1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Support/COFF.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <cctype> 23 #include <limits> 24 25 using namespace llvm; 26 using namespace object; 27 28 using support::ulittle16_t; 29 using support::ulittle32_t; 30 using support::ulittle64_t; 31 using support::little16_t; 32 33 // Returns false if size is greater than the buffer size. And sets ec. 34 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 35 if (M.getBufferSize() < Size) { 36 EC = object_error::unexpected_eof; 37 return false; 38 } 39 return true; 40 } 41 42 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 43 const uint64_t Size) { 44 if (Addr + Size < Addr || Addr + Size < Size || 45 Addr + Size > uintptr_t(M.getBufferEnd()) || 46 Addr < uintptr_t(M.getBufferStart())) { 47 return object_error::unexpected_eof; 48 } 49 return object_error::success; 50 } 51 52 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 53 // Returns unexpected_eof if error. 54 template <typename T> 55 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 56 const void *Ptr, 57 const uint64_t Size = sizeof(T)) { 58 uintptr_t Addr = uintptr_t(Ptr); 59 if (std::error_code EC = checkOffset(M, Addr, Size)) 60 return EC; 61 Obj = reinterpret_cast<const T *>(Addr); 62 return object_error::success; 63 } 64 65 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 66 // prefixed slashes. 67 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 68 assert(Str.size() <= 6 && "String too long, possible overflow."); 69 if (Str.size() > 6) 70 return true; 71 72 uint64_t Value = 0; 73 while (!Str.empty()) { 74 unsigned CharVal; 75 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 76 CharVal = Str[0] - 'A'; 77 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 78 CharVal = Str[0] - 'a' + 26; 79 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 80 CharVal = Str[0] - '0' + 52; 81 else if (Str[0] == '+') // 62 82 CharVal = 62; 83 else if (Str[0] == '/') // 63 84 CharVal = 63; 85 else 86 return true; 87 88 Value = (Value * 64) + CharVal; 89 Str = Str.substr(1); 90 } 91 92 if (Value > std::numeric_limits<uint32_t>::max()) 93 return true; 94 95 Result = static_cast<uint32_t>(Value); 96 return false; 97 } 98 99 template <typename coff_symbol_type> 100 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 101 const coff_symbol_type *Addr = 102 reinterpret_cast<const coff_symbol_type *>(Ref.p); 103 104 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 105 #ifndef NDEBUG 106 // Verify that the symbol points to a valid entry in the symbol table. 107 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 108 109 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 110 "Symbol did not point to the beginning of a symbol"); 111 #endif 112 113 return Addr; 114 } 115 116 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 117 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 118 119 # ifndef NDEBUG 120 // Verify that the section points to a valid entry in the section table. 121 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 122 report_fatal_error("Section was outside of section table."); 123 124 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 125 assert(Offset % sizeof(coff_section) == 0 && 126 "Section did not point to the beginning of a section"); 127 # endif 128 129 return Addr; 130 } 131 132 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 133 auto End = reinterpret_cast<uintptr_t>(StringTable); 134 if (SymbolTable16) { 135 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 136 Symb += 1 + Symb->NumberOfAuxSymbols; 137 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 138 } else if (SymbolTable32) { 139 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 140 Symb += 1 + Symb->NumberOfAuxSymbols; 141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 142 } else { 143 llvm_unreachable("no symbol table pointer!"); 144 } 145 } 146 147 std::error_code COFFObjectFile::getSymbolName(DataRefImpl Ref, 148 StringRef &Result) const { 149 COFFSymbolRef Symb = getCOFFSymbol(Ref); 150 return getSymbolName(Symb, Result); 151 } 152 153 std::error_code COFFObjectFile::getSymbolAddress(DataRefImpl Ref, 154 uint64_t &Result) const { 155 COFFSymbolRef Symb = getCOFFSymbol(Ref); 156 157 if (Symb.isAnyUndefined()) { 158 Result = UnknownAddressOrSize; 159 return object_error::success; 160 } 161 if (Symb.isCommon()) { 162 Result = UnknownAddressOrSize; 163 return object_error::success; 164 } 165 int32_t SectionNumber = Symb.getSectionNumber(); 166 if (!COFF::isReservedSectionNumber(SectionNumber)) { 167 const coff_section *Section = nullptr; 168 if (std::error_code EC = getSection(SectionNumber, Section)) 169 return EC; 170 171 Result = Section->VirtualAddress + Symb.getValue(); 172 return object_error::success; 173 } 174 175 Result = Symb.getValue(); 176 return object_error::success; 177 } 178 179 std::error_code COFFObjectFile::getSymbolType(DataRefImpl Ref, 180 SymbolRef::Type &Result) const { 181 COFFSymbolRef Symb = getCOFFSymbol(Ref); 182 int32_t SectionNumber = Symb.getSectionNumber(); 183 Result = SymbolRef::ST_Other; 184 185 if (Symb.isAnyUndefined()) { 186 Result = SymbolRef::ST_Unknown; 187 } else if (Symb.isFunctionDefinition()) { 188 Result = SymbolRef::ST_Function; 189 } else if (Symb.isCommon()) { 190 Result = SymbolRef::ST_Data; 191 } else if (Symb.isFileRecord()) { 192 Result = SymbolRef::ST_File; 193 } else if (SectionNumber == COFF::IMAGE_SYM_DEBUG || 194 Symb.isSectionDefinition()) { 195 // TODO: perhaps we need a new symbol type ST_Section. 