1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the COFFObjectFile class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/StringSwitch.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/ADT/iterator_range.h" 18 #include "llvm/BinaryFormat/COFF.h" 19 #include "llvm/Object/Binary.h" 20 #include "llvm/Object/COFF.h" 21 #include "llvm/Object/Error.h" 22 #include "llvm/Object/ObjectFile.h" 23 #include "llvm/Support/BinaryStreamReader.h" 24 #include "llvm/Support/Endian.h" 25 #include "llvm/Support/Error.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cstddef> 32 #include <cstdint> 33 #include <cstring> 34 #include <limits> 35 #include <memory> 36 #include <system_error> 37 38 using namespace llvm; 39 using namespace object; 40 41 using support::ulittle16_t; 42 using support::ulittle32_t; 43 using support::ulittle64_t; 44 using support::little16_t; 45 46 // Returns false if size is greater than the buffer size. And sets ec. 47 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 48 if (M.getBufferSize() < Size) { 49 EC = object_error::unexpected_eof; 50 return false; 51 } 52 return true; 53 } 54 55 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 56 // Returns unexpected_eof if error. 57 template <typename T> 58 static Error getObject(const T *&Obj, MemoryBufferRef M, const void *Ptr, 59 const uint64_t Size = sizeof(T)) { 60 uintptr_t Addr = uintptr_t(Ptr); 61 if (Error E = Binary::checkOffset(M, Addr, Size)) 62 return E; 63 Obj = reinterpret_cast<const T *>(Addr); 64 return Error::success(); 65 } 66 67 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 68 // prefixed slashes. 69 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 70 assert(Str.size() <= 6 && "String too long, possible overflow."); 71 if (Str.size() > 6) 72 return true; 73 74 uint64_t Value = 0; 75 while (!Str.empty()) { 76 unsigned CharVal; 77 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 78 CharVal = Str[0] - 'A'; 79 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 80 CharVal = Str[0] - 'a' + 26; 81 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 82 CharVal = Str[0] - '0' + 52; 83 else if (Str[0] == '+') // 62 84 CharVal = 62; 85 else if (Str[0] == '/') // 63 86 CharVal = 63; 87 else 88 return true; 89 90 Value = (Value * 64) + CharVal; 91 Str = Str.substr(1); 92 } 93 94 if (Value > std::numeric_limits<uint32_t>::max()) 95 return true; 96 97 Result = static_cast<uint32_t>(Value); 98 return false; 99 } 100 101 template <typename coff_symbol_type> 102 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 103 const coff_symbol_type *Addr = 104 reinterpret_cast<const coff_symbol_type *>(Ref.p); 105 106 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 107 #ifndef NDEBUG 108 // Verify that the symbol points to a valid entry in the symbol table. 109 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 110 111 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 112 "Symbol did not point to the beginning of a symbol"); 113 #endif 114 115 return Addr; 116 } 117 118 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 119 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 120 121 #ifndef NDEBUG 122 // Verify that the section points to a valid entry in the section table. 123 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 124 report_fatal_error("Section was outside of section table."); 125 126 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 127 assert(Offset % sizeof(coff_section) == 0 && 128 "Section did not point to the beginning of a section"); 129 #endif 130 131 return Addr; 132 } 133 134 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 135 auto End = reinterpret_cast<uintptr_t>(StringTable); 136 if (SymbolTable16) { 137 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 138 Symb += 1 + Symb->NumberOfAuxSymbols; 139 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 140 } else if (SymbolTable32) { 141 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 142 Symb += 1 + Symb->NumberOfAuxSymbols; 143 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 144 } else { 145 llvm_unreachable("no symbol table pointer!"); 146 } 147 } 148 149 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 150 return getSymbolName(getCOFFSymbol(Ref)); 151 } 152 153 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 154 return getCOFFSymbol(Ref).getValue(); 155 } 156 157 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const { 158 // MSVC/link.exe seems to align symbols to the next-power-of-2 159 // up to 32 bytes. 160 COFFSymbolRef Symb = getCOFFSymbol(Ref); 161 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue())); 162 } 163 164 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 165 uint64_t Result = cantFail(getSymbolValue(Ref)); 166 COFFSymbolRef Symb = getCOFFSymbol(Ref); 167 int32_t SectionNumber = Symb.getSectionNumber(); 168 169 if (Symb.isAnyUndefined() || Symb.isCommon() || 170 COFF::isReservedSectionNumber(SectionNumber)) 171 return Result; 172 173 Expected<const coff_section *> Section = getSection(SectionNumber); 174 if (!Section) 175 return Section.takeError(); 176 Result += (*Section)->VirtualAddress; 177 178 // The section VirtualAddress does not include ImageBase, and we want to 179 // return virtual addresses. 180 Result += getImageBase(); 181 182 return Result; 183 } 184 185 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 186 COFFSymbolRef Symb = getCOFFSymbol(Ref); 187 int32_t SectionNumber = Symb.getSectionNumber(); 188 189 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 190 return SymbolRef::ST_Function; 191 if (Symb.isAnyUndefined()) 192 return SymbolRef::ST_Unknown; 193 if (Symb.isCommon()) 194 return SymbolRef::ST_Data; 195 if (Symb.isFileRecord()) 196 return SymbolRef::ST_File; 197 198 // TODO: perhaps we need a new symbol type ST_Section. 199 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 200 return SymbolRef::ST_Debug; 201 202 if (!COFF::isReservedSectionNumber(SectionNumber)) 203 return SymbolRef::ST_Data; 204 205 return SymbolRef::ST_Other; 206 } 207 208 Expected<uint32_t> COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 209 COFFSymbolRef Symb = getCOFFSymbol(Ref); 210 uint32_t Result = SymbolRef::SF_None; 211 212 if (Symb.isExternal() || Symb.isWeakExternal()) 213 Result |= SymbolRef::SF_Global; 214 215 if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) { 216 Result |= SymbolRef::SF_Weak; 217 if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS) 218 Result |= SymbolRef::SF_Undefined; 219 } 220 221 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 222 Result |= SymbolRef::SF_Absolute; 223 224 if (Symb.isFileRecord()) 225 Result |= SymbolRef::SF_FormatSpecific; 226 227 if (Symb.isSectionDefinition()) 228 Result |= SymbolRef::SF_FormatSpecific; 229 230 if (Symb.isCommon()) 231 Result |= SymbolRef::SF_Common; 232 233 if (Symb.isUndefined()) 234 Result |= SymbolRef::SF_Undefined; 235 236 return Result; 237 } 238 239 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 240 COFFSymbolRef Symb = getCOFFSymbol(Ref); 241 return Symb.getValue(); 242 } 243 244 Expected<section_iterator> 245 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 246 COFFSymbolRef Symb = getCOFFSymbol(Ref); 247 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 248 return section_end(); 249 Expected<const coff_section *> Sec = getSection(Symb.getSectionNumber()); 250 if (!Sec) 251 return Sec.takeError(); 252 DataRefImpl Ret; 253 Ret.p = reinterpret_cast<uintptr_t>(*Sec); 254 return section_iterator(SectionRef(Ret, this)); 255 } 256 257 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 258 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 259 return Symb.getSectionNumber(); 260 } 261 262 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 263 const coff_section *Sec = toSec(Ref); 264 Sec += 1; 265 Ref.p = reinterpret_cast<uintptr_t>(Sec); 266 } 267 268 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const { 269 const coff_section *Sec = toSec(Ref); 270 return getSectionName(Sec); 271 } 272 273 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 274 const coff_section *Sec = toSec(Ref); 275 uint64_t Result = Sec->VirtualAddress; 276 277 // The section VirtualAddress does not include ImageBase, and we want to 278 // return virtual addresses. 