1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Support/COFF.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <cctype> 23 #include <limits> 24 25 using namespace llvm; 26 using namespace object; 27 28 using support::ulittle16_t; 29 using support::ulittle32_t; 30 using support::ulittle64_t; 31 using support::little16_t; 32 33 // Returns false if size is greater than the buffer size. And sets ec. 34 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 35 if (M.getBufferSize() < Size) { 36 EC = object_error::unexpected_eof; 37 return false; 38 } 39 return true; 40 } 41 42 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 43 const uint64_t Size) { 44 if (Addr + Size < Addr || Addr + Size < Size || 45 Addr + Size > uintptr_t(M.getBufferEnd()) || 46 Addr < uintptr_t(M.getBufferStart())) { 47 return object_error::unexpected_eof; 48 } 49 return std::error_code(); 50 } 51 52 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 53 // Returns unexpected_eof if error. 54 template <typename T> 55 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 56 const void *Ptr, 57 const uint64_t Size = sizeof(T)) { 58 uintptr_t Addr = uintptr_t(Ptr); 59 if (std::error_code EC = checkOffset(M, Addr, Size)) 60 return EC; 61 Obj = reinterpret_cast<const T *>(Addr); 62 return std::error_code(); 63 } 64 65 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 66 // prefixed slashes. 67 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 68 assert(Str.size() <= 6 && "String too long, possible overflow."); 69 if (Str.size() > 6) 70 return true; 71 72 uint64_t Value = 0; 73 while (!Str.empty()) { 74 unsigned CharVal; 75 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 76 CharVal = Str[0] - 'A'; 77 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 78 CharVal = Str[0] - 'a' + 26; 79 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 80 CharVal = Str[0] - '0' + 52; 81 else if (Str[0] == '+') // 62 82 CharVal = 62; 83 else if (Str[0] == '/') // 63 84 CharVal = 63; 85 else 86 return true; 87 88 Value = (Value * 64) + CharVal; 89 Str = Str.substr(1); 90 } 91 92 if (Value > std::numeric_limits<uint32_t>::max()) 93 return true; 94 95 Result = static_cast<uint32_t>(Value); 96 return false; 97 } 98 99 template <typename coff_symbol_type> 100 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 101 const coff_symbol_type *Addr = 102 reinterpret_cast<const coff_symbol_type *>(Ref.p); 103 104 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 105 #ifndef NDEBUG 106 // Verify that the symbol points to a valid entry in the symbol table. 107 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 108 109 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 110 "Symbol did not point to the beginning of a symbol"); 111 #endif 112 113 return Addr; 114 } 115 116 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 117 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 118 119 # ifndef NDEBUG 120 // Verify that the section points to a valid entry in the section table. 121 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 122 report_fatal_error("Section was outside of section table."); 123 124 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 125 assert(Offset % sizeof(coff_section) == 0 && 126 "Section did not point to the beginning of a section"); 127 # endif 128 129 return Addr; 130 } 131 132 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 133 auto End = reinterpret_cast<uintptr_t>(StringTable); 134 if (SymbolTable16) { 135 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 136 Symb += 1 + Symb->NumberOfAuxSymbols; 137 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 138 } else if (SymbolTable32) { 139 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 140 Symb += 1 + Symb->NumberOfAuxSymbols; 141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 142 } else { 143 llvm_unreachable("no symbol table pointer!"); 144 } 145 } 146 147 std::error_code COFFObjectFile::getSymbolName(DataRefImpl Ref, 148 StringRef &Result) const { 149 COFFSymbolRef Symb = getCOFFSymbol(Ref); 150 return getSymbolName(Symb, Result); 151 } 152 153 std::error_code COFFObjectFile::getSymbolAddress(DataRefImpl Ref, 154 uint64_t &Result) const { 155 COFFSymbolRef Symb = getCOFFSymbol(Ref); 156 157 if (Symb.isAnyUndefined() || Symb.isCommon()) { 158 Result = UnknownAddress; 159 return std::error_code(); 160 } 161 162 int32_t SectionNumber = Symb.getSectionNumber(); 163 if (COFF::isReservedSectionNumber(SectionNumber)) { 164 Result = Symb.getValue(); 165 return std::error_code(); 166 } 167 168 const coff_section *Section = nullptr; 169 if (std::error_code EC = getSection(SectionNumber, Section)) 170 return EC; 171 Result = Section->VirtualAddress + Symb.getValue(); 172 return std::error_code(); 173 } 174 175 std::error_code COFFObjectFile::getSymbolType(DataRefImpl Ref, 176 SymbolRef::Type &Result) const { 177 COFFSymbolRef Symb = getCOFFSymbol(Ref); 178 int32_t SectionNumber = Symb.getSectionNumber(); 179 Result = SymbolRef::ST_Other; 180 181 if (Symb.isAnyUndefined()) { 182 Result = SymbolRef::ST_Unknown; 183 } else if (Symb.isFunctionDefinition()) { 184 Result = SymbolRef::ST_Function; 185 } else if (Symb.isCommon()) { 186 Result = SymbolRef::ST_Data; 187 } else if (Symb.isFileRecord()) { 188 Result = SymbolRef::ST_File; 189 } else if (SectionNumber == COFF::IMAGE_SYM_DEBUG || 190 Symb.isSectionDefinition()) { 191 // TODO: perhaps we need a new symbol type ST_Section. 