Sec = toSec(Ref); 277 uint64_t Result = Sec->VirtualAddress; 278 279 // The section VirtualAddress does not include ImageBase, and we want to 280 // return virtual addresses. 281 Result += getImageBase(); 282 return Result; 283 } 284 285 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const { 286 return toSec(Sec) - SectionTable; 287 } 288 289 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 290 return getSectionSize(toSec(Ref)); 291 } 292 293 Expected<ArrayRef<uint8_t>> 294 COFFObjectFile::getSectionContents(DataRefImpl Ref) const { 295 const coff_section *Sec = toSec(Ref); 296 ArrayRef<uint8_t> Res; 297 if (Error E = getSectionContents(Sec, Res)) 298 return std::move(E); 299 return Res; 300 } 301 302 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 303 const coff_section *Sec = toSec(Ref); 304 return Sec->getAlignment(); 305 } 306 307 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 308 return false; 309 } 310 311 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 312 const coff_section *Sec = toSec(Ref); 313 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 314 } 315 316 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 317 const coff_section *Sec = toSec(Ref); 318 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 319 } 320 321 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 322 const coff_section *Sec = toSec(Ref); 323 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 324 COFF::IMAGE_SCN_MEM_READ | 325 COFF::IMAGE_SCN_MEM_WRITE; 326 return (Sec->Characteristics & BssFlags) == BssFlags; 327 } 328 329 // The .debug sections are the only debug sections for COFF 330 // (\see MCObjectFileInfo.cpp). 331 bool COFFObjectFile::isDebugSection(DataRefImpl Ref) const { 332 Expected<StringRef> SectionNameOrErr = getSectionName(Ref); 333 if (!SectionNameOrErr) { 334 // TODO: Report the error message properly. 335 consumeError(SectionNameOrErr.takeError()); 336 return false; 337 } 338 StringRef SectionName = SectionNameOrErr.get(); 339 return SectionName.startswith(".debug"); 340 } 341 342 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 343 uintptr_t Offset = 344 Sec.getRawDataRefImpl().p - reinterpret_cast<uintptr_t>(SectionTable); 345 assert((Offset % sizeof(coff_section)) == 0); 346 return (Offset / sizeof(coff_section)) + 1; 347 } 348 349 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 350 const coff_section *Sec = toSec(Ref); 351 // In COFF, a virtual section won't have any in-file 352 // content, so the file pointer to the content will be zero. 353 return Sec->PointerToRawData == 0; 354 } 355 356 static uint32_t getNumberOfRelocations(const coff_section *Sec, 357 MemoryBufferRef M, const uint8_t *base) { 358 // The field for the number of relocations in COFF section table is only 359 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 360 // NumberOfRelocations field, and the actual relocation count is stored in the 361 // VirtualAddress field in the first relocation entry. 362 if (Sec->hasExtendedRelocations()) { 363 const coff_relocation *FirstReloc; 364 if (Error E = getObject(FirstReloc, M, 365 reinterpret_cast<const coff_relocation *>( 366 base + Sec->PointerToRelocations))) { 367 consumeError(std::move(E)); 368 return 0; 369 } 370 // -1 to exclude this first relocation entry. 371 return FirstReloc->VirtualAddress - 1; 372 } 373 return Sec->NumberOfRelocations; 374 } 375 376 static const coff_relocation * 377 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 378 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 379 if (!NumRelocs) 380 return nullptr; 381 auto begin = reinterpret_cast<const coff_relocation *>( 382 Base + Sec->PointerToRelocations); 383 if (Sec->hasExtendedRelocations()) { 384 // Skip the first relocation entry repurposed to store the number of 385 // relocations. 386 begin++; 387 } 388 if (auto E = Binary::checkOffset(M, reinterpret_cast<uintptr_t>(begin), 389 sizeof(coff_relocation) * NumRelocs)) { 390 consumeError(std::move(E)); 391 return nullptr; 392 } 393 return begin; 394 } 395 396 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 397 const coff_section *Sec = toSec(Ref); 398 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 399 if (begin && Sec->VirtualAddress != 0) 400 report_fatal_error("Sections with relocations should have an address of 0"); 401 DataRefImpl Ret; 402 Ret.p = reinterpret_cast<uintptr_t>(begin); 403 return relocation_iterator(RelocationRef(Ret, this)); 404 } 405 406 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 407 const coff_section *Sec = toSec(Ref); 408 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 409 if (I) 410 I += getNumberOfRelocations(Sec, Data, base()); 411 DataRefImpl Ret; 412 Ret.p = reinterpret_cast<uintptr_t>(I); 413 return relocation_iterator(RelocationRef(Ret, this)); 414 } 415 416 // Initialize the pointer to the symbol table. 417 Error COFFObjectFile::initSymbolTablePtr() { 418 if (COFFHeader) 419 if (Error E = getObject( 420 SymbolTable16, Data, base() + getPointerToSymbolTable(), 421 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 422 return E; 423 424 if (COFFBigObjHeader) 425 if (Error E = getObject( 426 SymbolTable32, Data, base() + getPointerToSymbolTable(), 427 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 428 return E; 429 430 // Find string table. The first four byte of the string table contains the 431 // total size of the string table, including the size field itself. If the 432 // string table is empty, the value of the first four byte would be 4. 433 uint32_t StringTableOffset = getPointerToSymbolTable() + 434 getNumberOfSymbols() * getSymbolTableEntrySize(); 435 const uint8_t *StringTableAddr = base() + StringTableOffset; 436 const ulittle32_t *StringTableSizePtr; 437 if (Error E = getObject(StringTableSizePtr, Data, StringTableAddr)) 438 return E; 439 StringTableSize = *StringTableSizePtr; 440 if (Error E = getObject(StringTable, Data, StringTableAddr, StringTableSize)) 441 return E; 442 443 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 444 // tools like cvtres write a size of 0 for an empty table instead of 4. 445 if (StringTableSize < 4) 446 StringTableSize = 4; 447 448 // Check that the string table is null terminated if has any in it. 449 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 450 return createStringError(object_error::parse_failed, 451 "string table missing null terminator"); 452 return Error::success(); 453 } 454 455 uint64_t COFFObjectFile::getImageBase() const { 456 if (PE32Header) 457 return PE32Header->ImageBase; 458 else if (PE32PlusHeader) 459 return PE32PlusHeader->ImageBase; 460 // This actually comes up in practice. 