1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/ADT/iterator_range.h" 18 #include "llvm/Object/Binary.h" 19 #include "llvm/Object/COFF.h" 20 #include "llvm/Object/Error.h" 21 #include "llvm/Object/ObjectFile.h" 22 #include "llvm/Support/BinaryStreamReader.h" 23 #include "llvm/Support/COFF.h" 24 #include "llvm/Support/Endian.h" 25 #include "llvm/Support/Error.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cstddef> 32 #include <cstdint> 33 #include <cstring> 34 #include <limits> 35 #include <memory> 36 #include <system_error> 37 38 using namespace llvm; 39 using namespace object; 40 41 using support::ulittle16_t; 42 using support::ulittle32_t; 43 using support::ulittle64_t; 44 using support::little16_t; 45 46 // Returns false if size is greater than the buffer size. And sets ec. 47 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 48 if (M.getBufferSize() < Size) { 49 EC = object_error::unexpected_eof; 50 return false; 51 } 52 return true; 53 } 54 55 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 56 const uint64_t Size) { 57 if (Addr + Size < Addr || Addr + Size < Size || 58 Addr + Size > uintptr_t(M.getBufferEnd()) || 59 Addr < uintptr_t(M.getBufferStart())) { 60 return object_error::unexpected_eof; 61 } 62 return std::error_code(); 63 } 64 65 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 66 // Returns unexpected_eof if error. 67 template <typename T> 68 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 69 const void *Ptr, 70 const uint64_t Size = sizeof(T)) { 71 uintptr_t Addr = uintptr_t(Ptr); 72 if (std::error_code EC = checkOffset(M, Addr, Size)) 73 return EC; 74 Obj = reinterpret_cast<const T *>(Addr); 75 return std::error_code(); 76 } 77 78 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 79 // prefixed slashes. 80 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 81 assert(Str.size() <= 6 && "String too long, possible overflow."); 82 if (Str.size() > 6) 83 return true; 84 85 uint64_t Value = 0; 86 while (!Str.empty()) { 87 unsigned CharVal; 88 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 89 CharVal = Str[0] - 'A'; 90 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 91 CharVal = Str[0] - 'a' + 26; 92 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 93 CharVal = Str[0] - '0' + 52; 94 else if (Str[0] == '+') // 62 95 CharVal = 62; 96 else if (Str[0] == '/') // 63 97 CharVal = 63; 98 else 99 return true; 100 101 Value = (Value * 64) + CharVal; 102 Str = Str.substr(1); 103 } 104 105 if (Value > std::numeric_limits<uint32_t>::max()) 106 return true; 107 108 Result = static_cast<uint32_t>(Value); 109 return false; 110 } 111 112 template <typename coff_symbol_type> 113 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 114 const coff_symbol_type *Addr = 115 reinterpret_cast<const coff_symbol_type *>(Ref.p); 116 117 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 118 #ifndef NDEBUG 119 // Verify that the symbol points to a valid entry in the symbol table. 120 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 121 122 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 123 "Symbol did not point to the beginning of a symbol"); 124 #endif 125 126 return Addr; 127 } 128 129 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 130 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 131 132 #ifndef NDEBUG 133 // Verify that the section points to a valid entry in the section table. 134 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 135 report_fatal_error("Section was outside of section table."); 136 137 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 138 assert(Offset % sizeof(coff_section) == 0 && 139 "Section did not point to the beginning of a section"); 140 #endif 141 142 return Addr; 143 } 144 145 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 146 auto End = reinterpret_cast<uintptr_t>(StringTable); 147 if (SymbolTable16) { 148 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 149 Symb += 1 + Symb->NumberOfAuxSymbols; 150 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 151 } else if (SymbolTable32) { 152 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 153 Symb += 1 + Symb->NumberOfAuxSymbols; 154 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 155 } else { 156 llvm_unreachable("no symbol table pointer!"); 157 } 158 } 159 160 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 161 COFFSymbolRef Symb = getCOFFSymbol(Ref); 162 StringRef Result; 163 if (std::error_code EC = getSymbolName(Symb, Result)) 164 return errorCodeToError(EC); 165 return Result; 166 } 167 168 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 169 return getCOFFSymbol(Ref).getValue(); 170 } 171 172 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const { 173 // MSVC/link.exe seems to align symbols to the next-power-of-2 174 // up to 32 bytes. 175 COFFSymbolRef Symb = getCOFFSymbol(Ref); 176 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue())); 177 } 178 179 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 180 uint64_t Result = getSymbolValue(Ref); 181 COFFSymbolRef Symb = getCOFFSymbol(Ref); 182 int32_t SectionNumber = Symb.getSectionNumber(); 183 184 if (Symb.isAnyUndefined() || Symb.isCommon() || 185 COFF::isReservedSectionNumber(SectionNumber)) 186 return Result; 187 188 const coff_section *Section = nullptr; 189 if (std::error_code EC = getSection(SectionNumber, Section)) 190 return errorCodeToError(EC); 191 Result += Section->VirtualAddress; 192 193 // The section VirtualAddress does not include ImageBase, and we want to 194 // return virtual addresses. 195 Result += getImageBase(); 196 197 return Result; 198 } 199 200 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 201 COFFSymbolRef Symb = getCOFFSymbol(Ref); 202 int32_t SectionNumber = Symb.getSectionNumber(); 203 204 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 205 return SymbolRef::ST_Function; 206 if (Symb.isAnyUndefined()) 207 return SymbolRef::ST_Unknown; 208 if (Symb.isCommon()) 209 return SymbolRef::ST_Data; 210 if (Symb.isFileRecord()) 211 return SymbolRef::ST_File; 212 213 // TODO: perhaps we need a new symbol type ST_Section. 