1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Support/COFF.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <cctype> 23 #include <limits> 24 25 using namespace llvm; 26 using namespace object; 27 28 using support::ulittle16_t; 29 using support::ulittle32_t; 30 using support::ulittle64_t; 31 using support::little16_t; 32 33 // Returns false if size is greater than the buffer size. And sets ec. 34 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 35 if (M.getBufferSize() < Size) { 36 EC = object_error::unexpected_eof; 37 return false; 38 } 39 return true; 40 } 41 42 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 43 const uint64_t Size) { 44 if (Addr + Size < Addr || Addr + Size < Size || 45 Addr + Size > uintptr_t(M.getBufferEnd()) || 46 Addr < uintptr_t(M.getBufferStart())) { 47 return object_error::unexpected_eof; 48 } 49 return object_error::success; 50 } 51 52 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 53 // Returns unexpected_eof if error. 54 template <typename T> 55 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 56 const void *Ptr, 57 const uint64_t Size = sizeof(T)) { 58 uintptr_t Addr = uintptr_t(Ptr); 59 if (std::error_code EC = checkOffset(M, Addr, Size)) 60 return EC; 61 Obj = reinterpret_cast<const T *>(Addr); 62 return object_error::success; 63 } 64 65 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 66 // prefixed slashes. 67 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 68 assert(Str.size() <= 6 && "String too long, possible overflow."); 69 if (Str.size() > 6) 70 return true; 71 72 uint64_t Value = 0; 73 while (!Str.empty()) { 74 unsigned CharVal; 75 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 76 CharVal = Str[0] - 'A'; 77 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 78 CharVal = Str[0] - 'a' + 26; 79 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 80 CharVal = Str[0] - '0' + 52; 81 else if (Str[0] == '+') // 62 82 CharVal = 62; 83 else if (Str[0] == '/') // 63 84 CharVal = 63; 85 else 86 return true; 87 88 Value = (Value * 64) + CharVal; 89 Str = Str.substr(1); 90 } 91 92 if (Value > std::numeric_limits<uint32_t>::max()) 93 return true; 94 95 Result = static_cast<uint32_t>(Value); 96 return false; 97 } 98 99 template <typename coff_symbol_type> 100 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 101 const coff_symbol_type *Addr = 102 reinterpret_cast<const coff_symbol_type *>(Ref.p); 103 104 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 105 #ifndef NDEBUG 106 // Verify that the symbol points to a valid entry in the symbol table. 107 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 108 109 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 110 "Symbol did not point to the beginning of a symbol"); 111 #endif 112 113 return Addr; 114 } 115 116 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 117 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 118 119 # ifndef NDEBUG 120 // Verify that the section points to a valid entry in the section table. 121 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 122 report_fatal_error("Section was outside of section table."); 123 124 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 125 assert(Offset % sizeof(coff_section) == 0 && 126 "Section did not point to the beginning of a section"); 127 # endif 128 129 return Addr; 130 } 131 132 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 133 auto End = reinterpret_cast<uintptr_t>(StringTable); 134 if (SymbolTable16) { 135 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 136 Symb += 1 + Symb->NumberOfAuxSymbols; 137 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 138 } else if (SymbolTable32) { 139 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 140 Symb += 1 + Symb->NumberOfAuxSymbols; 141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 142 } else { 143 llvm_unreachable("no symbol table pointer!"); 144 } 145 } 146 147 std::error_code COFFObjectFile::getSymbolName(DataRefImpl Ref, 148 StringRef &Result) const { 149 COFFSymbolRef Symb = getCOFFSymbol(Ref); 150 return getSymbolName(Symb, Result); 151 } 152 153 std::error_code COFFObjectFile::getSymbolAddress(DataRefImpl Ref, 154 uint64_t &Result) const { 155 COFFSymbolRef Symb = getCOFFSymbol(Ref); 156 157 if (Symb.isAnyUndefined()) { 158 Result = UnknownAddressOrSize; 159 return object_error::success; 160 } 161 if (Symb.isCommon()) { 162 Result = UnknownAddressOrSize; 163 return object_error::success; 164 } 165 int32_t SectionNumber = Symb.getSectionNumber(); 166 if (!COFF::isReservedSectionNumber(SectionNumber)) { 167 const coff_section *Section = nullptr; 168 if (std::error_code EC = getSection(SectionNumber, Section)) 169 return EC; 170 171 Result = Section->VirtualAddress + Symb.getValue(); 172 return object_error::success; 173 } 174 175 Result = Symb.getValue(); 176 return object_error::success; 177 } 178 179 std::error_code COFFObjectFile::getSymbolType(DataRefImpl Ref, 180 SymbolRef::Type &Result) const { 181 COFFSymbolRef Symb = getCOFFSymbol(Ref); 182 int32_t SectionNumber = Symb.getSectionNumber(); 183 Result = SymbolRef::ST_Other; 184 185 if (Symb.isAnyUndefined()) { 186 Result = SymbolRef::ST_Unknown; 187 } else if (Symb.isFunctionDefinition()) { 188 Result = SymbolRef::ST_Function; 189 } else if (Symb.isCommon()) { 190 Result = SymbolRef::ST_Data; 191 } else if (Symb.isFileRecord()) { 192 Result = SymbolRef::ST_File; 193 } else if (SectionNumber == COFF::IMAGE_SYM_DEBUG || 194 Symb.isSectionDefinition()) { 195 // TODO: perhaps we need a new symbol type ST_Section. 