1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the COFFObjectFile class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/BinaryFormat/COFF.h" 18 #include "llvm/Object/Binary.h" 19 #include "llvm/Object/COFF.h" 20 #include "llvm/Object/Error.h" 21 #include "llvm/Object/ObjectFile.h" 22 #include "llvm/Support/BinaryStreamReader.h" 23 #include "llvm/Support/Endian.h" 24 #include "llvm/Support/Error.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/MemoryBuffer.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <cstddef> 31 #include <cstdint> 32 #include <cstring> 33 #include <limits> 34 #include <memory> 35 #include <system_error> 36 37 using namespace llvm; 38 using namespace object; 39 40 using support::ulittle16_t; 41 using support::ulittle32_t; 42 using support::ulittle64_t; 43 using support::little16_t; 44 45 // Returns false if size is greater than the buffer size. And sets ec. 46 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 47 if (M.getBufferSize() < Size) { 48 EC = object_error::unexpected_eof; 49 return false; 50 } 51 return true; 52 } 53 54 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 55 // Returns unexpected_eof if error. 56 template <typename T> 57 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 58 const void *Ptr, 59 const uint64_t Size = sizeof(T)) { 60 uintptr_t Addr = uintptr_t(Ptr); 61 if (std::error_code EC = Binary::checkOffset(M, Addr, Size)) 62 return EC; 63 Obj = reinterpret_cast<const T *>(Addr); 64 return std::error_code(); 65 } 66 67 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 68 // prefixed slashes. 69 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 70 assert(Str.size() <= 6 && "String too long, possible overflow."); 71 if (Str.size() > 6) 72 return true; 73 74 uint64_t Value = 0; 75 while (!Str.empty()) { 76 unsigned CharVal; 77 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 78 CharVal = Str[0] - 'A'; 79 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 80 CharVal = Str[0] - 'a' + 26; 81 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 82 CharVal = Str[0] - '0' + 52; 83 else if (Str[0] == '+') // 62 84 CharVal = 62; 85 else if (Str[0] == '/') // 63 86 CharVal = 63; 87 else 88 return true; 89 90 Value = (Value * 64) + CharVal; 91 Str = Str.substr(1); 92 } 93 94 if (Value > std::numeric_limits<uint32_t>::max()) 95 return true; 96 97 Result = static_cast<uint32_t>(Value); 98 return false; 99 } 100 101 template <typename coff_symbol_type> 102 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 103 const coff_symbol_type *Addr = 104 reinterpret_cast<const coff_symbol_type *>(Ref.p); 105 106 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 107 #ifndef NDEBUG 108 // Verify that the symbol points to a valid entry in the symbol table. 109 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 110 111 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 112 "Symbol did not point to the beginning of a symbol"); 113 #endif 114 115 return Addr; 116 } 117 118 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 119 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 120 121 #ifndef NDEBUG 122 // Verify that the section points to a valid entry in the section table. 123 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 124 report_fatal_error("Section was outside of section table."); 125 126 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 127 assert(Offset % sizeof(coff_section) == 0 && 128 "Section did not point to the beginning of a section"); 129 #endif 130 131 return Addr; 132 } 133 134 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 135 auto End = reinterpret_cast<uintptr_t>(StringTable); 136 if (SymbolTable16) { 137 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 138 Symb += 1 + Symb->NumberOfAuxSymbols; 139 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 140 } else if (SymbolTable32) { 141 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 142 Symb += 1 + Symb->NumberOfAuxSymbols; 143 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 144 } else { 145 llvm_unreachable("no symbol table pointer!"); 146 } 147 } 148 149 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 150 return getSymbolName(getCOFFSymbol(Ref)); 151 } 152 153 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 154 return getCOFFSymbol(Ref).getValue(); 155 } 156 157 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const { 158 // MSVC/link.exe seems to align symbols to the next-power-of-2 159 // up to 32 bytes. 160 COFFSymbolRef Symb = getCOFFSymbol(Ref); 161 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue())); 162 } 163 164 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 165 uint64_t Result = cantFail(getSymbolValue(Ref)); 166 COFFSymbolRef Symb = getCOFFSymbol(Ref); 167 int32_t SectionNumber = Symb.getSectionNumber(); 168 169 if (Symb.isAnyUndefined() || Symb.isCommon() || 170 COFF::isReservedSectionNumber(SectionNumber)) 171 return Result; 172 173 Expected<const coff_section *> Section = getSection(SectionNumber); 174 if (!Section) 175 return Section.takeError(); 176 Result += (*Section)->VirtualAddress; 177 178 // The section VirtualAddress does not include ImageBase, and we want to 179 // return virtual addresses. 