192 Result = SymbolRef::ST_Debug; 193 } else if (!COFF::isReservedSectionNumber(SectionNumber)) { 194 const coff_section *Section = nullptr; 195 if (std::error_code EC = getSection(SectionNumber, Section)) 196 return EC; 197 uint32_t Characteristics = Section->Characteristics; 198 if (Characteristics & COFF::IMAGE_SCN_CNT_CODE) 199 Result = SymbolRef::ST_Function; 200 else if (Characteristics & (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 201 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA)) 202 Result = SymbolRef::ST_Data; 203 } 204 return std::error_code(); 205 } 206 207 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 208 COFFSymbolRef Symb = getCOFFSymbol(Ref); 209 uint32_t Result = SymbolRef::SF_None; 210 211 if (Symb.isExternal() || Symb.isWeakExternal()) 212 Result |= SymbolRef::SF_Global; 213 214 if (Symb.isWeakExternal()) 215 Result |= SymbolRef::SF_Weak; 216 217 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 218 Result |= SymbolRef::SF_Absolute; 219 220 if (Symb.isFileRecord()) 221 Result |= SymbolRef::SF_FormatSpecific; 222 223 if (Symb.isSectionDefinition()) 224 Result |= SymbolRef::SF_FormatSpecific; 225 226 if (Symb.isCommon()) 227 Result |= SymbolRef::SF_Common; 228 229 if (Symb.isAnyUndefined()) 230 Result |= SymbolRef::SF_Undefined; 231 232 return Result; 233 } 234 235 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 236 COFFSymbolRef Symb = getCOFFSymbol(Ref); 237 return Symb.getValue(); 238 } 239 240 std::error_code 241 COFFObjectFile::getSymbolSection(DataRefImpl Ref, 242 section_iterator &Result) const { 243 COFFSymbolRef Symb = getCOFFSymbol(Ref); 244 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) { 245 Result = section_end(); 246 } else { 247 const coff_section *Sec = nullptr; 248 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 249 return EC; 250 DataRefImpl Ref; 251 Ref.p = reinterpret_cast<uintptr_t>(Sec); 252 Result = section_iterator(SectionRef(Ref, this)); 253 } 254 return std::error_code(); 255 } 256 257 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 258 const coff_section *Sec = toSec(Ref); 259 Sec += 1; 260 Ref.p = reinterpret_cast<uintptr_t>(Sec); 261 } 262 263 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 264 StringRef &Result) const { 265 const coff_section *Sec = toSec(Ref); 266 return getSectionName(Sec, Result); 267 } 268 269 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 270 const coff_section *Sec = toSec(Ref); 271 return Sec->VirtualAddress; 272 } 273 274 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 275 return getSectionSize(toSec(Ref)); 276 } 277 278 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 279 StringRef &Result) const { 280 const coff_section *Sec = toSec(Ref); 281 ArrayRef<uint8_t> Res; 282 std::error_code EC = getSectionContents(Sec, Res); 283 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 284 return EC; 285 } 286 287 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 288 const coff_section *Sec = toSec(Ref); 289 return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1); 290 } 291 292 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 293 const coff_section *Sec = toSec(Ref); 294 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 295 } 296 297 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 298 const coff_section *Sec = toSec(Ref); 299 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 300 } 301 302 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 303 const coff_section *Sec = toSec(Ref); 304 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 305 COFF::IMAGE_SCN_MEM_READ | 306 COFF::IMAGE_SCN_MEM_WRITE; 307 return (Sec->Characteristics & BssFlags) == BssFlags; 308 } 309 310 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 311 const coff_section *Sec = toSec(Ref); 312 // In COFF, a virtual section won't have any in-file 313 // content, so the file pointer to the content will be zero. 314 return Sec->PointerToRawData == 0; 315 } 316 317 bool COFFObjectFile::sectionContainsSymbol(DataRefImpl SecRef, 318 DataRefImpl SymbRef) const { 319 const coff_section *Sec = toSec(SecRef); 320 COFFSymbolRef Symb = getCOFFSymbol(SymbRef); 321 int32_t SecNumber = (Sec - SectionTable) + 1; 322 return SecNumber == Symb.getSectionNumber(); 323 } 324 325 static uint32_t getNumberOfRelocations(const coff_section *Sec, 326 MemoryBufferRef M, const uint8_t *base) { 327 // The field for the number of relocations in COFF section table is only 328 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 329 // NumberOfRelocations field, and the actual relocation count is stored in the 330 // VirtualAddress field in the first relocation entry. 331 if (Sec->hasExtendedRelocations()) { 332 const coff_relocation *FirstReloc; 333 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 334 base + Sec->PointerToRelocations))) 335 return 0; 336 // -1 to exclude this first relocation entry. 337 return FirstReloc->VirtualAddress - 1; 338 } 339 return Sec->NumberOfRelocations; 340 } 341 342 static const coff_relocation * 343 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 344 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 345 if (!NumRelocs) 346 return nullptr; 347 auto begin = reinterpret_cast<const coff_relocation *>( 348 Base + Sec->PointerToRelocations); 349 if (Sec->hasExtendedRelocations()) { 350 // Skip the first relocation entry repurposed to store the number of 351 // relocations. 352 begin++; 353 } 354 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 355 return nullptr; 356 return begin; 357 } 358 359 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 360 const coff_section *Sec = toSec(Ref); 361 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 362 DataRefImpl Ret; 363 Ret.p = reinterpret_cast<uintptr_t>(begin); 364 return relocation_iterator(RelocationRef(Ret, this)); 365 } 366 367 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 368 const coff_section *Sec = toSec(Ref); 369 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 370 if (I) 371 I += getNumberOfRelocations(Sec, Data, base()); 372 DataRefImpl Ret; 373 Ret.p = reinterpret_cast<uintptr_t>(I); 374 return relocation_iterator(RelocationRef(Ret, this)); 375 } 376 377 // Initialize the pointer to the symbol table. 