196 Result = SymbolRef::ST_Debug; 197 } else if (!COFF::isReservedSectionNumber(SectionNumber)) { 198 const coff_section *Section = nullptr; 199 if (std::error_code EC = getSection(SectionNumber, Section)) 200 return EC; 201 uint32_t Characteristics = Section->Characteristics; 202 if (Characteristics & COFF::IMAGE_SCN_CNT_CODE) 203 Result = SymbolRef::ST_Function; 204 else if (Characteristics & (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 205 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA)) 206 Result = SymbolRef::ST_Data; 207 } 208 return object_error::success; 209 } 210 211 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 212 COFFSymbolRef Symb = getCOFFSymbol(Ref); 213 uint32_t Result = SymbolRef::SF_None; 214 215 if (Symb.isExternal() || Symb.isWeakExternal()) 216 Result |= SymbolRef::SF_Global; 217 218 if (Symb.isWeakExternal()) 219 Result |= SymbolRef::SF_Weak; 220 221 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 222 Result |= SymbolRef::SF_Absolute; 223 224 if (Symb.isFileRecord()) 225 Result |= SymbolRef::SF_FormatSpecific; 226 227 if (Symb.isSectionDefinition()) 228 Result |= SymbolRef::SF_FormatSpecific; 229 230 if (Symb.isCommon()) 231 Result |= SymbolRef::SF_Common; 232 233 if (Symb.isAnyUndefined()) 234 Result |= SymbolRef::SF_Undefined; 235 236 return Result; 237 } 238 239 std::error_code COFFObjectFile::getSymbolSize(DataRefImpl Ref, 240 uint64_t &Result) const { 241 COFFSymbolRef Symb = getCOFFSymbol(Ref); 242 243 if (Symb.isCommon()) 244 Result = Symb.getValue(); 245 else 246 Result = UnknownAddressOrSize; 247 248 return object_error::success; 249 } 250 251 std::error_code 252 COFFObjectFile::getSymbolSection(DataRefImpl Ref, 253 section_iterator &Result) const { 254 COFFSymbolRef Symb = getCOFFSymbol(Ref); 255 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) { 256 Result = section_end(); 257 } else { 258 const coff_section *Sec = nullptr; 259 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 260 return EC; 261 DataRefImpl Ref; 262 Ref.p = reinterpret_cast<uintptr_t>(Sec); 263 Result = section_iterator(SectionRef(Ref, this)); 264 } 265 return object_error::success; 266 } 267 268 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 269 const coff_section *Sec = toSec(Ref); 270 Sec += 1; 271 Ref.p = reinterpret_cast<uintptr_t>(Sec); 272 } 273 274 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 275 StringRef &Result) const { 276 const coff_section *Sec = toSec(Ref); 277 return getSectionName(Sec, Result); 278 } 279 280 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 281 const coff_section *Sec = toSec(Ref); 282 return Sec->VirtualAddress; 283 } 284 285 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 286 return getSectionSize(toSec(Ref)); 287 } 288 289 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 290 StringRef &Result) const { 291 const coff_section *Sec = toSec(Ref); 292 ArrayRef<uint8_t> Res; 293 std::error_code EC = getSectionContents(Sec, Res); 294 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 295 return EC; 296 } 297 298 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 299 const coff_section *Sec = toSec(Ref); 300 return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1); 301 } 302 303 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 304 const coff_section *Sec = toSec(Ref); 305 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 306 } 307 308 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 309 const coff_section *Sec = toSec(Ref); 310 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 311 } 312 313 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 314 const coff_section *Sec = toSec(Ref); 315 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 316 COFF::IMAGE_SCN_MEM_READ | 317 COFF::IMAGE_SCN_MEM_WRITE; 318 return (Sec->Characteristics & BssFlags) == BssFlags; 319 } 320 321 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 322 const coff_section *Sec = toSec(Ref); 323 // In COFF, a virtual section won't have any in-file 324 // content, so the file pointer to the content will be zero. 325 return Sec->PointerToRawData == 0; 326 } 327 328 bool COFFObjectFile::sectionContainsSymbol(DataRefImpl SecRef, 329 DataRefImpl SymbRef) const { 330 const coff_section *Sec = toSec(SecRef); 331 COFFSymbolRef Symb = getCOFFSymbol(SymbRef); 332 int32_t SecNumber = (Sec - SectionTable) + 1; 333 return SecNumber == Symb.getSectionNumber(); 334 } 335 336 static uint32_t getNumberOfRelocations(const coff_section *Sec, 337 MemoryBufferRef M, const uint8_t *base) { 338 // The field for the number of relocations in COFF section table is only 339 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 340 // NumberOfRelocations field, and the actual relocation count is stored in the 341 // VirtualAddress field in the first relocation entry. 342 if (Sec->hasExtendedRelocations()) { 343 const coff_relocation *FirstReloc; 344 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 345 base + Sec->PointerToRelocations))) 346 return 0; 347 // -1 to exclude this first relocation entry. 348 return FirstReloc->VirtualAddress - 1; 349 } 350 return Sec->NumberOfRelocations; 351 } 352 353 static const coff_relocation * 354 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 355 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 356 if (!NumRelocs) 357 return nullptr; 358 auto begin = reinterpret_cast<const coff_relocation *>( 359 Base + Sec->PointerToRelocations); 360 if (Sec->hasExtendedRelocations()) { 361 // Skip the first relocation entry repurposed to store the number of 362 // relocations. 363 begin++; 364 } 365 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 366 return nullptr; 367 return begin; 368 } 369 370 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 371 const coff_section *Sec = toSec(Ref); 372 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 373 DataRefImpl Ret; 374 Ret.p = reinterpret_cast<uintptr_t>(begin); 375 return relocation_iterator(RelocationRef(Ret, this)); 376 } 377 378 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 379 const coff_section *Sec = toSec(Ref); 380 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 381 if (I) 382 I += getNumberOfRelocations(Sec, Data, base()); 383 DataRefImpl Ret; 384 Ret.p = reinterpret_cast<uintptr_t>(I); 385 return relocation_iterator(RelocationRef(Ret, this)); 386 } 387 388 // Initialize the pointer to the symbol table. 389 std::error_code COFFObjectFile::initSymbolTablePtr() { 390 if (COFFHeader) 391 if (std::error_code EC = getObject( 392 SymbolTable16, Data, base() + getPointerToSymbolTable(), 393 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 394 return EC; 395 396 if (COFFBigObjHeader) 397 if (std::error_code EC = getObject( 398 SymbolTable32, Data, base() + getPointerToSymbolTable(), 399 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 400 return EC; 401 402 // Find string table. The first four byte of the string table contains the 403 // total size of the string table, including the size field itself. If the 404 // string table is empty, the value of the first four byte would be 4. 