1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/StringSwitch.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/ADT/iterator_range.h" 19 #include "llvm/Support/COFF.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <cctype> 23 #include <limits> 24 25 using namespace llvm; 26 using namespace object; 27 28 using support::ulittle16_t; 29 using support::ulittle32_t; 30 using support::ulittle64_t; 31 using support::little16_t; 32 33 // Returns false if size is greater than the buffer size. And sets ec. 34 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 35 if (M.getBufferSize() < Size) { 36 EC = object_error::unexpected_eof; 37 return false; 38 } 39 return true; 40 } 41 42 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 43 const uint64_t Size) { 44 if (Addr + Size < Addr || Addr + Size < Size || 45 Addr + Size > uintptr_t(M.getBufferEnd()) || 46 Addr < uintptr_t(M.getBufferStart())) { 47 return object_error::unexpected_eof; 48 } 49 return std::error_code(); 50 } 51 52 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 53 // Returns unexpected_eof if error. 54 template <typename T> 55 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 56 const void *Ptr, 57 const uint64_t Size = sizeof(T)) { 58 uintptr_t Addr = uintptr_t(Ptr); 59 if (std::error_code EC = checkOffset(M, Addr, Size)) 60 return EC; 61 Obj = reinterpret_cast<const T *>(Addr); 62 return std::error_code(); 63 } 64 65 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 66 // prefixed slashes. 67 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 68 assert(Str.size() <= 6 && "String too long, possible overflow."); 69 if (Str.size() > 6) 70 return true; 71 72 uint64_t Value = 0; 73 while (!Str.empty()) { 74 unsigned CharVal; 75 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 76 CharVal = Str[0] - 'A'; 77 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 78 CharVal = Str[0] - 'a' + 26; 79 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 80 CharVal = Str[0] - '0' + 52; 81 else if (Str[0] == '+') // 62 82 CharVal = 62; 83 else if (Str[0] == '/') // 63 84 CharVal = 63; 85 else 86 return true; 87 88 Value = (Value * 64) + CharVal; 89 Str = Str.substr(1); 90 } 91 92 if (Value > std::numeric_limits<uint32_t>::max()) 93 return true; 94 95 Result = static_cast<uint32_t>(Value); 96 return false; 97 } 98 99 template <typename coff_symbol_type> 100 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 101 const coff_symbol_type *Addr = 102 reinterpret_cast<const coff_symbol_type *>(Ref.p); 103 104 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 105 #ifndef NDEBUG 106 // Verify that the symbol points to a valid entry in the symbol table. 107 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 108 109 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 110 "Symbol did not point to the beginning of a symbol"); 111 #endif 112 113 return Addr; 114 } 115 116 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 117 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 118 119 # ifndef NDEBUG 120 // Verify that the section points to a valid entry in the section table. 121 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 122 report_fatal_error("Section was outside of section table."); 123 124 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 125 assert(Offset % sizeof(coff_section) == 0 && 126 "Section did not point to the beginning of a section"); 127 # endif 128 129 return Addr; 130 } 131 132 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 133 auto End = reinterpret_cast<uintptr_t>(StringTable); 134 if (SymbolTable16) { 135 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 136 Symb += 1 + Symb->NumberOfAuxSymbols; 137 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 138 } else if (SymbolTable32) { 139 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 140 Symb += 1 + Symb->NumberOfAuxSymbols; 141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 142 } else { 143 llvm_unreachable("no symbol table pointer!"); 144 } 145 } 146 147 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 148 COFFSymbolRef Symb = getCOFFSymbol(Ref); 149 StringRef Result; 150 std::error_code EC = getSymbolName(Symb, Result); 151 if (EC) 152 return errorCodeToError(EC); 153 return Result; 154 } 155 156 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 157 return getCOFFSymbol(Ref).getValue(); 158 } 159 160 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const { 161 // MSVC/link.exe seems to align symbols to the next-power-of-2 162 // up to 32 bytes. 163 COFFSymbolRef Symb = getCOFFSymbol(Ref); 164 uint32_t Value = Symb.getValue(); 165 return std::min(uint64_t(32), 166 isPowerOf2_64(Value) ? Value : NextPowerOf2(Value)); 167 } 168 169 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 170 uint64_t Result = getSymbolValue(Ref); 171 COFFSymbolRef Symb = getCOFFSymbol(Ref); 172 int32_t SectionNumber = Symb.getSectionNumber(); 173 174 if (Symb.isAnyUndefined() || Symb.isCommon() || 175 COFF::isReservedSectionNumber(SectionNumber)) 176 return Result; 177 178 const coff_section *Section = nullptr; 179 if (std::error_code EC = getSection(SectionNumber, Section)) 180 return errorCodeToError(EC); 181 Result += Section->VirtualAddress; 182 183 // The section VirtualAddress does not include ImageBase, and we want to 184 // return virtual addresses. 185 Result += getImageBase(); 186 187 return Result; 188 } 189 190 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 191 COFFSymbolRef Symb = getCOFFSymbol(Ref); 192 int32_t SectionNumber = Symb.getSectionNumber(); 193 194 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 195 return SymbolRef::ST_Function; 196 if (Symb.isAnyUndefined()) 197 return SymbolRef::ST_Unknown; 198 if (Symb.isCommon()) 199 return SymbolRef::ST_Data; 200 if (Symb.isFileRecord()) 201 return SymbolRef::ST_File; 202 203 // TODO: perhaps we need a new symbol type ST_Section. 