279 Result += getImageBase(); 280 return Result; 281 } 282 283 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const { 284 return toSec(Sec) - SectionTable; 285 } 286 287 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 288 return getSectionSize(toSec(Ref)); 289 } 290 291 Expected<ArrayRef<uint8_t>> 292 COFFObjectFile::getSectionContents(DataRefImpl Ref) const { 293 const coff_section *Sec = toSec(Ref); 294 ArrayRef<uint8_t> Res; 295 if (Error E = getSectionContents(Sec, Res)) 296 return std::move(E); 297 return Res; 298 } 299 300 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 301 const coff_section *Sec = toSec(Ref); 302 return Sec->getAlignment(); 303 } 304 305 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 306 return false; 307 } 308 309 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 310 const coff_section *Sec = toSec(Ref); 311 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 312 } 313 314 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 315 const coff_section *Sec = toSec(Ref); 316 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 317 } 318 319 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 320 const coff_section *Sec = toSec(Ref); 321 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 322 COFF::IMAGE_SCN_MEM_READ | 323 COFF::IMAGE_SCN_MEM_WRITE; 324 return (Sec->Characteristics & BssFlags) == BssFlags; 325 } 326 327 // The .debug sections are the only debug sections for COFF 328 // (\see MCObjectFileInfo.cpp). 329 bool COFFObjectFile::isDebugSection(StringRef SectionName) const { 330 return SectionName.startswith(".debug"); 331 } 332 333 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 334 uintptr_t Offset = 335 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 336 assert((Offset % sizeof(coff_section)) == 0); 337 return (Offset / sizeof(coff_section)) + 1; 338 } 339 340 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 341 const coff_section *Sec = toSec(Ref); 342 // In COFF, a virtual section won't have any in-file 343 // content, so the file pointer to the content will be zero. 344 return Sec->PointerToRawData == 0; 345 } 346 347 static uint32_t getNumberOfRelocations(const coff_section *Sec, 348 MemoryBufferRef M, const uint8_t *base) { 349 // The field for the number of relocations in COFF section table is only 350 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 351 // NumberOfRelocations field, and the actual relocation count is stored in the 352 // VirtualAddress field in the first relocation entry. 353 if (Sec->hasExtendedRelocations()) { 354 const coff_relocation *FirstReloc; 355 if (Error E = getObject(FirstReloc, M, 356 reinterpret_cast<const coff_relocation *>( 357 base + Sec->PointerToRelocations))) { 358 consumeError(std::move(E)); 359 return 0; 360 } 361 // -1 to exclude this first relocation entry. 362 return FirstReloc->VirtualAddress - 1; 363 } 364 return Sec->NumberOfRelocations; 365 } 366 367 static const coff_relocation * 368 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 369 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 370 if (!NumRelocs) 371 return nullptr; 372 auto begin = reinterpret_cast<const coff_relocation *>( 373 Base + Sec->PointerToRelocations); 374 if (Sec->hasExtendedRelocations()) { 375 // Skip the first relocation entry repurposed to store the number of 376 // relocations. 377 begin++; 378 } 379 if (auto E = Binary::checkOffset(M, uintptr_t(begin), 380 sizeof(coff_relocation) * NumRelocs)) { 381 consumeError(std::move(E)); 382 return nullptr; 383 } 384 return begin; 385 } 386 387 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 388 const coff_section *Sec = toSec(Ref); 389 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 390 if (begin && Sec->VirtualAddress != 0) 391 report_fatal_error("Sections with relocations should have an address of 0"); 392 DataRefImpl Ret; 393 Ret.p = reinterpret_cast<uintptr_t>(begin); 394 return relocation_iterator(RelocationRef(Ret, this)); 395 } 396 397 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 398 const coff_section *Sec = toSec(Ref); 399 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 400 if (I) 401 I += getNumberOfRelocations(Sec, Data, base()); 402 DataRefImpl Ret; 403 Ret.p = reinterpret_cast<uintptr_t>(I); 404 return relocation_iterator(RelocationRef(Ret, this)); 405 } 406 407 // Initialize the pointer to the symbol table. 408 Error COFFObjectFile::initSymbolTablePtr() { 409 if (COFFHeader) 410 if (Error E = getObject( 411 SymbolTable16, Data, base() + getPointerToSymbolTable(), 412 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 413 return E; 414 415 if (COFFBigObjHeader) 416 if (Error E = getObject( 417 SymbolTable32, Data, base() + getPointerToSymbolTable(), 418 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 419 return E; 420 421 // Find string table. The first four byte of the string table contains the 422 // total size of the string table, including the size field itself. If the 423 // string table is empty, the value of the first four byte would be 4. 424 uint32_t StringTableOffset = getPointerToSymbolTable() + 425 getNumberOfSymbols() * getSymbolTableEntrySize(); 426 const uint8_t *StringTableAddr = base() + StringTableOffset; 427 const ulittle32_t *StringTableSizePtr; 428 if (Error E = getObject(StringTableSizePtr, Data, StringTableAddr)) 429 return E; 430 StringTableSize = *StringTableSizePtr; 431 if (Error E = getObject(StringTable, Data, StringTableAddr, StringTableSize)) 432 return E; 433 434 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 435 // tools like cvtres write a size of 0 for an empty table instead of 4. 436 if (StringTableSize < 4) 437 StringTableSize = 4; 438 439 // Check that the string table is null terminated if has any in it. 440 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 441 return errorCodeToError(object_error::parse_failed); 442 return Error::success(); 443 } 444 445 uint64_t COFFObjectFile::getImageBase() const { 446 if (PE32Header) 447 return PE32Header->ImageBase; 448 else if (PE32PlusHeader) 449 return PE32PlusHeader->ImageBase; 450 // This actually comes up in practice. 451 return 0; 452 } 453 454 // Returns the file offset for the given VA. 455 Error COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 456 uint64_t ImageBase = getImageBase(); 457 uint64_t Rva = Addr - ImageBase; 458 assert(Rva <= UINT32_MAX); 459 return getRvaPtr((uint32_t)Rva, Res); 460 } 461 462 // Returns the file offset for the given RVA. 463 Error COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 464 for (const SectionRef &S : sections()) { 465 const coff_section *Section = getCOFFSection(S); 466 uint32_t SectionStart = Section->VirtualAddress; 467 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 468 if (SectionStart <= Addr && Addr < SectionEnd) { 469 uint32_t Offset = Addr - SectionStart; 470 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 471 return Error::success(); 472 } 473 } 474 return errorCodeToError(object_error::parse_failed); 475 } 476 477 Error COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 478 ArrayRef<uint8_t> &Contents) const { 479 for (const SectionRef &S : sections()) { 480 const coff_section *Section = getCOFFSection(S); 481 uint32_t SectionStart = Section->VirtualAddress; 482 // Check if this RVA is within the section bounds. Be careful about integer 483 // overflow. 484 uint32_t OffsetIntoSection = RVA - SectionStart; 485 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 486 Size <= Section->VirtualSize - OffsetIntoSection) { 487 uintptr_t Begin = 488 uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection; 489 Contents = 490 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 491 return Error::success(); 492 } 493 } 494 return errorCodeToError(object_error::parse_failed); 495 } 496 497 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 498 // table entry. 