378 std::error_code COFFObjectFile::initSymbolTablePtr() { 379 if (COFFHeader) 380 if (std::error_code EC = getObject( 381 SymbolTable16, Data, base() + getPointerToSymbolTable(), 382 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 383 return EC; 384 385 if (COFFBigObjHeader) 386 if (std::error_code EC = getObject( 387 SymbolTable32, Data, base() + getPointerToSymbolTable(), 388 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 389 return EC; 390 391 // Find string table. The first four byte of the string table contains the 392 // total size of the string table, including the size field itself. If the 393 // string table is empty, the value of the first four byte would be 4. 394 uint32_t StringTableOffset = getPointerToSymbolTable() + 395 getNumberOfSymbols() * getSymbolTableEntrySize(); 396 const uint8_t *StringTableAddr = base() + StringTableOffset; 397 const ulittle32_t *StringTableSizePtr; 398 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 399 return EC; 400 StringTableSize = *StringTableSizePtr; 401 if (std::error_code EC = 402 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 403 return EC; 404 405 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 406 // tools like cvtres write a size of 0 for an empty table instead of 4. 407 if (StringTableSize < 4) 408 StringTableSize = 4; 409 410 // Check that the string table is null terminated if has any in it. 411 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 412 return object_error::parse_failed; 413 return std::error_code(); 414 } 415 416 // Returns the file offset for the given VA. 417 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 418 uint64_t ImageBase = PE32Header ? (uint64_t)PE32Header->ImageBase 419 : (uint64_t)PE32PlusHeader->ImageBase; 420 uint64_t Rva = Addr - ImageBase; 421 assert(Rva <= UINT32_MAX); 422 return getRvaPtr((uint32_t)Rva, Res); 423 } 424 425 // Returns the file offset for the given RVA. 426 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 427 for (const SectionRef &S : sections()) { 428 const coff_section *Section = getCOFFSection(S); 429 uint32_t SectionStart = Section->VirtualAddress; 430 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 431 if (SectionStart <= Addr && Addr < SectionEnd) { 432 uint32_t Offset = Addr - SectionStart; 433 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 434 return std::error_code(); 435 } 436 } 437 return object_error::parse_failed; 438 } 439 440 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 441 // table entry. 442 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 443 StringRef &Name) const { 444 uintptr_t IntPtr = 0; 445 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 446 return EC; 447 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 448 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 449 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 450 return std::error_code(); 451 } 452 453 // Find the import table. 454 std::error_code COFFObjectFile::initImportTablePtr() { 455 // First, we get the RVA of the import table. If the file lacks a pointer to 456 // the import table, do nothing. 457 const data_directory *DataEntry; 458 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 459 return std::error_code(); 460 461 // Do nothing if the pointer to import table is NULL. 462 if (DataEntry->RelativeVirtualAddress == 0) 463 return std::error_code(); 464 465 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 466 // -1 because the last entry is the null entry. 467 NumberOfImportDirectory = DataEntry->Size / 468 sizeof(import_directory_table_entry) - 1; 469 470 // Find the section that contains the RVA. This is needed because the RVA is 471 // the import table's memory address which is different from its file offset. 472 uintptr_t IntPtr = 0; 473 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 474 return EC; 475 ImportDirectory = reinterpret_cast< 476 const import_directory_table_entry *>(IntPtr); 477 return std::error_code(); 478 } 479 480 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 481 std::error_code COFFObjectFile::initDelayImportTablePtr() { 482 const data_directory *DataEntry; 483 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 484 return std::error_code(); 485 if (DataEntry->RelativeVirtualAddress == 0) 486 return std::error_code(); 487 488 uint32_t RVA = DataEntry->RelativeVirtualAddress; 489 NumberOfDelayImportDirectory = DataEntry->Size / 490 sizeof(delay_import_directory_table_entry) - 1; 491 492 uintptr_t IntPtr = 0; 493 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 494 return EC; 495 DelayImportDirectory = reinterpret_cast< 496 const delay_import_directory_table_entry *>(IntPtr); 497 return std::error_code(); 498 } 499 500 // Find the export table. 501 std::error_code COFFObjectFile::initExportTablePtr() { 502 // First, we get the RVA of the export table. If the file lacks a pointer to 503 // the export table, do nothing. 504 const data_directory *DataEntry; 505 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 506 return std::error_code(); 507 508 // Do nothing if the pointer to export table is NULL. 509 if (DataEntry->RelativeVirtualAddress == 0) 510 return std::error_code(); 511 512 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 513 uintptr_t IntPtr = 0; 514 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 515 return EC; 516 ExportDirectory = 517 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 518 return std::error_code(); 519 } 520 521 std::error_code COFFObjectFile::initBaseRelocPtr() { 522 const data_directory *DataEntry; 523 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 524 return std::error_code(); 525 if (DataEntry->RelativeVirtualAddress == 0) 526 return std::error_code(); 527 528 uintptr_t IntPtr = 0; 529 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 530 return EC; 531 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 532 IntPtr); 533 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 534 IntPtr + DataEntry->Size); 535 return std::error_code(); 536 } 537 538 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 539 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 540 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 541 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 542 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 543 ImportDirectory(nullptr), NumberOfImportDirectory(0), 544 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 545 ExportDirectory(nullptr), BaseRelocHeader(nullptr), 546 BaseRelocEnd(nullptr) { 547 // Check that we at least have enough room for a header. 