461 return 0; 462 } 463 464 // Returns the file offset for the given VA. 465 Error COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 466 uint64_t ImageBase = getImageBase(); 467 uint64_t Rva = Addr - ImageBase; 468 assert(Rva <= UINT32_MAX); 469 return getRvaPtr((uint32_t)Rva, Res); 470 } 471 472 // Returns the file offset for the given RVA. 473 Error COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res, 474 const char *ErrorContext) const { 475 for (const SectionRef &S : sections()) { 476 const coff_section *Section = getCOFFSection(S); 477 uint32_t SectionStart = Section->VirtualAddress; 478 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 479 if (SectionStart <= Addr && Addr < SectionEnd) { 480 uint32_t Offset = Addr - SectionStart; 481 Res = reinterpret_cast<uintptr_t>(base()) + Section->PointerToRawData + 482 Offset; 483 return Error::success(); 484 } 485 } 486 if (ErrorContext) 487 return createStringError(object_error::parse_failed, 488 "RVA 0x%" PRIx32 " for %s not found", Addr, 489 ErrorContext); 490 return createStringError(object_error::parse_failed, 491 "RVA 0x%" PRIx32 " not found", Addr); 492 } 493 494 Error COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 495 ArrayRef<uint8_t> &Contents, 496 const char *ErrorContext) const { 497 for (const SectionRef &S : sections()) { 498 const coff_section *Section = getCOFFSection(S); 499 uint32_t SectionStart = Section->VirtualAddress; 500 // Check if this RVA is within the section bounds. Be careful about integer 501 // overflow. 502 uint32_t OffsetIntoSection = RVA - SectionStart; 503 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 504 Size <= Section->VirtualSize - OffsetIntoSection) { 505 uintptr_t Begin = reinterpret_cast<uintptr_t>(base()) + 506 Section->PointerToRawData + OffsetIntoSection; 507 Contents = 508 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 509 return Error::success(); 510 } 511 } 512 if (ErrorContext) 513 return createStringError(object_error::parse_failed, 514 "RVA 0x%" PRIx32 " for %s not found", RVA, 515 ErrorContext); 516 return createStringError(object_error::parse_failed, 517 "RVA 0x%" PRIx32 " not found", RVA); 518 } 519 520 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 521 // table entry. 522 Error COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 523 StringRef &Name) const { 524 uintptr_t IntPtr = 0; 525 if (Error E = getRvaPtr(Rva, IntPtr)) 526 return E; 527 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 528 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 529 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 530 return Error::success(); 531 } 532 533 Error COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 534 const codeview::DebugInfo *&PDBInfo, 535 StringRef &PDBFileName) const { 536 ArrayRef<uint8_t> InfoBytes; 537 if (Error E = 538 getRvaAndSizeAsBytes(DebugDir->AddressOfRawData, DebugDir->SizeOfData, 539 InfoBytes, "PDB info")) 540 return E; 541 if (InfoBytes.size() < sizeof(*PDBInfo) + 1) 542 return createStringError(object_error::parse_failed, "PDB info too small"); 543 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data()); 544 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); 545 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 546 InfoBytes.size()); 547 // Truncate the name at the first null byte. Ignore any padding. 548 PDBFileName = PDBFileName.split('\0').first; 549 return Error::success(); 550 } 551 552 Error COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, 553 StringRef &PDBFileName) const { 554 for (const debug_directory &D : debug_directories()) 555 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 556 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 557 // If we get here, there is no PDB info to return. 558 PDBInfo = nullptr; 559 PDBFileName = StringRef(); 560 return Error::success(); 561 } 562 563 // Find the import table. 564 Error COFFObjectFile::initImportTablePtr() { 565 // First, we get the RVA of the import table. If the file lacks a pointer to 566 // the import table, do nothing. 567 const data_directory *DataEntry = getDataDirectory(COFF::IMPORT_TABLE); 568 if (!DataEntry) 569 return Error::success(); 570 571 // Do nothing if the pointer to import table is NULL. 572 if (DataEntry->RelativeVirtualAddress == 0) 573 return Error::success(); 574 575 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 576 577 // Find the section that contains the RVA. This is needed because the RVA is 578 // the import table's memory address which is different from its file offset. 579 uintptr_t IntPtr = 0; 580 if (Error E = getRvaPtr(ImportTableRva, IntPtr, "import table")) 581 return E; 582 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 583 return E; 584 ImportDirectory = reinterpret_cast< 585 const coff_import_directory_table_entry *>(IntPtr); 586 return Error::success(); 587 } 588 589 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 590 Error COFFObjectFile::initDelayImportTablePtr() { 591 const data_directory *DataEntry = 592 getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR); 593 if (!DataEntry) 594 return Error::success(); 595 if (DataEntry->RelativeVirtualAddress == 0) 596 return Error::success(); 597 598 uint32_t RVA = DataEntry->RelativeVirtualAddress; 599 NumberOfDelayImportDirectory = DataEntry->Size / 600 sizeof(delay_import_directory_table_entry) - 1; 601 602 uintptr_t IntPtr = 0; 603 if (Error E = getRvaPtr(RVA, IntPtr, "delay import table")) 604 return E; 605 DelayImportDirectory = reinterpret_cast< 606 const delay_import_directory_table_entry *>(IntPtr); 607 return Error::success(); 608 } 609 610 // Find the export table. 611 Error COFFObjectFile::initExportTablePtr() { 612 // First, we get the RVA of the export table. If the file lacks a pointer to 613 // the export table, do nothing. 614 const data_directory *DataEntry = getDataDirectory(COFF::EXPORT_TABLE); 615 if (!DataEntry) 616 return Error::success(); 617 618 // Do nothing if the pointer to export table is NULL. 619 if (DataEntry->RelativeVirtualAddress == 0) 620 return Error::success(); 621 622 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 623 uintptr_t IntPtr = 0; 624 if (Error E = getRvaPtr(ExportTableRva, IntPtr, "export table")) 625 return E; 626 ExportDirectory = 627 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 628 return Error::success(); 629 } 630 631 Error COFFObjectFile::initBaseRelocPtr() { 632 const data_directory *DataEntry = 633 getDataDirectory(COFF::BASE_RELOCATION_TABLE); 634 if (!DataEntry) 635 return Error::success(); 636 if (DataEntry->RelativeVirtualAddress == 0) 637 return Error::success(); 638 639 uintptr_t IntPtr = 0; 640 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 641 "base reloc table")) 642 return E; 643 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 644 IntPtr); 645 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 646 IntPtr + DataEntry->Size); 647 // FIXME: Verify the section containing BaseRelocHeader has at least 648 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 649 return Error::success(); 650 } 651 652 Error COFFObjectFile::initDebugDirectoryPtr() { 653 // Get the RVA of the debug directory. Do nothing if it does not exist. 654 const data_directory *DataEntry = getDataDirectory(COFF::DEBUG_DIRECTORY); 655 if (!DataEntry) 656 return Error::success(); 657 658 // Do nothing if the RVA is NULL. 659 if (DataEntry->RelativeVirtualAddress == 0) 660 return Error::success(); 661 662 // Check that the size is a multiple of the entry size. 663 if (DataEntry->Size % sizeof(debug_directory) != 0) 664 return createStringError(object_error::parse_failed, 665 "debug directory has uneven size"); 666 667 uintptr_t IntPtr = 0; 668 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 669 "debug directory")) 670 return E; 671 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 672 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>( 673 IntPtr + DataEntry->Size); 674 // FIXME: Verify the section containing DebugDirectoryBegin has at least 675 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 676 return Error::success(); 677 } 678 679 Error COFFObjectFile::initTLSDirectoryPtr() { 680 // Get the RVA of the TLS directory. Do nothing if it does not exist. 