405 uint32_t StringTableOffset = getPointerToSymbolTable() + 406 getNumberOfSymbols() * getSymbolTableEntrySize(); 407 const uint8_t *StringTableAddr = base() + StringTableOffset; 408 const ulittle32_t *StringTableSizePtr; 409 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 410 return EC; 411 StringTableSize = *StringTableSizePtr; 412 if (std::error_code EC = 413 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 414 return EC; 415 416 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 417 // tools like cvtres write a size of 0 for an empty table instead of 4. 418 if (StringTableSize < 4) 419 StringTableSize = 4; 420 421 // Check that the string table is null terminated if has any in it. 422 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 423 return object_error::parse_failed; 424 return object_error::success; 425 } 426 427 // Returns the file offset for the given VA. 428 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 429 uint64_t ImageBase = PE32Header ? (uint64_t)PE32Header->ImageBase 430 : (uint64_t)PE32PlusHeader->ImageBase; 431 uint64_t Rva = Addr - ImageBase; 432 assert(Rva <= UINT32_MAX); 433 return getRvaPtr((uint32_t)Rva, Res); 434 } 435 436 // Returns the file offset for the given RVA. 437 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 438 for (const SectionRef &S : sections()) { 439 const coff_section *Section = getCOFFSection(S); 440 uint32_t SectionStart = Section->VirtualAddress; 441 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 442 if (SectionStart <= Addr && Addr < SectionEnd) { 443 uint32_t Offset = Addr - SectionStart; 444 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 445 return object_error::success; 446 } 447 } 448 return object_error::parse_failed; 449 } 450 451 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 452 // table entry. 453 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 454 StringRef &Name) const { 455 uintptr_t IntPtr = 0; 456 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 457 return EC; 458 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 459 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 460 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 461 return object_error::success; 462 } 463 464 // Find the import table. 465 std::error_code COFFObjectFile::initImportTablePtr() { 466 // First, we get the RVA of the import table. If the file lacks a pointer to 467 // the import table, do nothing. 468 const data_directory *DataEntry; 469 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 470 return object_error::success; 471 472 // Do nothing if the pointer to import table is NULL. 473 if (DataEntry->RelativeVirtualAddress == 0) 474 return object_error::success; 475 476 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 477 // -1 because the last entry is the null entry. 478 NumberOfImportDirectory = DataEntry->Size / 479 sizeof(import_directory_table_entry) - 1; 480 481 // Find the section that contains the RVA. This is needed because the RVA is 482 // the import table's memory address which is different from its file offset. 483 uintptr_t IntPtr = 0; 484 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 485 return EC; 486 ImportDirectory = reinterpret_cast< 487 const import_directory_table_entry *>(IntPtr); 488 return object_error::success; 489 } 490 491 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 492 std::error_code COFFObjectFile::initDelayImportTablePtr() { 493 const data_directory *DataEntry; 494 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 495 return object_error::success; 496 if (DataEntry->RelativeVirtualAddress == 0) 497 return object_error::success; 498 499 uint32_t RVA = DataEntry->RelativeVirtualAddress; 500 NumberOfDelayImportDirectory = DataEntry->Size / 501 sizeof(delay_import_directory_table_entry) - 1; 502 503 uintptr_t IntPtr = 0; 504 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 505 return EC; 506 DelayImportDirectory = reinterpret_cast< 507 const delay_import_directory_table_entry *>(IntPtr); 508 return object_error::success; 509 } 510 511 // Find the export table. 512 std::error_code COFFObjectFile::initExportTablePtr() { 513 // First, we get the RVA of the export table. If the file lacks a pointer to 514 // the export table, do nothing. 515 const data_directory *DataEntry; 516 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 517 return object_error::success; 518 519 // Do nothing if the pointer to export table is NULL. 520 if (DataEntry->RelativeVirtualAddress == 0) 521 return object_error::success; 522 523 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 524 uintptr_t IntPtr = 0; 525 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 526 return EC; 527 ExportDirectory = 528 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 529 return object_error::success; 530 } 531 532 std::error_code COFFObjectFile::initBaseRelocPtr() { 533 const data_directory *DataEntry; 534 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 535 return object_error::success; 536 if (DataEntry->RelativeVirtualAddress == 0) 537 return object_error::success; 538 539 uintptr_t IntPtr = 0; 540 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 541 return EC; 542 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 543 IntPtr); 544 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 545 IntPtr + DataEntry->Size); 546 return object_error::success; 547 } 548 549 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 550 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 551 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 552 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 553 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 554 ImportDirectory(nullptr), NumberOfImportDirectory(0), 555 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 556 ExportDirectory(nullptr), BaseRelocHeader(nullptr), 557 BaseRelocEnd(nullptr) { 558 // Check that we at least have enough room for a header. 