214 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 215 return SymbolRef::ST_Debug; 216 217 if (!COFF::isReservedSectionNumber(SectionNumber)) 218 return SymbolRef::ST_Data; 219 220 return SymbolRef::ST_Other; 221 } 222 223 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 224 COFFSymbolRef Symb = getCOFFSymbol(Ref); 225 uint32_t Result = SymbolRef::SF_None; 226 227 if (Symb.isExternal() || Symb.isWeakExternal()) 228 Result |= SymbolRef::SF_Global; 229 230 if (Symb.isWeakExternal()) 231 Result |= SymbolRef::SF_Weak; 232 233 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 234 Result |= SymbolRef::SF_Absolute; 235 236 if (Symb.isFileRecord()) 237 Result |= SymbolRef::SF_FormatSpecific; 238 239 if (Symb.isSectionDefinition()) 240 Result |= SymbolRef::SF_FormatSpecific; 241 242 if (Symb.isCommon()) 243 Result |= SymbolRef::SF_Common; 244 245 if (Symb.isAnyUndefined()) 246 Result |= SymbolRef::SF_Undefined; 247 248 return Result; 249 } 250 251 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 252 COFFSymbolRef Symb = getCOFFSymbol(Ref); 253 return Symb.getValue(); 254 } 255 256 Expected<section_iterator> 257 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 258 COFFSymbolRef Symb = getCOFFSymbol(Ref); 259 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 260 return section_end(); 261 const coff_section *Sec = nullptr; 262 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 263 return errorCodeToError(EC); 264 DataRefImpl Ret; 265 Ret.p = reinterpret_cast<uintptr_t>(Sec); 266 return section_iterator(SectionRef(Ret, this)); 267 } 268 269 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 270 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 271 return Symb.getSectionNumber(); 272 } 273 274 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 275 const coff_section *Sec = toSec(Ref); 276 Sec += 1; 277 Ref.p = reinterpret_cast<uintptr_t>(Sec); 278 } 279 280 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 281 StringRef &Result) const { 282 const coff_section *Sec = toSec(Ref); 283 return getSectionName(Sec, Result); 284 } 285 286 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 287 const coff_section *Sec = toSec(Ref); 288 uint64_t Result = Sec->VirtualAddress; 289 290 // The section VirtualAddress does not include ImageBase, and we want to 291 // return virtual addresses. 292 Result += getImageBase(); 293 return Result; 294 } 295 296 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const { 297 return toSec(Sec) - SectionTable; 298 } 299 300 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 301 return getSectionSize(toSec(Ref)); 302 } 303 304 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 305 StringRef &Result) const { 306 const coff_section *Sec = toSec(Ref); 307 ArrayRef<uint8_t> Res; 308 std::error_code EC = getSectionContents(Sec, Res); 309 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 310 return EC; 311 } 312 313 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 314 const coff_section *Sec = toSec(Ref); 315 return Sec->getAlignment(); 316 } 317 318 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 319 return false; 320 } 321 322 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 323 const coff_section *Sec = toSec(Ref); 324 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 325 } 326 327 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 328 const coff_section *Sec = toSec(Ref); 329 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 330 } 331 332 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 333 const coff_section *Sec = toSec(Ref); 334 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 335 COFF::IMAGE_SCN_MEM_READ | 336 COFF::IMAGE_SCN_MEM_WRITE; 337 return (Sec->Characteristics & BssFlags) == BssFlags; 338 } 339 340 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 341 uintptr_t Offset = 342 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 343 assert((Offset % sizeof(coff_section)) == 0); 344 return (Offset / sizeof(coff_section)) + 1; 345 } 346 347 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 348 const coff_section *Sec = toSec(Ref); 349 // In COFF, a virtual section won't have any in-file 350 // content, so the file pointer to the content will be zero. 351 return Sec->PointerToRawData == 0; 352 } 353 354 static uint32_t getNumberOfRelocations(const coff_section *Sec, 355 MemoryBufferRef M, const uint8_t *base) { 356 // The field for the number of relocations in COFF section table is only 357 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 358 // NumberOfRelocations field, and the actual relocation count is stored in the 359 // VirtualAddress field in the first relocation entry. 360 if (Sec->hasExtendedRelocations()) { 361 const coff_relocation *FirstReloc; 362 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 363 base + Sec->PointerToRelocations))) 364 return 0; 365 // -1 to exclude this first relocation entry. 366 return FirstReloc->VirtualAddress - 1; 367 } 368 return Sec->NumberOfRelocations; 369 } 370 371 static const coff_relocation * 372 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 373 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 374 if (!NumRelocs) 375 return nullptr; 376 auto begin = reinterpret_cast<const coff_relocation *>( 377 Base + Sec->PointerToRelocations); 378 if (Sec->hasExtendedRelocations()) { 379 // Skip the first relocation entry repurposed to store the number of 380 // relocations. 381 begin++; 382 } 383 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 384 return nullptr; 385 return begin; 386 } 387 388 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 389 const coff_section *Sec = toSec(Ref); 390 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 391 if (begin && Sec->VirtualAddress != 0) 392 report_fatal_error("Sections with relocations should have an address of 0"); 393 DataRefImpl Ret; 394 Ret.p = reinterpret_cast<uintptr_t>(begin); 395 return relocation_iterator(RelocationRef(Ret, this)); 396 } 397 398 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 399 const coff_section *Sec = toSec(Ref); 400 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 401 if (I) 402 I += getNumberOfRelocations(Sec, Data, base()); 403 DataRefImpl Ret; 404 Ret.p = reinterpret_cast<uintptr_t>(I); 405 return relocation_iterator(RelocationRef(Ret, this)); 406 } 407 408 // Initialize the pointer to the symbol table. 409 std::error_code COFFObjectFile::initSymbolTablePtr() { 410 if (COFFHeader) 411 if (std::error_code EC = getObject( 412 SymbolTable16, Data, base() + getPointerToSymbolTable(), 413 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 414 return EC; 415 416 if (COFFBigObjHeader) 417 if (std::error_code EC = getObject( 418 SymbolTable32, Data, base() + getPointerToSymbolTable(), 419 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 420 return EC; 421 422 // Find string table. The first four byte of the string table contains the 423 // total size of the string table, including the size field itself. If the 424 // string table is empty, the value of the first four byte would be 4. 425 uint32_t StringTableOffset = getPointerToSymbolTable() + 426 getNumberOfSymbols() * getSymbolTableEntrySize(); 427 const uint8_t *StringTableAddr = base() + StringTableOffset; 428 const ulittle32_t *StringTableSizePtr; 429 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 430 return EC; 431 StringTableSize = *StringTableSizePtr; 432 if (std::error_code EC = 433 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 434 return EC; 435 436 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 437 // tools like cvtres write a size of 0 for an empty table instead of 4. 