1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Support/COFF.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <cctype> 23 #include <limits> 24 25 using namespace llvm; 26 using namespace object; 27 28 using support::ulittle16_t; 29 using support::ulittle32_t; 30 using support::ulittle64_t; 31 using support::little16_t; 32 33 // Returns false if size is greater than the buffer size. And sets ec. 34 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 35 if (M.getBufferSize() < Size) { 36 EC = object_error::unexpected_eof; 37 return false; 38 } 39 return true; 40 } 41 42 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 43 // Returns unexpected_eof if error. 44 template <typename T> 45 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 46 const uint8_t *Ptr, 47 const size_t Size = sizeof(T)) { 48 uintptr_t Addr = uintptr_t(Ptr); 49 if (Addr + Size < Addr || Addr + Size < Size || 50 Addr + Size > uintptr_t(M.getBufferEnd())) { 51 return object_error::unexpected_eof; 52 } 53 Obj = reinterpret_cast<const T *>(Addr); 54 return object_error::success; 55 } 56 57 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 58 // prefixed slashes. 59 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 60 assert(Str.size() <= 6 && "String too long, possible overflow."); 61 if (Str.size() > 6) 62 return true; 63 64 uint64_t Value = 0; 65 while (!Str.empty()) { 66 unsigned CharVal; 67 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 68 CharVal = Str[0] - 'A'; 69 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 70 CharVal = Str[0] - 'a' + 26; 71 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 72 CharVal = Str[0] - '0' + 52; 73 else if (Str[0] == '+') // 62 74 CharVal = 62; 75 else if (Str[0] == '/') // 63 76 CharVal = 63; 77 else 78 return true; 79 80 Value = (Value * 64) + CharVal; 81 Str = Str.substr(1); 82 } 83 84 if (Value > std::numeric_limits<uint32_t>::max()) 85 return true; 86 87 Result = static_cast<uint32_t>(Value); 88 return false; 89 } 90 91 template <typename coff_symbol_type> 92 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 93 const coff_symbol_type *Addr = 94 reinterpret_cast<const coff_symbol_type *>(Ref.p); 95 96 #ifndef NDEBUG 97 // Verify that the symbol points to a valid entry in the symbol table. 98 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 99 if (Offset < getPointerToSymbolTable() || 100 Offset >= getPointerToSymbolTable() + 101 (getNumberOfSymbols() * sizeof(coff_symbol_type))) 102 report_fatal_error("Symbol was outside of symbol table."); 103 104 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 105 "Symbol did not point to the beginning of a symbol"); 106 #endif 107 108 return Addr; 109 } 110 111 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 112 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 113 114 # ifndef NDEBUG 115 // Verify that the section points to a valid entry in the section table. 116 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 117 report_fatal_error("Section was outside of section table."); 118 119 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 120 assert(Offset % sizeof(coff_section) == 0 && 121 "Section did not point to the beginning of a section"); 122 # endif 123 124 return Addr; 125 } 126 127 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 128 if (SymbolTable16) { 129 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 130 Symb += 1 + Symb->NumberOfAuxSymbols; 131 Ref.p = reinterpret_cast<uintptr_t>(Symb); 132 } else if (SymbolTable32) { 133 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 134 Symb += 1 + Symb->NumberOfAuxSymbols; 135 Ref.p = reinterpret_cast<uintptr_t>(Symb); 136 } else { 137 llvm_unreachable("no symbol table pointer!"); 138 } 139 } 140 141 std::error_code COFFObjectFile::getSymbolName(DataRefImpl Ref, 142 StringRef &Result) const { 143 COFFSymbolRef Symb = getCOFFSymbol(Ref); 144 return getSymbolName(Symb, Result); 145 } 146 147 std::error_code COFFObjectFile::getSymbolAddress(DataRefImpl Ref, 148 uint64_t &Result) const { 149 COFFSymbolRef Symb = getCOFFSymbol(Ref); 150 151 if (Symb.isAnyUndefined()) { 152 Result = UnknownAddressOrSize; 153 return object_error::success; 154 } 155 if (Symb.isCommon()) { 156 Result = UnknownAddressOrSize; 157 return object_error::success; 158 } 159 int32_t SectionNumber = Symb.getSectionNumber(); 160 if (!COFF::isReservedSectionNumber(SectionNumber)) { 161 const coff_section *Section = nullptr; 162 if (std::error_code EC = getSection(SectionNumber, Section)) 163 return EC; 164 165 Result = Section->VirtualAddress + Symb.getValue(); 166 return object_error::success; 167 } 168 169 Result = Symb.getValue(); 170 return object_error::success; 171 } 172 173 std::error_code COFFObjectFile::getSymbolType(DataRefImpl Ref, 174 SymbolRef::Type &Result) const { 175 COFFSymbolRef Symb = getCOFFSymbol(Ref); 176 int32_t SectionNumber = Symb.getSectionNumber(); 177 Result = SymbolRef::ST_Other; 178 179 if (Symb.isAnyUndefined()) { 180 Result = SymbolRef::ST_Unknown; 181 } else if (Symb.isFunctionDefinition()) { 182 Result = SymbolRef::ST_Function; 183 } else if (Symb.isCommon()) { 184 Result = SymbolRef::ST_Data; 185 } else if (Symb.isFileRecord()) { 186 Result = SymbolRef::ST_File; 187 } else if (SectionNumber == COFF::IMAGE_SYM_DEBUG) { 188 Result = SymbolRef::ST_Debug; 189 } else if (!COFF::isReservedSectionNumber(SectionNumber)) { 190 const coff_section *Section = nullptr; 191 if (std::error_code EC = getSection(SectionNumber, Section)) 192 return EC; 193 uint32_t Characteristics = Section->Characteristics; 194 if (Characteristics & COFF::IMAGE_SCN_CNT_CODE) 195 Result = SymbolRef::ST_Function; 196 else if (Characteristics & (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 197 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA)) 198 Result = SymbolRef::ST_Data; 199 } 200 return object_error::success; 201 } 202 203 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 204 