196 Result = SymbolRef::ST_Debug; 197 } else if (!COFF::isReservedSectionNumber(SectionNumber)) { 198 const coff_section *Section = nullptr; 199 if (std::error_code EC = getSection(SectionNumber, Section)) 200 return EC; 201 uint32_t Characteristics = Section->Characteristics; 202 if (Characteristics & COFF::IMAGE_SCN_CNT_CODE) 203 Result = SymbolRef::ST_Function; 204 else if (Characteristics & (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 205 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA)) 206 Result = SymbolRef::ST_Data; 207 } 208 return object_error::success; 209 } 210 211 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 212 COFFSymbolRef Symb = getCOFFSymbol(Ref); 213 uint32_t Result = SymbolRef::SF_None; 214 215 if (Symb.isExternal() || Symb.isWeakExternal()) 216 Result |= SymbolRef::SF_Global; 217 218 if (Symb.isWeakExternal()) 219 Result |= SymbolRef::SF_Weak; 220 221 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 222 Result |= SymbolRef::SF_Absolute; 223 224 if (Symb.isFileRecord()) 225 Result |= SymbolRef::SF_FormatSpecific; 226 227 if (Symb.isSectionDefinition()) 228 Result |= SymbolRef::SF_FormatSpecific; 229 230 if (Symb.isCommon()) 231 Result |= SymbolRef::SF_Common; 232 233 if (Symb.isAnyUndefined()) 234 Result |= SymbolRef::SF_Undefined; 235 236 return Result; 237 } 238 239 uint64_t COFFObjectFile::getSymbolSize(DataRefImpl Ref) const { 240 COFFSymbolRef Symb = getCOFFSymbol(Ref); 241 242 if (Symb.isCommon()) 243 return Symb.getValue(); 244 return UnknownAddressOrSize; 245 } 246 247 std::error_code 248 COFFObjectFile::getSymbolSection(DataRefImpl Ref, 249 section_iterator &Result) const { 250 COFFSymbolRef Symb = getCOFFSymbol(Ref); 251 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) { 252 Result = section_end(); 253 } else { 254 const coff_section *Sec = nullptr; 255 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 256 return EC; 257 DataRefImpl Ref; 258 Ref.p = reinterpret_cast<uintptr_t>(Sec); 259 Result = section_iterator(SectionRef(Ref, this)); 260 } 261 return object_error::success; 262 } 263 264 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 265 const coff_section *Sec = toSec(Ref); 266 Sec += 1; 267 Ref.p = reinterpret_cast<uintptr_t>(Sec); 268 } 269 270 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 271 StringRef &Result) const { 272 const coff_section *Sec = toSec(Ref); 273 return getSectionName(Sec, Result); 274 } 275 276 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 277 const coff_section *Sec = toSec(Ref); 278 return Sec->VirtualAddress; 279 } 280 281 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 282 return getSectionSize(toSec(Ref)); 283 } 284 285 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 286 StringRef &Result) const { 287 const coff_section *Sec = toSec(Ref); 288 ArrayRef<uint8_t> Res; 289 std::error_code EC = getSectionContents(Sec, Res); 290 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 291 return EC; 292 } 293 294 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 295 const coff_section *Sec = toSec(Ref); 296 return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1); 297 } 298 299 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 300 const coff_section *Sec = toSec(Ref); 301 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 302 } 303 304 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 305 const coff_section *Sec = toSec(Ref); 306 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 307 } 308 309 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 310 const coff_section *Sec = toSec(Ref); 311 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 312 COFF::IMAGE_SCN_MEM_READ | 313 COFF::IMAGE_SCN_MEM_WRITE; 314 return (Sec->Characteristics & BssFlags) == BssFlags; 315 } 316 317 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 318 const coff_section *Sec = toSec(Ref); 319 // In COFF, a virtual section won't have any in-file 320 // content, so the file pointer to the content will be zero. 321 return Sec->PointerToRawData == 0; 322 } 323 324 bool COFFObjectFile::sectionContainsSymbol(DataRefImpl SecRef, 325 DataRefImpl SymbRef) const { 326 const coff_section *Sec = toSec(SecRef); 327 COFFSymbolRef Symb = getCOFFSymbol(SymbRef); 328 int32_t SecNumber = (Sec - SectionTable) + 1; 329 return SecNumber == Symb.getSectionNumber(); 330 } 331 332 static uint32_t getNumberOfRelocations(const coff_section *Sec, 333 MemoryBufferRef M, const uint8_t *base) { 334 // The field for the number of relocations in COFF section table is only 335 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 336 // NumberOfRelocations field, and the actual relocation count is stored in the 337 // VirtualAddress field in the first relocation entry. 338 if (Sec->hasExtendedRelocations()) { 339 const coff_relocation *FirstReloc; 340 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 341 base + Sec->PointerToRelocations))) 342 return 0; 343 // -1 to exclude this first relocation entry. 344 return FirstReloc->VirtualAddress - 1; 345 } 346 return Sec->NumberOfRelocations; 347 } 348 349 static const coff_relocation * 350 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 351 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 352 if (!NumRelocs) 353 return nullptr; 354 auto begin = reinterpret_cast<const coff_relocation *>( 355 Base + Sec->PointerToRelocations); 356 if (Sec->hasExtendedRelocations()) { 357 // Skip the first relocation entry repurposed to store the number of 358 // relocations. 359 begin++; 360 } 361 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 362 return nullptr; 363 return begin; 364 } 365 366 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 367 const coff_section *Sec = toSec(Ref); 368 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 369 DataRefImpl Ret; 370 Ret.p = reinterpret_cast<uintptr_t>(begin); 371 return relocation_iterator(RelocationRef(Ret, this)); 372 } 373 374 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 375 const coff_section *Sec = toSec(Ref); 376 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 377 if (I) 378 I += getNumberOfRelocations(Sec, Data, base()); 379 DataRefImpl Ret; 380 Ret.p = reinterpret_cast<uintptr_t>(I); 381 return relocation_iterator(RelocationRef(Ret, this)); 382 } 383 384 // Initialize the pointer to the symbol table. 385 std::error_code COFFObjectFile::initSymbolTablePtr() { 386 if (COFFHeader) 387 if (std::error_code EC = getObject( 388 SymbolTable16, Data, base() + getPointerToSymbolTable(), 389 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 390 return EC; 391 392 if (COFFBigObjHeader) 393 if (std::error_code EC = getObject( 394 SymbolTable32, Data, base() + getPointerToSymbolTable(), 395 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 396 return EC; 397 398 // Find string table. The first four byte of the string table contains the 399 // total size of the string table, including the size field itself. If the 400 // string table is empty, the value of the first four byte would be 4. 