559 if (!checkSize(Data, EC, sizeof(coff_file_header))) 560 return; 561 562 // The current location in the file where we are looking at. 563 uint64_t CurPtr = 0; 564 565 // PE header is optional and is present only in executables. If it exists, 566 // it is placed right after COFF header. 567 bool HasPEHeader = false; 568 569 // Check if this is a PE/COFF file. 570 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 571 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 572 // PE signature to find 'normal' COFF header. 573 const auto *DH = reinterpret_cast<const dos_header *>(base()); 574 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 575 CurPtr = DH->AddressOfNewExeHeader; 576 // Check the PE magic bytes. ("PE\0\0") 577 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 578 EC = object_error::parse_failed; 579 return; 580 } 581 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 582 HasPEHeader = true; 583 } 584 } 585 586 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 587 return; 588 589 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 590 // import libraries share a common prefix but bigobj is more restrictive. 591 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 592 COFFHeader->NumberOfSections == uint16_t(0xffff) && 593 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 594 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 595 return; 596 597 // Verify that we are dealing with bigobj. 598 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 599 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 600 sizeof(COFF::BigObjMagic)) == 0) { 601 COFFHeader = nullptr; 602 CurPtr += sizeof(coff_bigobj_file_header); 603 } else { 604 // It's not a bigobj. 605 COFFBigObjHeader = nullptr; 606 } 607 } 608 if (COFFHeader) { 609 // The prior checkSize call may have failed. This isn't a hard error 610 // because we were just trying to sniff out bigobj. 611 EC = object_error::success; 612 CurPtr += sizeof(coff_file_header); 613 614 if (COFFHeader->isImportLibrary()) 615 return; 616 } 617 618 if (HasPEHeader) { 619 const pe32_header *Header; 620 if ((EC = getObject(Header, Data, base() + CurPtr))) 621 return; 622 623 const uint8_t *DataDirAddr; 624 uint64_t DataDirSize; 625 if (Header->Magic == COFF::PE32Header::PE32) { 626 PE32Header = Header; 627 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 628 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 629 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 630 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 631 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 632 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 633 } else { 634 // It's neither PE32 nor PE32+. 635 EC = object_error::parse_failed; 636 return; 637 } 638 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 639 return; 640 CurPtr += COFFHeader->SizeOfOptionalHeader; 641 } 642 643 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 644 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 645 return; 646 647 // Initialize the pointer to the symbol table. 648 if (getPointerToSymbolTable() != 0) { 649 if ((EC = initSymbolTablePtr())) 650 return; 651 } else { 652 // We had better not have any symbols if we don't have a symbol table. 653 if (getNumberOfSymbols() != 0) { 654 EC = object_error::parse_failed; 655 return; 656 } 657 } 658 659 // Initialize the pointer to the beginning of the import table. 660 if ((EC = initImportTablePtr())) 661 return; 662 if ((EC = initDelayImportTablePtr())) 663 return; 664 665 // Initialize the pointer to the export table. 666 if ((EC = initExportTablePtr())) 667 return; 668 669 // Initialize the pointer to the base relocation table. 670 if ((EC = initBaseRelocPtr())) 671 return; 672 673 EC = object_error::success; 674 } 675 676 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 677 DataRefImpl Ret; 678 Ret.p = getSymbolTable(); 679 return basic_symbol_iterator(SymbolRef(Ret, this)); 680 } 681 682 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 683 // The symbol table ends where the string table begins. 684 DataRefImpl Ret; 685 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 686 return basic_symbol_iterator(SymbolRef(Ret, this)); 687 } 688 689 import_directory_iterator COFFObjectFile::import_directory_begin() const { 690 return import_directory_iterator( 691 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 692 } 693 694 import_directory_iterator COFFObjectFile::import_directory_end() const { 695 return import_directory_iterator( 696 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); 697 } 698 699 delay_import_directory_iterator 700 COFFObjectFile::delay_import_directory_begin() const { 701 return delay_import_directory_iterator( 702 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 703 } 704 705 delay_import_directory_iterator 706 COFFObjectFile::delay_import_directory_end() const { 707 return delay_import_directory_iterator( 708 DelayImportDirectoryEntryRef( 709 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 710 } 711 712 export_directory_iterator COFFObjectFile::export_directory_begin() const { 713 return export_directory_iterator( 714 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 715 } 716 717 export_directory_iterator COFFObjectFile::export_directory_end() const { 718 if (!ExportDirectory) 719 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 720 ExportDirectoryEntryRef Ref(ExportDirectory, 721 ExportDirectory->AddressTableEntries, this); 722 return export_directory_iterator(Ref); 723 } 724 725 section_iterator COFFObjectFile::section_begin() const { 726 DataRefImpl Ret; 727 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 728 return section_iterator(SectionRef(Ret, this)); 729 } 730 731 section_iterator COFFObjectFile::section_end() const { 732 DataRefImpl Ret; 733 int NumSections = 734 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 735 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 736 return section_iterator(SectionRef(Ret, this)); 737 } 738 739 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 740 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 741 } 742 743 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 744 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 745 } 746 747 uint8_t COFFObjectFile::getBytesInAddress() const { 748 return getArch() == Triple::x86_64 ? 