499 Error COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 500 StringRef &Name) const { 501 uintptr_t IntPtr = 0; 502 if (Error E = getRvaPtr(Rva, IntPtr)) 503 return E; 504 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 505 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 506 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 507 return Error::success(); 508 } 509 510 Error COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 511 const codeview::DebugInfo *&PDBInfo, 512 StringRef &PDBFileName) const { 513 ArrayRef<uint8_t> InfoBytes; 514 if (Error E = getRvaAndSizeAsBytes( 515 DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes)) 516 return E; 517 if (InfoBytes.size() < sizeof(*PDBInfo) + 1) 518 return errorCodeToError(object_error::parse_failed); 519 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data()); 520 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); 521 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 522 InfoBytes.size()); 523 // Truncate the name at the first null byte. Ignore any padding. 524 PDBFileName = PDBFileName.split('\0').first; 525 return Error::success(); 526 } 527 528 Error COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, 529 StringRef &PDBFileName) const { 530 for (const debug_directory &D : debug_directories()) 531 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 532 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 533 // If we get here, there is no PDB info to return. 534 PDBInfo = nullptr; 535 PDBFileName = StringRef(); 536 return Error::success(); 537 } 538 539 // Find the import table. 540 Error COFFObjectFile::initImportTablePtr() { 541 // First, we get the RVA of the import table. If the file lacks a pointer to 542 // the import table, do nothing. 543 const data_directory *DataEntry = getDataDirectory(COFF::IMPORT_TABLE); 544 if (!DataEntry) 545 return Error::success(); 546 547 // Do nothing if the pointer to import table is NULL. 548 if (DataEntry->RelativeVirtualAddress == 0) 549 return Error::success(); 550 551 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 552 553 // Find the section that contains the RVA. This is needed because the RVA is 554 // the import table's memory address which is different from its file offset. 555 uintptr_t IntPtr = 0; 556 if (Error E = getRvaPtr(ImportTableRva, IntPtr)) 557 return E; 558 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 559 return E; 560 ImportDirectory = reinterpret_cast< 561 const coff_import_directory_table_entry *>(IntPtr); 562 return Error::success(); 563 } 564 565 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 566 Error COFFObjectFile::initDelayImportTablePtr() { 567 const data_directory *DataEntry = 568 getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR); 569 if (!DataEntry) 570 return Error::success(); 571 if (DataEntry->RelativeVirtualAddress == 0) 572 return Error::success(); 573 574 uint32_t RVA = DataEntry->RelativeVirtualAddress; 575 NumberOfDelayImportDirectory = DataEntry->Size / 576 sizeof(delay_import_directory_table_entry) - 1; 577 578 uintptr_t IntPtr = 0; 579 if (Error E = getRvaPtr(RVA, IntPtr)) 580 return E; 581 DelayImportDirectory = reinterpret_cast< 582 const delay_import_directory_table_entry *>(IntPtr); 583 return Error::success(); 584 } 585 586 // Find the export table. 587 Error COFFObjectFile::initExportTablePtr() { 588 // First, we get the RVA of the export table. If the file lacks a pointer to 589 // the export table, do nothing. 590 const data_directory *DataEntry = getDataDirectory(COFF::EXPORT_TABLE); 591 if (!DataEntry) 592 return Error::success(); 593 594 // Do nothing if the pointer to export table is NULL. 595 if (DataEntry->RelativeVirtualAddress == 0) 596 return Error::success(); 597 598 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 599 uintptr_t IntPtr = 0; 600 if (Error E = getRvaPtr(ExportTableRva, IntPtr)) 601 return E; 602 ExportDirectory = 603 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 604 return Error::success(); 605 } 606 607 Error COFFObjectFile::initBaseRelocPtr() { 608 const data_directory *DataEntry = 609 getDataDirectory(COFF::BASE_RELOCATION_TABLE); 610 if (!DataEntry) 611 return Error::success(); 612 if (DataEntry->RelativeVirtualAddress == 0) 613 return Error::success(); 614 615 uintptr_t IntPtr = 0; 616 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 617 return E; 618 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 619 IntPtr); 620 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 621 IntPtr + DataEntry->Size); 622 // FIXME: Verify the section containing BaseRelocHeader has at least 623 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 624 return Error::success(); 625 } 626 627 Error COFFObjectFile::initDebugDirectoryPtr() { 628 // Get the RVA of the debug directory. Do nothing if it does not exist. 629 const data_directory *DataEntry = getDataDirectory(COFF::DEBUG_DIRECTORY); 630 if (!DataEntry) 631 return Error::success(); 632 633 // Do nothing if the RVA is NULL. 634 if (DataEntry->RelativeVirtualAddress == 0) 635 return Error::success(); 636 637 // Check that the size is a multiple of the entry size. 638 if (DataEntry->Size % sizeof(debug_directory) != 0) 639 return errorCodeToError(object_error::parse_failed); 640 641 uintptr_t IntPtr = 0; 642 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 643 return E; 644 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 645 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>( 646 IntPtr + DataEntry->Size); 647 // FIXME: Verify the section containing DebugDirectoryBegin has at least 648 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 649 return Error::success(); 650 } 651 652 Error COFFObjectFile::initTLSDirectoryPtr() { 653 // Get the RVA of the TLS directory. Do nothing if it does not exist. 654 const data_directory *DataEntry = getDataDirectory(COFF::TLS_TABLE); 655 if (!DataEntry) 656 return Error::success(); 657 658 // Do nothing if the RVA is NULL. 659 if (DataEntry->RelativeVirtualAddress == 0) 660 return Error::success(); 661 662 uint64_t DirSize = 663 is64() ? sizeof(coff_tls_directory64) : sizeof(coff_tls_directory32); 664 665 // Check that the size is correct. 666 if (DataEntry->Size != DirSize) 667 return createStringError( 668 object_error::parse_failed, 669 "TLS Directory size (%u) is not the expected size (%u).", 670 static_cast<uint32_t>(DataEntry->Size), DirSize); 671 672 uintptr_t IntPtr = 0; 673 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 674 return E; 675 676 if (is64()) 677 TLSDirectory64 = reinterpret_cast<const coff_tls_directory64 *>(IntPtr); 678 else 679 TLSDirectory32 = reinterpret_cast<const coff_tls_directory32 *>(IntPtr); 680 681 return Error::success(); 682 } 683 684 Error COFFObjectFile::initLoadConfigPtr() { 685 // Get the RVA of the debug directory. Do nothing if it does not exist. 686 const data_directory *DataEntry = getDataDirectory(COFF::LOAD_CONFIG_TABLE); 687 if (!DataEntry) 688 return Error::success(); 689 690 // Do nothing if the RVA is NULL. 691 if (DataEntry->RelativeVirtualAddress == 0) 692 return Error::success(); 693 uintptr_t IntPtr = 0; 694 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 695 return E; 696 697 LoadConfig = (const void *)IntPtr; 698 return Error::success(); 699 } 700 701 Expected<std::unique_ptr<COFFObjectFile>> 702 COFFObjectFile::create(MemoryBufferRef Object) { 703 std::unique_ptr<COFFObjectFile> Obj(new COFFObjectFile(std::move(Object))); 704 if (Error E = Obj->initialize()) 705 return std::move(E); 706 return std::move(Obj); 707 } 708 709 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object) 710 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 711 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 712 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 713 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 714 ImportDirectory(nullptr), DelayImportDirectory(nullptr), 715 NumberOfDelayImportDirectory(0), ExportDirectory(nullptr), 716 BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 717 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr), 718 TLSDirectory32(nullptr), TLSDirectory64(nullptr) {} 719 720 Error COFFObjectFile::initialize() { 721 // Check that we at least have enough room for a header. 