COFFSymbolRef Symb = getCOFFSymbol(Ref); 205 uint32_t Result = SymbolRef::SF_None; 206 207 if (Symb.isExternal() || Symb.isWeakExternal()) 208 Result |= SymbolRef::SF_Global; 209 210 if (Symb.isWeakExternal()) 211 Result |= SymbolRef::SF_Weak; 212 213 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 214 Result |= SymbolRef::SF_Absolute; 215 216 if (Symb.isFileRecord()) 217 Result |= SymbolRef::SF_FormatSpecific; 218 219 if (Symb.isSectionDefinition()) 220 Result |= SymbolRef::SF_FormatSpecific; 221 222 if (Symb.isCommon()) 223 Result |= SymbolRef::SF_Common; 224 225 if (Symb.isAnyUndefined()) 226 Result |= SymbolRef::SF_Undefined; 227 228 return Result; 229 } 230 231 std::error_code COFFObjectFile::getSymbolSize(DataRefImpl Ref, 232 uint64_t &Result) const { 233 COFFSymbolRef Symb = getCOFFSymbol(Ref); 234 235 if (Symb.isAnyUndefined()) { 236 Result = UnknownAddressOrSize; 237 return object_error::success; 238 } 239 if (Symb.isCommon()) { 240 Result = Symb.getValue(); 241 return object_error::success; 242 } 243 if (Symb.isFunctionDefinition()) { 244 ArrayRef<uint8_t> AuxData = getSymbolAuxData(Symb); 245 if (!AuxData.empty()) { 246 const auto *CAFD = 247 reinterpret_cast<const coff_aux_function_definition *>( 248 AuxData.data()); 249 Result = CAFD->TotalSize; 250 return object_error::success; 251 } 252 } 253 254 // Let's attempt to get the size of the symbol by looking at the address of 255 // the symbol after the symbol in question. 256 uint64_t SymbAddr; 257 if (std::error_code EC = getSymbolAddress(Ref, SymbAddr)) 258 return EC; 259 int32_t SectionNumber = Symb.getSectionNumber(); 260 if (COFF::isReservedSectionNumber(SectionNumber)) { 261 // Absolute and debug symbols aren't sorted in any interesting way. 262 Result = 0; 263 return object_error::success; 264 } 265 const section_iterator SecEnd = section_end(); 266 uint64_t AfterAddr = UnknownAddressOrSize; 267 for (const symbol_iterator &SymbI : symbols()) { 268 section_iterator SecI = SecEnd; 269 if (std::error_code EC = SymbI->getSection(SecI)) 270 return EC; 271 // Check the symbol's section, skip it if it's in the wrong section. 272 // First, make sure it is in any section. 273 if (SecI == SecEnd) 274 continue; 275 // Second, make sure it is in the same section as the symbol in question. 276 if (!sectionContainsSymbol(SecI->getRawDataRefImpl(), Ref)) 277 continue; 278 uint64_t Addr; 279 if (std::error_code EC = SymbI->getAddress(Addr)) 280 return EC; 281 // We want to compare our symbol in question with the closest possible 282 // symbol that comes after. 283 if (AfterAddr > Addr && Addr > SymbAddr) 284 AfterAddr = Addr; 285 } 286 if (AfterAddr == UnknownAddressOrSize) { 287 // No symbol comes after this one, assume that everything after our symbol 288 // is part of it. 289 const coff_section *Section = nullptr; 290 if (std::error_code EC = getSection(SectionNumber, Section)) 291 return EC; 292 Result = Section->SizeOfRawData - Symb.getValue(); 293 } else { 294 // Take the difference between our symbol and the symbol that comes after 295 // our symbol. 296 Result = AfterAddr - SymbAddr; 297 } 298 299 return object_error::success; 300 } 301 302 std::error_code 303 COFFObjectFile::getSymbolSection(DataRefImpl Ref, 304 section_iterator &Result) const { 305 COFFSymbolRef Symb = getCOFFSymbol(Ref); 306 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) { 307 Result = section_end(); 308 } else { 309 const coff_section *Sec = nullptr; 310 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 311 return EC; 312 DataRefImpl Ref; 313 Ref.p = reinterpret_cast<uintptr_t>(Sec); 314 Result = section_iterator(SectionRef(Ref, this)); 315 } 316 return object_error::success; 317 } 318 319 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 320 const coff_section *Sec = toSec(Ref); 321 Sec += 1; 322 Ref.p = reinterpret_cast<uintptr_t>(Sec); 323 } 324 325 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 326 StringRef &Result) const { 327 const coff_section *Sec = toSec(Ref); 328 return getSectionName(Sec, Result); 329 } 330 331 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 332 const coff_section *Sec = toSec(Ref); 333 return Sec->VirtualAddress; 334 } 335 336 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 337 return getSectionSize(toSec(Ref)); 338 } 339 340 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 341 StringRef &Result) const { 342 const coff_section *Sec = toSec(Ref); 343 ArrayRef<uint8_t> Res; 344 std::error_code EC = getSectionContents(Sec, Res); 345 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 346 return EC; 347 } 348 349 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 350 const coff_section *Sec = toSec(Ref); 351 return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1); 352 } 353 354 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 355 const coff_section *Sec = toSec(Ref); 356 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 357 } 358 359 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 360 const coff_section *Sec = toSec(Ref); 361 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 362 } 363 364 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 365 const coff_section *Sec = toSec(Ref); 366 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 367 } 368 369 bool COFFObjectFile::isSectionRequiredForExecution(DataRefImpl Ref) const { 370 // FIXME: Unimplemented 371 return true; 372 } 373 374 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 375 const coff_section *Sec = toSec(Ref); 376 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; 377 } 378 379 bool COFFObjectFile::isSectionZeroInit(DataRefImpl Ref) const { 380 // FIXME: Unimplemented. 381 return false; 382 } 383 384 bool COFFObjectFile::isSectionReadOnlyData(DataRefImpl Ref) const { 385 // FIXME: Unimplemented. 