438 if (StringTableSize < 4) 439 StringTableSize = 4; 440 441 // Check that the string table is null terminated if has any in it. 442 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 443 return object_error::parse_failed; 444 return std::error_code(); 445 } 446 447 uint64_t COFFObjectFile::getImageBase() const { 448 if (PE32Header) 449 return PE32Header->ImageBase; 450 else if (PE32PlusHeader) 451 return PE32PlusHeader->ImageBase; 452 // This actually comes up in practice. 453 return 0; 454 } 455 456 // Returns the file offset for the given VA. 457 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 458 uint64_t ImageBase = getImageBase(); 459 uint64_t Rva = Addr - ImageBase; 460 assert(Rva <= UINT32_MAX); 461 return getRvaPtr((uint32_t)Rva, Res); 462 } 463 464 // Returns the file offset for the given RVA. 465 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 466 for (const SectionRef &S : sections()) { 467 const coff_section *Section = getCOFFSection(S); 468 uint32_t SectionStart = Section->VirtualAddress; 469 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 470 if (SectionStart <= Addr && Addr < SectionEnd) { 471 uint32_t Offset = Addr - SectionStart; 472 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 473 return std::error_code(); 474 } 475 } 476 return object_error::parse_failed; 477 } 478 479 std::error_code 480 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 481 ArrayRef<uint8_t> &Contents) const { 482 for (const SectionRef &S : sections()) { 483 const coff_section *Section = getCOFFSection(S); 484 uint32_t SectionStart = Section->VirtualAddress; 485 // Check if this RVA is within the section bounds. Be careful about integer 486 // overflow. 487 uint32_t OffsetIntoSection = RVA - SectionStart; 488 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 489 Size <= Section->VirtualSize - OffsetIntoSection) { 490 uintptr_t Begin = 491 uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection; 492 Contents = 493 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 494 return std::error_code(); 495 } 496 } 497 return object_error::parse_failed; 498 } 499 500 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 501 // table entry. 502 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 503 StringRef &Name) const { 504 uintptr_t IntPtr = 0; 505 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 506 return EC; 507 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 508 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 509 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 510 return std::error_code(); 511 } 512 513 std::error_code 514 COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 515 const codeview::DebugInfo *&PDBInfo, 516 StringRef &PDBFileName) const { 517 ArrayRef<uint8_t> InfoBytes; 518 if (std::error_code EC = getRvaAndSizeAsBytes( 519 DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes)) 520 return EC; 521 if (InfoBytes.size() < sizeof(*PDBInfo) + 1) 522 return object_error::parse_failed; 523 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data()); 524 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); 525 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 526 InfoBytes.size()); 527 // Truncate the name at the first null byte. Ignore any padding. 528 PDBFileName = PDBFileName.split('\0').first; 529 return std::error_code(); 530 } 531 532 std::error_code 533 COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, 534 StringRef &PDBFileName) const { 535 for (const debug_directory &D : debug_directories()) 536 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 537 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 538 // If we get here, there is no PDB info to return. 539 PDBInfo = nullptr; 540 PDBFileName = StringRef(); 541 return std::error_code(); 542 } 543 544 // Find the import table. 545 std::error_code COFFObjectFile::initImportTablePtr() { 546 // First, we get the RVA of the import table. If the file lacks a pointer to 547 // the import table, do nothing. 548 const data_directory *DataEntry; 549 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 550 return std::error_code(); 551 552 // Do nothing if the pointer to import table is NULL. 553 if (DataEntry->RelativeVirtualAddress == 0) 554 return std::error_code(); 555 556 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 557 558 // Find the section that contains the RVA. This is needed because the RVA is 559 // the import table's memory address which is different from its file offset. 560 uintptr_t IntPtr = 0; 561 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 562 return EC; 563 if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size)) 564 return EC; 565 ImportDirectory = reinterpret_cast< 566 const coff_import_directory_table_entry *>(IntPtr); 567 return std::error_code(); 568 } 569 570 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 571 std::error_code COFFObjectFile::initDelayImportTablePtr() { 572 const data_directory *DataEntry; 573 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 574 return std::error_code(); 575 if (DataEntry->RelativeVirtualAddress == 0) 576 return std::error_code(); 577 578 uint32_t RVA = DataEntry->RelativeVirtualAddress; 579 NumberOfDelayImportDirectory = DataEntry->Size / 580 sizeof(delay_import_directory_table_entry) - 1; 581 582 uintptr_t IntPtr = 0; 583 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 584 return EC; 585 DelayImportDirectory = reinterpret_cast< 586 const delay_import_directory_table_entry *>(IntPtr); 587 return std::error_code(); 588 } 589 590 // Find the export table. 591 std::error_code COFFObjectFile::initExportTablePtr() { 592 // First, we get the RVA of the export table. If the file lacks a pointer to 593 // the export table, do nothing. 594 const data_directory *DataEntry; 595 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 596 return std::error_code(); 597 598 // Do nothing if the pointer to export table is NULL. 599 if (DataEntry->RelativeVirtualAddress == 0) 600 return std::error_code(); 601 602 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 603 uintptr_t IntPtr = 0; 604 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 605 return EC; 606 ExportDirectory = 607 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 608 return std::error_code(); 609 } 610 611 std::error_code COFFObjectFile::initBaseRelocPtr() { 612 const data_directory *DataEntry; 613 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 614 return std::error_code(); 615 if (DataEntry->RelativeVirtualAddress == 0) 616 return std::error_code(); 617 618 uintptr_t IntPtr = 0; 619 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 620 return EC; 621 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 622 IntPtr); 623 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 624 IntPtr + DataEntry->Size); 625 return std::error_code(); 626 } 627 628 std::error_code COFFObjectFile::initDebugDirectoryPtr() { 629 // Get the RVA of the debug directory. Do nothing if it does not exist. 