681 const data_directory *DataEntry = getDataDirectory(COFF::TLS_TABLE); 682 if (!DataEntry) 683 return Error::success(); 684 685 // Do nothing if the RVA is NULL. 686 if (DataEntry->RelativeVirtualAddress == 0) 687 return Error::success(); 688 689 uint64_t DirSize = 690 is64() ? sizeof(coff_tls_directory64) : sizeof(coff_tls_directory32); 691 692 // Check that the size is correct. 693 if (DataEntry->Size != DirSize) 694 return createStringError( 695 object_error::parse_failed, 696 "TLS Directory size (%u) is not the expected size (%" PRIu64 ").", 697 static_cast<uint32_t>(DataEntry->Size), DirSize); 698 699 uintptr_t IntPtr = 0; 700 if (Error E = 701 getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, "TLS directory")) 702 return E; 703 704 if (is64()) 705 TLSDirectory64 = reinterpret_cast<const coff_tls_directory64 *>(IntPtr); 706 else 707 TLSDirectory32 = reinterpret_cast<const coff_tls_directory32 *>(IntPtr); 708 709 return Error::success(); 710 } 711 712 Error COFFObjectFile::initLoadConfigPtr() { 713 // Get the RVA of the debug directory. Do nothing if it does not exist. 714 const data_directory *DataEntry = getDataDirectory(COFF::LOAD_CONFIG_TABLE); 715 if (!DataEntry) 716 return Error::success(); 717 718 // Do nothing if the RVA is NULL. 719 if (DataEntry->RelativeVirtualAddress == 0) 720 return Error::success(); 721 uintptr_t IntPtr = 0; 722 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 723 "load config table")) 724 return E; 725 726 LoadConfig = (const void *)IntPtr; 727 return Error::success(); 728 } 729 730 Expected<std::unique_ptr<COFFObjectFile>> 731 COFFObjectFile::create(MemoryBufferRef Object) { 732 std::unique_ptr<COFFObjectFile> Obj(new COFFObjectFile(std::move(Object))); 733 if (Error E = Obj->initialize()) 734 return std::move(E); 735 return std::move(Obj); 736 } 737 738 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object) 739 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 740 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 741 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 742 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 743 ImportDirectory(nullptr), DelayImportDirectory(nullptr), 744 NumberOfDelayImportDirectory(0), ExportDirectory(nullptr), 745 BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 746 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr), 747 TLSDirectory32(nullptr), TLSDirectory64(nullptr) {} 748 749 Error COFFObjectFile::initialize() { 750 // Check that we at least have enough room for a header. 751 std::error_code EC; 752 if (!checkSize(Data, EC, sizeof(coff_file_header))) 753 return errorCodeToError(EC); 754 755 // The current location in the file where we are looking at. 756 uint64_t CurPtr = 0; 757 758 // PE header is optional and is present only in executables. If it exists, 759 // it is placed right after COFF header. 760 bool HasPEHeader = false; 761 762 // Check if this is a PE/COFF file. 763 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 764 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 765 // PE signature to find 'normal' COFF header. 766 const auto *DH = reinterpret_cast<const dos_header *>(base()); 767 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 768 CurPtr = DH->AddressOfNewExeHeader; 769 // Check the PE magic bytes. ("PE\0\0") 770 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 771 return createStringError(object_error::parse_failed, 772 "incorrect PE magic"); 773 } 774 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 775 HasPEHeader = true; 776 } 777 } 778 779 if (Error E = getObject(COFFHeader, Data, base() + CurPtr)) 780 return E; 781 782 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 783 // import libraries share a common prefix but bigobj is more restrictive. 784 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 785 COFFHeader->NumberOfSections == uint16_t(0xffff) && 786 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 787 if (Error E = getObject(COFFBigObjHeader, Data, base() + CurPtr)) 788 return E; 789 790 // Verify that we are dealing with bigobj. 791 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 792 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 793 sizeof(COFF::BigObjMagic)) == 0) { 794 COFFHeader = nullptr; 795 CurPtr += sizeof(coff_bigobj_file_header); 796 } else { 797 // It's not a bigobj. 798 COFFBigObjHeader = nullptr; 799 } 800 } 801 if (COFFHeader) { 802 // The prior checkSize call may have failed. This isn't a hard error 803 // because we were just trying to sniff out bigobj. 804 EC = std::error_code(); 805 CurPtr += sizeof(coff_file_header); 806 807 if (COFFHeader->isImportLibrary()) 808 return errorCodeToError(EC); 809 } 810 811 if (HasPEHeader) { 812 const pe32_header *Header; 813 if (Error E = getObject(Header, Data, base() + CurPtr)) 814 return E; 815 816 const uint8_t *DataDirAddr; 817 uint64_t DataDirSize; 818 if (Header->Magic == COFF::PE32Header::PE32) { 819 PE32Header = Header; 820 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 821 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 822 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 823 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 824 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 825 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 826 } else { 827 // It's neither PE32 nor PE32+. 828 return createStringError(object_error::parse_failed, 829 "incorrect PE magic"); 830 } 831 if (Error E = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)) 832 return E; 833 } 834 835 if (COFFHeader) 836 CurPtr += COFFHeader->SizeOfOptionalHeader; 837 838 assert(COFFHeader || COFFBigObjHeader); 839 840 if (Error E = 841 getObject(SectionTable, Data, base() + CurPtr, 842 (uint64_t)getNumberOfSections() * sizeof(coff_section))) 843 return E; 844 845 // Initialize the pointer to the symbol table. 846 if (getPointerToSymbolTable() != 0) { 847 if (Error E = initSymbolTablePtr()) { 848 // Recover from errors reading the symbol table. 849 consumeError(std::move(E)); 850 SymbolTable16 = nullptr; 851 SymbolTable32 = nullptr; 852 StringTable = nullptr; 853 StringTableSize = 0; 854 } 855 } else { 856 // We had better not have any symbols if we don't have a symbol table. 857 if (getNumberOfSymbols() != 0) { 858 return createStringError(object_error::parse_failed, 859 "symbol table missing"); 860 } 861 } 862 863 // Initialize the pointer to the beginning of the import table. 864 if (Error E = initImportTablePtr()) 865 return E; 866 if (Error E = initDelayImportTablePtr()) 867 return E; 868 869 // Initialize the pointer to the export table. 870 if (Error E = initExportTablePtr()) 871 return E; 872 873 // Initialize the pointer to the base relocation table. 874 if (Error E = initBaseRelocPtr()) 875 return E; 876 877 // Initialize the pointer to the debug directory. 878 if (Error E = initDebugDirectoryPtr()) 879 return E; 880 881 // Initialize the pointer to the TLS directory. 882 if (Error E = initTLSDirectoryPtr()) 883 return E; 884 885 if (Error E = initLoadConfigPtr()) 886 return E; 887 888 return Error::success(); 889 } 890 891 basic_symbol_iterator COFFObjectFile::symbol_begin() const { 892 DataRefImpl Ret; 893 Ret.p = getSymbolTable(); 894 return basic_symbol_iterator(SymbolRef(Ret, this)); 895 } 896 897 basic_symbol_iterator COFFObjectFile::symbol_end() const { 898 // The symbol table ends where the string table begins. 