204 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 205 return SymbolRef::ST_Debug; 206 207 if (!COFF::isReservedSectionNumber(SectionNumber)) 208 return SymbolRef::ST_Data; 209 210 return SymbolRef::ST_Other; 211 } 212 213 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 214 COFFSymbolRef Symb = getCOFFSymbol(Ref); 215 uint32_t Result = SymbolRef::SF_None; 216 217 if (Symb.isExternal() || Symb.isWeakExternal()) 218 Result |= SymbolRef::SF_Global; 219 220 if (Symb.isWeakExternal()) 221 Result |= SymbolRef::SF_Weak; 222 223 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 224 Result |= SymbolRef::SF_Absolute; 225 226 if (Symb.isFileRecord()) 227 Result |= SymbolRef::SF_FormatSpecific; 228 229 if (Symb.isSectionDefinition()) 230 Result |= SymbolRef::SF_FormatSpecific; 231 232 if (Symb.isCommon()) 233 Result |= SymbolRef::SF_Common; 234 235 if (Symb.isAnyUndefined()) 236 Result |= SymbolRef::SF_Undefined; 237 238 return Result; 239 } 240 241 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 242 COFFSymbolRef Symb = getCOFFSymbol(Ref); 243 return Symb.getValue(); 244 } 245 246 Expected<section_iterator> 247 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 248 COFFSymbolRef Symb = getCOFFSymbol(Ref); 249 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 250 return section_end(); 251 const coff_section *Sec = nullptr; 252 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 253 return errorCodeToError(EC); 254 DataRefImpl Ret; 255 Ret.p = reinterpret_cast<uintptr_t>(Sec); 256 return section_iterator(SectionRef(Ret, this)); 257 } 258 259 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 260 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 261 return Symb.getSectionNumber(); 262 } 263 264 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 265 const coff_section *Sec = toSec(Ref); 266 Sec += 1; 267 Ref.p = reinterpret_cast<uintptr_t>(Sec); 268 } 269 270 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 271 StringRef &Result) const { 272 const coff_section *Sec = toSec(Ref); 273 return getSectionName(Sec, Result); 274 } 275 276 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 277 const coff_section *Sec = toSec(Ref); 278 uint64_t Result = Sec->VirtualAddress; 279 280 // The section VirtualAddress does not include ImageBase, and we want to 281 // return virtual addresses. 282 Result += getImageBase(); 283 return Result; 284 } 285 286 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 287 return getSectionSize(toSec(Ref)); 288 } 289 290 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 291 StringRef &Result) const { 292 const coff_section *Sec = toSec(Ref); 293 ArrayRef<uint8_t> Res; 294 std::error_code EC = getSectionContents(Sec, Res); 295 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 296 return EC; 297 } 298 299 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 300 const coff_section *Sec = toSec(Ref); 301 return Sec->getAlignment(); 302 } 303 304 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 305 return false; 306 } 307 308 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 309 const coff_section *Sec = toSec(Ref); 310 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 311 } 312 313 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 314 const coff_section *Sec = toSec(Ref); 315 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 316 } 317 318 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 319 const coff_section *Sec = toSec(Ref); 320 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 321 COFF::IMAGE_SCN_MEM_READ | 322 COFF::IMAGE_SCN_MEM_WRITE; 323 return (Sec->Characteristics & BssFlags) == BssFlags; 324 } 325 326 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 327 uintptr_t Offset = 328 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 329 assert((Offset % sizeof(coff_section)) == 0); 330 return (Offset / sizeof(coff_section)) + 1; 331 } 332 333 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 334 const coff_section *Sec = toSec(Ref); 335 // In COFF, a virtual section won't have any in-file 336 // content, so the file pointer to the content will be zero. 337 return Sec->PointerToRawData == 0; 338 } 339 340 static uint32_t getNumberOfRelocations(const coff_section *Sec, 341 MemoryBufferRef M, const uint8_t *base) { 342 // The field for the number of relocations in COFF section table is only 343 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 344 // NumberOfRelocations field, and the actual relocation count is stored in the 345 // VirtualAddress field in the first relocation entry. 346 if (Sec->hasExtendedRelocations()) { 347 const coff_relocation *FirstReloc; 348 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 349 base + Sec->PointerToRelocations))) 350 return 0; 351 // -1 to exclude this first relocation entry. 352 return FirstReloc->VirtualAddress - 1; 353 } 354 return Sec->NumberOfRelocations; 355 } 356 357 static const coff_relocation * 358 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 359 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 360 if (!NumRelocs) 361 return nullptr; 362 auto begin = reinterpret_cast<const coff_relocation *>( 363 Base + Sec->PointerToRelocations); 364 if (Sec->hasExtendedRelocations()) { 365 // Skip the first relocation entry repurposed to store the number of 366 // relocations. 367 begin++; 368 } 369 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 370 return nullptr; 371 return begin; 372 } 373 374 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 375 const coff_section *Sec = toSec(Ref); 376 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 377 if (begin && Sec->VirtualAddress != 0) 378 report_fatal_error("Sections with relocations should have an address of 0"); 379 DataRefImpl Ret; 380 Ret.p = reinterpret_cast<uintptr_t>(begin); 381 return relocation_iterator(RelocationRef(Ret, this)); 382 } 383 384 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 385 const coff_section *Sec = toSec(Ref); 386 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 387 if (I) 388 I += getNumberOfRelocations(Sec, Data, base()); 389 DataRefImpl Ret; 390 Ret.p = reinterpret_cast<uintptr_t>(I); 391 return relocation_iterator(RelocationRef(Ret, this)); 392 } 393 394 // Initialize the pointer to the symbol table. 395 std::error_code COFFObjectFile::initSymbolTablePtr() { 396 if (COFFHeader) 397 if (std::error_code EC = getObject( 398 SymbolTable16, Data, base() + getPointerToSymbolTable(), 399 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 400 return EC; 401 402 if (COFFBigObjHeader) 403 if (std::error_code EC = getObject( 404 SymbolTable32, Data, base() + getPointerToSymbolTable(), 405 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 406 return EC; 407 408 // Find string table. The first four byte of the string table contains the 409 // total size of the string table, including the size field itself. If the 410 // string table is empty, the value of the first four byte would be 4. 411 uint32_t StringTableOffset = getPointerToSymbolTable() + 412 getNumberOfSymbols() * getSymbolTableEntrySize(); 413 const uint8_t *StringTableAddr = base() + StringTableOffset; 414 const ulittle32_t *StringTableSizePtr; 415 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 416 return EC; 417 StringTableSize = *StringTableSizePtr; 418 if (std::error_code EC = 419 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 420 return EC; 421 422 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 423 // tools like cvtres write a size of 0 for an empty table instead of 4. 