630 const data_directory *DataEntry; 631 if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry)) 632 return std::error_code(); 633 634 // Do nothing if the RVA is NULL. 635 if (DataEntry->RelativeVirtualAddress == 0) 636 return std::error_code(); 637 638 // Check that the size is a multiple of the entry size. 639 if (DataEntry->Size % sizeof(debug_directory) != 0) 640 return object_error::parse_failed; 641 642 uintptr_t IntPtr = 0; 643 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 644 return EC; 645 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 646 if (std::error_code EC = getRvaPtr( 647 DataEntry->RelativeVirtualAddress + DataEntry->Size, IntPtr)) 648 return EC; 649 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(IntPtr); 650 return std::error_code(); 651 } 652 653 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 654 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 655 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 656 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 657 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 658 ImportDirectory(nullptr), 659 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 660 ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 661 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) { 662 // Check that we at least have enough room for a header. 663 if (!checkSize(Data, EC, sizeof(coff_file_header))) 664 return; 665 666 // The current location in the file where we are looking at. 667 uint64_t CurPtr = 0; 668 669 // PE header is optional and is present only in executables. If it exists, 670 // it is placed right after COFF header. 671 bool HasPEHeader = false; 672 673 // Check if this is a PE/COFF file. 674 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 675 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 676 // PE signature to find 'normal' COFF header. 677 const auto *DH = reinterpret_cast<const dos_header *>(base()); 678 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 679 CurPtr = DH->AddressOfNewExeHeader; 680 // Check the PE magic bytes. ("PE\0\0") 681 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 682 EC = object_error::parse_failed; 683 return; 684 } 685 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 686 HasPEHeader = true; 687 } 688 } 689 690 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 691 return; 692 693 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 694 // import libraries share a common prefix but bigobj is more restrictive. 695 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 696 COFFHeader->NumberOfSections == uint16_t(0xffff) && 697 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 698 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 699 return; 700 701 // Verify that we are dealing with bigobj. 702 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 703 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 704 sizeof(COFF::BigObjMagic)) == 0) { 705 COFFHeader = nullptr; 706 CurPtr += sizeof(coff_bigobj_file_header); 707 } else { 708 // It's not a bigobj. 709 COFFBigObjHeader = nullptr; 710 } 711 } 712 if (COFFHeader) { 713 // The prior checkSize call may have failed. This isn't a hard error 714 // because we were just trying to sniff out bigobj. 715 EC = std::error_code(); 716 CurPtr += sizeof(coff_file_header); 717 718 if (COFFHeader->isImportLibrary()) 719 return; 720 } 721 722 if (HasPEHeader) { 723 const pe32_header *Header; 724 if ((EC = getObject(Header, Data, base() + CurPtr))) 725 return; 726 727 const uint8_t *DataDirAddr; 728 uint64_t DataDirSize; 729 if (Header->Magic == COFF::PE32Header::PE32) { 730 PE32Header = Header; 731 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 732 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 733 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 734 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 735 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 736 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 737 } else { 738 // It's neither PE32 nor PE32+. 739 EC = object_error::parse_failed; 740 return; 741 } 742 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 743 return; 744 } 745 746 if (COFFHeader) 747 CurPtr += COFFHeader->SizeOfOptionalHeader; 748 749 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 750 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 751 return; 752 753 // Initialize the pointer to the symbol table. 754 if (getPointerToSymbolTable() != 0) { 755 if ((EC = initSymbolTablePtr())) { 756 SymbolTable16 = nullptr; 757 SymbolTable32 = nullptr; 758 StringTable = nullptr; 759 StringTableSize = 0; 760 } 761 } else { 762 // We had better not have any symbols if we don't have a symbol table. 763 if (getNumberOfSymbols() != 0) { 764 EC = object_error::parse_failed; 765 return; 766 } 767 } 768 769 // Initialize the pointer to the beginning of the import table. 770 if ((EC = initImportTablePtr())) 771 return; 772 if ((EC = initDelayImportTablePtr())) 773 return; 774 775 // Initialize the pointer to the export table. 776 if ((EC = initExportTablePtr())) 777 return; 778 779 // Initialize the pointer to the base relocation table. 780 if ((EC = initBaseRelocPtr())) 781 return; 782 783 // Initialize the pointer to the export table. 784 if ((EC = initDebugDirectoryPtr())) 785 return; 786 787 EC = std::error_code(); 788 } 789 790 basic_symbol_iterator COFFObjectFile::symbol_begin() const { 791 DataRefImpl Ret; 792 Ret.p = getSymbolTable(); 793 return basic_symbol_iterator(SymbolRef(Ret, this)); 794 } 795 796 basic_symbol_iterator COFFObjectFile::symbol_end() const { 797 // The symbol table ends where the string table begins. 798 DataRefImpl Ret; 799 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 800 return basic_symbol_iterator(SymbolRef(Ret, this)); 801 } 802 803 import_directory_iterator COFFObjectFile::import_directory_begin() const { 804 if (!ImportDirectory) 805 return import_directory_end(); 806 if (ImportDirectory->isNull()) 807 return import_directory_end(); 808 return import_directory_iterator( 809 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 810 } 811 812 import_directory_iterator COFFObjectFile::import_directory_end() const { 813 return import_directory_iterator( 814 ImportDirectoryEntryRef(nullptr, -1, this)); 815 } 816 817 delay_import_directory_iterator 818 COFFObjectFile::delay_import_directory_begin() const { 819 return delay_import_directory_iterator( 820 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 821 } 822 823 delay_import_directory_iterator 824 COFFObjectFile::delay_import_directory_end() const { 825 return delay_import_directory_iterator( 826 DelayImportDirectoryEntryRef( 827 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 