548 if (!checkSize(Data, EC, sizeof(coff_file_header))) 549 return; 550 551 // The current location in the file where we are looking at. 552 uint64_t CurPtr = 0; 553 554 // PE header is optional and is present only in executables. If it exists, 555 // it is placed right after COFF header. 556 bool HasPEHeader = false; 557 558 // Check if this is a PE/COFF file. 559 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 560 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 561 // PE signature to find 'normal' COFF header. 562 const auto *DH = reinterpret_cast<const dos_header *>(base()); 563 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 564 CurPtr = DH->AddressOfNewExeHeader; 565 // Check the PE magic bytes. ("PE\0\0") 566 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 567 EC = object_error::parse_failed; 568 return; 569 } 570 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 571 HasPEHeader = true; 572 } 573 } 574 575 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 576 return; 577 578 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 579 // import libraries share a common prefix but bigobj is more restrictive. 580 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 581 COFFHeader->NumberOfSections == uint16_t(0xffff) && 582 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 583 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 584 return; 585 586 // Verify that we are dealing with bigobj. 587 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 588 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 589 sizeof(COFF::BigObjMagic)) == 0) { 590 COFFHeader = nullptr; 591 CurPtr += sizeof(coff_bigobj_file_header); 592 } else { 593 // It's not a bigobj. 594 COFFBigObjHeader = nullptr; 595 } 596 } 597 if (COFFHeader) { 598 // The prior checkSize call may have failed. This isn't a hard error 599 // because we were just trying to sniff out bigobj. 600 EC = std::error_code(); 601 CurPtr += sizeof(coff_file_header); 602 603 if (COFFHeader->isImportLibrary()) 604 return; 605 } 606 607 if (HasPEHeader) { 608 const pe32_header *Header; 609 if ((EC = getObject(Header, Data, base() + CurPtr))) 610 return; 611 612 const uint8_t *DataDirAddr; 613 uint64_t DataDirSize; 614 if (Header->Magic == COFF::PE32Header::PE32) { 615 PE32Header = Header; 616 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 617 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 618 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 619 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 620 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 621 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 622 } else { 623 // It's neither PE32 nor PE32+. 624 EC = object_error::parse_failed; 625 return; 626 } 627 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 628 return; 629 CurPtr += COFFHeader->SizeOfOptionalHeader; 630 } 631 632 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 633 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 634 return; 635 636 // Initialize the pointer to the symbol table. 637 if (getPointerToSymbolTable() != 0) { 638 if ((EC = initSymbolTablePtr())) 639 return; 640 } else { 641 // We had better not have any symbols if we don't have a symbol table. 642 if (getNumberOfSymbols() != 0) { 643 EC = object_error::parse_failed; 644 return; 645 } 646 } 647 648 // Initialize the pointer to the beginning of the import table. 649 if ((EC = initImportTablePtr())) 650 return; 651 if ((EC = initDelayImportTablePtr())) 652 return; 653 654 // Initialize the pointer to the export table. 655 if ((EC = initExportTablePtr())) 656 return; 657 658 // Initialize the pointer to the base relocation table. 659 if ((EC = initBaseRelocPtr())) 660 return; 661 662 EC = std::error_code(); 663 } 664 665 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 666 DataRefImpl Ret; 667 Ret.p = getSymbolTable(); 668 return basic_symbol_iterator(SymbolRef(Ret, this)); 669 } 670 671 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 672 // The symbol table ends where the string table begins. 673 DataRefImpl Ret; 674 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 675 return basic_symbol_iterator(SymbolRef(Ret, this)); 676 } 677 678 import_directory_iterator COFFObjectFile::import_directory_begin() const { 679 return import_directory_iterator( 680 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 681 } 682 683 import_directory_iterator COFFObjectFile::import_directory_end() const { 684 return import_directory_iterator( 685 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); 686 } 687 688 delay_import_directory_iterator 689 COFFObjectFile::delay_import_directory_begin() const { 690 return delay_import_directory_iterator( 691 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 692 } 693 694 delay_import_directory_iterator 695 COFFObjectFile::delay_import_directory_end() const { 696 return delay_import_directory_iterator( 697 DelayImportDirectoryEntryRef( 698 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 699 } 700 701 export_directory_iterator COFFObjectFile::export_directory_begin() const { 702 return export_directory_iterator( 703 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 704 } 705 706 export_directory_iterator COFFObjectFile::export_directory_end() const { 707 if (!ExportDirectory) 708 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 709 ExportDirectoryEntryRef Ref(ExportDirectory, 710 ExportDirectory->AddressTableEntries, this); 711 return export_directory_iterator(Ref); 712 } 713 714 section_iterator COFFObjectFile::section_begin() const { 715 DataRefImpl Ret; 716 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 717 return section_iterator(SectionRef(Ret, this)); 718 } 719 720 section_iterator COFFObjectFile::section_end() const { 721 DataRefImpl Ret; 722 int NumSections = 723 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 724 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 725 return section_iterator(SectionRef(Ret, this)); 726 } 727 728 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 729 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 730 } 731 732 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 733 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 734 } 735 736 uint8_t COFFObjectFile::getBytesInAddress() const { 737 return getArch() == Triple::x86_64 ? 