424 if (StringTableSize < 4) 425 StringTableSize = 4; 426 427 // Check that the string table is null terminated if has any in it. 428 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 429 return object_error::parse_failed; 430 return std::error_code(); 431 } 432 433 uint64_t COFFObjectFile::getImageBase() const { 434 if (PE32Header) 435 return PE32Header->ImageBase; 436 else if (PE32PlusHeader) 437 return PE32PlusHeader->ImageBase; 438 // This actually comes up in practice. 439 return 0; 440 } 441 442 // Returns the file offset for the given VA. 443 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 444 uint64_t ImageBase = getImageBase(); 445 uint64_t Rva = Addr - ImageBase; 446 assert(Rva <= UINT32_MAX); 447 return getRvaPtr((uint32_t)Rva, Res); 448 } 449 450 // Returns the file offset for the given RVA. 451 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 452 for (const SectionRef &S : sections()) { 453 const coff_section *Section = getCOFFSection(S); 454 uint32_t SectionStart = Section->VirtualAddress; 455 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 456 if (SectionStart <= Addr && Addr < SectionEnd) { 457 uint32_t Offset = Addr - SectionStart; 458 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 459 return std::error_code(); 460 } 461 } 462 return object_error::parse_failed; 463 } 464 465 std::error_code 466 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 467 ArrayRef<uint8_t> &Contents) const { 468 for (const SectionRef &S : sections()) { 469 const coff_section *Section = getCOFFSection(S); 470 uint32_t SectionStart = Section->VirtualAddress; 471 // Check if this RVA is within the section bounds. Be careful about integer 472 // overflow. 473 uint32_t OffsetIntoSection = RVA - SectionStart; 474 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 475 Size <= Section->VirtualSize - OffsetIntoSection) { 476 uintptr_t Begin = 477 uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection; 478 Contents = 479 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 480 return std::error_code(); 481 } 482 } 483 return object_error::parse_failed; 484 } 485 486 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 487 // table entry. 488 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 489 StringRef &Name) const { 490 uintptr_t IntPtr = 0; 491 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 492 return EC; 493 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 494 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 495 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 496 return std::error_code(); 497 } 498 499 std::error_code 500 COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 501 const codeview::DebugInfo *&PDBInfo, 502 StringRef &PDBFileName) const { 503 ArrayRef<uint8_t> InfoBytes; 504 if (std::error_code EC = getRvaAndSizeAsBytes( 505 DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes)) 506 return EC; 507 if (InfoBytes.size() < sizeof(*PDBInfo) + 1) 508 return object_error::parse_failed; 509 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data()); 510 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); 511 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 512 InfoBytes.size()); 513 // Truncate the name at the first null byte. Ignore any padding. 514 PDBFileName = PDBFileName.split('\0').first; 515 return std::error_code(); 516 } 517 518 std::error_code 519 COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, 520 StringRef &PDBFileName) const { 521 for (const debug_directory &D : debug_directories()) 522 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 523 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 524 // If we get here, there is no PDB info to return. 525 PDBInfo = nullptr; 526 PDBFileName = StringRef(); 527 return std::error_code(); 528 } 529 530 // Find the import table. 531 std::error_code COFFObjectFile::initImportTablePtr() { 532 // First, we get the RVA of the import table. If the file lacks a pointer to 533 // the import table, do nothing. 534 const data_directory *DataEntry; 535 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 536 return std::error_code(); 537 538 // Do nothing if the pointer to import table is NULL. 539 if (DataEntry->RelativeVirtualAddress == 0) 540 return std::error_code(); 541 542 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 543 544 // Find the section that contains the RVA. This is needed because the RVA is 545 // the import table's memory address which is different from its file offset. 546 uintptr_t IntPtr = 0; 547 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 548 return EC; 549 if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size)) 550 return EC; 551 ImportDirectory = reinterpret_cast< 552 const coff_import_directory_table_entry *>(IntPtr); 553 return std::error_code(); 554 } 555 556 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 557 std::error_code COFFObjectFile::initDelayImportTablePtr() { 558 const data_directory *DataEntry; 559 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 560 return std::error_code(); 561 if (DataEntry->RelativeVirtualAddress == 0) 562 return std::error_code(); 563 564 uint32_t RVA = DataEntry->RelativeVirtualAddress; 565 NumberOfDelayImportDirectory = DataEntry->Size / 566 sizeof(delay_import_directory_table_entry) - 1; 567 568 uintptr_t IntPtr = 0; 569 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 570 return EC; 571 DelayImportDirectory = reinterpret_cast< 572 const delay_import_directory_table_entry *>(IntPtr); 573 return std::error_code(); 574 } 575 576 // Find the export table. 577 std::error_code COFFObjectFile::initExportTablePtr() { 578 // First, we get the RVA of the export table. If the file lacks a pointer to 579 // the export table, do nothing. 580 const data_directory *DataEntry; 581 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 582 return std::error_code(); 583 584 // Do nothing if the pointer to export table is NULL. 585 if (DataEntry->RelativeVirtualAddress == 0) 586 return std::error_code(); 587 588 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 589 uintptr_t IntPtr = 0; 590 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 591 return EC; 592 ExportDirectory = 593 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 594 return std::error_code(); 595 } 596 597 std::error_code COFFObjectFile::initBaseRelocPtr() { 598 const data_directory *DataEntry; 599 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 600 return std::error_code(); 601 if (DataEntry->RelativeVirtualAddress == 0) 602 return std::error_code(); 603 604 uintptr_t IntPtr = 0; 605 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 606 return EC; 607 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 608 IntPtr); 609 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 610 IntPtr + DataEntry->Size); 611 return std::error_code(); 612 } 613 614 std::error_code COFFObjectFile::initDebugDirectoryPtr() { 615 // Get the RVA of the debug directory. Do nothing if it does not exist. 