180 Result += getImageBase(); 181 182 return Result; 183 } 184 185 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 186 COFFSymbolRef Symb = getCOFFSymbol(Ref); 187 int32_t SectionNumber = Symb.getSectionNumber(); 188 189 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 190 return SymbolRef::ST_Function; 191 if (Symb.isAnyUndefined()) 192 return SymbolRef::ST_Unknown; 193 if (Symb.isCommon()) 194 return SymbolRef::ST_Data; 195 if (Symb.isFileRecord()) 196 return SymbolRef::ST_File; 197 198 // TODO: perhaps we need a new symbol type ST_Section. 199 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 200 return SymbolRef::ST_Debug; 201 202 if (!COFF::isReservedSectionNumber(SectionNumber)) 203 return SymbolRef::ST_Data; 204 205 return SymbolRef::ST_Other; 206 } 207 208 Expected<uint32_t> COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 209 COFFSymbolRef Symb = getCOFFSymbol(Ref); 210 uint32_t Result = SymbolRef::SF_None; 211 212 if (Symb.isExternal() || Symb.isWeakExternal()) 213 Result |= SymbolRef::SF_Global; 214 215 if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) { 216 Result |= SymbolRef::SF_Weak; 217 if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS) 218 Result |= SymbolRef::SF_Undefined; 219 } 220 221 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 222 Result |= SymbolRef::SF_Absolute; 223 224 if (Symb.isFileRecord()) 225 Result |= SymbolRef::SF_FormatSpecific; 226 227 if (Symb.isSectionDefinition()) 228 Result |= SymbolRef::SF_FormatSpecific; 229 230 if (Symb.isCommon()) 231 Result |= SymbolRef::SF_Common; 232 233 if (Symb.isUndefined()) 234 Result |= SymbolRef::SF_Undefined; 235 236 return Result; 237 } 238 239 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 240 COFFSymbolRef Symb = getCOFFSymbol(Ref); 241 return Symb.getValue(); 242 } 243 244 Expected<section_iterator> 245 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 246 COFFSymbolRef Symb = getCOFFSymbol(Ref); 247 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 248 return section_end(); 249 Expected<const coff_section *> Sec = getSection(Symb.getSectionNumber()); 250 if (!Sec) 251 return Sec.takeError(); 252 DataRefImpl Ret; 253 Ret.p = reinterpret_cast<uintptr_t>(*Sec); 254 return section_iterator(SectionRef(Ret, this)); 255 } 256 257 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 258 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 259 return Symb.getSectionNumber(); 260 } 261 262 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 263 const coff_section *Sec = toSec(Ref); 264 Sec += 1; 265 Ref.p = reinterpret_cast<uintptr_t>(Sec); 266 } 267 268 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const { 269 const coff_section *Sec = toSec(Ref); 270 return getSectionName(Sec); 271 } 272 273 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 274 const coff_section *Sec = toSec(Ref); 275 uint64_t Result = Sec->VirtualAddress; 276 277 // The section VirtualAddress does not include ImageBase, and we want to 278 // return virtual addresses. 279 Result += getImageBase(); 280 return Result; 281 } 282 283 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const { 284 return toSec(Sec) - SectionTable; 285 } 286 287 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 288 return getSectionSize(toSec(Ref)); 289 } 290 291 Expected<ArrayRef<uint8_t>> 292 COFFObjectFile::getSectionContents(DataRefImpl Ref) const { 293 const coff_section *Sec = toSec(Ref); 294 ArrayRef<uint8_t> Res; 295 if (Error E = getSectionContents(Sec, Res)) 296 return std::move(E); 297 return Res; 298 } 299 300 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 301 const coff_section *Sec = toSec(Ref); 302 return Sec->getAlignment(); 303 } 304 305 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 306 return false; 307 } 308 309 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 310 const coff_section *Sec = toSec(Ref); 311 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 312 } 313 314 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 315 const coff_section *Sec = toSec(Ref); 316 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 317 } 318 319 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 320 const coff_section *Sec = toSec(Ref); 321 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 322 COFF::IMAGE_SCN_MEM_READ | 323 COFF::IMAGE_SCN_MEM_WRITE; 324 return (Sec->Characteristics & BssFlags) == BssFlags; 325 } 326 327 // The .debug sections are the only debug sections for COFF 328 // (\see MCObjectFileInfo.cpp). 329 bool COFFObjectFile::isDebugSection(StringRef SectionName) const { 330 return SectionName.startswith(".debug"); 331 } 332 333 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 334 uintptr_t Offset = 335 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 336 assert((Offset % sizeof(coff_section)) == 0); 337 return (Offset / sizeof(coff_section)) + 1; 338 } 339 340 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 341 const coff_section *Sec = toSec(Ref); 342 // In COFF, a virtual section won't have any in-file 343 // content, so the file pointer to the content will be zero. 344 return Sec->PointerToRawData == 0; 345 } 346 347 static uint32_t getNumberOfRelocations(const coff_section *Sec, 348 MemoryBufferRef M, const uint8_t *base) { 349 // The field for the number of relocations in COFF section table is only 350 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 351 // NumberOfRelocations field, and the actual relocation count is stored in the 352 // VirtualAddress field in the first relocation entry. 