899 DataRefImpl Ret; 900 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 901 return basic_symbol_iterator(SymbolRef(Ret, this)); 902 } 903 904 import_directory_iterator COFFObjectFile::import_directory_begin() const { 905 if (!ImportDirectory) 906 return import_directory_end(); 907 if (ImportDirectory->isNull()) 908 return import_directory_end(); 909 return import_directory_iterator( 910 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 911 } 912 913 import_directory_iterator COFFObjectFile::import_directory_end() const { 914 return import_directory_iterator( 915 ImportDirectoryEntryRef(nullptr, -1, this)); 916 } 917 918 delay_import_directory_iterator 919 COFFObjectFile::delay_import_directory_begin() const { 920 return delay_import_directory_iterator( 921 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 922 } 923 924 delay_import_directory_iterator 925 COFFObjectFile::delay_import_directory_end() const { 926 return delay_import_directory_iterator( 927 DelayImportDirectoryEntryRef( 928 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 929 } 930 931 export_directory_iterator COFFObjectFile::export_directory_begin() const { 932 return export_directory_iterator( 933 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 934 } 935 936 export_directory_iterator COFFObjectFile::export_directory_end() const { 937 if (!ExportDirectory) 938 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 939 ExportDirectoryEntryRef Ref(ExportDirectory, 940 ExportDirectory->AddressTableEntries, this); 941 return export_directory_iterator(Ref); 942 } 943 944 section_iterator COFFObjectFile::section_begin() const { 945 DataRefImpl Ret; 946 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 947 return section_iterator(SectionRef(Ret, this)); 948 } 949 950 section_iterator COFFObjectFile::section_end() const { 951 DataRefImpl Ret; 952 int NumSections = 953 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 954 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 955 return section_iterator(SectionRef(Ret, this)); 956 } 957 958 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 959 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 960 } 961 962 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 963 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 964 } 965 966 uint8_t COFFObjectFile::getBytesInAddress() const { 967 return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4; 968 } 969 970 StringRef COFFObjectFile::getFileFormatName() const { 971 switch(getMachine()) { 972 case COFF::IMAGE_FILE_MACHINE_I386: 973 return "COFF-i386"; 974 case COFF::IMAGE_FILE_MACHINE_AMD64: 975 return "COFF-x86-64"; 976 case COFF::IMAGE_FILE_MACHINE_ARMNT: 977 return "COFF-ARM"; 978 case COFF::IMAGE_FILE_MACHINE_ARM64: 979 return "COFF-ARM64"; 980 default: 981 return "COFF-<unknown arch>"; 982 } 983 } 984 985 Triple::ArchType COFFObjectFile::getArch() const { 986 switch (getMachine()) { 987 case COFF::IMAGE_FILE_MACHINE_I386: 988 return Triple::x86; 989 case COFF::IMAGE_FILE_MACHINE_AMD64: 990 return Triple::x86_64; 991 case COFF::IMAGE_FILE_MACHINE_ARMNT: 992 return Triple::thumb; 993 case COFF::IMAGE_FILE_MACHINE_ARM64: 994 return Triple::aarch64; 995 default: 996 return Triple::UnknownArch; 997 } 998 } 999 1000 Expected<uint64_t> COFFObjectFile::getStartAddress() const { 1001 if (PE32Header) 1002 return PE32Header->AddressOfEntryPoint; 1003 return 0; 1004 } 1005 1006 iterator_range<import_directory_iterator> 1007 COFFObjectFile::import_directories() const { 1008 return make_range(import_directory_begin(), import_directory_end()); 1009 } 1010 1011 iterator_range<delay_import_directory_iterator> 1012 COFFObjectFile::delay_import_directories() const { 1013 return make_range(delay_import_directory_begin(), 1014 delay_import_directory_end()); 1015 } 1016 1017 iterator_range<export_directory_iterator> 1018 COFFObjectFile::export_directories() const { 1019 return make_range(export_directory_begin(), export_directory_end()); 1020 } 1021 1022 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 1023 return make_range(base_reloc_begin(), base_reloc_end()); 1024 } 1025 1026 const data_directory *COFFObjectFile::getDataDirectory(uint32_t Index) const { 1027 if (!DataDirectory) 1028 return nullptr; 1029 assert(PE32Header || PE32PlusHeader); 1030 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 1031 : PE32PlusHeader->NumberOfRvaAndSize; 1032 if (Index >= NumEnt) 1033 return nullptr; 1034 return &DataDirectory[Index]; 1035 } 1036 1037 Expected<const coff_section *> COFFObjectFile::getSection(int32_t Index) const { 1038 // Perhaps getting the section of a reserved section index should be an error, 1039 // but callers rely on this to return null. 1040 if (COFF::isReservedSectionNumber(Index)) 1041 return (const coff_section *)nullptr; 1042 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 1043 // We already verified the section table data, so no need to check again. 1044 return SectionTable + (Index - 1); 1045 } 1046 return createStringError(object_error::parse_failed, 1047 "section index out of bounds"); 1048 } 1049 1050 Expected<StringRef> COFFObjectFile::getString(uint32_t Offset) const { 1051 if (StringTableSize <= 4) 1052 // Tried to get a string from an empty string table. 1053 return createStringError(object_error::parse_failed, "string table empty"); 1054 if (Offset >= StringTableSize) 1055 return errorCodeToError(object_error::unexpected_eof); 1056 return StringRef(StringTable + Offset); 1057 } 1058 1059 Expected<StringRef> COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const { 1060 return getSymbolName(Symbol.getGeneric()); 1061 } 1062 1063 Expected<StringRef> 1064 COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const { 1065 // Check for string table entry. First 4 bytes are 0. 1066 if (Symbol->Name.Offset.Zeroes == 0) 1067 return getString(Symbol->Name.Offset.Offset); 1068 1069 // Null terminated, let ::strlen figure out the length. 1070 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 1071 return StringRef(Symbol->Name.ShortName); 1072 1073 // Not null terminated, use all 8 bytes. 1074 return StringRef(Symbol->Name.ShortName, COFF::NameSize); 1075 } 1076 1077 ArrayRef<uint8_t> 1078 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 1079 const uint8_t *Aux = nullptr; 1080 1081 size_t SymbolSize = getSymbolTableEntrySize(); 1082 if (Symbol.getNumberOfAuxSymbols() > 0) { 1083 // AUX data comes immediately after the symbol in COFF 1084 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 1085 #ifndef NDEBUG 1086 // Verify that the Aux symbol points to a valid entry in the symbol table. 1087 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 1088 if (Offset < getPointerToSymbolTable() || 1089 Offset >= 1090 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 1091 report_fatal_error("Aux Symbol data was outside of symbol table."); 1092 1093 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 1094 "Aux Symbol data did not point to the beginning of a symbol"); 1095 #endif 1096 } 1097 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 1098 } 1099 1100 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const { 1101 uintptr_t Offset = 1102 reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable(); 1103 assert(Offset % getSymbolTableEntrySize() == 0 && 1104 "Symbol did not point to the beginning of a symbol"); 1105 size_t Index = Offset / getSymbolTableEntrySize(); 1106 assert(Index < getNumberOfSymbols()); 1107 return Index; 1108 } 1109 1110 Expected<StringRef> 1111 COFFObjectFile::getSectionName(const coff_section *Sec) const { 1112 StringRef Name; 1113 if (Sec->Name[COFF::NameSize - 1] == 0) 1114 // Null terminated, let ::strlen figure out the length. 