616 const data_directory *DataEntry; 617 if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry)) 618 return std::error_code(); 619 620 // Do nothing if the RVA is NULL. 621 if (DataEntry->RelativeVirtualAddress == 0) 622 return std::error_code(); 623 624 // Check that the size is a multiple of the entry size. 625 if (DataEntry->Size % sizeof(debug_directory) != 0) 626 return object_error::parse_failed; 627 628 uintptr_t IntPtr = 0; 629 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 630 return EC; 631 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 632 if (std::error_code EC = getRvaPtr( 633 DataEntry->RelativeVirtualAddress + DataEntry->Size, IntPtr)) 634 return EC; 635 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(IntPtr); 636 return std::error_code(); 637 } 638 639 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 640 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 641 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 642 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 643 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 644 ImportDirectory(nullptr), 645 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 646 ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 647 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) { 648 // Check that we at least have enough room for a header. 649 if (!checkSize(Data, EC, sizeof(coff_file_header))) 650 return; 651 652 // The current location in the file where we are looking at. 653 uint64_t CurPtr = 0; 654 655 // PE header is optional and is present only in executables. If it exists, 656 // it is placed right after COFF header. 657 bool HasPEHeader = false; 658 659 // Check if this is a PE/COFF file. 660 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 661 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 662 // PE signature to find 'normal' COFF header. 663 const auto *DH = reinterpret_cast<const dos_header *>(base()); 664 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 665 CurPtr = DH->AddressOfNewExeHeader; 666 // Check the PE magic bytes. ("PE\0\0") 667 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 668 EC = object_error::parse_failed; 669 return; 670 } 671 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 672 HasPEHeader = true; 673 } 674 } 675 676 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 677 return; 678 679 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 680 // import libraries share a common prefix but bigobj is more restrictive. 681 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 682 COFFHeader->NumberOfSections == uint16_t(0xffff) && 683 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 684 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 685 return; 686 687 // Verify that we are dealing with bigobj. 688 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 689 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 690 sizeof(COFF::BigObjMagic)) == 0) { 691 COFFHeader = nullptr; 692 CurPtr += sizeof(coff_bigobj_file_header); 693 } else { 694 // It's not a bigobj. 695 COFFBigObjHeader = nullptr; 696 } 697 } 698 if (COFFHeader) { 699 // The prior checkSize call may have failed. This isn't a hard error 700 // because we were just trying to sniff out bigobj. 701 EC = std::error_code(); 702 CurPtr += sizeof(coff_file_header); 703 704 if (COFFHeader->isImportLibrary()) 705 return; 706 } 707 708 if (HasPEHeader) { 709 const pe32_header *Header; 710 if ((EC = getObject(Header, Data, base() + CurPtr))) 711 return; 712 713 const uint8_t *DataDirAddr; 714 uint64_t DataDirSize; 715 if (Header->Magic == COFF::PE32Header::PE32) { 716 PE32Header = Header; 717 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 718 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 719 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 720 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 721 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 722 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 723 } else { 724 // It's neither PE32 nor PE32+. 725 EC = object_error::parse_failed; 726 return; 727 } 728 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 729 return; 730 } 731 732 if (COFFHeader) 733 CurPtr += COFFHeader->SizeOfOptionalHeader; 734 735 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 736 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 737 return; 738 739 // Initialize the pointer to the symbol table. 740 if (getPointerToSymbolTable() != 0) { 741 if ((EC = initSymbolTablePtr())) { 742 SymbolTable16 = nullptr; 743 SymbolTable32 = nullptr; 744 StringTable = nullptr; 745 StringTableSize = 0; 746 } 747 } else { 748 // We had better not have any symbols if we don't have a symbol table. 749 if (getNumberOfSymbols() != 0) { 750 EC = object_error::parse_failed; 751 return; 752 } 753 } 754 755 // Initialize the pointer to the beginning of the import table. 756 if ((EC = initImportTablePtr())) 757 return; 758 if ((EC = initDelayImportTablePtr())) 759 return; 760 761 // Initialize the pointer to the export table. 762 if ((EC = initExportTablePtr())) 763 return; 764 765 // Initialize the pointer to the base relocation table. 766 if ((EC = initBaseRelocPtr())) 767 return; 768 769 // Initialize the pointer to the export table. 770 if ((EC = initDebugDirectoryPtr())) 771 return; 772 773 EC = std::error_code(); 774 } 775 776 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 777 DataRefImpl Ret; 778 Ret.p = getSymbolTable(); 779 return basic_symbol_iterator(SymbolRef(Ret, this)); 780 } 781 782 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 783 // The symbol table ends where the string table begins. 