828 } 829 830 export_directory_iterator COFFObjectFile::export_directory_begin() const { 831 return export_directory_iterator( 832 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 833 } 834 835 export_directory_iterator COFFObjectFile::export_directory_end() const { 836 if (!ExportDirectory) 837 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 838 ExportDirectoryEntryRef Ref(ExportDirectory, 839 ExportDirectory->AddressTableEntries, this); 840 return export_directory_iterator(Ref); 841 } 842 843 section_iterator COFFObjectFile::section_begin() const { 844 DataRefImpl Ret; 845 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 846 return section_iterator(SectionRef(Ret, this)); 847 } 848 849 section_iterator COFFObjectFile::section_end() const { 850 DataRefImpl Ret; 851 int NumSections = 852 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 853 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 854 return section_iterator(SectionRef(Ret, this)); 855 } 856 857 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 858 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 859 } 860 861 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 862 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 863 } 864 865 uint8_t COFFObjectFile::getBytesInAddress() const { 866 return getArch() == Triple::x86_64 ? 8 : 4; 867 } 868 869 StringRef COFFObjectFile::getFileFormatName() const { 870 switch(getMachine()) { 871 case COFF::IMAGE_FILE_MACHINE_I386: 872 return "COFF-i386"; 873 case COFF::IMAGE_FILE_MACHINE_AMD64: 874 return "COFF-x86-64"; 875 case COFF::IMAGE_FILE_MACHINE_ARMNT: 876 return "COFF-ARM"; 877 case COFF::IMAGE_FILE_MACHINE_ARM64: 878 return "COFF-ARM64"; 879 default: 880 return "COFF-<unknown arch>"; 881 } 882 } 883 884 unsigned COFFObjectFile::getArch() const { 885 switch (getMachine()) { 886 case COFF::IMAGE_FILE_MACHINE_I386: 887 return Triple::x86; 888 case COFF::IMAGE_FILE_MACHINE_AMD64: 889 return Triple::x86_64; 890 case COFF::IMAGE_FILE_MACHINE_ARMNT: 891 return Triple::thumb; 892 case COFF::IMAGE_FILE_MACHINE_ARM64: 893 return Triple::aarch64; 894 default: 895 return Triple::UnknownArch; 896 } 897 } 898 899 iterator_range<import_directory_iterator> 900 COFFObjectFile::import_directories() const { 901 return make_range(import_directory_begin(), import_directory_end()); 902 } 903 904 iterator_range<delay_import_directory_iterator> 905 COFFObjectFile::delay_import_directories() const { 906 return make_range(delay_import_directory_begin(), 907 delay_import_directory_end()); 908 } 909 910 iterator_range<export_directory_iterator> 911 COFFObjectFile::export_directories() const { 912 return make_range(export_directory_begin(), export_directory_end()); 913 } 914 915 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 916 return make_range(base_reloc_begin(), base_reloc_end()); 917 } 918 919 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 920 Res = PE32Header; 921 return std::error_code(); 922 } 923 924 std::error_code 925 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 926 Res = PE32PlusHeader; 927 return std::error_code(); 928 } 929 930 std::error_code 931 COFFObjectFile::getDataDirectory(uint32_t Index, 932 const data_directory *&Res) const { 933 // Error if if there's no data directory or the index is out of range. 934 if (!DataDirectory) { 935 Res = nullptr; 936 return object_error::parse_failed; 937 } 938 assert(PE32Header || PE32PlusHeader); 939 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 940 : PE32PlusHeader->NumberOfRvaAndSize; 941 if (Index >= NumEnt) { 942 Res = nullptr; 943 return object_error::parse_failed; 944 } 945 Res = &DataDirectory[Index]; 946 return std::error_code(); 947 } 948 949 std::error_code COFFObjectFile::getSection(int32_t Index, 950 const coff_section *&Result) const { 951 Result = nullptr; 952 if (COFF::isReservedSectionNumber(Index)) 953 return std::error_code(); 954 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 955 // We already verified the section table data, so no need to check again. 956 Result = SectionTable + (Index - 1); 957 return std::error_code(); 958 } 959 return object_error::parse_failed; 960 } 961 962 std::error_code COFFObjectFile::getString(uint32_t Offset, 963 StringRef &Result) const { 964 if (StringTableSize <= 4) 965 // Tried to get a string from an empty string table. 966 return object_error::parse_failed; 967 if (Offset >= StringTableSize) 968 return object_error::unexpected_eof; 969 Result = StringRef(StringTable + Offset); 970 return std::error_code(); 971 } 972 973 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 974 StringRef &Res) const { 975 return getSymbolName(Symbol.getGeneric(), Res); 976 } 977 978 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol, 979 StringRef &Res) const { 980 // Check for string table entry. First 4 bytes are 0. 981 if (Symbol->Name.Offset.Zeroes == 0) { 982 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res)) 983 return EC; 984 return std::error_code(); 985 } 986 987 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 988 // Null terminated, let ::strlen figure out the length. 989 Res = StringRef(Symbol->Name.ShortName); 990 else 991 // Not null terminated, use all 8 bytes. 992 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize); 993 return std::error_code(); 994 } 995 996 ArrayRef<uint8_t> 997 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 998 const uint8_t *Aux = nullptr; 999 1000 size_t SymbolSize = getSymbolTableEntrySize(); 1001 if (Symbol.getNumberOfAuxSymbols() > 0) { 1002 // AUX data comes immediately after the symbol in COFF 1003 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 1004 #ifndef NDEBUG 1005 // Verify that the Aux symbol points to a valid entry in the symbol table. 1006 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 1007 if (Offset < getPointerToSymbolTable() || 1008 Offset >= 1009 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 1010 report_fatal_error("Aux Symbol data was outside of symbol table."); 1011 1012 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 1013 "Aux Symbol data did not point to the beginning of a symbol"); 1014 #endif 1015 } 1016 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 1017 } 1018 1019 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 1020 StringRef &Res) const { 1021 StringRef Name; 1022 if (Sec->Name[COFF::NameSize - 1] == 0) 1023 // Null terminated, let ::strlen figure out the length. 1024 Name = Sec->Name; 1025 else 1026 // Not null terminated, use all 8 bytes. 1027 Name = StringRef(Sec->Name, COFF::NameSize); 1028 1029 // Check for string table entry. First byte is '/'. 