1115 Name = Sec->Name; 1116 else 1117 // Not null terminated, use all 8 bytes. 1118 Name = StringRef(Sec->Name, COFF::NameSize); 1119 1120 // Check for string table entry. First byte is '/'. 1121 if (Name.startswith("/")) { 1122 uint32_t Offset; 1123 if (Name.startswith("//")) { 1124 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1125 return createStringError(object_error::parse_failed, 1126 "invalid section name"); 1127 } else { 1128 if (Name.substr(1).getAsInteger(10, Offset)) 1129 return createStringError(object_error::parse_failed, 1130 "invalid section name"); 1131 } 1132 return getString(Offset); 1133 } 1134 1135 return Name; 1136 } 1137 1138 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1139 // SizeOfRawData and VirtualSize change what they represent depending on 1140 // whether or not we have an executable image. 1141 // 1142 // For object files, SizeOfRawData contains the size of section's data; 1143 // VirtualSize should be zero but isn't due to buggy COFF writers. 1144 // 1145 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1146 // actual section size is in VirtualSize. It is possible for VirtualSize to 1147 // be greater than SizeOfRawData; the contents past that point should be 1148 // considered to be zero. 1149 if (getDOSHeader()) 1150 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1151 return Sec->SizeOfRawData; 1152 } 1153 1154 Error COFFObjectFile::getSectionContents(const coff_section *Sec, 1155 ArrayRef<uint8_t> &Res) const { 1156 // In COFF, a virtual section won't have any in-file 1157 // content, so the file pointer to the content will be zero. 1158 if (Sec->PointerToRawData == 0) 1159 return Error::success(); 1160 // The only thing that we need to verify is that the contents is contained 1161 // within the file bounds. We don't need to make sure it doesn't cover other 1162 // data, as there's nothing that says that is not allowed. 1163 uintptr_t ConStart = 1164 reinterpret_cast<uintptr_t>(base()) + Sec->PointerToRawData; 1165 uint32_t SectionSize = getSectionSize(Sec); 1166 if (Error E = checkOffset(Data, ConStart, SectionSize)) 1167 return E; 1168 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1169 return Error::success(); 1170 } 1171 1172 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1173 return reinterpret_cast<const coff_relocation*>(Rel.p); 1174 } 1175 1176 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1177 Rel.p = reinterpret_cast<uintptr_t>( 1178 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1179 } 1180 1181 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1182 const coff_relocation *R = toRel(Rel); 1183 return R->VirtualAddress; 1184 } 1185 1186 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1187 const coff_relocation *R = toRel(Rel); 1188 DataRefImpl Ref; 1189 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1190 return symbol_end(); 1191 if (SymbolTable16) 1192 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1193 else if (SymbolTable32) 1194 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1195 else 1196 llvm_unreachable("no symbol table pointer!"); 1197 return symbol_iterator(SymbolRef(Ref, this)); 1198 } 1199 1200 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1201 const coff_relocation* R = toRel(Rel); 1202 return R->Type; 1203 } 1204 1205 const coff_section * 1206 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1207 return toSec(Section.getRawDataRefImpl()); 1208 } 1209 1210 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1211 if (SymbolTable16) 1212 return toSymb<coff_symbol16>(Ref); 1213 if (SymbolTable32) 1214 return toSymb<coff_symbol32>(Ref); 1215 llvm_unreachable("no symbol table pointer!"); 1216 } 1217 1218 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1219 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1220 } 1221 1222 const coff_relocation * 1223 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1224 return toRel(Reloc.getRawDataRefImpl()); 1225 } 1226 1227 ArrayRef<coff_relocation> 1228 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1229 return {getFirstReloc(Sec, Data, base()), 1230 getNumberOfRelocations(Sec, Data, base())}; 1231 } 1232 1233 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1234 case COFF::reloc_type: \ 1235 return #reloc_type; 1236 1237 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const { 1238 switch (getMachine()) { 1239 case COFF::IMAGE_FILE_MACHINE_AMD64: 1240 switch (Type) { 1241 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1242 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1243 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1244 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1245 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1246 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1247 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1248 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1249 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1250 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1251 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1252 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1253 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1254 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1255 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1256 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1257 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1258 default: 1259 return "Unknown"; 1260 } 1261 break; 1262 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1263 switch (Type) { 1264 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1265 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1266 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1267 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1268 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1269 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1270 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1271 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1272 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32); 1273 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1274 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1275 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1276 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1277 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1278 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1279 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1280 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR); 1281 default: 1282 return "Unknown"; 1283 } 1284 break; 1285 case COFF::IMAGE_FILE_MACHINE_ARM64: 1286 switch (Type) { 1287 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE); 1288 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32); 1289 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB); 1290 