722 std::error_code EC; 723 if (!checkSize(Data, EC, sizeof(coff_file_header))) 724 return errorCodeToError(EC); 725 726 // The current location in the file where we are looking at. 727 uint64_t CurPtr = 0; 728 729 // PE header is optional and is present only in executables. If it exists, 730 // it is placed right after COFF header. 731 bool HasPEHeader = false; 732 733 // Check if this is a PE/COFF file. 734 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 735 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 736 // PE signature to find 'normal' COFF header. 737 const auto *DH = reinterpret_cast<const dos_header *>(base()); 738 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 739 CurPtr = DH->AddressOfNewExeHeader; 740 // Check the PE magic bytes. ("PE\0\0") 741 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 742 return errorCodeToError(object_error::parse_failed); 743 } 744 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 745 HasPEHeader = true; 746 } 747 } 748 749 if (Error E = getObject(COFFHeader, Data, base() + CurPtr)) 750 return E; 751 752 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 753 // import libraries share a common prefix but bigobj is more restrictive. 754 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 755 COFFHeader->NumberOfSections == uint16_t(0xffff) && 756 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 757 if (Error E = getObject(COFFBigObjHeader, Data, base() + CurPtr)) 758 return E; 759 760 // Verify that we are dealing with bigobj. 761 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 762 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 763 sizeof(COFF::BigObjMagic)) == 0) { 764 COFFHeader = nullptr; 765 CurPtr += sizeof(coff_bigobj_file_header); 766 } else { 767 // It's not a bigobj. 768 COFFBigObjHeader = nullptr; 769 } 770 } 771 if (COFFHeader) { 772 // The prior checkSize call may have failed. This isn't a hard error 773 // because we were just trying to sniff out bigobj. 774 EC = std::error_code(); 775 CurPtr += sizeof(coff_file_header); 776 777 if (COFFHeader->isImportLibrary()) 778 return errorCodeToError(EC); 779 } 780 781 if (HasPEHeader) { 782 const pe32_header *Header; 783 if (Error E = getObject(Header, Data, base() + CurPtr)) 784 return E; 785 786 const uint8_t *DataDirAddr; 787 uint64_t DataDirSize; 788 if (Header->Magic == COFF::PE32Header::PE32) { 789 PE32Header = Header; 790 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 791 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 792 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 793 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 794 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 795 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 796 } else { 797 // It's neither PE32 nor PE32+. 798 return errorCodeToError(object_error::parse_failed); 799 } 800 if (Error E = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)) 801 return E; 802 } 803 804 if (COFFHeader) 805 CurPtr += COFFHeader->SizeOfOptionalHeader; 806 807 assert(COFFHeader || COFFBigObjHeader); 808 809 if (Error E = 810 getObject(SectionTable, Data, base() + CurPtr, 811 (uint64_t)getNumberOfSections() * sizeof(coff_section))) 812 return E; 813 814 // Initialize the pointer to the symbol table. 815 if (getPointerToSymbolTable() != 0) { 816 if (Error E = initSymbolTablePtr()) { 817 // Recover from errors reading the symbol table. 818 consumeError(std::move(E)); 819 SymbolTable16 = nullptr; 820 SymbolTable32 = nullptr; 821 StringTable = nullptr; 822 StringTableSize = 0; 823 } 824 } else { 825 // We had better not have any symbols if we don't have a symbol table. 826 if (getNumberOfSymbols() != 0) { 827 return errorCodeToError(object_error::parse_failed); 828 } 829 } 830 831 // Initialize the pointer to the beginning of the import table. 832 if (Error E = initImportTablePtr()) 833 return E; 834 if (Error E = initDelayImportTablePtr()) 835 return E; 836 837 // Initialize the pointer to the export table. 838 if (Error E = initExportTablePtr()) 839 return E; 840 841 // Initialize the pointer to the base relocation table. 842 if (Error E = initBaseRelocPtr()) 843 return E; 844 845 // Initialize the pointer to the debug directory. 846 if (Error E = initDebugDirectoryPtr()) 847 return E; 848 849 // Initialize the pointer to the TLS directory. 850 if (Error E = initTLSDirectoryPtr()) 851 return E; 852 853 if (Error E = initLoadConfigPtr()) 854 return E; 855 856 return Error::success(); 857 } 858 859 basic_symbol_iterator COFFObjectFile::symbol_begin() const { 860 DataRefImpl Ret; 861 Ret.p = getSymbolTable(); 862 return basic_symbol_iterator(SymbolRef(Ret, this)); 863 } 864 865 basic_symbol_iterator COFFObjectFile::symbol_end() const { 866 // The symbol table ends where the string table begins. 867 DataRefImpl Ret; 868 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 869 return basic_symbol_iterator(SymbolRef(Ret, this)); 870 } 871 872 import_directory_iterator COFFObjectFile::import_directory_begin() const { 873 if (!ImportDirectory) 874 return import_directory_end(); 875 if (ImportDirectory->isNull()) 876 return import_directory_end(); 877 return import_directory_iterator( 878 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 879 } 880 881 import_directory_iterator COFFObjectFile::import_directory_end() const { 882 return import_directory_iterator( 883 ImportDirectoryEntryRef(nullptr, -1, this)); 884 } 885 886 delay_import_directory_iterator 887 COFFObjectFile::delay_import_directory_begin() const { 888 return delay_import_directory_iterator( 889 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 890 } 891 892 delay_import_directory_iterator 893 COFFObjectFile::delay_import_directory_end() const { 894 return delay_import_directory_iterator( 895 DelayImportDirectoryEntryRef( 896 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 897 } 898 899 export_directory_iterator COFFObjectFile::export_directory_begin() const { 900 return export_directory_iterator( 901 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 902 } 903 904 export_directory_iterator COFFObjectFile::export_directory_end() const { 905 if (!ExportDirectory) 906 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 907 ExportDirectoryEntryRef Ref(ExportDirectory, 908 ExportDirectory->AddressTableEntries, this); 909 return export_directory_iterator(Ref); 910 } 911 912 section_iterator COFFObjectFile::section_begin() const { 913 DataRefImpl Ret; 914 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 915 return section_iterator(SectionRef(Ret, this)); 916 } 917 918 section_iterator COFFObjectFile::section_end() const { 919 DataRefImpl Ret; 920 int NumSections = 921 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 922 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 923 return section_iterator(SectionRef(Ret, this)); 924 } 925 926 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 927 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 928 } 929 930 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 931 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 932 } 933 934 uint8_t COFFObjectFile::getBytesInAddress() const { 935 return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4; 936 } 937 938 StringRef COFFObjectFile::getFileFormatName() const { 939 switch(getMachine()) { 940 case COFF::IMAGE_FILE_MACHINE_I386: 941 return "COFF-i386"; 942 case COFF::IMAGE_FILE_MACHINE_AMD64: 943 return "COFF-x86-64"; 944 case COFF::IMAGE_FILE_MACHINE_ARMNT: 945 return "COFF-ARM"; 946 case COFF::IMAGE_FILE_MACHINE_ARM64: 947 return "COFF-ARM64"; 948 default: 949 return "COFF-<unknown arch>"; 950 } 951 } 952 953 Triple::ArchType COFFObjectFile::getArch() const { 954 switch (getMachine()) { 955 case COFF::IMAGE_FILE_MACHINE_I386: 956 return Triple::x86; 957 case COFF::IMAGE_FILE_MACHINE_AMD64: 958 return Triple::x86_64; 959 case COFF::IMAGE_FILE_MACHINE_ARMNT: 960 return Triple::thumb; 961 case COFF::IMAGE_FILE_MACHINE_ARM64: 962 return Triple::aarch64; 963 default: 964 return Triple::UnknownArch; 965 } 966 } 967 968 Expected<uint64_t> COFFObjectFile::getStartAddress() const { 969 if (PE32Header) 970 return PE32Header->AddressOfEntryPoint; 971 return 0; 972 } 973 974 iterator_range<import_directory_iterator> 975 COFFObjectFile::import_directories() const { 976 return