386 return false; 387 } 388 389 bool COFFObjectFile::sectionContainsSymbol(DataRefImpl SecRef, 390 DataRefImpl SymbRef) const { 391 const coff_section *Sec = toSec(SecRef); 392 COFFSymbolRef Symb = getCOFFSymbol(SymbRef); 393 int32_t SecNumber = (Sec - SectionTable) + 1; 394 return SecNumber == Symb.getSectionNumber(); 395 } 396 397 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 398 const coff_section *Sec = toSec(Ref); 399 DataRefImpl Ret; 400 if (Sec->NumberOfRelocations == 0) { 401 Ret.p = 0; 402 } else { 403 auto begin = reinterpret_cast<const coff_relocation*>( 404 base() + Sec->PointerToRelocations); 405 if (Sec->hasExtendedRelocations()) { 406 // Skip the first relocation entry repurposed to store the number of 407 // relocations. 408 begin++; 409 } 410 Ret.p = reinterpret_cast<uintptr_t>(begin); 411 } 412 return relocation_iterator(RelocationRef(Ret, this)); 413 } 414 415 static uint32_t getNumberOfRelocations(const coff_section *Sec, 416 const uint8_t *base) { 417 // The field for the number of relocations in COFF section table is only 418 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 419 // NumberOfRelocations field, and the actual relocation count is stored in the 420 // VirtualAddress field in the first relocation entry. 421 if (Sec->hasExtendedRelocations()) { 422 auto *FirstReloc = reinterpret_cast<const coff_relocation*>( 423 base + Sec->PointerToRelocations); 424 return FirstReloc->VirtualAddress; 425 } 426 return Sec->NumberOfRelocations; 427 } 428 429 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 430 const coff_section *Sec = toSec(Ref); 431 DataRefImpl Ret; 432 if (Sec->NumberOfRelocations == 0) { 433 Ret.p = 0; 434 } else { 435 auto begin = reinterpret_cast<const coff_relocation*>( 436 base() + Sec->PointerToRelocations); 437 uint32_t NumReloc = getNumberOfRelocations(Sec, base()); 438 Ret.p = reinterpret_cast<uintptr_t>(begin + NumReloc); 439 } 440 return relocation_iterator(RelocationRef(Ret, this)); 441 } 442 443 // Initialize the pointer to the symbol table. 444 std::error_code COFFObjectFile::initSymbolTablePtr() { 445 if (COFFHeader) 446 if (std::error_code EC = 447 getObject(SymbolTable16, Data, base() + getPointerToSymbolTable(), 448 getNumberOfSymbols() * getSymbolTableEntrySize())) 449 return EC; 450 451 if (COFFBigObjHeader) 452 if (std::error_code EC = 453 getObject(SymbolTable32, Data, base() + getPointerToSymbolTable(), 454 getNumberOfSymbols() * getSymbolTableEntrySize())) 455 return EC; 456 457 // Find string table. The first four byte of the string table contains the 458 // total size of the string table, including the size field itself. If the 459 // string table is empty, the value of the first four byte would be 4. 460 const uint8_t *StringTableAddr = 461 base() + getPointerToSymbolTable() + 462 getNumberOfSymbols() * getSymbolTableEntrySize(); 463 const ulittle32_t *StringTableSizePtr; 464 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 465 return EC; 466 StringTableSize = *StringTableSizePtr; 467 if (std::error_code EC = 468 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 469 return EC; 470 471 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 472 // tools like cvtres write a size of 0 for an empty table instead of 4. 473 if (StringTableSize < 4) 474 StringTableSize = 4; 475 476 // Check that the string table is null terminated if has any in it. 477 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 478 return object_error::parse_failed; 479 return object_error::success; 480 } 481 482 // Returns the file offset for the given VA. 483 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 484 uint64_t ImageBase = PE32Header ? (uint64_t)PE32Header->ImageBase 485 : (uint64_t)PE32PlusHeader->ImageBase; 486 uint64_t Rva = Addr - ImageBase; 487 assert(Rva <= UINT32_MAX); 488 return getRvaPtr((uint32_t)Rva, Res); 489 } 490 491 // Returns the file offset for the given RVA. 492 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 493 for (const SectionRef &S : sections()) { 494 const coff_section *Section = getCOFFSection(S); 495 uint32_t SectionStart = Section->VirtualAddress; 496 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 497 if (SectionStart <= Addr && Addr < SectionEnd) { 498 uint32_t Offset = Addr - SectionStart; 499 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 500 return object_error::success; 501 } 502 } 503 return object_error::parse_failed; 504 } 505 506 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 507 // table entry. 508 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 509 StringRef &Name) const { 510 uintptr_t IntPtr = 0; 511 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 512 return EC; 513 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 514 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 515 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 516 return object_error::success; 517 } 518 519 // Find the import table. 520 std::error_code COFFObjectFile::initImportTablePtr() { 521 // First, we get the RVA of the import table. If the file lacks a pointer to 522 // the import table, do nothing. 523 const data_directory *DataEntry; 524 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 525 return object_error::success; 526 527 // Do nothing if the pointer to import table is NULL. 528 if (DataEntry->RelativeVirtualAddress == 0) 529 return object_error::success; 530 531 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 532 // -1 because the last entry is the null entry. 533 NumberOfImportDirectory = DataEntry->Size / 534 sizeof(import_directory_table_entry) - 1; 535 536 // Find the section that contains the RVA. This is needed because the RVA is 537 // the import table's memory address which is different from its file offset. 