784 DataRefImpl Ret; 785 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 786 return basic_symbol_iterator(SymbolRef(Ret, this)); 787 } 788 789 import_directory_iterator COFFObjectFile::import_directory_begin() const { 790 if (!ImportDirectory) 791 return import_directory_end(); 792 if (ImportDirectory->isNull()) 793 return import_directory_end(); 794 return import_directory_iterator( 795 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 796 } 797 798 import_directory_iterator COFFObjectFile::import_directory_end() const { 799 return import_directory_iterator( 800 ImportDirectoryEntryRef(nullptr, -1, this)); 801 } 802 803 delay_import_directory_iterator 804 COFFObjectFile::delay_import_directory_begin() const { 805 return delay_import_directory_iterator( 806 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 807 } 808 809 delay_import_directory_iterator 810 COFFObjectFile::delay_import_directory_end() const { 811 return delay_import_directory_iterator( 812 DelayImportDirectoryEntryRef( 813 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 814 } 815 816 export_directory_iterator COFFObjectFile::export_directory_begin() const { 817 return export_directory_iterator( 818 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 819 } 820 821 export_directory_iterator COFFObjectFile::export_directory_end() const { 822 if (!ExportDirectory) 823 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 824 ExportDirectoryEntryRef Ref(ExportDirectory, 825 ExportDirectory->AddressTableEntries, this); 826 return export_directory_iterator(Ref); 827 } 828 829 section_iterator COFFObjectFile::section_begin() const { 830 DataRefImpl Ret; 831 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 832 return section_iterator(SectionRef(Ret, this)); 833 } 834 835 section_iterator COFFObjectFile::section_end() const { 836 DataRefImpl Ret; 837 int NumSections = 838 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 839 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 840 return section_iterator(SectionRef(Ret, this)); 841 } 842 843 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 844 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 845 } 846 847 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 848 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 849 } 850 851 uint8_t COFFObjectFile::getBytesInAddress() const { 852 return getArch() == Triple::x86_64 ? 8 : 4; 853 } 854 855 StringRef COFFObjectFile::getFileFormatName() const { 856 switch(getMachine()) { 857 case COFF::IMAGE_FILE_MACHINE_I386: 858 return "COFF-i386"; 859 case COFF::IMAGE_FILE_MACHINE_AMD64: 860 return "COFF-x86-64"; 861 case COFF::IMAGE_FILE_MACHINE_ARMNT: 862 return "COFF-ARM"; 863 case COFF::IMAGE_FILE_MACHINE_ARM64: 864 return "COFF-ARM64"; 865 default: 866 return "COFF-<unknown arch>"; 867 } 868 } 869 870 unsigned COFFObjectFile::getArch() const { 871 switch (getMachine()) { 872 case COFF::IMAGE_FILE_MACHINE_I386: 873 return Triple::x86; 874 case COFF::IMAGE_FILE_MACHINE_AMD64: 875 return Triple::x86_64; 876 case COFF::IMAGE_FILE_MACHINE_ARMNT: 877 return Triple::thumb; 878 case COFF::IMAGE_FILE_MACHINE_ARM64: 879 return Triple::aarch64; 880 default: 881 return Triple::UnknownArch; 882 } 883 } 884 885 iterator_range<import_directory_iterator> 886 COFFObjectFile::import_directories() const { 887 return make_range(import_directory_begin(), import_directory_end()); 888 } 889 890 iterator_range<delay_import_directory_iterator> 891 COFFObjectFile::delay_import_directories() const { 892 return make_range(delay_import_directory_begin(), 893 delay_import_directory_end()); 894 } 895 896 iterator_range<export_directory_iterator> 897 COFFObjectFile::export_directories() const { 898 return make_range(export_directory_begin(), export_directory_end()); 899 } 900 901 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 902 return make_range(base_reloc_begin(), base_reloc_end()); 903 } 904 905 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 906 Res = PE32Header; 907 return std::error_code(); 908 } 909 910 std::error_code 911 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 912 Res = PE32PlusHeader; 913 return std::error_code(); 914 } 915 916 std::error_code 917 COFFObjectFile::getDataDirectory(uint32_t Index, 918 const data_directory *&Res) const { 919 // Error if if there's no data directory or the index is out of range. 920 if (!DataDirectory) { 921 Res = nullptr; 922 return object_error::parse_failed; 923 } 924 assert(PE32Header || PE32PlusHeader); 925 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 926 : PE32PlusHeader->NumberOfRvaAndSize; 927 if (Index >= NumEnt) { 928 Res = nullptr; 929 return object_error::parse_failed; 930 } 931 Res = &DataDirectory[Index]; 932 return std::error_code(); 933 } 934 935 std::error_code COFFObjectFile::getSection(int32_t Index, 936 const coff_section *&Result) const { 937 Result = nullptr; 938 if (COFF::isReservedSectionNumber(Index)) 939 return std::error_code(); 940 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 941 // We already verified the section table data, so no need to check again. 942 Result = SectionTable + (Index - 1); 943 return std::error_code(); 944 } 945 return object_error::parse_failed; 946 } 947 948 std::error_code COFFObjectFile::getString(uint32_t Offset, 949 StringRef &Result) const { 950 if (StringTableSize <= 4) 951 // Tried to get a string from an empty string table. 952 return object_error::parse_failed; 953 if (Offset >= StringTableSize) 954 return object_error::unexpected_eof; 955 Result = StringRef(StringTable + Offset); 956 return std::error_code(); 957 } 958 959 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 960 StringRef &Res) const { 961 return getSymbolName(Symbol.getGeneric(), Res); 962 } 963 964 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol, 965 StringRef &Res) const { 966 // Check for string table entry. First 4 bytes are 0. 967 if (Symbol->Name.Offset.Zeroes == 0) { 968 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res)) 969 return EC; 970 return std::error_code(); 971 } 972 973 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 974 // Null terminated, let ::strlen figure out the length. 975 Res = StringRef(Symbol->Name.ShortName); 976 else 977 // Not null terminated, use all 8 bytes. 978 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize); 979 return std::error_code(); 980 } 981 982 ArrayRef<uint8_t> 983 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 984 const uint8_t *Aux = nullptr; 985 986 size_t SymbolSize = getSymbolTableEntrySize(); 987 if (Symbol.getNumberOfAuxSymbols() > 0) { 988 // AUX data comes immediately after the symbol in COFF 989 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 990 # ifndef NDEBUG 991 // Verify that the Aux symbol points to a valid entry in the symbol table. 992 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 993 if (Offset < getPointerToSymbolTable() || 994 Offset >= 995 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 996 report_fatal_error("Aux Symbol data was outside of symbol table."); 997 998 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 999 "Aux Symbol data did not point to the beginning of a symbol"); 1000 # endif 1001 } 1002 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 1003 } 1004 1005 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 1006 StringRef &Res) const { 1007 StringRef Name; 1008 if (Sec->Name[COFF::NameSize - 1] == 0) 1009 // Null terminated, let ::strlen figure out the length. 