401 uint32_t StringTableOffset = getPointerToSymbolTable() + 402 getNumberOfSymbols() * getSymbolTableEntrySize(); 403 const uint8_t *StringTableAddr = base() + StringTableOffset; 404 const ulittle32_t *StringTableSizePtr; 405 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 406 return EC; 407 StringTableSize = *StringTableSizePtr; 408 if (std::error_code EC = 409 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 410 return EC; 411 412 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 413 // tools like cvtres write a size of 0 for an empty table instead of 4. 414 if (StringTableSize < 4) 415 StringTableSize = 4; 416 417 // Check that the string table is null terminated if has any in it. 418 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 419 return object_error::parse_failed; 420 return object_error::success; 421 } 422 423 // Returns the file offset for the given VA. 424 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 425 uint64_t ImageBase = PE32Header ? (uint64_t)PE32Header->ImageBase 426 : (uint64_t)PE32PlusHeader->ImageBase; 427 uint64_t Rva = Addr - ImageBase; 428 assert(Rva <= UINT32_MAX); 429 return getRvaPtr((uint32_t)Rva, Res); 430 } 431 432 // Returns the file offset for the given RVA. 433 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 434 for (const SectionRef &S : sections()) { 435 const coff_section *Section = getCOFFSection(S); 436 uint32_t SectionStart = Section->VirtualAddress; 437 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 438 if (SectionStart <= Addr && Addr < SectionEnd) { 439 uint32_t Offset = Addr - SectionStart; 440 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 441 return object_error::success; 442 } 443 } 444 return object_error::parse_failed; 445 } 446 447 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 448 // table entry. 449 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 450 StringRef &Name) const { 451 uintptr_t IntPtr = 0; 452 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 453 return EC; 454 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 455 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 456 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 457 return object_error::success; 458 } 459 460 // Find the import table. 461 std::error_code COFFObjectFile::initImportTablePtr() { 462 // First, we get the RVA of the import table. If the file lacks a pointer to 463 // the import table, do nothing. 464 const data_directory *DataEntry; 465 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 466 return object_error::success; 467 468 // Do nothing if the pointer to import table is NULL. 469 if (DataEntry->RelativeVirtualAddress == 0) 470 return object_error::success; 471 472 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 473 // -1 because the last entry is the null entry. 474 NumberOfImportDirectory = DataEntry->Size / 475 sizeof(import_directory_table_entry) - 1; 476 477 // Find the section that contains the RVA. This is needed because the RVA is 478 // the import table's memory address which is different from its file offset. 479 uintptr_t IntPtr = 0; 480 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 481 return EC; 482 ImportDirectory = reinterpret_cast< 483 const import_directory_table_entry *>(IntPtr); 484 return object_error::success; 485 } 486 487 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 488 std::error_code COFFObjectFile::initDelayImportTablePtr() { 489 const data_directory *DataEntry; 490 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 491 return object_error::success; 492 if (DataEntry->RelativeVirtualAddress == 0) 493 return object_error::success; 494 495 uint32_t RVA = DataEntry->RelativeVirtualAddress; 496 NumberOfDelayImportDirectory = DataEntry->Size / 497 sizeof(delay_import_directory_table_entry) - 1; 498 499 uintptr_t IntPtr = 0; 500 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 501 return EC; 502 DelayImportDirectory = reinterpret_cast< 503 const delay_import_directory_table_entry *>(IntPtr); 504 return object_error::success; 505 } 506 507 // Find the export table. 508 std::error_code COFFObjectFile::initExportTablePtr() { 509 // First, we get the RVA of the export table. If the file lacks a pointer to 510 // the export table, do nothing. 511 const data_directory *DataEntry; 512 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 513 return object_error::success; 514 515 // Do nothing if the pointer to export table is NULL. 516 if (DataEntry->RelativeVirtualAddress == 0) 517 return object_error::success; 518 519 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 520 uintptr_t IntPtr = 0; 521 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 522 return EC; 523 ExportDirectory = 524 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 525 return object_error::success; 526 } 527 528 std::error_code COFFObjectFile::initBaseRelocPtr() { 529 const data_directory *DataEntry; 530 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 531 return object_error::success; 532 if (DataEntry->RelativeVirtualAddress == 0) 533 return object_error::success; 534 535 uintptr_t IntPtr = 0; 536 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 537 return EC; 538 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 539 IntPtr); 540 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 541 IntPtr + DataEntry->Size); 542 return object_error::success; 543 } 544 545 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 546 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 547 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 548 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 549 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 550 ImportDirectory(nullptr), NumberOfImportDirectory(0), 551 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 552 ExportDirectory(nullptr), BaseRelocHeader(nullptr), 553 BaseRelocEnd(nullptr) { 554 // Check that we at least have enough room for a header. 