538 uintptr_t IntPtr = 0; 539 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 540 return EC; 541 ImportDirectory = reinterpret_cast< 542 const import_directory_table_entry *>(IntPtr); 543 return object_error::success; 544 } 545 546 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 547 std::error_code COFFObjectFile::initDelayImportTablePtr() { 548 const data_directory *DataEntry; 549 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 550 return object_error::success; 551 if (DataEntry->RelativeVirtualAddress == 0) 552 return object_error::success; 553 554 uint32_t RVA = DataEntry->RelativeVirtualAddress; 555 NumberOfDelayImportDirectory = DataEntry->Size / 556 sizeof(delay_import_directory_table_entry) - 1; 557 558 uintptr_t IntPtr = 0; 559 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 560 return EC; 561 DelayImportDirectory = reinterpret_cast< 562 const delay_import_directory_table_entry *>(IntPtr); 563 return object_error::success; 564 } 565 566 // Find the export table. 567 std::error_code COFFObjectFile::initExportTablePtr() { 568 // First, we get the RVA of the export table. If the file lacks a pointer to 569 // the export table, do nothing. 570 const data_directory *DataEntry; 571 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 572 return object_error::success; 573 574 // Do nothing if the pointer to export table is NULL. 575 if (DataEntry->RelativeVirtualAddress == 0) 576 return object_error::success; 577 578 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 579 uintptr_t IntPtr = 0; 580 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 581 return EC; 582 ExportDirectory = 583 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 584 return object_error::success; 585 } 586 587 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 588 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 589 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 590 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 591 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 592 ImportDirectory(nullptr), NumberOfImportDirectory(0), 593 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 594 ExportDirectory(nullptr) { 595 // Check that we at least have enough room for a header. 596 if (!checkSize(Data, EC, sizeof(coff_file_header))) 597 return; 598 599 // The current location in the file where we are looking at. 600 uint64_t CurPtr = 0; 601 602 // PE header is optional and is present only in executables. If it exists, 603 // it is placed right after COFF header. 604 bool HasPEHeader = false; 605 606 // Check if this is a PE/COFF file. 607 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 608 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 609 // PE signature to find 'normal' COFF header. 610 const auto *DH = reinterpret_cast<const dos_header *>(base()); 611 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 612 CurPtr = DH->AddressOfNewExeHeader; 613 // Check the PE magic bytes. ("PE\0\0") 614 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 615 EC = object_error::parse_failed; 616 return; 617 } 618 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 619 HasPEHeader = true; 620 } 621 } 622 623 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 624 return; 625 626 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 627 // import libraries share a common prefix but bigobj is more restrictive. 628 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 629 COFFHeader->NumberOfSections == uint16_t(0xffff) && 630 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 631 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 632 return; 633 634 // Verify that we are dealing with bigobj. 635 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 636 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 637 sizeof(COFF::BigObjMagic)) == 0) { 638 COFFHeader = nullptr; 639 CurPtr += sizeof(coff_bigobj_file_header); 640 } else { 641 // It's not a bigobj. 642 COFFBigObjHeader = nullptr; 643 } 644 } 645 if (COFFHeader) { 646 // The prior checkSize call may have failed. This isn't a hard error 647 // because we were just trying to sniff out bigobj. 648 EC = object_error::success; 649 CurPtr += sizeof(coff_file_header); 650 651 if (COFFHeader->isImportLibrary()) 652 return; 653 } 654 655 if (HasPEHeader) { 656 const pe32_header *Header; 657 if ((EC = getObject(Header, Data, base() + CurPtr))) 658 return; 659 660 const uint8_t *DataDirAddr; 661 uint64_t DataDirSize; 662 if (Header->Magic == COFF::PE32Header::PE32) { 663 PE32Header = Header; 664 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 665 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 666 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 667 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 668 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 669 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 670 } else { 671 // It's neither PE32 nor PE32+. 672 EC = object_error::parse_failed; 673 return; 674 } 675 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 676 return; 677 CurPtr += COFFHeader->SizeOfOptionalHeader; 678 } 679 680 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 681 getNumberOfSections() * sizeof(coff_section)))) 682 return; 683 684 // Initialize the pointer to the symbol table. 685 if (getPointerToSymbolTable() != 0) 686 if ((EC = initSymbolTablePtr())) 687 return; 688 689 // Initialize the pointer to the beginning of the import table. 690 if ((EC = initImportTablePtr())) 691 return; 692 if ((EC = initDelayImportTablePtr())) 693 return; 694 695 // Initialize the pointer to the export table. 696 if ((EC = initExportTablePtr())) 697 return; 698 699 EC = object_error::success; 700 } 701 702 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 703 DataRefImpl Ret; 704 Ret.p = getSymbolTable(); 705 return basic_symbol_iterator(SymbolRef(Ret, this)); 706 } 707 708 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 709 // The symbol table ends where the string table begins. 