1030 if (Name.startswith("/")) { 1031 uint32_t Offset; 1032 if (Name.startswith("//")) { 1033 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1034 return object_error::parse_failed; 1035 } else { 1036 if (Name.substr(1).getAsInteger(10, Offset)) 1037 return object_error::parse_failed; 1038 } 1039 if (std::error_code EC = getString(Offset, Name)) 1040 return EC; 1041 } 1042 1043 Res = Name; 1044 return std::error_code(); 1045 } 1046 1047 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1048 // SizeOfRawData and VirtualSize change what they represent depending on 1049 // whether or not we have an executable image. 1050 // 1051 // For object files, SizeOfRawData contains the size of section's data; 1052 // VirtualSize should be zero but isn't due to buggy COFF writers. 1053 // 1054 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1055 // actual section size is in VirtualSize. It is possible for VirtualSize to 1056 // be greater than SizeOfRawData; the contents past that point should be 1057 // considered to be zero. 1058 if (getDOSHeader()) 1059 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1060 return Sec->SizeOfRawData; 1061 } 1062 1063 std::error_code 1064 COFFObjectFile::getSectionContents(const coff_section *Sec, 1065 ArrayRef<uint8_t> &Res) const { 1066 // In COFF, a virtual section won't have any in-file 1067 // content, so the file pointer to the content will be zero. 1068 if (Sec->PointerToRawData == 0) 1069 return std::error_code(); 1070 // The only thing that we need to verify is that the contents is contained 1071 // within the file bounds. We don't need to make sure it doesn't cover other 1072 // data, as there's nothing that says that is not allowed. 1073 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 1074 uint32_t SectionSize = getSectionSize(Sec); 1075 if (checkOffset(Data, ConStart, SectionSize)) 1076 return object_error::parse_failed; 1077 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1078 return std::error_code(); 1079 } 1080 1081 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1082 return reinterpret_cast<const coff_relocation*>(Rel.p); 1083 } 1084 1085 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1086 Rel.p = reinterpret_cast<uintptr_t>( 1087 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1088 } 1089 1090 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1091 const coff_relocation *R = toRel(Rel); 1092 return R->VirtualAddress; 1093 } 1094 1095 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1096 const coff_relocation *R = toRel(Rel); 1097 DataRefImpl Ref; 1098 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1099 return symbol_end(); 1100 if (SymbolTable16) 1101 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1102 else if (SymbolTable32) 1103 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1104 else 1105 llvm_unreachable("no symbol table pointer!"); 1106 return symbol_iterator(SymbolRef(Ref, this)); 1107 } 1108 1109 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1110 const coff_relocation* R = toRel(Rel); 1111 return R->Type; 1112 } 1113 1114 const coff_section * 1115 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1116 return toSec(Section.getRawDataRefImpl()); 1117 } 1118 1119 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1120 if (SymbolTable16) 1121 return toSymb<coff_symbol16>(Ref); 1122 if (SymbolTable32) 1123 return toSymb<coff_symbol32>(Ref); 1124 llvm_unreachable("no symbol table pointer!"); 1125 } 1126 1127 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1128 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1129 } 1130 1131 const coff_relocation * 1132 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1133 return toRel(Reloc.getRawDataRefImpl()); 1134 } 1135 1136 iterator_range<const coff_relocation *> 1137 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1138 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 1139 const coff_relocation *E = I; 1140 if (I) 1141 E += getNumberOfRelocations(Sec, Data, base()); 1142 return make_range(I, E); 1143 } 1144 1145 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1146 case COFF::reloc_type: \ 1147 Res = #reloc_type; \ 1148 break; 1149 1150 void COFFObjectFile::getRelocationTypeName( 1151 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1152 const coff_relocation *Reloc = toRel(Rel); 1153 StringRef Res; 1154 switch (getMachine()) { 1155 case COFF::IMAGE_FILE_MACHINE_AMD64: 1156 switch (Reloc->Type) { 1157 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1158 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1159 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1160 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1161 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1162 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1163 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1164 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1165 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1166 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1167 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1168 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1169 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1170 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1171 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1172 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1173 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1174 default: 1175 Res = "Unknown"; 1176 } 1177 break; 1178 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1179 switch (Reloc->Type) { 1180 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1181 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1182 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1183 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1184 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1185 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1186 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1187 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1188 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1189 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1190 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1191 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1192 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1193 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1194 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1195 default: 1196 Res = "Unknown"; 1197 } 1198 break; 1199 case COFF::IMAGE_FILE_MACHINE_I386: 1200 switch (Reloc->Type) { 1201 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1202 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1203 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1204 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1205 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1206 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1207 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1208 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1209 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1210 