make_range(import_directory_begin(), import_directory_end()); 977 } 978 979 iterator_range<delay_import_directory_iterator> 980 COFFObjectFile::delay_import_directories() const { 981 return make_range(delay_import_directory_begin(), 982 delay_import_directory_end()); 983 } 984 985 iterator_range<export_directory_iterator> 986 COFFObjectFile::export_directories() const { 987 return make_range(export_directory_begin(), export_directory_end()); 988 } 989 990 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 991 return make_range(base_reloc_begin(), base_reloc_end()); 992 } 993 994 const data_directory *COFFObjectFile::getDataDirectory(uint32_t Index) const { 995 if (!DataDirectory) 996 return nullptr; 997 assert(PE32Header || PE32PlusHeader); 998 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 999 : PE32PlusHeader->NumberOfRvaAndSize; 1000 if (Index >= NumEnt) 1001 return nullptr; 1002 return &DataDirectory[Index]; 1003 } 1004 1005 Expected<const coff_section *> COFFObjectFile::getSection(int32_t Index) const { 1006 // Perhaps getting the section of a reserved section index should be an error, 1007 // but callers rely on this to return null. 1008 if (COFF::isReservedSectionNumber(Index)) 1009 return (const coff_section *)nullptr; 1010 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 1011 // We already verified the section table data, so no need to check again. 1012 return SectionTable + (Index - 1); 1013 } 1014 return errorCodeToError(object_error::parse_failed); 1015 } 1016 1017 Expected<StringRef> COFFObjectFile::getString(uint32_t Offset) const { 1018 if (StringTableSize <= 4) 1019 // Tried to get a string from an empty string table. 1020 return errorCodeToError(object_error::parse_failed); 1021 if (Offset >= StringTableSize) 1022 return errorCodeToError(object_error::unexpected_eof); 1023 return StringRef(StringTable + Offset); 1024 } 1025 1026 Expected<StringRef> COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const { 1027 return getSymbolName(Symbol.getGeneric()); 1028 } 1029 1030 Expected<StringRef> 1031 COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const { 1032 // Check for string table entry. First 4 bytes are 0. 1033 if (Symbol->Name.Offset.Zeroes == 0) 1034 return getString(Symbol->Name.Offset.Offset); 1035 1036 // Null terminated, let ::strlen figure out the length. 1037 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 1038 return StringRef(Symbol->Name.ShortName); 1039 1040 // Not null terminated, use all 8 bytes. 1041 return StringRef(Symbol->Name.ShortName, COFF::NameSize); 1042 } 1043 1044 ArrayRef<uint8_t> 1045 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 1046 const uint8_t *Aux = nullptr; 1047 1048 size_t SymbolSize = getSymbolTableEntrySize(); 1049 if (Symbol.getNumberOfAuxSymbols() > 0) { 1050 // AUX data comes immediately after the symbol in COFF 1051 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 1052 #ifndef NDEBUG 1053 // Verify that the Aux symbol points to a valid entry in the symbol table. 1054 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 1055 if (Offset < getPointerToSymbolTable() || 1056 Offset >= 1057 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 1058 report_fatal_error("Aux Symbol data was outside of symbol table."); 1059 1060 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 1061 "Aux Symbol data did not point to the beginning of a symbol"); 1062 #endif 1063 } 1064 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 1065 } 1066 1067 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const { 1068 uintptr_t Offset = 1069 reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable(); 1070 assert(Offset % getSymbolTableEntrySize() == 0 && 1071 "Symbol did not point to the beginning of a symbol"); 1072 size_t Index = Offset / getSymbolTableEntrySize(); 1073 assert(Index < getNumberOfSymbols()); 1074 return Index; 1075 } 1076 1077 Expected<StringRef> 1078 COFFObjectFile::getSectionName(const coff_section *Sec) const { 1079 StringRef Name; 1080 if (Sec->Name[COFF::NameSize - 1] == 0) 1081 // Null terminated, let ::strlen figure out the length. 1082 Name = Sec->Name; 1083 else 1084 // Not null terminated, use all 8 bytes. 1085 Name = StringRef(Sec->Name, COFF::NameSize); 1086 1087 // Check for string table entry. First byte is '/'. 1088 if (Name.startswith("/")) { 1089 uint32_t Offset; 1090 if (Name.startswith("//")) { 1091 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1092 return createStringError(object_error::parse_failed, 1093 "invalid section name"); 1094 } else { 1095 if (Name.substr(1).getAsInteger(10, Offset)) 1096 return createStringError(object_error::parse_failed, 1097 "invalid section name"); 1098 } 1099 return getString(Offset); 1100 } 1101 1102 return Name; 1103 } 1104 1105 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1106 // SizeOfRawData and VirtualSize change what they represent depending on 1107 // whether or not we have an executable image. 1108 // 1109 // For object files, SizeOfRawData contains the size of section's data; 1110 // VirtualSize should be zero but isn't due to buggy COFF writers. 1111 // 1112 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1113 // actual section size is in VirtualSize. It is possible for VirtualSize to 1114 // be greater than SizeOfRawData; the contents past that point should be 1115 // considered to be zero. 1116 if (getDOSHeader()) 1117 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1118 return Sec->SizeOfRawData; 1119 } 1120 1121 Error COFFObjectFile::getSectionContents(const coff_section *Sec, 1122 ArrayRef<uint8_t> &Res) const { 1123 // In COFF, a virtual section won't have any in-file 1124 // content, so the file pointer to the content will be zero. 1125 if (Sec->PointerToRawData == 0) 1126 return Error::success(); 1127 // The only thing that we need to verify is that the contents is contained 1128 // within the file bounds. We don't need to make sure it doesn't cover other 1129 // data, as there's nothing that says that is not allowed. 1130 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 1131 uint32_t SectionSize = getSectionSize(Sec); 1132 if (Error E = checkOffset(Data, ConStart, SectionSize)) 1133 return E; 1134 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1135 return Error::success(); 1136 } 1137 1138 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1139 return reinterpret_cast<const coff_relocation*>(Rel.p); 1140 } 1141 1142 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1143 Rel.p = reinterpret_cast<uintptr_t>( 1144 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1145 } 1146 1147 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1148 const coff_relocation *R = toRel(Rel); 1149 return R->VirtualAddress; 1150 } 1151 1152 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1153 const coff_relocation *R = toRel(Rel); 1154 DataRefImpl Ref; 1155 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1156 return symbol_end(); 1157 if (SymbolTable16) 1158 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1159 else if (SymbolTable32) 1160 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1161 else 1162 llvm_unreachable("no symbol table pointer!"); 1163 return symbol_iterator(SymbolRef(Ref, this)); 1164 } 1165 1166 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1167 const coff_relocation* R = toRel(Rel); 1168 return R->Type; 1169 } 1170 1171 const coff_section * 1172 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1173 return toSec(Section.getRawDataRefImpl()); 1174 } 1175 1176 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1177 if (SymbolTable16) 1178 return toSymb<coff_symbol16>(Ref); 1179 if (SymbolTable32) 1180 return toSymb<coff_symbol32>(Ref); 1181 llvm_unreachable("no symbol table pointer!"); 1182 } 1183 1184 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1185 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1186 } 1187 1188 const coff_relocation * 1189 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1190 return toRel(Reloc.getRawDataRefImpl()); 1191 } 1192 1193 ArrayRef<coff_relocation> 1194 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1195 return {getFirstReloc(Sec, Data, base()), 1196 getNumberOfRelocations(Sec, Data, base())}; 