710 DataRefImpl Ret; 711 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 712 return basic_symbol_iterator(SymbolRef(Ret, this)); 713 } 714 715 import_directory_iterator COFFObjectFile::import_directory_begin() const { 716 return import_directory_iterator( 717 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 718 } 719 720 import_directory_iterator COFFObjectFile::import_directory_end() const { 721 return import_directory_iterator( 722 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); 723 } 724 725 delay_import_directory_iterator 726 COFFObjectFile::delay_import_directory_begin() const { 727 return delay_import_directory_iterator( 728 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 729 } 730 731 delay_import_directory_iterator 732 COFFObjectFile::delay_import_directory_end() const { 733 return delay_import_directory_iterator( 734 DelayImportDirectoryEntryRef( 735 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 736 } 737 738 export_directory_iterator COFFObjectFile::export_directory_begin() const { 739 return export_directory_iterator( 740 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 741 } 742 743 export_directory_iterator COFFObjectFile::export_directory_end() const { 744 if (!ExportDirectory) 745 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 746 ExportDirectoryEntryRef Ref(ExportDirectory, 747 ExportDirectory->AddressTableEntries, this); 748 return export_directory_iterator(Ref); 749 } 750 751 section_iterator COFFObjectFile::section_begin() const { 752 DataRefImpl Ret; 753 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 754 return section_iterator(SectionRef(Ret, this)); 755 } 756 757 section_iterator COFFObjectFile::section_end() const { 758 DataRefImpl Ret; 759 int NumSections = 760 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 761 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 762 return section_iterator(SectionRef(Ret, this)); 763 } 764 765 uint8_t COFFObjectFile::getBytesInAddress() const { 766 return getArch() == Triple::x86_64 ? 8 : 4; 767 } 768 769 StringRef COFFObjectFile::getFileFormatName() const { 770 switch(getMachine()) { 771 case COFF::IMAGE_FILE_MACHINE_I386: 772 return "COFF-i386"; 773 case COFF::IMAGE_FILE_MACHINE_AMD64: 774 return "COFF-x86-64"; 775 case COFF::IMAGE_FILE_MACHINE_ARMNT: 776 return "COFF-ARM"; 777 default: 778 return "COFF-<unknown arch>"; 779 } 780 } 781 782 unsigned COFFObjectFile::getArch() const { 783 switch (getMachine()) { 784 case COFF::IMAGE_FILE_MACHINE_I386: 785 return Triple::x86; 786 case COFF::IMAGE_FILE_MACHINE_AMD64: 787 return Triple::x86_64; 788 case COFF::IMAGE_FILE_MACHINE_ARMNT: 789 return Triple::thumb; 790 default: 791 return Triple::UnknownArch; 792 } 793 } 794 795 iterator_range<import_directory_iterator> 796 COFFObjectFile::import_directories() const { 797 return make_range(import_directory_begin(), import_directory_end()); 798 } 799 800 iterator_range<delay_import_directory_iterator> 801 COFFObjectFile::delay_import_directories() const { 802 return make_range(delay_import_directory_begin(), 803 delay_import_directory_end()); 804 } 805 806 iterator_range<export_directory_iterator> 807 COFFObjectFile::export_directories() const { 808 return make_range(export_directory_begin(), export_directory_end()); 809 } 810 811 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 812 Res = PE32Header; 813 return object_error::success; 814 } 815 816 std::error_code 817 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 818 Res = PE32PlusHeader; 819 return object_error::success; 820 } 821 822 std::error_code 823 COFFObjectFile::getDataDirectory(uint32_t Index, 824 const data_directory *&Res) const { 825 // Error if if there's no data directory or the index is out of range. 826 if (!DataDirectory) 827 return object_error::parse_failed; 828 assert(PE32Header || PE32PlusHeader); 829 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 830 : PE32PlusHeader->NumberOfRvaAndSize; 831 if (Index > NumEnt) 832 return object_error::parse_failed; 833 Res = &DataDirectory[Index]; 834 return object_error::success; 835 } 836 837 std::error_code COFFObjectFile::getSection(int32_t Index, 838 const coff_section *&Result) const { 839 // Check for special index values. 840 if (COFF::isReservedSectionNumber(Index)) 841 Result = nullptr; 842 else if (Index > 0 && static_cast<uint32_t>(Index) <= getNumberOfSections()) 843 // We already verified the section table data, so no need to check again. 844 Result = SectionTable + (Index - 1); 845 else 846 return object_error::parse_failed; 847 return object_error::success; 848 } 849 850 std::error_code COFFObjectFile::getString(uint32_t Offset, 851 StringRef &Result) const { 852 if (StringTableSize <= 4) 853 // Tried to get a string from an empty string table. 854 return object_error::parse_failed; 855 if (Offset >= StringTableSize) 856 return object_error::unexpected_eof; 857 Result = StringRef(StringTable + Offset); 858 return object_error::success; 859 } 860 861 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 862 StringRef &Res) const { 863 // Check for string table entry. First 4 bytes are 0. 864 if (Symbol.getStringTableOffset().Zeroes == 0) { 865 uint32_t Offset = Symbol.getStringTableOffset().Offset; 866 if (std::error_code EC = getString(Offset, Res)) 867 return EC; 868 return object_error::success; 869 } 870 871 if (Symbol.getShortName()[COFF::NameSize - 1] == 0) 872 // Null terminated, let ::strlen figure out the length. 873 Res = StringRef(Symbol.getShortName()); 874 else 875 // Not null terminated, use all 8 bytes. 876 Res = StringRef(Symbol.getShortName(), COFF::NameSize); 877 return object_error::success; 878 } 879 880 ArrayRef<uint8_t> 881 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 882 const uint8_t *Aux = nullptr; 883 884 size_t SymbolSize = getSymbolTableEntrySize(); 885 if (Symbol.getNumberOfAuxSymbols() > 0) { 886 // AUX data comes immediately after the symbol in COFF 887 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 888 # ifndef NDEBUG 889 // Verify that the Aux symbol points to a valid entry in the symbol table. 