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1211 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1212 default: 1213 Res = "Unknown"; 1214 } 1215 break; 1216 default: 1217 Res = "Unknown"; 1218 } 1219 Result.append(Res.begin(), Res.end()); 1220 } 1221 1222 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1223 1224 bool COFFObjectFile::isRelocatableObject() const { 1225 return !DataDirectory; 1226 } 1227 1228 bool ImportDirectoryEntryRef:: 1229 operator==(const ImportDirectoryEntryRef &Other) const { 1230 return ImportTable == Other.ImportTable && Index == Other.Index; 1231 } 1232 1233 void ImportDirectoryEntryRef::moveNext() { 1234 ++Index; 1235 if (ImportTable[Index].isNull()) { 1236 Index = -1; 1237 ImportTable = nullptr; 1238 } 1239 } 1240 1241 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1242 const coff_import_directory_table_entry *&Result) const { 1243 return getObject(Result, OwningObject->Data, ImportTable + Index); 1244 } 1245 1246 static imported_symbol_iterator 1247 makeImportedSymbolIterator(const COFFObjectFile *Object, 1248 uintptr_t Ptr, int Index) { 1249 if (Object->getBytesInAddress() == 4) { 1250 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1251 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1252 } 1253 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1254 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1255 } 1256 1257 static imported_symbol_iterator 1258 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1259 uintptr_t IntPtr = 0; 1260 Object->getRvaPtr(RVA, IntPtr); 1261 return makeImportedSymbolIterator(Object, IntPtr, 0); 1262 } 1263 1264 static imported_symbol_iterator 1265 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1266 uintptr_t IntPtr = 0; 1267 Object->getRvaPtr(RVA, IntPtr); 1268 // Forward the pointer to the last entry which is null. 1269 int Index = 0; 1270 if (Object->getBytesInAddress() == 4) { 1271 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1272 while (*Entry++) 1273 ++Index; 1274 } else { 1275 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1276 while (*Entry++) 1277 ++Index; 1278 } 1279 return makeImportedSymbolIterator(Object, IntPtr, Index); 1280 } 1281 1282 imported_symbol_iterator 1283 ImportDirectoryEntryRef::imported_symbol_begin() const { 1284 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1285 OwningObject); 1286 } 1287 1288 imported_symbol_iterator 1289 ImportDirectoryEntryRef::imported_symbol_end() const { 1290 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1291 OwningObject); 1292 } 1293 1294 iterator_range<imported_symbol_iterator> 1295 ImportDirectoryEntryRef::imported_symbols() const { 1296 return make_range(imported_symbol_begin(), imported_symbol_end()); 1297 } 1298 1299 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1300 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1301 OwningObject); 1302 } 1303 1304 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1305 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1306 OwningObject); 1307 } 1308 1309 iterator_range<imported_symbol_iterator> 1310 ImportDirectoryEntryRef::lookup_table_symbols() const { 1311 return make_range(lookup_table_begin(), lookup_table_end()); 1312 } 1313 1314 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1315 uintptr_t IntPtr = 0; 1316 if (std::error_code EC = 1317 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1318 return EC; 1319 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1320 return std::error_code(); 1321 } 1322 1323 std::error_code 1324 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1325 Result = ImportTable[Index].ImportLookupTableRVA; 1326 return std::error_code(); 1327 } 1328 1329 std::error_code 1330 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1331 Result = ImportTable[Index].ImportAddressTableRVA; 1332 return std::error_code(); 1333 } 1334 1335 bool DelayImportDirectoryEntryRef:: 1336 operator==(const DelayImportDirectoryEntryRef &Other) const { 1337 return Table == Other.Table && Index == Other.Index; 1338 } 1339 1340 void DelayImportDirectoryEntryRef::moveNext() { 1341 ++Index; 1342 } 1343 1344 imported_symbol_iterator 1345 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1346 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1347 OwningObject); 1348 } 1349 1350 imported_symbol_iterator 1351 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1352 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1353 OwningObject); 1354 } 1355 1356 iterator_range<imported_symbol_iterator> 1357 DelayImportDirectoryEntryRef::imported_symbols() const { 1358 return make_range(imported_symbol_begin(), imported_symbol_end()); 1359 } 1360 1361 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1362 uintptr_t IntPtr = 0; 1363 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1364 return EC; 1365 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1366 return std::error_code(); 1367 } 1368 1369 std::error_code DelayImportDirectoryEntryRef:: 1370 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1371 Result = Table; 1372 return std::error_code(); 1373 } 1374 1375 std::error_code DelayImportDirectoryEntryRef:: 1376 getImportAddress(int AddrIndex, uint64_t &Result) const { 1377 uint32_t RVA = Table[Index].DelayImportAddressTable + 1378 AddrIndex * (OwningObject->is64() ? 8 : 4); 1379 uintptr_t IntPtr = 0; 1380 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1381 return EC; 1382 if (OwningObject->is64()) 1383 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1384 else 1385 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1386 return std::error_code(); 1387 } 1388 1389 bool ExportDirectoryEntryRef:: 1390 operator==(const ExportDirectoryEntryRef &Other) const { 1391 return ExportTable == Other.ExportTable && Index == Other.Index; 1392 } 1393 1394 void ExportDirectoryEntryRef::moveNext() { 1395 ++Index; 1396 } 1397 1398 // Returns the name of the current export symbol. If the symbol is exported only 1399 // by ordinal, the empty string is set as a result. 1400 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1401 uintptr_t IntPtr = 0; 1402 if (std::error_code EC = 1403 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1404 return EC; 1405 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1406 return std::error_code(); 1407 } 1408 1409 // Returns the starting ordinal number. 1410 std::error_code 1411 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1412 Result = ExportTable->OrdinalBase; 1413 return std::error_code(); 1414 } 1415 1416 // Returns the export ordinal of the current export symbol. 1417 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1418 Result = ExportTable->OrdinalBase + Index; 1419 return std::error_code(); 1420 } 1421 1422 // Returns the address of the current export symbol. 