1197 } 1198 1199 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1200 case COFF::reloc_type: \ 1201 return #reloc_type; 1202 1203 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const { 1204 switch (getMachine()) { 1205 case COFF::IMAGE_FILE_MACHINE_AMD64: 1206 switch (Type) { 1207 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1208 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1209 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1210 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1211 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1212 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1213 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1214 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1215 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1216 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1217 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1218 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1219 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1220 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1221 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1222 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1223 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1224 default: 1225 return "Unknown"; 1226 } 1227 break; 1228 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1229 switch (Type) { 1230 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1231 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1232 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1233 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1234 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1235 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1236 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1237 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1238 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32); 1239 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1240 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1241 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1242 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1243 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1244 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1245 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1246 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR); 1247 default: 1248 return "Unknown"; 1249 } 1250 break; 1251 case COFF::IMAGE_FILE_MACHINE_ARM64: 1252 switch (Type) { 1253 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE); 1254 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32); 1255 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB); 1256 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26); 1257 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21); 1258 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21); 1259 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A); 1260 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L); 1261 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL); 1262 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A); 1263 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A); 1264 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L); 1265 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN); 1266 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION); 1267 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64); 1268 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19); 1269 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14); 1270 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32); 1271 default: 1272 return "Unknown"; 1273 } 1274 break; 1275 case COFF::IMAGE_FILE_MACHINE_I386: 1276 switch (Type) { 1277 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1278 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1279 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1280 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1281 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1282 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1283 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1284 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1285 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1286 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1287 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1288 default: 1289 return "Unknown"; 1290 } 1291 break; 1292 default: 1293 return "Unknown"; 1294 } 1295 } 1296 1297 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1298 1299 void COFFObjectFile::getRelocationTypeName( 1300 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1301 const coff_relocation *Reloc = toRel(Rel); 1302 StringRef Res = getRelocationTypeName(Reloc->Type); 1303 Result.append(Res.begin(), Res.end()); 1304 } 1305 1306 bool COFFObjectFile::isRelocatableObject() const { 1307 return !DataDirectory; 1308 } 1309 1310 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const { 1311 return StringSwitch<StringRef>(Name) 1312 .Case("eh_fram", "eh_frame") 1313 .Default(Name); 1314 } 1315 1316 bool ImportDirectoryEntryRef:: 1317 operator==(const ImportDirectoryEntryRef &Other) const { 1318 return ImportTable == Other.ImportTable && Index == Other.Index; 1319 } 1320 1321 void ImportDirectoryEntryRef::moveNext() { 1322 ++Index; 1323 if (ImportTable[Index].isNull()) { 1324 Index = -1; 1325 ImportTable = nullptr; 1326 } 1327 } 1328 1329 Error ImportDirectoryEntryRef::getImportTableEntry( 1330 const coff_import_directory_table_entry *&Result) const { 1331 return getObject(Result, OwningObject->Data, ImportTable + Index); 1332 } 1333 1334 static imported_symbol_iterator 1335 makeImportedSymbolIterator(const COFFObjectFile *Object, 1336 uintptr_t Ptr, int Index) { 1337 if (Object->getBytesInAddress() == 4) { 1338 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1339 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1340 } 1341 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1342 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1343 } 1344 1345 static imported_symbol_iterator 1346 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1347 uintptr_t IntPtr = 0; 1348 // FIXME: Handle errors. 1349 cantFail(Object->getRvaPtr(RVA, IntPtr)); 1350 return makeImportedSymbolIterator(Object, IntPtr, 0); 1351 } 1352 1353 static imported_symbol_iterator 1354 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1355 uintptr_t IntPtr = 0; 1356 // FIXME: Handle errors. 1357 cantFail(Object->getRvaPtr(RVA, IntPtr)); 1358 // Forward the pointer to the last entry which is null. 1359 int Index = 0; 1360 if (Object->getBytesInAddress() == 4) { 1361 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1362 while (*Entry++) 1363 ++Index; 1364 } else { 1365 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1366 while (*Entry++) 1367 ++Index; 1368 } 1369 return makeImportedSymbolIterator(Object, IntPtr, Index); 1370 } 1371 1372 imported_symbol_iterator 1373 ImportDirectoryEntryRef::imported_symbol_begin() const { 1374 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1375 OwningObject); 1376 } 1377 1378 imported_symbol_iterator 1379 ImportDirectoryEntryRef::imported_symbol_end() const { 1380 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1381 OwningObject); 1382 } 1383 1384 iterator_range<imported_symbol_iterator> 1385 ImportDirectoryEntryRef::imported_symbols() const { 1386 return make_range(imported_symbol_begin(), imported_symbol_end()); 1387 } 1388 1389 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1390 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1391 OwningObject); 1392 } 1393 1394 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1395 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1396 OwningObject); 1397 } 1398 1399 iterator_range<imported_symbol_iterator> 1400 ImportDirectoryEntryRef::lookup_table_symbols() const { 1401 return make_range(lookup_table_begin(), lookup_table_end()); 1402 } 1403 1404 Error ImportDirectoryEntryRef::getName(StringRef &Result) const { 1405 uintptr_t IntPtr = 0; 1406 if (Error E = OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1407 return E; 