890 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 891 if (Offset < getPointerToSymbolTable() || 892 Offset >= 893 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 894 report_fatal_error("Aux Symbol data was outside of symbol table."); 895 896 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 897 "Aux Symbol data did not point to the beginning of a symbol"); 898 # endif 899 } 900 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 901 } 902 903 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 904 StringRef &Res) const { 905 StringRef Name; 906 if (Sec->Name[COFF::NameSize - 1] == 0) 907 // Null terminated, let ::strlen figure out the length. 908 Name = Sec->Name; 909 else 910 // Not null terminated, use all 8 bytes. 911 Name = StringRef(Sec->Name, COFF::NameSize); 912 913 // Check for string table entry. First byte is '/'. 914 if (Name[0] == '/') { 915 uint32_t Offset; 916 if (Name[1] == '/') { 917 if (decodeBase64StringEntry(Name.substr(2), Offset)) 918 return object_error::parse_failed; 919 } else { 920 if (Name.substr(1).getAsInteger(10, Offset)) 921 return object_error::parse_failed; 922 } 923 if (std::error_code EC = getString(Offset, Name)) 924 return EC; 925 } 926 927 Res = Name; 928 return object_error::success; 929 } 930 931 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 932 // SizeOfRawData and VirtualSize change what they represent depending on 933 // whether or not we have an executable image. 934 // 935 // For object files, SizeOfRawData contains the size of section's data; 936 // VirtualSize is always zero. 937 // 938 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 939 // actual section size is in VirtualSize. It is possible for VirtualSize to 940 // be greater than SizeOfRawData; the contents past that point should be 941 // considered to be zero. 942 uint32_t SectionSize; 943 if (Sec->VirtualSize) 944 SectionSize = std::min(Sec->VirtualSize, Sec->SizeOfRawData); 945 else 946 SectionSize = Sec->SizeOfRawData; 947 948 return SectionSize; 949 } 950 951 std::error_code 952 COFFObjectFile::getSectionContents(const coff_section *Sec, 953 ArrayRef<uint8_t> &Res) const { 954 // PointerToRawData and SizeOfRawData won't make sense for BSS sections, 955 // don't do anything interesting for them. 956 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && 957 "BSS sections don't have contents!"); 958 // The only thing that we need to verify is that the contents is contained 959 // within the file bounds. We don't need to make sure it doesn't cover other 960 // data, as there's nothing that says that is not allowed. 961 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 962 uint32_t SectionSize = getSectionSize(Sec); 963 uintptr_t ConEnd = ConStart + SectionSize; 964 if (ConEnd > uintptr_t(Data.getBufferEnd())) 965 return object_error::parse_failed; 966 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 967 return object_error::success; 968 } 969 970 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 971 return reinterpret_cast<const coff_relocation*>(Rel.p); 972 } 973 974 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 975 Rel.p = reinterpret_cast<uintptr_t>( 976 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 977 } 978 979 std::error_code COFFObjectFile::getRelocationAddress(DataRefImpl Rel, 980 uint64_t &Res) const { 981 report_fatal_error("getRelocationAddress not implemented in COFFObjectFile"); 982 } 983 984 std::error_code COFFObjectFile::getRelocationOffset(DataRefImpl Rel, 985 uint64_t &Res) const { 986 Res = toRel(Rel)->VirtualAddress; 987 return object_error::success; 988 } 989 990 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 991 const coff_relocation *R = toRel(Rel); 992 DataRefImpl Ref; 993 if (SymbolTable16) 994 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 995 else if (SymbolTable32) 996 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 997 else 998 llvm_unreachable("no symbol table pointer!"); 999 return symbol_iterator(SymbolRef(Ref, this)); 1000 } 1001 1002 std::error_code COFFObjectFile::getRelocationType(DataRefImpl Rel, 1003 uint64_t &Res) const { 1004 const coff_relocation* R = toRel(Rel); 1005 Res = R->Type; 1006 return object_error::success; 1007 } 1008 1009 const coff_section * 1010 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1011 return toSec(Section.getRawDataRefImpl()); 1012 } 1013 1014 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1015 if (SymbolTable16) 1016 return toSymb<coff_symbol16>(Ref); 1017 if (SymbolTable32) 1018 return toSymb<coff_symbol32>(Ref); 1019 llvm_unreachable("no symbol table pointer!"); 1020 } 1021 1022 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1023 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1024 } 1025 1026 const coff_relocation * 1027 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1028 return toRel(Reloc.getRawDataRefImpl()); 1029 } 1030 1031 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1032 case COFF::reloc_type: \ 1033 Res = #reloc_type; \ 1034 break; 1035 1036 std::error_code 1037 COFFObjectFile::getRelocationTypeName(DataRefImpl Rel, 1038 SmallVectorImpl<char> &Result) const { 1039 const coff_relocation *Reloc = toRel(Rel); 1040 StringRef Res; 1041 switch (getMachine()) { 1042 case COFF::IMAGE_FILE_MACHINE_AMD64: 1043 switch (Reloc->Type) { 1044 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1045 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1046 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1047 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1048 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1049 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1050 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1051 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1052 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1053 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1054 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1055 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1056 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1057 