555 if (!checkSize(Data, EC, sizeof(coff_file_header))) 556 return; 557 558 // The current location in the file where we are looking at. 559 uint64_t CurPtr = 0; 560 561 // PE header is optional and is present only in executables. If it exists, 562 // it is placed right after COFF header. 563 bool HasPEHeader = false; 564 565 // Check if this is a PE/COFF file. 566 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 567 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 568 // PE signature to find 'normal' COFF header. 569 const auto *DH = reinterpret_cast<const dos_header *>(base()); 570 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 571 CurPtr = DH->AddressOfNewExeHeader; 572 // Check the PE magic bytes. ("PE\0\0") 573 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 574 EC = object_error::parse_failed; 575 return; 576 } 577 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 578 HasPEHeader = true; 579 } 580 } 581 582 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 583 return; 584 585 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 586 // import libraries share a common prefix but bigobj is more restrictive. 587 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 588 COFFHeader->NumberOfSections == uint16_t(0xffff) && 589 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 590 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 591 return; 592 593 // Verify that we are dealing with bigobj. 594 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 595 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 596 sizeof(COFF::BigObjMagic)) == 0) { 597 COFFHeader = nullptr; 598 CurPtr += sizeof(coff_bigobj_file_header); 599 } else { 600 // It's not a bigobj. 601 COFFBigObjHeader = nullptr; 602 } 603 } 604 if (COFFHeader) { 605 // The prior checkSize call may have failed. This isn't a hard error 606 // because we were just trying to sniff out bigobj. 607 EC = object_error::success; 608 CurPtr += sizeof(coff_file_header); 609 610 if (COFFHeader->isImportLibrary()) 611 return; 612 } 613 614 if (HasPEHeader) { 615 const pe32_header *Header; 616 if ((EC = getObject(Header, Data, base() + CurPtr))) 617 return; 618 619 const uint8_t *DataDirAddr; 620 uint64_t DataDirSize; 621 if (Header->Magic == COFF::PE32Header::PE32) { 622 PE32Header = Header; 623 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 624 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 625 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 626 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 627 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 628 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 629 } else { 630 // It's neither PE32 nor PE32+. 631 EC = object_error::parse_failed; 632 return; 633 } 634 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 635 return; 636 CurPtr += COFFHeader->SizeOfOptionalHeader; 637 } 638 639 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 640 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 641 return; 642 643 // Initialize the pointer to the symbol table. 644 if (getPointerToSymbolTable() != 0) { 645 if ((EC = initSymbolTablePtr())) 646 return; 647 } else { 648 // We had better not have any symbols if we don't have a symbol table. 649 if (getNumberOfSymbols() != 0) { 650 EC = object_error::parse_failed; 651 return; 652 } 653 } 654 655 // Initialize the pointer to the beginning of the import table. 656 if ((EC = initImportTablePtr())) 657 return; 658 if ((EC = initDelayImportTablePtr())) 659 return; 660 661 // Initialize the pointer to the export table. 662 if ((EC = initExportTablePtr())) 663 return; 664 665 // Initialize the pointer to the base relocation table. 666 if ((EC = initBaseRelocPtr())) 667 return; 668 669 EC = object_error::success; 670 } 671 672 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 673 DataRefImpl Ret; 674 Ret.p = getSymbolTable(); 675 return basic_symbol_iterator(SymbolRef(Ret, this)); 676 } 677 678 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 679 // The symbol table ends where the string table begins. 680 DataRefImpl Ret; 681 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 682 return basic_symbol_iterator(SymbolRef(Ret, this)); 683 } 684 685 import_directory_iterator COFFObjectFile::import_directory_begin() const { 686 return import_directory_iterator( 687 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 688 } 689 690 import_directory_iterator COFFObjectFile::import_directory_end() const { 691 return import_directory_iterator( 692 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); 693 } 694 695 delay_import_directory_iterator 696 COFFObjectFile::delay_import_directory_begin() const { 697 return delay_import_directory_iterator( 698 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 699 } 700 701 delay_import_directory_iterator 702 COFFObjectFile::delay_import_directory_end() const { 703 return delay_import_directory_iterator( 704 DelayImportDirectoryEntryRef( 705 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 706 } 707 708 export_directory_iterator COFFObjectFile::export_directory_begin() const { 709 return export_directory_iterator( 710 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 711 } 712 713 export_directory_iterator COFFObjectFile::export_directory_end() const { 714 if (!ExportDirectory) 715 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 716 ExportDirectoryEntryRef Ref(ExportDirectory, 717 ExportDirectory->AddressTableEntries, this); 718 return export_directory_iterator(Ref); 719 } 720 721 section_iterator COFFObjectFile::section_begin() const { 722 DataRefImpl Ret; 723 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 724 return section_iterator(SectionRef(Ret, this)); 725 } 726 727 section_iterator COFFObjectFile::section_end() const { 728 DataRefImpl Ret; 729 int NumSections = 730 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 731 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 732 return section_iterator(SectionRef(Ret, this)); 733 } 734 735 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 736 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 737 } 738 739 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 740 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 741 } 742 743 uint8_t COFFObjectFile::getBytesInAddress() const { 744 return getArch() == Triple::x86_64 ? 