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26); 1291 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21); 1292 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21); 1293 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A); 1294 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L); 1295 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL); 1296 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A); 1297 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A); 1298 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L); 1299 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN); 1300 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION); 1301 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64); 1302 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19); 1303 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14); 1304 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32); 1305 default: 1306 return "Unknown"; 1307 } 1308 break; 1309 case COFF::IMAGE_FILE_MACHINE_I386: 1310 switch (Type) { 1311 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1312 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1313 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1314 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1315 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1316 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1317 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1318 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1319 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1320 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1321 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1322 default: 1323 return "Unknown"; 1324 } 1325 break; 1326 default: 1327 return "Unknown"; 1328 } 1329 } 1330 1331 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1332 1333 void COFFObjectFile::getRelocationTypeName( 1334 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1335 const coff_relocation *Reloc = toRel(Rel); 1336 StringRef Res = getRelocationTypeName(Reloc->Type); 1337 Result.append(Res.begin(), Res.end()); 1338 } 1339 1340 bool COFFObjectFile::isRelocatableObject() const { 1341 return !DataDirectory; 1342 } 1343 1344 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const { 1345 return StringSwitch<StringRef>(Name) 1346 .Case("eh_fram", "eh_frame") 1347 .Default(Name); 1348 } 1349 1350 bool ImportDirectoryEntryRef:: 1351 operator==(const ImportDirectoryEntryRef &Other) const { 1352 return ImportTable == Other.ImportTable && Index == Other.Index; 1353 } 1354 1355 void ImportDirectoryEntryRef::moveNext() { 1356 ++Index; 1357 if (ImportTable[Index].isNull()) { 1358 Index = -1; 1359 ImportTable = nullptr; 1360 } 1361 } 1362 1363 Error ImportDirectoryEntryRef::getImportTableEntry( 1364 const coff_import_directory_table_entry *&Result) const { 1365 return getObject(Result, OwningObject->Data, ImportTable + Index); 1366 } 1367 1368 static imported_symbol_iterator 1369 makeImportedSymbolIterator(const COFFObjectFile *Object, 1370 uintptr_t Ptr, int Index) { 1371 if (Object->getBytesInAddress() == 4) { 1372 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1373 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1374 } 1375 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1376 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1377 } 1378 1379 static imported_symbol_iterator 1380 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1381 uintptr_t IntPtr = 0; 1382 // FIXME: Handle errors. 1383 cantFail(Object->getRvaPtr(RVA, IntPtr)); 1384 return makeImportedSymbolIterator(Object, IntPtr, 0); 1385 } 1386 1387 static imported_symbol_iterator 1388 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1389 uintptr_t IntPtr = 0; 1390 // FIXME: Handle errors. 1391 cantFail(Object->getRvaPtr(RVA, IntPtr)); 1392 // Forward the pointer to the last entry which is null. 1393 int Index = 0; 1394 if (Object->getBytesInAddress() == 4) { 1395 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1396 while (*Entry++) 1397 ++Index; 1398 } else { 1399 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1400 while (*Entry++) 1401 ++Index; 1402 } 1403 return makeImportedSymbolIterator(Object, IntPtr, Index); 1404 } 1405 1406 imported_symbol_iterator 1407 ImportDirectoryEntryRef::imported_symbol_begin() const { 1408 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1409 OwningObject); 1410 } 1411 1412 imported_symbol_iterator 1413 ImportDirectoryEntryRef::imported_symbol_end() const { 1414 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1415 OwningObject); 1416 } 1417 1418 iterator_range<imported_symbol_iterator> 1419 ImportDirectoryEntryRef::imported_symbols() const { 1420 return make_range(imported_symbol_begin(), imported_symbol_end()); 1421 } 1422 1423 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1424 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1425 OwningObject); 1426 } 1427 1428 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1429 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1430 OwningObject); 1431 } 1432 1433 iterator_range<imported_symbol_iterator> 1434 ImportDirectoryEntryRef::lookup_table_symbols() const { 1435 return make_range(lookup_table_begin(), lookup_table_end()); 1436 } 1437 1438 Error ImportDirectoryEntryRef::getName(StringRef &Result) const { 1439 uintptr_t IntPtr = 0; 1440 if (Error E = OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr, 1441 "import directory name")) 1442 return E; 1443 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1444 return Error::success(); 1445 } 1446 1447 Error 1448 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1449 Result = ImportTable[Index].ImportLookupTableRVA; 1450 return Error::success(); 1451 } 1452 1453 Error ImportDirectoryEntryRef::getImportAddressTableRVA( 1454 uint32_t &Result) const { 1455 Result = ImportTable[Index].ImportAddressTableRVA; 1456 return Error::success(); 1457 } 1458 1459 bool DelayImportDirectoryEntryRef:: 1460 operator==(const DelayImportDirectoryEntryRef &Other) const { 1461 return Table == Other.Table && Index == Other.Index; 1462 } 1463 1464 void DelayImportDirectoryEntryRef::moveNext() { 1465 ++Index; 1466 } 1467 1468 imported_symbol_iterator 1469 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1470 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1471 OwningObject); 1472 } 1473 1474 imported_symbol_iterator 1475 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1476 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1477 OwningObject); 1478 } 1479 1480 iterator_range<imported_symbol_iterator> 1481 DelayImportDirectoryEntryRef::imported_symbols() const { 1482 return make_range(imported_symbol_begin(), imported_symbol_end()); 1483 } 1484 1485 Error DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1486 uintptr_t IntPtr = 0; 1487 if (Error E = OwningObject->getRvaPtr(Table[Index].Name, IntPtr, 1488 "delay import directory name")) 1489 return E; 1490 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1491 return Error::success(); 1492 } 1493 1494 Error DelayImportDirectoryEntryRef::getDelayImportTable( 1495 const delay_import_directory_table_entry *&Result) const { 1496 Result = &Table[Index]; 1497 return Error::success(); 1498 } 1499 1500 Error DelayImportDirectoryEntryRef::getImportAddress(int AddrIndex, 1501 uint64_t &Result) const { 1502 uint32_t RVA = Table[Index].DelayImportAddressTable + 1503 AddrIndex * (OwningObject->is64() ? 