1010 Name = Sec->Name; 1011 else 1012 // Not null terminated, use all 8 bytes. 1013 Name = StringRef(Sec->Name, COFF::NameSize); 1014 1015 // Check for string table entry. First byte is '/'. 1016 if (Name.startswith("/")) { 1017 uint32_t Offset; 1018 if (Name.startswith("//")) { 1019 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1020 return object_error::parse_failed; 1021 } else { 1022 if (Name.substr(1).getAsInteger(10, Offset)) 1023 return object_error::parse_failed; 1024 } 1025 if (std::error_code EC = getString(Offset, Name)) 1026 return EC; 1027 } 1028 1029 Res = Name; 1030 return std::error_code(); 1031 } 1032 1033 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1034 // SizeOfRawData and VirtualSize change what they represent depending on 1035 // whether or not we have an executable image. 1036 // 1037 // For object files, SizeOfRawData contains the size of section's data; 1038 // VirtualSize should be zero but isn't due to buggy COFF writers. 1039 // 1040 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1041 // actual section size is in VirtualSize. It is possible for VirtualSize to 1042 // be greater than SizeOfRawData; the contents past that point should be 1043 // considered to be zero. 1044 if (getDOSHeader()) 1045 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1046 return Sec->SizeOfRawData; 1047 } 1048 1049 std::error_code 1050 COFFObjectFile::getSectionContents(const coff_section *Sec, 1051 ArrayRef<uint8_t> &Res) const { 1052 // In COFF, a virtual section won't have any in-file 1053 // content, so the file pointer to the content will be zero. 1054 if (Sec->PointerToRawData == 0) 1055 return object_error::parse_failed; 1056 // The only thing that we need to verify is that the contents is contained 1057 // within the file bounds. We don't need to make sure it doesn't cover other 1058 // data, as there's nothing that says that is not allowed. 1059 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 1060 uint32_t SectionSize = getSectionSize(Sec); 1061 if (checkOffset(Data, ConStart, SectionSize)) 1062 return object_error::parse_failed; 1063 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1064 return std::error_code(); 1065 } 1066 1067 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1068 return reinterpret_cast<const coff_relocation*>(Rel.p); 1069 } 1070 1071 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1072 Rel.p = reinterpret_cast<uintptr_t>( 1073 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1074 } 1075 1076 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1077 const coff_relocation *R = toRel(Rel); 1078 return R->VirtualAddress; 1079 } 1080 1081 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1082 const coff_relocation *R = toRel(Rel); 1083 DataRefImpl Ref; 1084 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1085 return symbol_end(); 1086 if (SymbolTable16) 1087 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1088 else if (SymbolTable32) 1089 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1090 else 1091 llvm_unreachable("no symbol table pointer!"); 1092 return symbol_iterator(SymbolRef(Ref, this)); 1093 } 1094 1095 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1096 const coff_relocation* R = toRel(Rel); 1097 return R->Type; 1098 } 1099 1100 const coff_section * 1101 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1102 return toSec(Section.getRawDataRefImpl()); 1103 } 1104 1105 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1106 if (SymbolTable16) 1107 return toSymb<coff_symbol16>(Ref); 1108 if (SymbolTable32) 1109 return toSymb<coff_symbol32>(Ref); 1110 llvm_unreachable("no symbol table pointer!"); 1111 } 1112 1113 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1114 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1115 } 1116 1117 const coff_relocation * 1118 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1119 return toRel(Reloc.getRawDataRefImpl()); 1120 } 1121 1122 iterator_range<const coff_relocation *> 1123 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1124 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 1125 const coff_relocation *E = I; 1126 if (I) 1127 E += getNumberOfRelocations(Sec, Data, base()); 1128 return make_range(I, E); 1129 } 1130 1131 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1132 case COFF::reloc_type: \ 1133 Res = #reloc_type; \ 1134 break; 1135 1136 void COFFObjectFile::getRelocationTypeName( 1137 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1138 const coff_relocation *Reloc = toRel(Rel); 1139 StringRef Res; 1140 switch (getMachine()) { 1141 case COFF::IMAGE_FILE_MACHINE_AMD64: 1142 switch (Reloc->Type) { 1143 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1144 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1145 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1146 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1147 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1148 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1149 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1150 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1151 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1152 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1153 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1154 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1155 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1156 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1157 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1158 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1159 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1160 default: 1161 Res = "Unknown"; 1162 } 1163 break; 1164 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1165 switch (Reloc->Type) { 1166 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1167 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1168 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1169 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1170 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1171 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1172 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1173 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1174 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1175 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1176 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1177 