1408 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1409 return Error::success(); 1410 } 1411 1412 Error 1413 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1414 Result = ImportTable[Index].ImportLookupTableRVA; 1415 return Error::success(); 1416 } 1417 1418 Error ImportDirectoryEntryRef::getImportAddressTableRVA( 1419 uint32_t &Result) const { 1420 Result = ImportTable[Index].ImportAddressTableRVA; 1421 return Error::success(); 1422 } 1423 1424 bool DelayImportDirectoryEntryRef:: 1425 operator==(const DelayImportDirectoryEntryRef &Other) const { 1426 return Table == Other.Table && Index == Other.Index; 1427 } 1428 1429 void DelayImportDirectoryEntryRef::moveNext() { 1430 ++Index; 1431 } 1432 1433 imported_symbol_iterator 1434 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1435 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1436 OwningObject); 1437 } 1438 1439 imported_symbol_iterator 1440 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1441 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1442 OwningObject); 1443 } 1444 1445 iterator_range<imported_symbol_iterator> 1446 DelayImportDirectoryEntryRef::imported_symbols() const { 1447 return make_range(imported_symbol_begin(), imported_symbol_end()); 1448 } 1449 1450 Error DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1451 uintptr_t IntPtr = 0; 1452 if (Error E = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1453 return E; 1454 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1455 return Error::success(); 1456 } 1457 1458 Error DelayImportDirectoryEntryRef::getDelayImportTable( 1459 const delay_import_directory_table_entry *&Result) const { 1460 Result = &Table[Index]; 1461 return Error::success(); 1462 } 1463 1464 Error DelayImportDirectoryEntryRef::getImportAddress(int AddrIndex, 1465 uint64_t &Result) const { 1466 uint32_t RVA = Table[Index].DelayImportAddressTable + 1467 AddrIndex * (OwningObject->is64() ? 8 : 4); 1468 uintptr_t IntPtr = 0; 1469 if (Error E = OwningObject->getRvaPtr(RVA, IntPtr)) 1470 return E; 1471 if (OwningObject->is64()) 1472 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1473 else 1474 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1475 return Error::success(); 1476 } 1477 1478 bool ExportDirectoryEntryRef:: 1479 operator==(const ExportDirectoryEntryRef &Other) const { 1480 return ExportTable == Other.ExportTable && Index == Other.Index; 1481 } 1482 1483 void ExportDirectoryEntryRef::moveNext() { 1484 ++Index; 1485 } 1486 1487 // Returns the name of the current export symbol. If the symbol is exported only 1488 // by ordinal, the empty string is set as a result. 1489 Error ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1490 uintptr_t IntPtr = 0; 1491 if (Error E = OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1492 return E; 1493 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1494 return Error::success(); 1495 } 1496 1497 // Returns the starting ordinal number. 1498 Error ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1499 Result = ExportTable->OrdinalBase; 1500 return Error::success(); 1501 } 1502 1503 // Returns the export ordinal of the current export symbol. 1504 Error ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1505 Result = ExportTable->OrdinalBase + Index; 1506 return Error::success(); 1507 } 1508 1509 // Returns the address of the current export symbol. 1510 Error ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1511 uintptr_t IntPtr = 0; 1512 if (Error EC = 1513 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1514 return EC; 1515 const export_address_table_entry *entry = 1516 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1517 Result = entry[Index].ExportRVA; 1518 return Error::success(); 1519 } 1520 1521 // Returns the name of the current export symbol. If the symbol is exported only 1522 // by ordinal, the empty string is set as a result. 1523 Error 1524 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1525 uintptr_t IntPtr = 0; 1526 if (Error EC = 1527 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1528 return EC; 1529 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1530 1531 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1532 int Offset = 0; 1533 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1534 I < E; ++I, ++Offset) { 1535 if (*I != Index) 1536 continue; 1537 if (Error EC = 1538 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1539 return EC; 1540 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1541 if (Error EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1542 return EC; 1543 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1544 return Error::success(); 1545 } 1546 Result = ""; 1547 return Error::success(); 1548 } 1549 1550 Error ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1551 const data_directory *DataEntry = 1552 OwningObject->getDataDirectory(COFF::EXPORT_TABLE); 1553 if (!DataEntry) 1554 return errorCodeToError(object_error::parse_failed); 1555 uint32_t RVA; 1556 if (auto EC = getExportRVA(RVA)) 1557 return EC; 1558 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1559 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1560 Result = (Begin <= RVA && RVA < End); 1561 return Error::success(); 1562 } 1563 1564 Error ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1565 uint32_t RVA; 1566 if (auto EC = getExportRVA(RVA)) 1567 return EC; 1568 uintptr_t IntPtr = 0; 1569 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1570 return EC; 1571 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1572 return Error::success(); 1573 } 1574 1575 bool ImportedSymbolRef:: 1576 operator==(const ImportedSymbolRef &Other) const { 1577 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1578 && Index == Other.Index; 1579 } 1580 1581 void ImportedSymbolRef::moveNext() { 1582 ++Index; 1583 } 1584 1585 Error ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1586 uint32_t RVA; 1587 if (Entry32) { 1588 // If a symbol is imported only by ordinal, it has no name. 1589 if (Entry32[Index].isOrdinal()) 1590 return Error::success(); 1591 RVA = Entry32[Index].getHintNameRVA(); 1592 } else { 1593 if (Entry64[Index].isOrdinal()) 1594 return Error::success(); 1595 RVA = Entry64[Index].getHintNameRVA(); 1596 } 1597 uintptr_t IntPtr = 0; 1598 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1599 return EC; 1600 // +2 because the first two bytes is hint. 1601 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1602 return Error::success(); 1603 } 1604 1605 Error ImportedSymbolRef::isOrdinal(bool &Result) const { 1606 if (Entry32) 1607 Result = Entry32[Index].isOrdinal(); 1608 else 1609 Result = Entry64[Index].isOrdinal(); 1610 return Error::success(); 1611 } 1612 1613 Error ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1614 if (Entry32) 1615 Result = Entry32[Index].getHintNameRVA(); 1616 else 1617 Result = Entry64[Index].getHintNameRVA(); 1618 return Error::success(); 1619 } 1620 1621 Error ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1622 uint32_t RVA; 1623 if (Entry32) { 1624 if (Entry32[Index].isOrdinal()) { 1625 Result = Entry32[Index].getOrdinal(); 1626 return Error::success(); 1627 } 1628 RVA = Entry32[Index].getHintNameRVA(); 1629 } else { 1630 if (Entry64[Index].isOrdinal()) { 1631 Result = Entry64[Index].getOrdinal(); 1632 return Error::success(); 1633 } 1634 RVA = Entry64[Index].getHintNameRVA(); 1635 } 1636 uintptr_t IntPtr = 0; 1637 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1638 return EC; 1639 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1640 return Error::success(); 1641 } 1642 1643 Expected<std::unique_ptr<COFFObjectFile>> 1644 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1645 return COFFObjectFile::create(Object); 1646 } 1647 1648 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1649 return Header == Other.Header && Index == Other.Index; 1650 } 1651 1652 void BaseRelocRef::moveNext() { 1653 // Header->BlockSize is the size of the current block, including the 1654 // size of the header itself. 