8 : 4; 738 } 739 740 StringRef COFFObjectFile::getFileFormatName() const { 741 switch(getMachine()) { 742 case COFF::IMAGE_FILE_MACHINE_I386: 743 return "COFF-i386"; 744 case COFF::IMAGE_FILE_MACHINE_AMD64: 745 return "COFF-x86-64"; 746 case COFF::IMAGE_FILE_MACHINE_ARMNT: 747 return "COFF-ARM"; 748 default: 749 return "COFF-<unknown arch>"; 750 } 751 } 752 753 unsigned COFFObjectFile::getArch() const { 754 switch (getMachine()) { 755 case COFF::IMAGE_FILE_MACHINE_I386: 756 return Triple::x86; 757 case COFF::IMAGE_FILE_MACHINE_AMD64: 758 return Triple::x86_64; 759 case COFF::IMAGE_FILE_MACHINE_ARMNT: 760 return Triple::thumb; 761 default: 762 return Triple::UnknownArch; 763 } 764 } 765 766 iterator_range<import_directory_iterator> 767 COFFObjectFile::import_directories() const { 768 return make_range(import_directory_begin(), import_directory_end()); 769 } 770 771 iterator_range<delay_import_directory_iterator> 772 COFFObjectFile::delay_import_directories() const { 773 return make_range(delay_import_directory_begin(), 774 delay_import_directory_end()); 775 } 776 777 iterator_range<export_directory_iterator> 778 COFFObjectFile::export_directories() const { 779 return make_range(export_directory_begin(), export_directory_end()); 780 } 781 782 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 783 return make_range(base_reloc_begin(), base_reloc_end()); 784 } 785 786 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 787 Res = PE32Header; 788 return std::error_code(); 789 } 790 791 std::error_code 792 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 793 Res = PE32PlusHeader; 794 return std::error_code(); 795 } 796 797 std::error_code 798 COFFObjectFile::getDataDirectory(uint32_t Index, 799 const data_directory *&Res) const { 800 // Error if if there's no data directory or the index is out of range. 801 if (!DataDirectory) { 802 Res = nullptr; 803 return object_error::parse_failed; 804 } 805 assert(PE32Header || PE32PlusHeader); 806 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 807 : PE32PlusHeader->NumberOfRvaAndSize; 808 if (Index >= NumEnt) { 809 Res = nullptr; 810 return object_error::parse_failed; 811 } 812 Res = &DataDirectory[Index]; 813 return std::error_code(); 814 } 815 816 std::error_code COFFObjectFile::getSection(int32_t Index, 817 const coff_section *&Result) const { 818 Result = nullptr; 819 if (COFF::isReservedSectionNumber(Index)) 820 return std::error_code(); 821 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 822 // We already verified the section table data, so no need to check again. 823 Result = SectionTable + (Index - 1); 824 return std::error_code(); 825 } 826 return object_error::parse_failed; 827 } 828 829 std::error_code COFFObjectFile::getString(uint32_t Offset, 830 StringRef &Result) const { 831 if (StringTableSize <= 4) 832 // Tried to get a string from an empty string table. 833 return object_error::parse_failed; 834 if (Offset >= StringTableSize) 835 return object_error::unexpected_eof; 836 Result = StringRef(StringTable + Offset); 837 return std::error_code(); 838 } 839 840 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 841 StringRef &Res) const { 842 // Check for string table entry. First 4 bytes are 0. 843 if (Symbol.getStringTableOffset().Zeroes == 0) { 844 uint32_t Offset = Symbol.getStringTableOffset().Offset; 845 if (std::error_code EC = getString(Offset, Res)) 846 return EC; 847 return std::error_code(); 848 } 849 850 if (Symbol.getShortName()[COFF::NameSize - 1] == 0) 851 // Null terminated, let ::strlen figure out the length. 852 Res = StringRef(Symbol.getShortName()); 853 else 854 // Not null terminated, use all 8 bytes. 855 Res = StringRef(Symbol.getShortName(), COFF::NameSize); 856 return std::error_code(); 857 } 858 859 ArrayRef<uint8_t> 860 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 861 const uint8_t *Aux = nullptr; 862 863 size_t SymbolSize = getSymbolTableEntrySize(); 864 if (Symbol.getNumberOfAuxSymbols() > 0) { 865 // AUX data comes immediately after the symbol in COFF 866 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 867 # ifndef NDEBUG 868 // Verify that the Aux symbol points to a valid entry in the symbol table. 869 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 870 if (Offset < getPointerToSymbolTable() || 871 Offset >= 872 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 873 report_fatal_error("Aux Symbol data was outside of symbol table."); 874 875 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 876 "Aux Symbol data did not point to the beginning of a symbol"); 877 # endif 878 } 879 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 880 } 881 882 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 883 StringRef &Res) const { 884 StringRef Name; 885 if (Sec->Name[COFF::NameSize - 1] == 0) 886 // Null terminated, let ::strlen figure out the length. 887 Name = Sec->Name; 888 else 889 // Not null terminated, use all 8 bytes. 890 Name = StringRef(Sec->Name, COFF::NameSize); 891 892 // Check for string table entry. First byte is '/'. 893 if (Name.startswith("/")) { 894 uint32_t Offset; 895 if (Name.startswith("//")) { 896 if (decodeBase64StringEntry(Name.substr(2), Offset)) 897 return object_error::parse_failed; 898 } else { 899 if (Name.substr(1).getAsInteger(10, Offset)) 900 return object_error::parse_failed; 901 } 902 if (std::error_code EC = getString(Offset, Name)) 903 return EC; 904 } 905 906 Res = Name; 907 return std::error_code(); 908 } 909 910 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 911 // SizeOfRawData and VirtualSize change what they represent depending on 912 // whether or not we have an executable image. 