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1178 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1179 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1180 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1181 default: 1182 Res = "Unknown"; 1183 } 1184 break; 1185 case COFF::IMAGE_FILE_MACHINE_I386: 1186 switch (Reloc->Type) { 1187 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1188 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1189 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1190 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1191 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1192 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1193 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1194 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1195 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1196 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1197 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1198 default: 1199 Res = "Unknown"; 1200 } 1201 break; 1202 default: 1203 Res = "Unknown"; 1204 } 1205 Result.append(Res.begin(), Res.end()); 1206 } 1207 1208 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1209 1210 bool COFFObjectFile::isRelocatableObject() const { 1211 return !DataDirectory; 1212 } 1213 1214 bool ImportDirectoryEntryRef:: 1215 operator==(const ImportDirectoryEntryRef &Other) const { 1216 return ImportTable == Other.ImportTable && Index == Other.Index; 1217 } 1218 1219 void ImportDirectoryEntryRef::moveNext() { 1220 ++Index; 1221 if (ImportTable[Index].isNull()) { 1222 Index = -1; 1223 ImportTable = nullptr; 1224 } 1225 } 1226 1227 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1228 const coff_import_directory_table_entry *&Result) const { 1229 return getObject(Result, OwningObject->Data, ImportTable + Index); 1230 } 1231 1232 static imported_symbol_iterator 1233 makeImportedSymbolIterator(const COFFObjectFile *Object, 1234 uintptr_t Ptr, int Index) { 1235 if (Object->getBytesInAddress() == 4) { 1236 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1237 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1238 } 1239 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1240 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1241 } 1242 1243 static imported_symbol_iterator 1244 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1245 uintptr_t IntPtr = 0; 1246 Object->getRvaPtr(RVA, IntPtr); 1247 return makeImportedSymbolIterator(Object, IntPtr, 0); 1248 } 1249 1250 static imported_symbol_iterator 1251 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1252 uintptr_t IntPtr = 0; 1253 Object->getRvaPtr(RVA, IntPtr); 1254 // Forward the pointer to the last entry which is null. 1255 int Index = 0; 1256 if (Object->getBytesInAddress() == 4) { 1257 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1258 while (*Entry++) 1259 ++Index; 1260 } else { 1261 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1262 while (*Entry++) 1263 ++Index; 1264 } 1265 return makeImportedSymbolIterator(Object, IntPtr, Index); 1266 } 1267 1268 imported_symbol_iterator 1269 ImportDirectoryEntryRef::imported_symbol_begin() const { 1270 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1271 OwningObject); 1272 } 1273 1274 imported_symbol_iterator 1275 ImportDirectoryEntryRef::imported_symbol_end() const { 1276 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1277 OwningObject); 1278 } 1279 1280 iterator_range<imported_symbol_iterator> 1281 ImportDirectoryEntryRef::imported_symbols() const { 1282 return make_range(imported_symbol_begin(), imported_symbol_end()); 1283 } 1284 1285 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1286 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1287 OwningObject); 1288 } 1289 1290 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1291 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1292 OwningObject); 1293 } 1294 1295 iterator_range<imported_symbol_iterator> 1296 ImportDirectoryEntryRef::lookup_table_symbols() const { 1297 return make_range(lookup_table_begin(), lookup_table_end()); 1298 } 1299 1300 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1301 uintptr_t IntPtr = 0; 1302 if (std::error_code EC = 1303 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1304 return EC; 1305 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1306 return std::error_code(); 1307 } 1308 1309 std::error_code 1310 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1311 Result = ImportTable[Index].ImportLookupTableRVA; 1312 return std::error_code(); 1313 } 1314 1315 std::error_code 1316 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1317 Result = ImportTable[Index].ImportAddressTableRVA; 1318 return std::error_code(); 1319 } 1320 1321 bool DelayImportDirectoryEntryRef:: 1322 operator==(const DelayImportDirectoryEntryRef &Other) const { 1323 return Table == Other.Table && Index == Other.Index; 1324 } 1325 1326 void DelayImportDirectoryEntryRef::moveNext() { 1327 ++Index; 1328 } 1329 1330 imported_symbol_iterator 1331 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1332 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1333 OwningObject); 1334 } 1335 1336 imported_symbol_iterator 1337 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1338 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1339 OwningObject); 1340 } 1341 1342 iterator_range<imported_symbol_iterator> 1343 DelayImportDirectoryEntryRef::imported_symbols() const { 1344 return make_range(imported_symbol_begin(), imported_symbol_end()); 1345 } 1346 1347 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1348 uintptr_t IntPtr = 0; 1349 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1350 return EC; 1351 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1352 return std::error_code(); 1353 } 1354 1355 std::error_code DelayImportDirectoryEntryRef:: 1356 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1357 Result = Table; 1358 return std::error_code(); 1359 } 1360 1361 std::error_code DelayImportDirectoryEntryRef:: 1362 getImportAddress(int AddrIndex, uint64_t &Result) const { 1363 uint32_t RVA = Table[Index].DelayImportAddressTable + 1364 AddrIndex * (OwningObject->is64() ? 8 : 4); 1365 uintptr_t IntPtr = 0; 1366 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1367 return EC; 1368 if (OwningObject->is64()) 1369 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1370 else 1371 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1372 return std::error_code(); 1373 } 1374 1375 bool ExportDirectoryEntryRef:: 1376 operator==(const ExportDirectoryEntryRef &Other) const { 1377 return ExportTable == Other.ExportTable && Index == Other.Index; 1378 } 1379 1380 void ExportDirectoryEntryRef::moveNext() { 1381 ++Index; 1382 } 1383 1384 // Returns the name of the current export symbol. If the symbol is exported only 1385 // by ordinal, the empty string is set as a result. 