8 : 4; 749 } 750 751 StringRef COFFObjectFile::getFileFormatName() const { 752 switch(getMachine()) { 753 case COFF::IMAGE_FILE_MACHINE_I386: 754 return "COFF-i386"; 755 case COFF::IMAGE_FILE_MACHINE_AMD64: 756 return "COFF-x86-64"; 757 case COFF::IMAGE_FILE_MACHINE_ARMNT: 758 return "COFF-ARM"; 759 default: 760 return "COFF-<unknown arch>"; 761 } 762 } 763 764 unsigned COFFObjectFile::getArch() const { 765 switch (getMachine()) { 766 case COFF::IMAGE_FILE_MACHINE_I386: 767 return Triple::x86; 768 case COFF::IMAGE_FILE_MACHINE_AMD64: 769 return Triple::x86_64; 770 case COFF::IMAGE_FILE_MACHINE_ARMNT: 771 return Triple::thumb; 772 default: 773 return Triple::UnknownArch; 774 } 775 } 776 777 iterator_range<import_directory_iterator> 778 COFFObjectFile::import_directories() const { 779 return make_range(import_directory_begin(), import_directory_end()); 780 } 781 782 iterator_range<delay_import_directory_iterator> 783 COFFObjectFile::delay_import_directories() const { 784 return make_range(delay_import_directory_begin(), 785 delay_import_directory_end()); 786 } 787 788 iterator_range<export_directory_iterator> 789 COFFObjectFile::export_directories() const { 790 return make_range(export_directory_begin(), export_directory_end()); 791 } 792 793 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 794 return make_range(base_reloc_begin(), base_reloc_end()); 795 } 796 797 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 798 Res = PE32Header; 799 return object_error::success; 800 } 801 802 std::error_code 803 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 804 Res = PE32PlusHeader; 805 return object_error::success; 806 } 807 808 std::error_code 809 COFFObjectFile::getDataDirectory(uint32_t Index, 810 const data_directory *&Res) const { 811 // Error if if there's no data directory or the index is out of range. 812 if (!DataDirectory) { 813 Res = nullptr; 814 return object_error::parse_failed; 815 } 816 assert(PE32Header || PE32PlusHeader); 817 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 818 : PE32PlusHeader->NumberOfRvaAndSize; 819 if (Index >= NumEnt) { 820 Res = nullptr; 821 return object_error::parse_failed; 822 } 823 Res = &DataDirectory[Index]; 824 return object_error::success; 825 } 826 827 std::error_code COFFObjectFile::getSection(int32_t Index, 828 const coff_section *&Result) const { 829 Result = nullptr; 830 if (COFF::isReservedSectionNumber(Index)) 831 return object_error::success; 832 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 833 // We already verified the section table data, so no need to check again. 834 Result = SectionTable + (Index - 1); 835 return object_error::success; 836 } 837 return object_error::parse_failed; 838 } 839 840 std::error_code COFFObjectFile::getString(uint32_t Offset, 841 StringRef &Result) const { 842 if (StringTableSize <= 4) 843 // Tried to get a string from an empty string table. 844 return object_error::parse_failed; 845 if (Offset >= StringTableSize) 846 return object_error::unexpected_eof; 847 Result = StringRef(StringTable + Offset); 848 return object_error::success; 849 } 850 851 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 852 StringRef &Res) const { 853 // Check for string table entry. First 4 bytes are 0. 854 if (Symbol.getStringTableOffset().Zeroes == 0) { 855 uint32_t Offset = Symbol.getStringTableOffset().Offset; 856 if (std::error_code EC = getString(Offset, Res)) 857 return EC; 858 return object_error::success; 859 } 860 861 if (Symbol.getShortName()[COFF::NameSize - 1] == 0) 862 // Null terminated, let ::strlen figure out the length. 863 Res = StringRef(Symbol.getShortName()); 864 else 865 // Not null terminated, use all 8 bytes. 866 Res = StringRef(Symbol.getShortName(), COFF::NameSize); 867 return object_error::success; 868 } 869 870 ArrayRef<uint8_t> 871 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 872 const uint8_t *Aux = nullptr; 873 874 size_t SymbolSize = getSymbolTableEntrySize(); 875 if (Symbol.getNumberOfAuxSymbols() > 0) { 876 // AUX data comes immediately after the symbol in COFF 877 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 878 # ifndef NDEBUG 879 // Verify that the Aux symbol points to a valid entry in the symbol table. 880 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 881 if (Offset < getPointerToSymbolTable() || 882 Offset >= 883 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 884 report_fatal_error("Aux Symbol data was outside of symbol table."); 885 886 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 887 "Aux Symbol data did not point to the beginning of a symbol"); 888 # endif 889 } 890 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 891 } 892 893 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 894 StringRef &Res) const { 895 StringRef Name; 896 if (Sec->Name[COFF::NameSize - 1] == 0) 897 // Null terminated, let ::strlen figure out the length. 898 Name = Sec->Name; 899 else 900 // Not null terminated, use all 8 bytes. 901 Name = StringRef(Sec->Name, COFF::NameSize); 902 903 // Check for string table entry. First byte is '/'. 904 if (Name.startswith("/")) { 905 uint32_t Offset; 906 if (Name.startswith("//")) { 907 if (decodeBase64StringEntry(Name.substr(2), Offset)) 908 return object_error::parse_failed; 909 } else { 910 if (Name.substr(1).getAsInteger(10, Offset)) 911 return object_error::parse_failed; 912 } 913 if (std::error_code EC = getString(Offset, Name)) 914 return EC; 915 } 916 917 Res = Name; 918 return object_error::success; 919 } 920 921 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 922 // SizeOfRawData and VirtualSize change what they represent depending on 923 // whether or not we have an executable image. 