913 // 914 // For object files, SizeOfRawData contains the size of section's data; 915 // VirtualSize is always zero. 916 // 917 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 918 // actual section size is in VirtualSize. It is possible for VirtualSize to 919 // be greater than SizeOfRawData; the contents past that point should be 920 // considered to be zero. 921 uint32_t SectionSize; 922 if (Sec->VirtualSize) 923 SectionSize = std::min(Sec->VirtualSize, Sec->SizeOfRawData); 924 else 925 SectionSize = Sec->SizeOfRawData; 926 927 return SectionSize; 928 } 929 930 std::error_code 931 COFFObjectFile::getSectionContents(const coff_section *Sec, 932 ArrayRef<uint8_t> &Res) const { 933 // PointerToRawData and SizeOfRawData won't make sense for BSS sections, 934 // don't do anything interesting for them. 935 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && 936 "BSS sections don't have contents!"); 937 // The only thing that we need to verify is that the contents is contained 938 // within the file bounds. We don't need to make sure it doesn't cover other 939 // data, as there's nothing that says that is not allowed. 940 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 941 uint32_t SectionSize = getSectionSize(Sec); 942 if (checkOffset(Data, ConStart, SectionSize)) 943 return object_error::parse_failed; 944 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 945 return std::error_code(); 946 } 947 948 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 949 return reinterpret_cast<const coff_relocation*>(Rel.p); 950 } 951 952 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 953 Rel.p = reinterpret_cast<uintptr_t>( 954 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 955 } 956 957 std::error_code COFFObjectFile::getRelocationAddress(DataRefImpl Rel, 958 uint64_t &Res) const { 959 report_fatal_error("getRelocationAddress not implemented in COFFObjectFile"); 960 } 961 962 std::error_code COFFObjectFile::getRelocationOffset(DataRefImpl Rel, 963 uint64_t &Res) const { 964 const coff_relocation *R = toRel(Rel); 965 const support::ulittle32_t *VirtualAddressPtr; 966 if (std::error_code EC = 967 getObject(VirtualAddressPtr, Data, &R->VirtualAddress)) 968 return EC; 969 Res = *VirtualAddressPtr; 970 return std::error_code(); 971 } 972 973 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 974 const coff_relocation *R = toRel(Rel); 975 DataRefImpl Ref; 976 if (R->SymbolTableIndex >= getNumberOfSymbols()) 977 return symbol_end(); 978 if (SymbolTable16) 979 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 980 else if (SymbolTable32) 981 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 982 else 983 llvm_unreachable("no symbol table pointer!"); 984 return symbol_iterator(SymbolRef(Ref, this)); 985 } 986 987 std::error_code COFFObjectFile::getRelocationType(DataRefImpl Rel, 988 uint64_t &Res) const { 989 const coff_relocation* R = toRel(Rel); 990 Res = R->Type; 991 return std::error_code(); 992 } 993 994 const coff_section * 995 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 996 return toSec(Section.getRawDataRefImpl()); 997 } 998 999 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1000 if (SymbolTable16) 1001 return toSymb<coff_symbol16>(Ref); 1002 if (SymbolTable32) 1003 return toSymb<coff_symbol32>(Ref); 1004 llvm_unreachable("no symbol table pointer!"); 1005 } 1006 1007 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1008 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1009 } 1010 1011 const coff_relocation * 1012 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1013 return toRel(Reloc.getRawDataRefImpl()); 1014 } 1015 1016 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1017 case COFF::reloc_type: \ 1018 Res = #reloc_type; \ 1019 break; 1020 1021 std::error_code 1022 COFFObjectFile::getRelocationTypeName(DataRefImpl Rel, 1023 SmallVectorImpl<char> &Result) const { 1024 const coff_relocation *Reloc = toRel(Rel); 1025 StringRef Res; 1026 switch (getMachine()) { 1027 case COFF::IMAGE_FILE_MACHINE_AMD64: 1028 switch (Reloc->Type) { 1029 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1030 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1031 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1032 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1033 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1034 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1035 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1036 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1037 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1038 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1039 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1040 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1041 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1042 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1043 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1044 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1045 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1046 default: 1047 Res = "Unknown"; 1048 } 1049 break; 1050 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1051 switch (Reloc->Type) { 1052 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1053 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1054 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1055 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1056 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1057 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1058 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1059 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1060 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1061 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1062 