8 : 4); 1504 uintptr_t IntPtr = 0; 1505 if (Error E = OwningObject->getRvaPtr(RVA, IntPtr, "import address")) 1506 return E; 1507 if (OwningObject->is64()) 1508 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1509 else 1510 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1511 return Error::success(); 1512 } 1513 1514 bool ExportDirectoryEntryRef:: 1515 operator==(const ExportDirectoryEntryRef &Other) const { 1516 return ExportTable == Other.ExportTable && Index == Other.Index; 1517 } 1518 1519 void ExportDirectoryEntryRef::moveNext() { 1520 ++Index; 1521 } 1522 1523 // Returns the name of the current export symbol. If the symbol is exported only 1524 // by ordinal, the empty string is set as a result. 1525 Error ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1526 uintptr_t IntPtr = 0; 1527 if (Error E = 1528 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr, "dll name")) 1529 return E; 1530 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1531 return Error::success(); 1532 } 1533 1534 // Returns the starting ordinal number. 1535 Error ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1536 Result = ExportTable->OrdinalBase; 1537 return Error::success(); 1538 } 1539 1540 // Returns the export ordinal of the current export symbol. 1541 Error ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1542 Result = ExportTable->OrdinalBase + Index; 1543 return Error::success(); 1544 } 1545 1546 // Returns the address of the current export symbol. 1547 Error ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1548 uintptr_t IntPtr = 0; 1549 if (Error EC = OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, 1550 IntPtr, "export address")) 1551 return EC; 1552 const export_address_table_entry *entry = 1553 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1554 Result = entry[Index].ExportRVA; 1555 return Error::success(); 1556 } 1557 1558 // Returns the name of the current export symbol. If the symbol is exported only 1559 // by ordinal, the empty string is set as a result. 1560 Error 1561 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1562 uintptr_t IntPtr = 0; 1563 if (Error EC = OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr, 1564 "export ordinal table")) 1565 return EC; 1566 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1567 1568 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1569 int Offset = 0; 1570 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1571 I < E; ++I, ++Offset) { 1572 if (*I != Index) 1573 continue; 1574 if (Error EC = OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr, 1575 "export table entry")) 1576 return EC; 1577 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1578 if (Error EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr, 1579 "export symbol name")) 1580 return EC; 1581 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1582 return Error::success(); 1583 } 1584 Result = ""; 1585 return Error::success(); 1586 } 1587 1588 Error ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1589 const data_directory *DataEntry = 1590 OwningObject->getDataDirectory(COFF::EXPORT_TABLE); 1591 if (!DataEntry) 1592 return createStringError(object_error::parse_failed, 1593 "export table missing"); 1594 uint32_t RVA; 1595 if (auto EC = getExportRVA(RVA)) 1596 return EC; 1597 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1598 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1599 Result = (Begin <= RVA && RVA < End); 1600 return Error::success(); 1601 } 1602 1603 Error ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1604 uint32_t RVA; 1605 if (auto EC = getExportRVA(RVA)) 1606 return EC; 1607 uintptr_t IntPtr = 0; 1608 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr, "export forward target")) 1609 return EC; 1610 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1611 return Error::success(); 1612 } 1613 1614 bool ImportedSymbolRef:: 1615 operator==(const ImportedSymbolRef &Other) const { 1616 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1617 && Index == Other.Index; 1618 } 1619 1620 void ImportedSymbolRef::moveNext() { 1621 ++Index; 1622 } 1623 1624 Error ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1625 uint32_t RVA; 1626 if (Entry32) { 1627 // If a symbol is imported only by ordinal, it has no name. 1628 if (Entry32[Index].isOrdinal()) 1629 return Error::success(); 1630 RVA = Entry32[Index].getHintNameRVA(); 1631 } else { 1632 if (Entry64[Index].isOrdinal()) 1633 return Error::success(); 1634 RVA = Entry64[Index].getHintNameRVA(); 1635 } 1636 uintptr_t IntPtr = 0; 1637 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol name")) 1638 return EC; 1639 // +2 because the first two bytes is hint. 1640 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1641 return Error::success(); 1642 } 1643 1644 Error ImportedSymbolRef::isOrdinal(bool &Result) const { 1645 if (Entry32) 1646 Result = Entry32[Index].isOrdinal(); 1647 else 1648 Result = Entry64[Index].isOrdinal(); 1649 return Error::success(); 1650 } 1651 1652 Error ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1653 if (Entry32) 1654 Result = Entry32[Index].getHintNameRVA(); 1655 else 1656 Result = Entry64[Index].getHintNameRVA(); 1657 return Error::success(); 1658 } 1659 1660 Error ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1661 uint32_t RVA; 1662 if (Entry32) { 1663 if (Entry32[Index].isOrdinal()) { 1664 Result = Entry32[Index].getOrdinal(); 1665 return Error::success(); 1666 } 1667 RVA = Entry32[Index].getHintNameRVA(); 1668 } else { 1669 if (Entry64[Index].isOrdinal()) { 1670 Result = Entry64[Index].getOrdinal(); 1671 return Error::success(); 1672 } 1673 RVA = Entry64[Index].getHintNameRVA(); 1674 } 1675 uintptr_t IntPtr = 0; 1676 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol ordinal")) 1677 return EC; 1678 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1679 return Error::success(); 1680 } 1681 1682 Expected<std::unique_ptr<COFFObjectFile>> 1683 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1684 return COFFObjectFile::create(Object); 1685 } 1686 1687 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1688 return Header == Other.Header && Index == Other.Index; 1689 } 1690 1691 void BaseRelocRef::moveNext() { 1692 // Header->BlockSize is the size of the current block, including the 1693 // size of the header itself. 1694 uint32_t Size = sizeof(*Header) + 1695 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1696 if (Size == Header->BlockSize) { 1697 // .reloc contains a list of base relocation blocks. Each block 1698 // consists of the header followed by entries. The header contains 1699 // how many entories will follow. When we reach the end of the 1700 // current block, proceed to the next block. 