1386 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1387 uintptr_t IntPtr = 0; 1388 if (std::error_code EC = 1389 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1390 return EC; 1391 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1392 return std::error_code(); 1393 } 1394 1395 // Returns the starting ordinal number. 1396 std::error_code 1397 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1398 Result = ExportTable->OrdinalBase; 1399 return std::error_code(); 1400 } 1401 1402 // Returns the export ordinal of the current export symbol. 1403 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1404 Result = ExportTable->OrdinalBase + Index; 1405 return std::error_code(); 1406 } 1407 1408 // Returns the address of the current export symbol. 1409 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1410 uintptr_t IntPtr = 0; 1411 if (std::error_code EC = 1412 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1413 return EC; 1414 const export_address_table_entry *entry = 1415 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1416 Result = entry[Index].ExportRVA; 1417 return std::error_code(); 1418 } 1419 1420 // Returns the name of the current export symbol. If the symbol is exported only 1421 // by ordinal, the empty string is set as a result. 1422 std::error_code 1423 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1424 uintptr_t IntPtr = 0; 1425 if (std::error_code EC = 1426 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1427 return EC; 1428 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1429 1430 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1431 int Offset = 0; 1432 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1433 I < E; ++I, ++Offset) { 1434 if (*I != Index) 1435 continue; 1436 if (std::error_code EC = 1437 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1438 return EC; 1439 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1440 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1441 return EC; 1442 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1443 return std::error_code(); 1444 } 1445 Result = ""; 1446 return std::error_code(); 1447 } 1448 1449 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1450 const data_directory *DataEntry; 1451 if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 1452 return EC; 1453 uint32_t RVA; 1454 if (auto EC = getExportRVA(RVA)) 1455 return EC; 1456 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1457 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1458 Result = (Begin <= RVA && RVA < End); 1459 return std::error_code(); 1460 } 1461 1462 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1463 uint32_t RVA; 1464 if (auto EC = getExportRVA(RVA)) 1465 return EC; 1466 uintptr_t IntPtr = 0; 1467 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1468 return EC; 1469 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1470 return std::error_code(); 1471 } 1472 1473 bool ImportedSymbolRef:: 1474 operator==(const ImportedSymbolRef &Other) const { 1475 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1476 && Index == Other.Index; 1477 } 1478 1479 void ImportedSymbolRef::moveNext() { 1480 ++Index; 1481 } 1482 1483 std::error_code 1484 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1485 uint32_t RVA; 1486 if (Entry32) { 1487 // If a symbol is imported only by ordinal, it has no name. 1488 if (Entry32[Index].isOrdinal()) 1489 return std::error_code(); 1490 RVA = Entry32[Index].getHintNameRVA(); 1491 } else { 1492 if (Entry64[Index].isOrdinal()) 1493 return std::error_code(); 1494 RVA = Entry64[Index].getHintNameRVA(); 1495 } 1496 uintptr_t IntPtr = 0; 1497 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1498 return EC; 1499 // +2 because the first two bytes is hint. 1500 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1501 return std::error_code(); 1502 } 1503 1504 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const { 1505 if (Entry32) 1506 Result = Entry32[Index].isOrdinal(); 1507 else 1508 Result = Entry64[Index].isOrdinal(); 1509 return std::error_code(); 1510 } 1511 1512 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1513 if (Entry32) 1514 Result = Entry32[Index].getHintNameRVA(); 1515 else 1516 Result = Entry64[Index].getHintNameRVA(); 1517 return std::error_code(); 1518 } 1519 1520 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1521 uint32_t RVA; 1522 if (Entry32) { 1523 if (Entry32[Index].isOrdinal()) { 1524 Result = Entry32[Index].getOrdinal(); 1525 return std::error_code(); 1526 } 1527 RVA = Entry32[Index].getHintNameRVA(); 1528 } else { 1529 if (Entry64[Index].isOrdinal()) { 1530 Result = Entry64[Index].getOrdinal(); 1531 return std::error_code(); 1532 } 1533 RVA = Entry64[Index].getHintNameRVA(); 1534 } 1535 uintptr_t IntPtr = 0; 1536 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1537 return EC; 1538 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1539 return std::error_code(); 1540 } 1541 1542 ErrorOr<std::unique_ptr<COFFObjectFile>> 1543 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1544 std::error_code EC; 1545 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1546 if (EC) 1547 return EC; 1548 return std::move(Ret); 1549 } 1550 1551 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1552 return Header == Other.Header && Index == Other.Index; 1553 } 1554 1555 void BaseRelocRef::moveNext() { 1556 // Header->BlockSize is the size of the current block, including the 1557 // size of the header itself. 1558 uint32_t Size = sizeof(*Header) + 1559 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1560 if (Size == Header->BlockSize) { 1561 // .reloc contains a list of base relocation blocks. Each block 1562 // consists of the header followed by entries. The header contains 1563 // how many entories will follow. When we reach the end of the 1564 // current block, proceed to the next block. 1565 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1566 reinterpret_cast<const uint8_t *>(Header) + Size); 1567 Index = 0; 1568 } else { 1569 ++Index; 1570 } 1571 } 1572 1573 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1574 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1575 Type = Entry[Index].getType(); 1576 return std::error_code(); 1577 } 1578 1579 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1580 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1581 Result = Header->PageRVA + Entry[Index].getOffset(); 1582 return std::error_code(); 1583 } 1584