924 // 925 // For object files, SizeOfRawData contains the size of section's data; 926 // VirtualSize is always zero. 927 // 928 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 929 // actual section size is in VirtualSize. It is possible for VirtualSize to 930 // be greater than SizeOfRawData; the contents past that point should be 931 // considered to be zero. 932 uint32_t SectionSize; 933 if (Sec->VirtualSize) 934 SectionSize = std::min(Sec->VirtualSize, Sec->SizeOfRawData); 935 else 936 SectionSize = Sec->SizeOfRawData; 937 938 return SectionSize; 939 } 940 941 std::error_code 942 COFFObjectFile::getSectionContents(const coff_section *Sec, 943 ArrayRef<uint8_t> &Res) const { 944 // PointerToRawData and SizeOfRawData won't make sense for BSS sections, 945 // don't do anything interesting for them. 946 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && 947 "BSS sections don't have contents!"); 948 // The only thing that we need to verify is that the contents is contained 949 // within the file bounds. We don't need to make sure it doesn't cover other 950 // data, as there's nothing that says that is not allowed. 951 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 952 uint32_t SectionSize = getSectionSize(Sec); 953 if (checkOffset(Data, ConStart, SectionSize)) 954 return object_error::parse_failed; 955 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 956 return object_error::success; 957 } 958 959 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 960 return reinterpret_cast<const coff_relocation*>(Rel.p); 961 } 962 963 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 964 Rel.p = reinterpret_cast<uintptr_t>( 965 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 966 } 967 968 std::error_code COFFObjectFile::getRelocationAddress(DataRefImpl Rel, 969 uint64_t &Res) const { 970 report_fatal_error("getRelocationAddress not implemented in COFFObjectFile"); 971 } 972 973 std::error_code COFFObjectFile::getRelocationOffset(DataRefImpl Rel, 974 uint64_t &Res) const { 975 const coff_relocation *R = toRel(Rel); 976 const support::ulittle32_t *VirtualAddressPtr; 977 if (std::error_code EC = 978 getObject(VirtualAddressPtr, Data, &R->VirtualAddress)) 979 return EC; 980 Res = *VirtualAddressPtr; 981 return object_error::success; 982 } 983 984 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 985 const coff_relocation *R = toRel(Rel); 986 DataRefImpl Ref; 987 if (R->SymbolTableIndex >= getNumberOfSymbols()) 988 return symbol_end(); 989 if (SymbolTable16) 990 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 991 else if (SymbolTable32) 992 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 993 else 994 llvm_unreachable("no symbol table pointer!"); 995 return symbol_iterator(SymbolRef(Ref, this)); 996 } 997 998 section_iterator COFFObjectFile::getRelocationSection(DataRefImpl Rel) const { 999 symbol_iterator Sym = getRelocationSymbol(Rel); 1000 if (Sym == symbol_end()) 1001 return section_end(); 1002 COFFSymbolRef Symb = getCOFFSymbol(*Sym); 1003 if (!Symb.isSection()) 1004 return section_end(); 1005 section_iterator Res(section_end()); 1006 if (getSymbolSection(Sym->getRawDataRefImpl(),Res)) 1007 return section_end(); 1008 return Res; 1009 } 1010 1011 std::error_code COFFObjectFile::getRelocationType(DataRefImpl Rel, 1012 uint64_t &Res) const { 1013 const coff_relocation* R = toRel(Rel); 1014 Res = R->Type; 1015 return object_error::success; 1016 } 1017 1018 const coff_section * 1019 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1020 return toSec(Section.getRawDataRefImpl()); 1021 } 1022 1023 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1024 if (SymbolTable16) 1025 return toSymb<coff_symbol16>(Ref); 1026 if (SymbolTable32) 1027 return toSymb<coff_symbol32>(Ref); 1028 llvm_unreachable("no symbol table pointer!"); 1029 } 1030 1031 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1032 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1033 } 1034 1035 const coff_relocation * 1036 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1037 return toRel(Reloc.getRawDataRefImpl()); 1038 } 1039 1040 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1041 case COFF::reloc_type: \ 1042 Res = #reloc_type; \ 1043 break; 1044 1045 std::error_code 1046 COFFObjectFile::getRelocationTypeName(DataRefImpl Rel, 1047 SmallVectorImpl<char> &Result) const { 1048 const coff_relocation *Reloc = toRel(Rel); 1049 StringRef Res; 1050 switch (getMachine()) { 1051 case COFF::IMAGE_FILE_MACHINE_AMD64: 1052 switch (Reloc->Type) { 1053 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1054 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1055 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1056 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1057 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1058 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1059 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1060 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1061 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1062 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1063 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1064 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1065 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1066 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1067 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1068 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1069 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1070 default: 1071 Res = "Unknown"; 1072 } 1073 break; 1074 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1075 switch (Reloc->Type) { 1076 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1077 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1078 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1079 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1080 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1081 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1082 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1083 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1084 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1085 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1086 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1087 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1088 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1089 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1090 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1091 default: 1092 Res = "Unknown"; 