1655 uint32_t Size = sizeof(*Header) + 1656 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1657 if (Size == Header->BlockSize) { 1658 // .reloc contains a list of base relocation blocks. Each block 1659 // consists of the header followed by entries. The header contains 1660 // how many entories will follow. When we reach the end of the 1661 // current block, proceed to the next block. 1662 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1663 reinterpret_cast<const uint8_t *>(Header) + Size); 1664 Index = 0; 1665 } else { 1666 ++Index; 1667 } 1668 } 1669 1670 Error BaseRelocRef::getType(uint8_t &Type) const { 1671 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1672 Type = Entry[Index].getType(); 1673 return Error::success(); 1674 } 1675 1676 Error BaseRelocRef::getRVA(uint32_t &Result) const { 1677 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1678 Result = Header->PageRVA + Entry[Index].getOffset(); 1679 return Error::success(); 1680 } 1681 1682 #define RETURN_IF_ERROR(Expr) \ 1683 do { \ 1684 Error E = (Expr); \ 1685 if (E) \ 1686 return std::move(E); \ 1687 } while (0) 1688 1689 Expected<ArrayRef<UTF16>> 1690 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) { 1691 BinaryStreamReader Reader = BinaryStreamReader(BBS); 1692 Reader.setOffset(Offset); 1693 uint16_t Length; 1694 RETURN_IF_ERROR(Reader.readInteger(Length)); 1695 ArrayRef<UTF16> RawDirString; 1696 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length)); 1697 return RawDirString; 1698 } 1699 1700 Expected<ArrayRef<UTF16>> 1701 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) { 1702 return getDirStringAtOffset(Entry.Identifier.getNameOffset()); 1703 } 1704 1705 Expected<const coff_resource_dir_table &> 1706 ResourceSectionRef::getTableAtOffset(uint32_t Offset) { 1707 const coff_resource_dir_table *Table = nullptr; 1708 1709 BinaryStreamReader Reader(BBS); 1710 Reader.setOffset(Offset); 1711 RETURN_IF_ERROR(Reader.readObject(Table)); 1712 assert(Table != nullptr); 1713 return *Table; 1714 } 1715 1716 Expected<const coff_resource_dir_entry &> 1717 ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) { 1718 const coff_resource_dir_entry *Entry = nullptr; 1719 1720 BinaryStreamReader Reader(BBS); 1721 Reader.setOffset(Offset); 1722 RETURN_IF_ERROR(Reader.readObject(Entry)); 1723 assert(Entry != nullptr); 1724 return *Entry; 1725 } 1726 1727 Expected<const coff_resource_data_entry &> 1728 ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) { 1729 const coff_resource_data_entry *Entry = nullptr; 1730 1731 BinaryStreamReader Reader(BBS); 1732 Reader.setOffset(Offset); 1733 RETURN_IF_ERROR(Reader.readObject(Entry)); 1734 assert(Entry != nullptr); 1735 return *Entry; 1736 } 1737 1738 Expected<const coff_resource_dir_table &> 1739 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) { 1740 assert(Entry.Offset.isSubDir()); 1741 return getTableAtOffset(Entry.Offset.value()); 1742 } 1743 1744 Expected<const coff_resource_data_entry &> 1745 ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) { 1746 assert(!Entry.Offset.isSubDir()); 1747 return getDataEntryAtOffset(Entry.Offset.value()); 1748 } 1749 1750 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() { 1751 return getTableAtOffset(0); 1752 } 1753 1754 Expected<const coff_resource_dir_entry &> 1755 ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table, 1756 uint32_t Index) { 1757 if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries)) 1758 return createStringError(object_error::parse_failed, "index out of range"); 1759 const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table); 1760 ptrdiff_t TableOffset = TablePtr - BBS.data().data(); 1761 return getTableEntryAtOffset(TableOffset + sizeof(Table) + 1762 Index * sizeof(coff_resource_dir_entry)); 1763 } 1764 1765 Error ResourceSectionRef::load(const COFFObjectFile *O) { 1766 for (const SectionRef &S : O->sections()) { 1767 Expected<StringRef> Name = S.getName(); 1768 if (!Name) 1769 return Name.takeError(); 1770 1771 if (*Name == ".rsrc" || *Name == ".rsrc$01") 1772 return load(O, S); 1773 } 1774 return createStringError(object_error::parse_failed, 1775 "no resource section found"); 1776 } 1777 1778 Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) { 1779 Obj = O; 1780 Section = S; 1781 Expected<StringRef> Contents = Section.getContents(); 1782 if (!Contents) 1783 return Contents.takeError(); 1784 BBS = BinaryByteStream(*Contents, support::little); 1785 const coff_section *COFFSect = Obj->getCOFFSection(Section); 1786 ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect); 1787 Relocs.reserve(OrigRelocs.size()); 1788 for (const coff_relocation &R : OrigRelocs) 1789 Relocs.push_back(&R); 1790 std::sort(Relocs.begin(), Relocs.end(), 1791 [](const coff_relocation *A, const coff_relocation *B) { 1792 return A->VirtualAddress < B->VirtualAddress; 1793 }); 1794 return Error::success(); 1795 } 1796 1797 Expected<StringRef> 1798 ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) { 1799 if (!Obj) 1800 return createStringError(object_error::parse_failed, "no object provided"); 1801 1802 // Find a potential relocation at the DataRVA field (first member of 1803 // the coff_resource_data_entry struct). 1804 const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry); 1805 ptrdiff_t EntryOffset = EntryPtr - BBS.data().data(); 1806 coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0), 1807 ulittle16_t(0)}; 1808 auto RelocsForOffset = 1809 std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget, 1810 [](const coff_relocation *A, const coff_relocation *B) { 1811 return A->VirtualAddress < B->VirtualAddress; 1812 }); 1813 1814 if (RelocsForOffset.first != RelocsForOffset.second) { 1815 // We found a relocation with the right offset. Check that it does have 1816 // the expected type. 1817 const coff_relocation &R = **RelocsForOffset.first; 1818 uint16_t RVAReloc; 1819 switch (Obj->getMachine()) { 1820 case COFF::IMAGE_FILE_MACHINE_I386: 1821 RVAReloc = COFF::IMAGE_REL_I386_DIR32NB; 1822 break; 1823 case COFF::IMAGE_FILE_MACHINE_AMD64: 1824 RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB; 1825 break; 1826 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1827 RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB; 1828 break; 1829 case COFF::IMAGE_FILE_MACHINE_ARM64: 1830 RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB; 1831 break; 1832 default: 1833 return createStringError(object_error::parse_failed, 1834 "unsupported architecture"); 1835 } 1836 if (R.Type != RVAReloc) 1837 return createStringError(object_error::parse_failed, 1838 "unexpected relocation type"); 1839 // Get the relocation's symbol 1840 Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex); 1841 if (!Sym) 1842 return Sym.takeError(); 1843 // And the symbol's section 1844 Expected<const coff_section *> Section = 1845 Obj->getSection(Sym->getSectionNumber()); 1846 if (!Section) 1847 return Section.takeError(); 1848 // Add the initial value of DataRVA to the symbol's offset to find the 1849 // data it points at. 1850 uint64_t Offset = Entry.DataRVA + Sym->getValue(); 1851 ArrayRef<uint8_t> Contents; 1852 if (Error E = Obj->getSectionContents(*Section, Contents)) 1853 return std::move(E); 1854 if (Offset + Entry.DataSize > Contents.size()) 1855 return createStringError(object_error::parse_failed, 1856 "data outside of section"); 1857 // Return a reference to the data inside the section. 1858 return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset, 1859 Entry.DataSize); 1860 } else { 1861 // Relocatable objects need a relocation for the DataRVA field. 1862 if (Obj->isRelocatableObject()) 1863 return createStringError(object_error::parse_failed, 1864 "no relocation found for DataRVA"); 1865 1866 // Locate the section that contains the address that DataRVA points at. 1867 uint64_t VA = Entry.DataRVA + Obj->getImageBase(); 1868 for (const SectionRef &S : Obj->sections()) { 1869 if (VA >= S.getAddress() && 1870 VA + Entry.DataSize <= S.getAddress() + S.getSize()) { 1871 uint64_t Offset = VA - S.getAddress(); 1872 Expected<StringRef> Contents = S.getContents(); 1873 if (!Contents) 1874 return Contents.takeError(); 1875 return Contents->slice(Offset, Offset + Entry.DataSize); 1876 } 1877 } 1878 return createStringError(object_error::parse_failed, 1879 "address not found in image"); 1880 } 1881 } 1882