353 if (Sec->hasExtendedRelocations()) { 354 const coff_relocation *FirstReloc; 355 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 356 base + Sec->PointerToRelocations))) 357 return 0; 358 // -1 to exclude this first relocation entry. 359 return FirstReloc->VirtualAddress - 1; 360 } 361 return Sec->NumberOfRelocations; 362 } 363 364 static const coff_relocation * 365 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 366 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 367 if (!NumRelocs) 368 return nullptr; 369 auto begin = reinterpret_cast<const coff_relocation *>( 370 Base + Sec->PointerToRelocations); 371 if (Sec->hasExtendedRelocations()) { 372 // Skip the first relocation entry repurposed to store the number of 373 // relocations. 374 begin++; 375 } 376 if (Binary::checkOffset(M, uintptr_t(begin), 377 sizeof(coff_relocation) * NumRelocs)) 378 return nullptr; 379 return begin; 380 } 381 382 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 383 const coff_section *Sec = toSec(Ref); 384 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 385 if (begin && Sec->VirtualAddress != 0) 386 report_fatal_error("Sections with relocations should have an address of 0"); 387 DataRefImpl Ret; 388 Ret.p = reinterpret_cast<uintptr_t>(begin); 389 return relocation_iterator(RelocationRef(Ret, this)); 390 } 391 392 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 393 const coff_section *Sec = toSec(Ref); 394 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 395 if (I) 396 I += getNumberOfRelocations(Sec, Data, base()); 397 DataRefImpl Ret; 398 Ret.p = reinterpret_cast<uintptr_t>(I); 399 return relocation_iterator(RelocationRef(Ret, this)); 400 } 401 402 // Initialize the pointer to the symbol table. 403 std::error_code COFFObjectFile::initSymbolTablePtr() { 404 if (COFFHeader) 405 if (std::error_code EC = getObject( 406 SymbolTable16, Data, base() + getPointerToSymbolTable(), 407 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 408 return EC; 409 410 if (COFFBigObjHeader) 411 if (std::error_code EC = getObject( 412 SymbolTable32, Data, base() + getPointerToSymbolTable(), 413 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 414 return EC; 415 416 // Find string table. The first four byte of the string table contains the 417 // total size of the string table, including the size field itself. If the 418 // string table is empty, the value of the first four byte would be 4. 419 uint32_t StringTableOffset = getPointerToSymbolTable() + 420 getNumberOfSymbols() * getSymbolTableEntrySize(); 421 const uint8_t *StringTableAddr = base() + StringTableOffset; 422 const ulittle32_t *StringTableSizePtr; 423 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 424 return EC; 425 StringTableSize = *StringTableSizePtr; 426 if (std::error_code EC = 427 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 428 return EC; 429 430 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 431 // tools like cvtres write a size of 0 for an empty table instead of 4. 432 if (StringTableSize < 4) 433 StringTableSize = 4; 434 435 // Check that the string table is null terminated if has any in it. 436 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 437 return object_error::parse_failed; 438 return std::error_code(); 439 } 440 441 uint64_t COFFObjectFile::getImageBase() const { 442 if (PE32Header) 443 return PE32Header->ImageBase; 444 else if (PE32PlusHeader) 445 return PE32PlusHeader->ImageBase; 446 // This actually comes up in practice. 447 return 0; 448 } 449 450 // Returns the file offset for the given VA. 451 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 452 uint64_t ImageBase = getImageBase(); 453 uint64_t Rva = Addr - ImageBase; 454 assert(Rva <= UINT32_MAX); 455 return getRvaPtr((uint32_t)Rva, Res); 456 } 457 458 // Returns the file offset for the given RVA. 459 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 460 for (const SectionRef &S : sections()) { 461 const coff_section *Section = getCOFFSection(S); 462 uint32_t SectionStart = Section->VirtualAddress; 463 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 464 if (SectionStart <= Addr && Addr < SectionEnd) { 465 uint32_t Offset = Addr - SectionStart; 466 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 467 return std::error_code(); 468 } 469 } 470 return object_error::parse_failed; 471 } 472 473 std::error_code 474 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 475 ArrayRef<uint8_t> &Contents) const { 476 for (const SectionRef &S : sections()) { 477 const coff_section *Section = getCOFFSection(S); 478 uint32_t SectionStart = Section->VirtualAddress; 479 // Check if this RVA is within the section bounds. Be careful about integer 480 // overflow. 