1093 } 1094 break; 1095 case COFF::IMAGE_FILE_MACHINE_I386: 1096 switch (Reloc->Type) { 1097 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1098 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1099 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1100 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1101 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1102 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1103 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1104 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1105 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1106 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1107 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1108 default: 1109 Res = "Unknown"; 1110 } 1111 break; 1112 default: 1113 Res = "Unknown"; 1114 } 1115 Result.append(Res.begin(), Res.end()); 1116 return object_error::success; 1117 } 1118 1119 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1120 1121 std::error_code 1122 COFFObjectFile::getRelocationValueString(DataRefImpl Rel, 1123 SmallVectorImpl<char> &Result) const { 1124 const coff_relocation *Reloc = toRel(Rel); 1125 DataRefImpl Sym; 1126 ErrorOr<COFFSymbolRef> Symb = getSymbol(Reloc->SymbolTableIndex); 1127 if (std::error_code EC = Symb.getError()) 1128 return EC; 1129 Sym.p = reinterpret_cast<uintptr_t>(Symb->getRawPtr()); 1130 StringRef SymName; 1131 if (std::error_code EC = getSymbolName(Sym, SymName)) 1132 return EC; 1133 Result.append(SymName.begin(), SymName.end()); 1134 return object_error::success; 1135 } 1136 1137 bool COFFObjectFile::isRelocatableObject() const { 1138 return !DataDirectory; 1139 } 1140 1141 bool ImportDirectoryEntryRef:: 1142 operator==(const ImportDirectoryEntryRef &Other) const { 1143 return ImportTable == Other.ImportTable && Index == Other.Index; 1144 } 1145 1146 void ImportDirectoryEntryRef::moveNext() { 1147 ++Index; 1148 } 1149 1150 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1151 const import_directory_table_entry *&Result) const { 1152 Result = ImportTable + Index; 1153 return object_error::success; 1154 } 1155 1156 static imported_symbol_iterator 1157 makeImportedSymbolIterator(const COFFObjectFile *Object, 1158 uintptr_t Ptr, int Index) { 1159 if (Object->getBytesInAddress() == 4) { 1160 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1161 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1162 } 1163 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1164 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1165 } 1166 1167 static imported_symbol_iterator 1168 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1169 uintptr_t IntPtr = 0; 1170 Object->getRvaPtr(RVA, IntPtr); 1171 return makeImportedSymbolIterator(Object, IntPtr, 0); 1172 } 1173 1174 static imported_symbol_iterator 1175 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1176 uintptr_t IntPtr = 0; 1177 Object->getRvaPtr(RVA, IntPtr); 1178 // Forward the pointer to the last entry which is null. 1179 int Index = 0; 1180 if (Object->getBytesInAddress() == 4) { 1181 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1182 while (*Entry++) 1183 ++Index; 1184 } else { 1185 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1186 while (*Entry++) 1187 ++Index; 1188 } 1189 return makeImportedSymbolIterator(Object, IntPtr, Index); 1190 } 1191 1192 imported_symbol_iterator 1193 ImportDirectoryEntryRef::imported_symbol_begin() const { 1194 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1195 OwningObject); 1196 } 1197 1198 imported_symbol_iterator 1199 ImportDirectoryEntryRef::imported_symbol_end() const { 1200 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1201 OwningObject); 1202 } 1203 1204 iterator_range<imported_symbol_iterator> 1205 ImportDirectoryEntryRef::imported_symbols() const { 1206 return make_range(imported_symbol_begin(), imported_symbol_end()); 1207 } 1208 1209 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1210 uintptr_t IntPtr = 0; 1211 if (std::error_code EC = 1212 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1213 return EC; 1214 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1215 return object_error::success; 1216 } 1217 1218 std::error_code 1219 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1220 Result = ImportTable[Index].ImportLookupTableRVA; 1221 return object_error::success; 1222 } 1223 1224 std::error_code 1225 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1226 Result = ImportTable[Index].ImportAddressTableRVA; 1227 return object_error::success; 1228 } 1229 1230 std::error_code ImportDirectoryEntryRef::getImportLookupEntry( 1231 const import_lookup_table_entry32 *&Result) const { 1232 uintptr_t IntPtr = 0; 1233 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; 1234 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1235 return EC; 1236 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr); 1237 return object_error::success; 1238 } 1239 1240 bool DelayImportDirectoryEntryRef:: 1241 operator==(const DelayImportDirectoryEntryRef &Other) const { 1242 return Table == Other.Table && Index == Other.Index; 1243 } 1244 1245 void DelayImportDirectoryEntryRef::moveNext() { 1246 ++Index; 1247 } 1248 1249 imported_symbol_iterator 1250 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1251 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1252 OwningObject); 1253 } 1254 1255 imported_symbol_iterator 1256 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1257 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1258 OwningObject); 1259 } 1260 1261 iterator_range<imported_symbol_iterator> 1262 DelayImportDirectoryEntryRef::imported_symbols() const { 1263 return make_range(imported_symbol_begin(), imported_symbol_end()); 1264 } 1265 1266 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1267 uintptr_t IntPtr = 0; 1268 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1269 return EC; 1270 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1271 return object_error::success; 1272 } 1273 1274 std::error_code DelayImportDirectoryEntryRef:: 1275 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1276 Result = Table; 1277 return object_error::success; 1278 } 1279 1280 std::error_code DelayImportDirectoryEntryRef:: 1281 getImportAddress(int AddrIndex, uint64_t &Result) const { 1282 uint32_t RVA = Table[Index].DelayImportAddressTable + 1283 AddrIndex * (OwningObject->is64() ? 