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1058 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1059 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1060 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1061 default: 1062 Res = "Unknown"; 1063 } 1064 break; 1065 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1066 switch (Reloc->Type) { 1067 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1068 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1069 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1070 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1071 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1072 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1073 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1074 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1075 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1076 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1077 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1078 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1079 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1080 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1081 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1082 default: 1083 Res = "Unknown"; 1084 } 1085 break; 1086 case COFF::IMAGE_FILE_MACHINE_I386: 1087 switch (Reloc->Type) { 1088 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1089 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1090 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1091 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1092 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1093 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1094 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1095 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1096 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1097 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1098 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1099 default: 1100 Res = "Unknown"; 1101 } 1102 break; 1103 default: 1104 Res = "Unknown"; 1105 } 1106 Result.append(Res.begin(), Res.end()); 1107 return object_error::success; 1108 } 1109 1110 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1111 1112 std::error_code 1113 COFFObjectFile::getRelocationValueString(DataRefImpl Rel, 1114 SmallVectorImpl<char> &Result) const { 1115 const coff_relocation *Reloc = toRel(Rel); 1116 DataRefImpl Sym; 1117 ErrorOr<COFFSymbolRef> Symb = getSymbol(Reloc->SymbolTableIndex); 1118 if (std::error_code EC = Symb.getError()) 1119 return EC; 1120 Sym.p = reinterpret_cast<uintptr_t>(Symb->getRawPtr()); 1121 StringRef SymName; 1122 if (std::error_code EC = getSymbolName(Sym, SymName)) 1123 return EC; 1124 Result.append(SymName.begin(), SymName.end()); 1125 return object_error::success; 1126 } 1127 1128 bool COFFObjectFile::isRelocatableObject() const { 1129 return !DataDirectory; 1130 } 1131 1132 bool ImportDirectoryEntryRef:: 1133 operator==(const ImportDirectoryEntryRef &Other) const { 1134 return ImportTable == Other.ImportTable && Index == Other.Index; 1135 } 1136 1137 void ImportDirectoryEntryRef::moveNext() { 1138 ++Index; 1139 } 1140 1141 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1142 const import_directory_table_entry *&Result) const { 1143 Result = ImportTable + Index; 1144 return object_error::success; 1145 } 1146 1147 static imported_symbol_iterator 1148 makeImportedSymbolIterator(const COFFObjectFile *Object, 1149 uintptr_t Ptr, int Index) { 1150 if (Object->getBytesInAddress() == 4) { 1151 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1152 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1153 } 1154 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1155 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1156 } 1157 1158 static imported_symbol_iterator 1159 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1160 uintptr_t IntPtr = 0; 1161 Object->getRvaPtr(RVA, IntPtr); 1162 return makeImportedSymbolIterator(Object, IntPtr, 0); 1163 } 1164 1165 static imported_symbol_iterator 1166 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1167 uintptr_t IntPtr = 0; 1168 Object->getRvaPtr(RVA, IntPtr); 1169 // Forward the pointer to the last entry which is null. 1170 int Index = 0; 1171 if (Object->getBytesInAddress() == 4) { 1172 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1173 while (*Entry++) 1174 ++Index; 1175 } else { 1176 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1177 while (*Entry++) 1178 ++Index; 1179 } 1180 return makeImportedSymbolIterator(Object, IntPtr, Index); 1181 } 1182 1183 imported_symbol_iterator 1184 ImportDirectoryEntryRef::imported_symbol_begin() const { 1185 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1186 OwningObject); 1187 } 1188 1189 imported_symbol_iterator 1190 ImportDirectoryEntryRef::imported_symbol_end() const { 1191 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1192 OwningObject); 1193 } 1194 1195 iterator_range<imported_symbol_iterator> 1196 ImportDirectoryEntryRef::imported_symbols() const { 1197 return make_range(imported_symbol_begin(), imported_symbol_end()); 1198 } 1199 1200 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1201 uintptr_t IntPtr = 0; 1202 if (std::error_code EC = 1203 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1204 return EC; 1205 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1206 return object_error::success; 1207 } 1208 1209 std::error_code 1210 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1211 Result = ImportTable[Index].ImportLookupTableRVA; 1212 return object_error::success; 1213 } 1214 1215 std::error_code 1216 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1217 Result = ImportTable[Index].ImportAddressTableRVA; 1218 return object_error::success; 1219 } 1220 1221 std::error_code ImportDirectoryEntryRef::getImportLookupEntry( 1222 const import_lookup_table_entry32 *&Result) const { 1223 uintptr_t IntPtr = 0; 1224 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; 1225 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1226 return EC; 1227 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr); 1228 return object_error::success; 1229 } 1230 1231 bool DelayImportDirectoryEntryRef:: 1232 operator==(const DelayImportDirectoryEntryRef &Other) const { 1233 return Table == Other.Table && Index == Other.Index; 1234 } 1235 1236 void DelayImportDirectoryEntryRef::moveNext() { 1237 ++Index; 1238 } 1239 1240 imported_symbol_iterator 1241 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1242 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1243 OwningObject); 1244 } 1245 1246 imported_symbol_iterator 1247 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1248 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1249 OwningObject); 1250 } 1251 1252 iterator_range<imported_symbol_iterator> 1253 DelayImportDirectoryEntryRef::imported_symbols() const { 1254 return make_range(imported_symbol_begin(), imported_symbol_end()); 1255 } 1256 1257 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1258 uintptr_t IntPtr = 0; 1259 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1260 return EC; 1261 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1262 return object_error::success; 1263 } 1264 1265 std::error_code DelayImportDirectoryEntryRef:: 1266 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1267 Result = Table; 1268 return object_error::success; 1269 } 1270 1271 bool ExportDirectoryEntryRef:: 1272 operator==(const ExportDirectoryEntryRef &Other) const { 1273 return ExportTable == Other.ExportTable && Index == Other.Index; 1274 } 1275 1276 void ExportDirectoryEntryRef::moveNext() { 1277 ++Index; 1278 } 1279 1280 // Returns the name of the current export symbol. If the symbol is exported only 1281 // by ordinal, the empty string is set as a result. 1282 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1283 uintptr_t IntPtr = 0; 1284 if (std::error_code EC = 1285 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1286 return EC; 1287 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1288 return object_error::success; 1289 } 1290 1291 // Returns the starting ordinal number. 1292 std::error_code 1293 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1294 Result = ExportTable->OrdinalBase; 1295 return object_error::success; 1296 } 1297 1298 // Returns the export ordinal of the current export symbol. 1299 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1300 Result = ExportTable->OrdinalBase + Index; 1301 return object_error::success; 1302 } 1303 1304 // Returns the address of the current export symbol. 1305 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1306 uintptr_t IntPtr = 0; 1307 if (std::error_code EC = 1308 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1309 return EC; 1310 const export_address_table_entry *entry = 1311 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1312 Result = entry[Index].ExportRVA; 1313 return object_error::success; 1314 } 1315 1316 // Returns the name of the current export symbol. If the symbol is exported only 1317 // by ordinal, the empty string is set as a result. 1318 std::error_code 1319 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1320 uintptr_t IntPtr = 0; 1321 if (std::error_code EC = 1322 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1323 return EC; 1324 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1325 1326 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1327 int Offset = 0; 1328 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1329 I < E; ++I, ++Offset) { 1330 if (*I != Index) 1331 continue; 1332 if (std::error_code EC = 1333 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1334 return EC; 1335 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1336 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1337 return EC; 1338 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1339 return object_error::success; 1340 } 1341 Result = ""; 1342 return object_error::success; 1343 } 1344 1345 bool ImportedSymbolRef:: 1346 operator==(const ImportedSymbolRef &Other) const { 1347 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1348 && Index == Other.Index; 1349 } 1350 1351 void ImportedSymbolRef::moveNext() { 1352 ++Index; 1353 } 1354 1355 std::error_code 1356 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1357 uint32_t RVA; 1358 if (Entry32) { 1359 // If a symbol is imported only by ordinal, it has no name. 1360 if (Entry32[Index].isOrdinal()) 1361 return object_error::success; 1362 RVA = Entry32[Index].getHintNameRVA(); 1363 } else { 1364 if (Entry64[Index].isOrdinal()) 1365 return object_error::success; 1366 RVA = Entry64[Index].getHintNameRVA(); 1367 } 1368 uintptr_t IntPtr = 0; 1369 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1370 return EC; 1371 // +2 because the first two bytes is hint. 1372 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1373 return object_error::success; 1374 } 1375 1376 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1377 uint32_t RVA; 1378 if (Entry32) { 1379 if (Entry32[Index].isOrdinal()) { 1380 Result = Entry32[Index].getOrdinal(); 1381 return object_error::success; 1382 } 1383 RVA = Entry32[Index].getHintNameRVA(); 1384 } else { 1385 if (Entry64[Index].isOrdinal()) { 1386 Result = Entry64[Index].getOrdinal(); 1387 return object_error::success; 1388 } 1389 RVA = Entry64[Index].getHintNameRVA(); 1390 } 1391 uintptr_t IntPtr = 0; 1392 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1393 return EC; 1394 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1395 return object_error::success; 1396 } 1397 1398 ErrorOr<std::unique_ptr<COFFObjectFile>> 1399 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1400 std::error_code EC; 1401 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1402 if (EC) 1403 return EC; 1404 return std::move(Ret); 1405 } 1406