481 uint32_t OffsetIntoSection = RVA - SectionStart; 482 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 483 Size <= Section->VirtualSize - OffsetIntoSection) { 484 uintptr_t Begin = 485 uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection; 486 Contents = 487 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 488 return std::error_code(); 489 } 490 } 491 return object_error::parse_failed; 492 } 493 494 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 495 // table entry. 496 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 497 StringRef &Name) const { 498 uintptr_t IntPtr = 0; 499 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 500 return EC; 501 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 502 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 503 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 504 return std::error_code(); 505 } 506 507 std::error_code 508 COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 509 const codeview::DebugInfo *&PDBInfo, 510 StringRef &PDBFileName) const { 511 ArrayRef<uint8_t> InfoBytes; 512 if (std::error_code EC = getRvaAndSizeAsBytes( 513 DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes)) 514 return EC; 515 if (InfoBytes.size() < sizeof(*PDBInfo) + 1) 516 return object_error::parse_failed; 517 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data()); 518 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); 519 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 520 InfoBytes.size()); 521 // Truncate the name at the first null byte. Ignore any padding. 522 PDBFileName = PDBFileName.split('\0').first; 523 return std::error_code(); 524 } 525 526 std::error_code 527 COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, 528 StringRef &PDBFileName) const { 529 for (const debug_directory &D : debug_directories()) 530 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 531 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 532 // If we get here, there is no PDB info to return. 533 PDBInfo = nullptr; 534 PDBFileName = StringRef(); 535 return std::error_code(); 536 } 537 538 // Find the import table. 539 std::error_code COFFObjectFile::initImportTablePtr() { 540 // First, we get the RVA of the import table. If the file lacks a pointer to 541 // the import table, do nothing. 542 const data_directory *DataEntry; 543 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 544 return std::error_code(); 545 546 // Do nothing if the pointer to import table is NULL. 547 if (DataEntry->RelativeVirtualAddress == 0) 548 return std::error_code(); 549 550 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 551 552 // Find the section that contains the RVA. This is needed because the RVA is 553 // the import table's memory address which is different from its file offset. 554 uintptr_t IntPtr = 0; 555 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 556 return EC; 557 if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size)) 558 return EC; 559 ImportDirectory = reinterpret_cast< 560 const coff_import_directory_table_entry *>(IntPtr); 561 return std::error_code(); 562 } 563 564 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 565 std::error_code COFFObjectFile::initDelayImportTablePtr() { 566 const data_directory *DataEntry; 567 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 568 return std::error_code(); 569 if (DataEntry->RelativeVirtualAddress == 0) 570 return std::error_code(); 571 572 uint32_t RVA = DataEntry->RelativeVirtualAddress; 573 NumberOfDelayImportDirectory = DataEntry->Size / 574 sizeof(delay_import_directory_table_entry) - 1; 575 576 uintptr_t IntPtr = 0; 577 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 578 return EC; 579 DelayImportDirectory = reinterpret_cast< 580 const delay_import_directory_table_entry *>(IntPtr); 581 return std::error_code(); 582 } 583 584 // Find the export table. 585 std::error_code COFFObjectFile::initExportTablePtr() { 586 // First, we get the RVA of the export table. If the file lacks a pointer to 587 // the export table, do nothing. 588 const data_directory *DataEntry; 589 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 590 return std::error_code(); 591 592 // Do nothing if the pointer to export table is NULL. 593 if (DataEntry->RelativeVirtualAddress == 0) 594 return std::error_code(); 595 596 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 597 uintptr_t IntPtr = 0; 598 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 599 return EC; 600 ExportDirectory = 601 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 602 return std::error_code(); 603 } 604 605 std::error_code COFFObjectFile::initBaseRelocPtr() { 606 const data_directory *DataEntry; 607 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 608 return std::error_code(); 609 if (DataEntry->RelativeVirtualAddress == 0) 610 return std::error_code(); 611 612 uintptr_t IntPtr = 0; 613 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 614 return EC; 615 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 616 IntPtr); 617 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 618 IntPtr + DataEntry->Size); 619 // FIXME: Verify the section containing BaseRelocHeader has at least 620 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 621 return std::error_code(); 622 } 623 624 std::error_code COFFObjectFile::initDebugDirectoryPtr() { 625 // Get the RVA of the debug directory. Do nothing if it does not exist. 