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1063 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1064 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1065 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1066 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1067 default: 1068 Res = "Unknown"; 1069 } 1070 break; 1071 case COFF::IMAGE_FILE_MACHINE_I386: 1072 switch (Reloc->Type) { 1073 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1074 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1075 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1076 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1077 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1078 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1079 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1080 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1081 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1082 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1083 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1084 default: 1085 Res = "Unknown"; 1086 } 1087 break; 1088 default: 1089 Res = "Unknown"; 1090 } 1091 Result.append(Res.begin(), Res.end()); 1092 return std::error_code(); 1093 } 1094 1095 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1096 1097 bool COFFObjectFile::isRelocatableObject() const { 1098 return !DataDirectory; 1099 } 1100 1101 bool ImportDirectoryEntryRef:: 1102 operator==(const ImportDirectoryEntryRef &Other) const { 1103 return ImportTable == Other.ImportTable && Index == Other.Index; 1104 } 1105 1106 void ImportDirectoryEntryRef::moveNext() { 1107 ++Index; 1108 } 1109 1110 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1111 const import_directory_table_entry *&Result) const { 1112 Result = ImportTable + Index; 1113 return std::error_code(); 1114 } 1115 1116 static imported_symbol_iterator 1117 makeImportedSymbolIterator(const COFFObjectFile *Object, 1118 uintptr_t Ptr, int Index) { 1119 if (Object->getBytesInAddress() == 4) { 1120 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1121 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1122 } 1123 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1124 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1125 } 1126 1127 static imported_symbol_iterator 1128 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1129 uintptr_t IntPtr = 0; 1130 Object->getRvaPtr(RVA, IntPtr); 1131 return makeImportedSymbolIterator(Object, IntPtr, 0); 1132 } 1133 1134 static imported_symbol_iterator 1135 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1136 uintptr_t IntPtr = 0; 1137 Object->getRvaPtr(RVA, IntPtr); 1138 // Forward the pointer to the last entry which is null. 1139 int Index = 0; 1140 if (Object->getBytesInAddress() == 4) { 1141 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1142 while (*Entry++) 1143 ++Index; 1144 } else { 1145 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1146 while (*Entry++) 1147 ++Index; 1148 } 1149 return makeImportedSymbolIterator(Object, IntPtr, Index); 1150 } 1151 1152 imported_symbol_iterator 1153 ImportDirectoryEntryRef::imported_symbol_begin() const { 1154 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1155 OwningObject); 1156 } 1157 1158 imported_symbol_iterator 1159 ImportDirectoryEntryRef::imported_symbol_end() const { 1160 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1161 OwningObject); 1162 } 1163 1164 iterator_range<imported_symbol_iterator> 1165 ImportDirectoryEntryRef::imported_symbols() const { 1166 return make_range(imported_symbol_begin(), imported_symbol_end()); 1167 } 1168 1169 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1170 uintptr_t IntPtr = 0; 1171 if (std::error_code EC = 1172 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1173 return EC; 1174 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1175 return std::error_code(); 1176 } 1177 1178 std::error_code 1179 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1180 Result = ImportTable[Index].ImportLookupTableRVA; 1181 return std::error_code(); 1182 } 1183 1184 std::error_code 1185 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1186 Result = ImportTable[Index].ImportAddressTableRVA; 1187 return std::error_code(); 1188 } 1189 1190 std::error_code ImportDirectoryEntryRef::getImportLookupEntry( 1191 const import_lookup_table_entry32 *&Result) const { 1192 uintptr_t IntPtr = 0; 1193 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; 1194 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1195 return EC; 1196 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr); 1197 return std::error_code(); 1198 } 1199 1200 bool DelayImportDirectoryEntryRef:: 1201 operator==(const DelayImportDirectoryEntryRef &Other) const { 1202 return Table == Other.Table && Index == Other.Index; 1203 } 1204 1205 void DelayImportDirectoryEntryRef::moveNext() { 1206 ++Index; 1207 } 1208 1209 imported_symbol_iterator 1210 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1211 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1212 OwningObject); 1213 } 1214 1215 imported_symbol_iterator 1216 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1217 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1218 OwningObject); 1219 } 1220 1221 iterator_range<imported_symbol_iterator> 1222 DelayImportDirectoryEntryRef::imported_symbols() const { 1223 return make_range(imported_symbol_begin(), imported_symbol_end()); 1224 } 1225 1226 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1227 uintptr_t IntPtr = 0; 1228 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1229 return EC; 1230 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1231 return std::error_code(); 1232 } 1233 1234 std::error_code DelayImportDirectoryEntryRef:: 1235 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1236 Result = Table; 1237 return std::error_code(); 1238 } 1239 1240 std::error_code DelayImportDirectoryEntryRef:: 1241 getImportAddress(int AddrIndex, uint64_t &Result) const { 1242 uint32_t RVA = Table[Index].DelayImportAddressTable + 1243 AddrIndex * (OwningObject->is64() ? 