1423 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1424 uintptr_t IntPtr = 0; 1425 if (std::error_code EC = 1426 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1427 return EC; 1428 const export_address_table_entry *entry = 1429 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1430 Result = entry[Index].ExportRVA; 1431 return std::error_code(); 1432 } 1433 1434 // Returns the name of the current export symbol. If the symbol is exported only 1435 // by ordinal, the empty string is set as a result. 1436 std::error_code 1437 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1438 uintptr_t IntPtr = 0; 1439 if (std::error_code EC = 1440 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1441 return EC; 1442 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1443 1444 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1445 int Offset = 0; 1446 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1447 I < E; ++I, ++Offset) { 1448 if (*I != Index) 1449 continue; 1450 if (std::error_code EC = 1451 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1452 return EC; 1453 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1454 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1455 return EC; 1456 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1457 return std::error_code(); 1458 } 1459 Result = ""; 1460 return std::error_code(); 1461 } 1462 1463 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1464 const data_directory *DataEntry; 1465 if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 1466 return EC; 1467 uint32_t RVA; 1468 if (auto EC = getExportRVA(RVA)) 1469 return EC; 1470 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1471 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1472 Result = (Begin <= RVA && RVA < End); 1473 return std::error_code(); 1474 } 1475 1476 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1477 uint32_t RVA; 1478 if (auto EC = getExportRVA(RVA)) 1479 return EC; 1480 uintptr_t IntPtr = 0; 1481 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1482 return EC; 1483 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1484 return std::error_code(); 1485 } 1486 1487 bool ImportedSymbolRef:: 1488 operator==(const ImportedSymbolRef &Other) const { 1489 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1490 && Index == Other.Index; 1491 } 1492 1493 void ImportedSymbolRef::moveNext() { 1494 ++Index; 1495 } 1496 1497 std::error_code 1498 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1499 uint32_t RVA; 1500 if (Entry32) { 1501 // If a symbol is imported only by ordinal, it has no name. 1502 if (Entry32[Index].isOrdinal()) 1503 return std::error_code(); 1504 RVA = Entry32[Index].getHintNameRVA(); 1505 } else { 1506 if (Entry64[Index].isOrdinal()) 1507 return std::error_code(); 1508 RVA = Entry64[Index].getHintNameRVA(); 1509 } 1510 uintptr_t IntPtr = 0; 1511 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1512 return EC; 1513 // +2 because the first two bytes is hint. 1514 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1515 return std::error_code(); 1516 } 1517 1518 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const { 1519 if (Entry32) 1520 Result = Entry32[Index].isOrdinal(); 1521 else 1522 Result = Entry64[Index].isOrdinal(); 1523 return std::error_code(); 1524 } 1525 1526 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1527 if (Entry32) 1528 Result = Entry32[Index].getHintNameRVA(); 1529 else 1530 Result = Entry64[Index].getHintNameRVA(); 1531 return std::error_code(); 1532 } 1533 1534 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1535 uint32_t RVA; 1536 if (Entry32) { 1537 if (Entry32[Index].isOrdinal()) { 1538 Result = Entry32[Index].getOrdinal(); 1539 return std::error_code(); 1540 } 1541 RVA = Entry32[Index].getHintNameRVA(); 1542 } else { 1543 if (Entry64[Index].isOrdinal()) { 1544 Result = Entry64[Index].getOrdinal(); 1545 return std::error_code(); 1546 } 1547 RVA = Entry64[Index].getHintNameRVA(); 1548 } 1549 uintptr_t IntPtr = 0; 1550 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1551 return EC; 1552 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1553 return std::error_code(); 1554 } 1555 1556 ErrorOr<std::unique_ptr<COFFObjectFile>> 1557 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1558 std::error_code EC; 1559 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1560 if (EC) 1561 return EC; 1562 return std::move(Ret); 1563 } 1564 1565 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1566 return Header == Other.Header && Index == Other.Index; 1567 } 1568 1569 void BaseRelocRef::moveNext() { 1570 // Header->BlockSize is the size of the current block, including the 1571 // size of the header itself. 1572 uint32_t Size = sizeof(*Header) + 1573 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1574 if (Size == Header->BlockSize) { 1575 // .reloc contains a list of base relocation blocks. Each block 1576 // consists of the header followed by entries. The header contains 1577 // how many entories will follow. When we reach the end of the 1578 // current block, proceed to the next block. 1579 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1580 reinterpret_cast<const uint8_t *>(Header) + Size); 1581 Index = 0; 1582 } else { 1583 ++Index; 1584 } 1585 } 1586 1587 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1588 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1589 Type = Entry[Index].getType(); 1590 return std::error_code(); 1591 } 1592 1593 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1594 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1595 Result = Header->PageRVA + Entry[Index].getOffset(); 1596 return std::error_code(); 1597 } 1598 1599 #define RETURN_IF_ERROR(X) \ 1600 if (auto EC = errorToErrorCode(X)) \ 1601 return EC; 1602 1603 ErrorOr<ArrayRef<UTF16>> ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) { 1604 BinaryStreamReader Reader = BinaryStreamReader(BBS); 1605 Reader.setOffset(Offset); 1606 uint16_t Length; 1607 RETURN_IF_ERROR(Reader.readInteger(Length)); 1608 ArrayRef<UTF16> RawDirString; 1609 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length)); 1610 return RawDirString; 1611 } 1612 1613 ErrorOr<ArrayRef<UTF16>> 1614 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) { 1615 return getDirStringAtOffset(Entry.Identifier.getNameOffset()); 1616 } 1617 1618 ErrorOr<const coff_resource_dir_table &> 1619 ResourceSectionRef::getTableAtOffset(uint32_t Offset) { 1620 const coff_resource_dir_table *Table = nullptr; 1621 1622 BinaryStreamReader Reader(BBS); 1623 Reader.setOffset(Offset); 1624 RETURN_IF_ERROR(Reader.readObject(Table)); 1625 assert(Table != nullptr); 1626 return *Table; 1627 } 1628 1629 ErrorOr<const coff_resource_dir_table &> 1630 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) { 1631 return getTableAtOffset(Entry.Offset.value()); 1632 } 1633 1634 ErrorOr<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() { 1635 return getTableAtOffset(0); 1636 } 1637