8 : 4); 1284 uintptr_t IntPtr = 0; 1285 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1286 return EC; 1287 if (OwningObject->is64()) 1288 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1289 else 1290 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1291 return object_error::success; 1292 } 1293 1294 bool ExportDirectoryEntryRef:: 1295 operator==(const ExportDirectoryEntryRef &Other) const { 1296 return ExportTable == Other.ExportTable && Index == Other.Index; 1297 } 1298 1299 void ExportDirectoryEntryRef::moveNext() { 1300 ++Index; 1301 } 1302 1303 // Returns the name of the current export symbol. If the symbol is exported only 1304 // by ordinal, the empty string is set as a result. 1305 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1306 uintptr_t IntPtr = 0; 1307 if (std::error_code EC = 1308 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1309 return EC; 1310 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1311 return object_error::success; 1312 } 1313 1314 // Returns the starting ordinal number. 1315 std::error_code 1316 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1317 Result = ExportTable->OrdinalBase; 1318 return object_error::success; 1319 } 1320 1321 // Returns the export ordinal of the current export symbol. 1322 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1323 Result = ExportTable->OrdinalBase + Index; 1324 return object_error::success; 1325 } 1326 1327 // Returns the address of the current export symbol. 1328 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1329 uintptr_t IntPtr = 0; 1330 if (std::error_code EC = 1331 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1332 return EC; 1333 const export_address_table_entry *entry = 1334 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1335 Result = entry[Index].ExportRVA; 1336 return object_error::success; 1337 } 1338 1339 // Returns the name of the current export symbol. If the symbol is exported only 1340 // by ordinal, the empty string is set as a result. 1341 std::error_code 1342 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1343 uintptr_t IntPtr = 0; 1344 if (std::error_code EC = 1345 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1346 return EC; 1347 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1348 1349 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1350 int Offset = 0; 1351 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1352 I < E; ++I, ++Offset) { 1353 if (*I != Index) 1354 continue; 1355 if (std::error_code EC = 1356 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1357 return EC; 1358 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1359 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1360 return EC; 1361 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1362 return object_error::success; 1363 } 1364 Result = ""; 1365 return object_error::success; 1366 } 1367 1368 bool ImportedSymbolRef:: 1369 operator==(const ImportedSymbolRef &Other) const { 1370 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1371 && Index == Other.Index; 1372 } 1373 1374 void ImportedSymbolRef::moveNext() { 1375 ++Index; 1376 } 1377 1378 std::error_code 1379 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1380 uint32_t RVA; 1381 if (Entry32) { 1382 // If a symbol is imported only by ordinal, it has no name. 1383 if (Entry32[Index].isOrdinal()) 1384 return object_error::success; 1385 RVA = Entry32[Index].getHintNameRVA(); 1386 } else { 1387 if (Entry64[Index].isOrdinal()) 1388 return object_error::success; 1389 RVA = Entry64[Index].getHintNameRVA(); 1390 } 1391 uintptr_t IntPtr = 0; 1392 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1393 return EC; 1394 // +2 because the first two bytes is hint. 1395 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1396 return object_error::success; 1397 } 1398 1399 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1400 uint32_t RVA; 1401 if (Entry32) { 1402 if (Entry32[Index].isOrdinal()) { 1403 Result = Entry32[Index].getOrdinal(); 1404 return object_error::success; 1405 } 1406 RVA = Entry32[Index].getHintNameRVA(); 1407 } else { 1408 if (Entry64[Index].isOrdinal()) { 1409 Result = Entry64[Index].getOrdinal(); 1410 return object_error::success; 1411 } 1412 RVA = Entry64[Index].getHintNameRVA(); 1413 } 1414 uintptr_t IntPtr = 0; 1415 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1416 return EC; 1417 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1418 return object_error::success; 1419 } 1420 1421 ErrorOr<std::unique_ptr<COFFObjectFile>> 1422 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1423 std::error_code EC; 1424 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1425 if (EC) 1426 return EC; 1427 return std::move(Ret); 1428 } 1429 1430 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1431 return Header == Other.Header && Index == Other.Index; 1432 } 1433 1434 void BaseRelocRef::moveNext() { 1435 // Header->BlockSize is the size of the current block, including the 1436 // size of the header itself. 1437 uint32_t Size = sizeof(*Header) + 1438 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1439 if (Size == Header->BlockSize) { 1440 // .reloc contains a list of base relocation blocks. Each block 1441 // consists of the header followed by entries. The header contains 1442 // how many entories will follow. When we reach the end of the 1443 // current block, proceed to the next block. 1444 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1445 reinterpret_cast<const uint8_t *>(Header) + Size); 1446 Index = 0; 1447 } else { 1448 ++Index; 1449 } 1450 } 1451 1452 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1453 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1454 Type = Entry[Index].getType(); 1455 return object_error::success; 1456 } 1457 1458 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1459 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1460 Result = Header->PageRVA + Entry[Index].getOffset(); 1461 return object_error::success; 1462 } 1463