8 : 4); 1244 uintptr_t IntPtr = 0; 1245 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1246 return EC; 1247 if (OwningObject->is64()) 1248 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1249 else 1250 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1251 return std::error_code(); 1252 } 1253 1254 bool ExportDirectoryEntryRef:: 1255 operator==(const ExportDirectoryEntryRef &Other) const { 1256 return ExportTable == Other.ExportTable && Index == Other.Index; 1257 } 1258 1259 void ExportDirectoryEntryRef::moveNext() { 1260 ++Index; 1261 } 1262 1263 // Returns the name of the current export symbol. If the symbol is exported only 1264 // by ordinal, the empty string is set as a result. 1265 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1266 uintptr_t IntPtr = 0; 1267 if (std::error_code EC = 1268 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1269 return EC; 1270 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1271 return std::error_code(); 1272 } 1273 1274 // Returns the starting ordinal number. 1275 std::error_code 1276 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1277 Result = ExportTable->OrdinalBase; 1278 return std::error_code(); 1279 } 1280 1281 // Returns the export ordinal of the current export symbol. 1282 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1283 Result = ExportTable->OrdinalBase + Index; 1284 return std::error_code(); 1285 } 1286 1287 // Returns the address of the current export symbol. 1288 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1289 uintptr_t IntPtr = 0; 1290 if (std::error_code EC = 1291 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1292 return EC; 1293 const export_address_table_entry *entry = 1294 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1295 Result = entry[Index].ExportRVA; 1296 return std::error_code(); 1297 } 1298 1299 // Returns the name of the current export symbol. If the symbol is exported only 1300 // by ordinal, the empty string is set as a result. 1301 std::error_code 1302 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1303 uintptr_t IntPtr = 0; 1304 if (std::error_code EC = 1305 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1306 return EC; 1307 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1308 1309 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1310 int Offset = 0; 1311 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1312 I < E; ++I, ++Offset) { 1313 if (*I != Index) 1314 continue; 1315 if (std::error_code EC = 1316 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1317 return EC; 1318 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1319 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1320 return EC; 1321 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1322 return std::error_code(); 1323 } 1324 Result = ""; 1325 return std::error_code(); 1326 } 1327 1328 bool ImportedSymbolRef:: 1329 operator==(const ImportedSymbolRef &Other) const { 1330 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1331 && Index == Other.Index; 1332 } 1333 1334 void ImportedSymbolRef::moveNext() { 1335 ++Index; 1336 } 1337 1338 std::error_code 1339 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1340 uint32_t RVA; 1341 if (Entry32) { 1342 // If a symbol is imported only by ordinal, it has no name. 1343 if (Entry32[Index].isOrdinal()) 1344 return std::error_code(); 1345 RVA = Entry32[Index].getHintNameRVA(); 1346 } else { 1347 if (Entry64[Index].isOrdinal()) 1348 return std::error_code(); 1349 RVA = Entry64[Index].getHintNameRVA(); 1350 } 1351 uintptr_t IntPtr = 0; 1352 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1353 return EC; 1354 // +2 because the first two bytes is hint. 1355 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1356 return std::error_code(); 1357 } 1358 1359 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1360 uint32_t RVA; 1361 if (Entry32) { 1362 if (Entry32[Index].isOrdinal()) { 1363 Result = Entry32[Index].getOrdinal(); 1364 return std::error_code(); 1365 } 1366 RVA = Entry32[Index].getHintNameRVA(); 1367 } else { 1368 if (Entry64[Index].isOrdinal()) { 1369 Result = Entry64[Index].getOrdinal(); 1370 return std::error_code(); 1371 } 1372 RVA = Entry64[Index].getHintNameRVA(); 1373 } 1374 uintptr_t IntPtr = 0; 1375 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1376 return EC; 1377 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1378 return std::error_code(); 1379 } 1380 1381 ErrorOr<std::unique_ptr<COFFObjectFile>> 1382 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1383 std::error_code EC; 1384 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1385 if (EC) 1386 return EC; 1387 return std::move(Ret); 1388 } 1389 1390 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1391 return Header == Other.Header && Index == Other.Index; 1392 } 1393 1394 void BaseRelocRef::moveNext() { 1395 // Header->BlockSize is the size of the current block, including the 1396 // size of the header itself. 1397 uint32_t Size = sizeof(*Header) + 1398 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1399 if (Size == Header->BlockSize) { 1400 // .reloc contains a list of base relocation blocks. Each block 1401 // consists of the header followed by entries. The header contains 1402 // how many entories will follow. When we reach the end of the 1403 // current block, proceed to the next block. 1404 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1405 reinterpret_cast<const uint8_t *>(Header) + Size); 1406 Index = 0; 1407 } else { 1408 ++Index; 1409 } 1410 } 1411 1412 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1413 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1414 Type = Entry[Index].getType(); 1415 return std::error_code(); 1416 } 1417 1418 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1419 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1420 Result = Header->PageRVA + Entry[Index].getOffset(); 1421 return std::error_code(); 1422 } 1423