8 : 4; 745 } 746 747 StringRef COFFObjectFile::getFileFormatName() const { 748 switch(getMachine()) { 749 case COFF::IMAGE_FILE_MACHINE_I386: 750 return "COFF-i386"; 751 case COFF::IMAGE_FILE_MACHINE_AMD64: 752 return "COFF-x86-64"; 753 case COFF::IMAGE_FILE_MACHINE_ARMNT: 754 return "COFF-ARM"; 755 default: 756 return "COFF-<unknown arch>"; 757 } 758 } 759 760 unsigned COFFObjectFile::getArch() const { 761 switch (getMachine()) { 762 case COFF::IMAGE_FILE_MACHINE_I386: 763 return Triple::x86; 764 case COFF::IMAGE_FILE_MACHINE_AMD64: 765 return Triple::x86_64; 766 case COFF::IMAGE_FILE_MACHINE_ARMNT: 767 return Triple::thumb; 768 default: 769 return Triple::UnknownArch; 770 } 771 } 772 773 iterator_range<import_directory_iterator> 774 COFFObjectFile::import_directories() const { 775 return make_range(import_directory_begin(), import_directory_end()); 776 } 777 778 iterator_range<delay_import_directory_iterator> 779 COFFObjectFile::delay_import_directories() const { 780 return make_range(delay_import_directory_begin(), 781 delay_import_directory_end()); 782 } 783 784 iterator_range<export_directory_iterator> 785 COFFObjectFile::export_directories() const { 786 return make_range(export_directory_begin(), export_directory_end()); 787 } 788 789 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 790 return make_range(base_reloc_begin(), base_reloc_end()); 791 } 792 793 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 794 Res = PE32Header; 795 return object_error::success; 796 } 797 798 std::error_code 799 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 800 Res = PE32PlusHeader; 801 return object_error::success; 802 } 803 804 std::error_code 805 COFFObjectFile::getDataDirectory(uint32_t Index, 806 const data_directory *&Res) const { 807 // Error if if there's no data directory or the index is out of range. 808 if (!DataDirectory) { 809 Res = nullptr; 810 return object_error::parse_failed; 811 } 812 assert(PE32Header || PE32PlusHeader); 813 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 814 : PE32PlusHeader->NumberOfRvaAndSize; 815 if (Index >= NumEnt) { 816 Res = nullptr; 817 return object_error::parse_failed; 818 } 819 Res = &DataDirectory[Index]; 820 return object_error::success; 821 } 822 823 std::error_code COFFObjectFile::getSection(int32_t Index, 824 const coff_section *&Result) const { 825 Result = nullptr; 826 if (COFF::isReservedSectionNumber(Index)) 827 return object_error::success; 828 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 829 // We already verified the section table data, so no need to check again. 830 Result = SectionTable + (Index - 1); 831 return object_error::success; 832 } 833 return object_error::parse_failed; 834 } 835 836 std::error_code COFFObjectFile::getString(uint32_t Offset, 837 StringRef &Result) const { 838 if (StringTableSize <= 4) 839 // Tried to get a string from an empty string table. 840 return object_error::parse_failed; 841 if (Offset >= StringTableSize) 842 return object_error::unexpected_eof; 843 Result = StringRef(StringTable + Offset); 844 return object_error::success; 845 } 846 847 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 848 StringRef &Res) const { 849 // Check for string table entry. First 4 bytes are 0. 850 if (Symbol.getStringTableOffset().Zeroes == 0) { 851 uint32_t Offset = Symbol.getStringTableOffset().Offset; 852 if (std::error_code EC = getString(Offset, Res)) 853 return EC; 854 return object_error::success; 855 } 856 857 if (Symbol.getShortName()[COFF::NameSize - 1] == 0) 858 // Null terminated, let ::strlen figure out the length. 859 Res = StringRef(Symbol.getShortName()); 860 else 861 // Not null terminated, use all 8 bytes. 862 Res = StringRef(Symbol.getShortName(), COFF::NameSize); 863 return object_error::success; 864 } 865 866 ArrayRef<uint8_t> 867 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 868 const uint8_t *Aux = nullptr; 869 870 size_t SymbolSize = getSymbolTableEntrySize(); 871 if (Symbol.getNumberOfAuxSymbols() > 0) { 872 // AUX data comes immediately after the symbol in COFF 873 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 874 # ifndef NDEBUG 875 // Verify that the Aux symbol points to a valid entry in the symbol table. 876 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 877 if (Offset < getPointerToSymbolTable() || 878 Offset >= 879 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 880 report_fatal_error("Aux Symbol data was outside of symbol table."); 881 882 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 883 "Aux Symbol data did not point to the beginning of a symbol"); 884 # endif 885 } 886 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 887 } 888 889 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 890 StringRef &Res) const { 891 StringRef Name; 892 if (Sec->Name[COFF::NameSize - 1] == 0) 893 // Null terminated, let ::strlen figure out the length. 894 Name = Sec->Name; 895 else 896 // Not null terminated, use all 8 bytes. 897 Name = StringRef(Sec->Name, COFF::NameSize); 898 899 // Check for string table entry. First byte is '/'. 900 if (Name.startswith("/")) { 901 uint32_t Offset; 902 if (Name.startswith("//")) { 903 if (decodeBase64StringEntry(Name.substr(2), Offset)) 904 return object_error::parse_failed; 905 } else { 906 if (Name.substr(1).getAsInteger(10, Offset)) 907 return object_error::parse_failed; 908 } 909 if (std::error_code EC = getString(Offset, Name)) 910 return EC; 911 } 912 913 Res = Name; 914 return object_error::success; 915 } 916 917 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 918 // SizeOfRawData and VirtualSize change what they represent depending on 919 // whether or not we have an executable image. 