1701 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1702 reinterpret_cast<const uint8_t *>(Header) + Size); 1703 Index = 0; 1704 } else { 1705 ++Index; 1706 } 1707 } 1708 1709 Error BaseRelocRef::getType(uint8_t &Type) const { 1710 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1711 Type = Entry[Index].getType(); 1712 return Error::success(); 1713 } 1714 1715 Error BaseRelocRef::getRVA(uint32_t &Result) const { 1716 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1717 Result = Header->PageRVA + Entry[Index].getOffset(); 1718 return Error::success(); 1719 } 1720 1721 #define RETURN_IF_ERROR(Expr) \ 1722 do { \ 1723 Error E = (Expr); \ 1724 if (E) \ 1725 return std::move(E); \ 1726 } while (0) 1727 1728 Expected<ArrayRef<UTF16>> 1729 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) { 1730 BinaryStreamReader Reader = BinaryStreamReader(BBS); 1731 Reader.setOffset(Offset); 1732 uint16_t Length; 1733 RETURN_IF_ERROR(Reader.readInteger(Length)); 1734 ArrayRef<UTF16> RawDirString; 1735 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length)); 1736 return RawDirString; 1737 } 1738 1739 Expected<ArrayRef<UTF16>> 1740 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) { 1741 return getDirStringAtOffset(Entry.Identifier.getNameOffset()); 1742 } 1743 1744 Expected<const coff_resource_dir_table &> 1745 ResourceSectionRef::getTableAtOffset(uint32_t Offset) { 1746 const coff_resource_dir_table *Table = nullptr; 1747 1748 BinaryStreamReader Reader(BBS); 1749 Reader.setOffset(Offset); 1750 RETURN_IF_ERROR(Reader.readObject(Table)); 1751 assert(Table != nullptr); 1752 return *Table; 1753 } 1754 1755 Expected<const coff_resource_dir_entry &> 1756 ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) { 1757 const coff_resource_dir_entry *Entry = nullptr; 1758 1759 BinaryStreamReader Reader(BBS); 1760 Reader.setOffset(Offset); 1761 RETURN_IF_ERROR(Reader.readObject(Entry)); 1762 assert(Entry != nullptr); 1763 return *Entry; 1764 } 1765 1766 Expected<const coff_resource_data_entry &> 1767 ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) { 1768 const coff_resource_data_entry *Entry = nullptr; 1769 1770 BinaryStreamReader Reader(BBS); 1771 Reader.setOffset(Offset); 1772 RETURN_IF_ERROR(Reader.readObject(Entry)); 1773 assert(Entry != nullptr); 1774 return *Entry; 1775 } 1776 1777 Expected<const coff_resource_dir_table &> 1778 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) { 1779 assert(Entry.Offset.isSubDir()); 1780 return getTableAtOffset(Entry.Offset.value()); 1781 } 1782 1783 Expected<const coff_resource_data_entry &> 1784 ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) { 1785 assert(!Entry.Offset.isSubDir()); 1786 return getDataEntryAtOffset(Entry.Offset.value()); 1787 } 1788 1789 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() { 1790 return getTableAtOffset(0); 1791 } 1792 1793 Expected<const coff_resource_dir_entry &> 1794 ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table, 1795 uint32_t Index) { 1796 if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries)) 1797 return createStringError(object_error::parse_failed, "index out of range"); 1798 const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table); 1799 ptrdiff_t TableOffset = TablePtr - BBS.data().data(); 1800 return getTableEntryAtOffset(TableOffset + sizeof(Table) + 1801 Index * sizeof(coff_resource_dir_entry)); 1802 } 1803 1804 Error ResourceSectionRef::load(const COFFObjectFile *O) { 1805 for (const SectionRef &S : O->sections()) { 1806 Expected<StringRef> Name = S.getName(); 1807 if (!Name) 1808 return Name.takeError(); 1809 1810 if (*Name == ".rsrc" || *Name == ".rsrc$01") 1811 return load(O, S); 1812 } 1813 return createStringError(object_error::parse_failed, 1814 "no resource section found"); 1815 } 1816 1817 Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) { 1818 Obj = O; 1819 Section = S; 1820 Expected<StringRef> Contents = Section.getContents(); 1821 if (!Contents) 1822 return Contents.takeError(); 1823 BBS = BinaryByteStream(*Contents, support::little); 1824 const coff_section *COFFSect = Obj->getCOFFSection(Section); 1825 ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect); 1826 Relocs.reserve(OrigRelocs.size()); 1827 for (const coff_relocation &R : OrigRelocs) 1828 Relocs.push_back(&R); 1829 llvm::sort(Relocs, [](const coff_relocation *A, const coff_relocation *B) { 1830 return A->VirtualAddress < B->VirtualAddress; 1831 }); 1832 return Error::success(); 1833 } 1834 1835 Expected<StringRef> 1836 ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) { 1837 if (!Obj) 1838 return createStringError(object_error::parse_failed, "no object provided"); 1839 1840 // Find a potential relocation at the DataRVA field (first member of 1841 // the coff_resource_data_entry struct). 1842 const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry); 1843 ptrdiff_t EntryOffset = EntryPtr - BBS.data().data(); 1844 coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0), 1845 ulittle16_t(0)}; 1846 auto RelocsForOffset = 1847 std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget, 1848 [](const coff_relocation *A, const coff_relocation *B) { 1849 return A->VirtualAddress < B->VirtualAddress; 1850 }); 1851 1852 if (RelocsForOffset.first != RelocsForOffset.second) { 1853 // We found a relocation with the right offset. Check that it does have 1854 // the expected type. 1855 const coff_relocation &R = **RelocsForOffset.first; 1856 uint16_t RVAReloc; 1857 switch (Obj->getMachine()) { 1858 case COFF::IMAGE_FILE_MACHINE_I386: 1859 RVAReloc = COFF::IMAGE_REL_I386_DIR32NB; 1860 break; 1861 case COFF::IMAGE_FILE_MACHINE_AMD64: 1862 RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB; 1863 break; 1864 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1865 RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB; 1866 break; 1867 case COFF::IMAGE_FILE_MACHINE_ARM64: 1868 RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB; 1869 break; 1870 default: 1871 return createStringError(object_error::parse_failed, 1872 "unsupported architecture"); 1873 } 1874 if (R.Type != RVAReloc) 1875 return createStringError(object_error::parse_failed, 1876 "unexpected relocation type"); 1877 // Get the relocation's symbol 1878 Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex); 1879 if (!Sym) 1880 return Sym.takeError(); 1881 // And the symbol's section 1882 Expected<const coff_section *> Section = 1883 Obj->getSection(Sym->getSectionNumber()); 1884 if (!Section) 1885 return Section.takeError(); 1886 // Add the initial value of DataRVA to the symbol's offset to find the 1887 // data it points at. 1888 uint64_t Offset = Entry.DataRVA + Sym->getValue(); 1889 ArrayRef<uint8_t> Contents; 1890 if (Error E = Obj->getSectionContents(*Section, Contents)) 1891 return std::move(E); 1892 if (Offset + Entry.DataSize > Contents.size()) 1893 return createStringError(object_error::parse_failed, 1894 "data outside of section"); 1895 // Return a reference to the data inside the section. 1896 return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset, 1897 Entry.DataSize); 1898 } else { 1899 // Relocatable objects need a relocation for the DataRVA field. 1900 if (Obj->isRelocatableObject()) 1901 return createStringError(object_error::parse_failed, 1902 "no relocation found for DataRVA"); 1903 1904 // Locate the section that contains the address that DataRVA points at. 1905 uint64_t VA = Entry.DataRVA + Obj->getImageBase(); 1906 for (const SectionRef &S : Obj->sections()) { 1907 if (VA >= S.getAddress() && 1908 VA + Entry.DataSize <= S.getAddress() + S.getSize()) { 1909 uint64_t Offset = VA - S.getAddress(); 1910 Expected<StringRef> Contents = S.getContents(); 1911 if (!Contents) 1912 return Contents.takeError(); 1913 return Contents->slice(Offset, Offset + Entry.DataSize); 1914 } 1915 } 1916 return createStringError(object_error::parse_failed, 1917 "address not found in image"); 1918 } 1919 } 1920