920 // 921 // For object files, SizeOfRawData contains the size of section's data; 922 // VirtualSize is always zero. 923 // 924 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 925 // actual section size is in VirtualSize. It is possible for VirtualSize to 926 // be greater than SizeOfRawData; the contents past that point should be 927 // considered to be zero. 928 uint32_t SectionSize; 929 if (Sec->VirtualSize) 930 SectionSize = std::min(Sec->VirtualSize, Sec->SizeOfRawData); 931 else 932 SectionSize = Sec->SizeOfRawData; 933 934 return SectionSize; 935 } 936 937 std::error_code 938 COFFObjectFile::getSectionContents(const coff_section *Sec, 939 ArrayRef<uint8_t> &Res) const { 940 // PointerToRawData and SizeOfRawData won't make sense for BSS sections, 941 // don't do anything interesting for them. 942 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && 943 "BSS sections don't have contents!"); 944 // The only thing that we need to verify is that the contents is contained 945 // within the file bounds. We don't need to make sure it doesn't cover other 946 // data, as there's nothing that says that is not allowed. 947 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 948 uint32_t SectionSize = getSectionSize(Sec); 949 if (checkOffset(Data, ConStart, SectionSize)) 950 return object_error::parse_failed; 951 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 952 return object_error::success; 953 } 954 955 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 956 return reinterpret_cast<const coff_relocation*>(Rel.p); 957 } 958 959 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 960 Rel.p = reinterpret_cast<uintptr_t>( 961 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 962 } 963 964 std::error_code COFFObjectFile::getRelocationAddress(DataRefImpl Rel, 965 uint64_t &Res) const { 966 report_fatal_error("getRelocationAddress not implemented in COFFObjectFile"); 967 } 968 969 std::error_code COFFObjectFile::getRelocationOffset(DataRefImpl Rel, 970 uint64_t &Res) const { 971 const coff_relocation *R = toRel(Rel); 972 const support::ulittle32_t *VirtualAddressPtr; 973 if (std::error_code EC = 974 getObject(VirtualAddressPtr, Data, &R->VirtualAddress)) 975 return EC; 976 Res = *VirtualAddressPtr; 977 return object_error::success; 978 } 979 980 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 981 const coff_relocation *R = toRel(Rel); 982 DataRefImpl Ref; 983 if (R->SymbolTableIndex >= getNumberOfSymbols()) 984 return symbol_end(); 985 if (SymbolTable16) 986 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 987 else if (SymbolTable32) 988 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 989 else 990 llvm_unreachable("no symbol table pointer!"); 991 return symbol_iterator(SymbolRef(Ref, this)); 992 } 993 994 section_iterator COFFObjectFile::getRelocationSection(DataRefImpl Rel) const { 995 symbol_iterator Sym = getRelocationSymbol(Rel); 996 if (Sym == symbol_end()) 997 return section_end(); 998 COFFSymbolRef Symb = getCOFFSymbol(*Sym); 999 if (!Symb.isSection()) 1000 return section_end(); 1001 section_iterator Res(section_end()); 1002 if (getSymbolSection(Sym->getRawDataRefImpl(),Res)) 1003 return section_end(); 1004 return Res; 1005 } 1006 1007 std::error_code COFFObjectFile::getRelocationType(DataRefImpl Rel, 1008 uint64_t &Res) const { 1009 const coff_relocation* R = toRel(Rel); 1010 Res = R->Type; 1011 return object_error::success; 1012 } 1013 1014 const coff_section * 1015 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1016 return toSec(Section.getRawDataRefImpl()); 1017 } 1018 1019 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1020 if (SymbolTable16) 1021 return toSymb<coff_symbol16>(Ref); 1022 if (SymbolTable32) 1023 return toSymb<coff_symbol32>(Ref); 1024 llvm_unreachable("no symbol table pointer!"); 1025 } 1026 1027 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1028 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1029 } 1030 1031 const coff_relocation * 1032 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1033 return toRel(Reloc.getRawDataRefImpl()); 1034 } 1035 1036 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1037 case COFF::reloc_type: \ 1038 Res = #reloc_type; \ 1039 break; 1040 1041 std::error_code 1042 COFFObjectFile::getRelocationTypeName(DataRefImpl Rel, 1043 SmallVectorImpl<char> &Result) const { 1044 const coff_relocation *Reloc = toRel(Rel); 1045 StringRef Res; 1046 switch (getMachine()) { 1047 case COFF::IMAGE_FILE_MACHINE_AMD64: 1048 switch (Reloc->Type) { 1049 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1050 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1051 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1052 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1053 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1054 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1055 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1056 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1057 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1058 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1059 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1060 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1061 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1062 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1063 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1064 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1065 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1066 default: 1067 Res = "Unknown"; 1068 } 1069 break; 1070 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1071 switch (Reloc->Type) { 1072 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1073 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1074 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1075 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1076 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1077 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1078 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1079 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1080 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1081 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1082 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1083 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1084 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1085 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1086 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1087 default: 1088 Res = "Unknown"; 1089 } 1090 break; 1091 case COFF::IMAGE_FILE_MACHINE_I386: 1092 switch (Reloc->Type) { 1093 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1094 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1095 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1096 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1097 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1098 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1099 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1100 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1101 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1102 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1103 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1104 default: 1105 Res = "Unknown"; 1106 } 1107 break; 1108 default: 1109 Res = "Unknown"; 1110 } 1111 Result.append(Res.begin(), Res.end()); 1112 return object_error::success; 1113 } 1114 1115 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1116 1117 std::error_code 1118 COFFObjectFile::getRelocationValueString(DataRefImpl Rel, 1119 SmallVectorImpl<char> &Result) const { 1120 const coff_relocation *Reloc = toRel(Rel); 1121 DataRefImpl Sym; 1122 ErrorOr<COFFSymbolRef> Symb = getSymbol(Reloc->SymbolTableIndex); 1123 if (std::error_code EC = Symb.getError()) 1124 return EC; 1125 Sym.p = reinterpret_cast<uintptr_t>(Symb->getRawPtr()); 1126 StringRef SymName; 1127 if (std::error_code EC = getSymbolName(Sym, SymName)) 1128 return EC; 1129 Result.append(SymName.begin(), SymName.end()); 1130 return object_error::success; 1131 } 1132 1133 bool COFFObjectFile::isRelocatableObject() const { 1134 return !DataDirectory; 1135 } 1136 1137 bool ImportDirectoryEntryRef:: 1138 operator==(const ImportDirectoryEntryRef &Other) const { 1139 return ImportTable == Other.ImportTable && Index == Other.Index; 1140 } 1141 1142 void ImportDirectoryEntryRef::moveNext() { 1143 ++Index; 1144 } 1145 1146 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1147 const import_directory_table_entry *&Result) const { 1148 Result = ImportTable + Index; 1149 return object_error::success; 1150 } 1151 1152 static imported_symbol_iterator 1153 makeImportedSymbolIterator(const COFFObjectFile *Object, 1154 uintptr_t Ptr, int Index) { 1155 if (Object->getBytesInAddress() == 4) { 1156 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1157 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1158 } 1159 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1160 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1161 } 1162 1163 static imported_symbol_iterator 1164 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1165 uintptr_t IntPtr = 0; 1166 Object->getRvaPtr(RVA, IntPtr); 1167 return makeImportedSymbolIterator(Object, IntPtr, 0); 1168 } 1169 1170 static imported_symbol_iterator 1171 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1172 uintptr_t IntPtr = 0; 1173 Object->getRvaPtr(RVA, IntPtr); 1174 // Forward the pointer to the last entry which is null. 1175 int Index = 0; 1176 if (Object->getBytesInAddress() == 4) { 1177 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1178 while (*Entry++) 1179 ++Index; 1180 } else { 1181 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1182 while (*Entry++) 1183 ++Index; 1184 } 1185 return makeImportedSymbolIterator(Object, IntPtr, Index); 1186 } 1187 1188 imported_symbol_iterator 1189 ImportDirectoryEntryRef::imported_symbol_begin() const { 1190 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1191 OwningObject); 1192 } 1193 1194 imported_symbol_iterator 1195 ImportDirectoryEntryRef::imported_symbol_end() const { 1196 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1197 OwningObject); 1198 } 1199 1200 iterator_range<imported_symbol_iterator> 1201 ImportDirectoryEntryRef::imported_symbols() const { 1202 return make_range(imported_symbol_begin(), imported_symbol_end()); 1203 } 1204 1205 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1206 uintptr_t IntPtr = 0; 1207 if (std::error_code EC = 1208 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1209 return EC; 1210 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1211 return object_error::success; 1212 } 1213 1214 std::error_code 1215 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1216 Result = ImportTable[Index].ImportLookupTableRVA; 1217 return object_error::success; 1218 } 1219 1220 std::error_code 1221 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1222 Result = ImportTable[Index].ImportAddressTableRVA; 1223 return object_error::success; 1224 } 1225 1226 std::error_code ImportDirectoryEntryRef::getImportLookupEntry( 1227 const import_lookup_table_entry32 *&Result) const { 1228 uintptr_t IntPtr = 0; 1229 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; 1230 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1231 return EC; 1232 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr); 1233 return object_error::success; 1234 } 1235 1236 bool DelayImportDirectoryEntryRef:: 1237 operator==(const DelayImportDirectoryEntryRef &Other) const { 1238 return Table == Other.Table && Index == Other.Index; 1239 } 1240 1241 void DelayImportDirectoryEntryRef::moveNext() { 1242 ++Index; 1243 } 1244 1245 imported_symbol_iterator 1246 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1247 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1248 OwningObject); 1249 } 1250 1251 imported_symbol_iterator 1252 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1253 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1254 OwningObject); 1255 } 1256 1257 iterator_range<imported_symbol_iterator> 1258 DelayImportDirectoryEntryRef::imported_symbols() const { 1259 return make_range(imported_symbol_begin(), imported_symbol_end()); 1260 } 1261 1262 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1263 uintptr_t IntPtr = 0; 1264 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1265 return EC; 1266 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1267 return object_error::success; 1268 } 1269 1270 std::error_code DelayImportDirectoryEntryRef:: 1271 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1272 Result = Table; 1273 return object_error::success; 1274 } 1275 1276 std::error_code DelayImportDirectoryEntryRef:: 1277 getImportAddress(int AddrIndex, uint64_t &Result) const { 1278 uint32_t RVA = Table[Index].DelayImportAddressTable + 1279 AddrIndex * (OwningObject->is64() ? 8 : 4); 1280 uintptr_t IntPtr = 0; 1281 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1282 return EC; 1283 if (OwningObject->is64()) 1284 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1285 else 1286 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1287 return object_error::success; 1288 } 1289 1290 bool ExportDirectoryEntryRef:: 1291 operator==(const ExportDirectoryEntryRef &Other) const { 1292 return ExportTable == Other.ExportTable && Index == Other.Index; 1293 } 1294 1295 void ExportDirectoryEntryRef::moveNext() { 1296 ++Index; 1297 } 1298 1299 // Returns the name of the current export symbol. If the symbol is exported only 1300 // by ordinal, the empty string is set as a result. 1301 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1302 uintptr_t IntPtr = 0; 1303 if (std::error_code EC = 1304 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1305 return EC; 1306 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1307 return object_error::success; 1308 } 1309 1310 // Returns the starting ordinal number. 1311 std::error_code 1312 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1313 Result = ExportTable->OrdinalBase; 1314 return object_error::success; 1315 } 1316 1317 // Returns the export ordinal of the current export symbol. 1318 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1319 Result = ExportTable->OrdinalBase + Index; 1320 return object_error::success; 1321 } 1322 1323 // Returns the address of the current export symbol. 1324 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1325 uintptr_t IntPtr = 0; 1326 if (std::error_code EC = 1327 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1328 return EC; 1329 const export_address_table_entry *entry = 1330 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1331 Result = entry[Index].ExportRVA; 1332 return object_error::success; 1333 } 1334 1335 // Returns the name of the current export symbol. If the symbol is exported only 1336 // by ordinal, the empty string is set as a result. 1337 std::error_code 1338 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1339 uintptr_t IntPtr = 0; 1340 if (std::error_code EC = 1341 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1342 return EC; 1343 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1344 1345 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1346 int Offset = 0; 1347 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1348 I < E; ++I, ++Offset) { 1349 if (*I != Index) 1350 continue; 1351 if (std::error_code EC = 1352 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1353 return EC; 1354 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1355 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1356 return EC; 1357 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1358 return object_error::success; 1359 } 1360 Result = ""; 1361 return object_error::success; 1362 } 1363 1364 bool ImportedSymbolRef:: 1365 operator==(const ImportedSymbolRef &Other) const { 1366 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1367 && Index == Other.Index; 1368 } 1369 1370 void ImportedSymbolRef::moveNext() { 1371 ++Index; 1372 } 1373 1374 std::error_code 1375 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1376 uint32_t RVA; 1377 if (Entry32) { 1378 // If a symbol is imported only by ordinal, it has no name. 1379 if (Entry32[Index].isOrdinal()) 1380 return object_error::success; 1381 RVA = Entry32[Index].getHintNameRVA(); 1382 } else { 1383 if (Entry64[Index].isOrdinal()) 1384 return object_error::success; 1385 RVA = Entry64[Index].getHintNameRVA(); 1386 } 1387 uintptr_t IntPtr = 0; 1388 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1389 return EC; 1390 // +2 because the first two bytes is hint. 1391 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1392 return object_error::success; 1393 } 1394 1395 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1396 uint32_t RVA; 1397 if (Entry32) { 1398 if (Entry32[Index].isOrdinal()) { 1399 Result = Entry32[Index].getOrdinal(); 1400 return object_error::success; 1401 } 1402 RVA = Entry32[Index].getHintNameRVA(); 1403 } else { 1404 if (Entry64[Index].isOrdinal()) { 1405 Result = Entry64[Index].getOrdinal(); 1406 return object_error::success; 1407 } 1408 RVA = Entry64[Index].getHintNameRVA(); 1409 } 1410 uintptr_t IntPtr = 0; 1411 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1412 return EC; 1413 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1414 return object_error::success; 1415 } 1416 1417 ErrorOr<std::unique_ptr<COFFObjectFile>> 1418 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1419 std::error_code EC; 1420 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1421 if (EC) 1422 return EC; 1423 return std::move(Ret); 1424 } 1425 1426 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1427 return Header == Other.Header && Index == Other.Index; 1428 } 1429 1430 void BaseRelocRef::moveNext() { 1431 // Header->BlockSize is the size of the current block, including the 1432 // size of the header itself. 1433 uint32_t Size = sizeof(*Header) + 1434 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1435 if (Size == Header->BlockSize) { 1436 // .reloc contains a list of base relocation blocks. Each block 1437 // consists of the header followed by entries. The header contains 1438 // how many entories will follow. When we reach the end of the 1439 // current block, proceed to the next block. 1440 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1441 reinterpret_cast<const uint8_t *>(Header) + Size); 1442 Index = 0; 1443 } else { 1444 ++Index; 1445 } 1446 } 1447 1448 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1449 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1450 Type = Entry[Index].getType(); 1451 return object_error::success; 1452 } 1453 1454 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1455 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1456 Result = Header->PageRVA + Entry[Index].getOffset(); 1457 return object_error::success; 1458 } 1459