626 const data_directory *DataEntry; 627 if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry)) 628 return std::error_code(); 629 630 // Do nothing if the RVA is NULL. 631 if (DataEntry->RelativeVirtualAddress == 0) 632 return std::error_code(); 633 634 // Check that the size is a multiple of the entry size. 635 if (DataEntry->Size % sizeof(debug_directory) != 0) 636 return object_error::parse_failed; 637 638 uintptr_t IntPtr = 0; 639 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 640 return EC; 641 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 642 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>( 643 IntPtr + DataEntry->Size); 644 // FIXME: Verify the section containing DebugDirectoryBegin has at least 645 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 646 return std::error_code(); 647 } 648 649 std::error_code COFFObjectFile::initLoadConfigPtr() { 650 // Get the RVA of the debug directory. Do nothing if it does not exist. 651 const data_directory *DataEntry; 652 if (getDataDirectory(COFF::LOAD_CONFIG_TABLE, DataEntry)) 653 return std::error_code(); 654 655 // Do nothing if the RVA is NULL. 656 if (DataEntry->RelativeVirtualAddress == 0) 657 return std::error_code(); 658 uintptr_t IntPtr = 0; 659 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 660 return EC; 661 662 LoadConfig = (const void *)IntPtr; 663 return std::error_code(); 664 } 665 666 Expected<std::unique_ptr<COFFObjectFile>> 667 COFFObjectFile::create(MemoryBufferRef Object) { 668 std::unique_ptr<COFFObjectFile> Obj(new COFFObjectFile(std::move(Object))); 669 if (Error E = Obj->initialize()) 670 return std::move(E); 671 return std::move(Obj); 672 } 673 674 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object) 675 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 676 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 677 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 678 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 679 ImportDirectory(nullptr), DelayImportDirectory(nullptr), 680 NumberOfDelayImportDirectory(0), ExportDirectory(nullptr), 681 BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 682 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) {} 683 684 Error COFFObjectFile::initialize() { 685 // Check that we at least have enough room for a header. 686 std::error_code EC; 687 if (!checkSize(Data, EC, sizeof(coff_file_header))) 688 return errorCodeToError(EC); 689 690 // The current location in the file where we are looking at. 691 uint64_t CurPtr = 0; 692 693 // PE header is optional and is present only in executables. If it exists, 694 // it is placed right after COFF header. 695 bool HasPEHeader = false; 696 697 // Check if this is a PE/COFF file. 698 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 699 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 700 // PE signature to find 'normal' COFF header. 701 const auto *DH = reinterpret_cast<const dos_header *>(base()); 702 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 703 CurPtr = DH->AddressOfNewExeHeader; 704 // Check the PE magic bytes. ("PE\0\0") 705 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 706 return errorCodeToError(object_error::parse_failed); 707 } 708 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 709 HasPEHeader = true; 710 } 711 } 712 713 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 714 return errorCodeToError(EC); 715 716 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 717 // import libraries share a common prefix but bigobj is more restrictive. 718 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 719 COFFHeader->NumberOfSections == uint16_t(0xffff) && 720 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 721 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 722 return errorCodeToError(EC); 723 724 // Verify that we are dealing with bigobj. 725 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 726 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 727 sizeof(COFF::BigObjMagic)) == 0) { 728 COFFHeader = nullptr; 729 CurPtr += sizeof(coff_bigobj_file_header); 730 } else { 731 // It's not a bigobj. 732 COFFBigObjHeader = nullptr; 733 } 734 } 735 if (COFFHeader) { 736 // The prior checkSize call may have failed. This isn't a hard error 737 // because we were just trying to sniff out bigobj. 738 EC = std::error_code(); 739 CurPtr += sizeof(coff_file_header); 740 741 if (COFFHeader->isImportLibrary()) 742 return errorCodeToError(EC); 743 } 744 745 if (HasPEHeader) { 746 const pe32_header *Header; 747 if ((EC = getObject(Header, Data, base() + CurPtr))) 748 return errorCodeToError(EC); 749 750 const uint8_t *DataDirAddr; 751 uint64_t DataDirSize; 752 if (Header->Magic == COFF::PE32Header::PE32) { 753 PE32Header = Header; 754 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 755 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 756 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 757 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 758 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 759 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 760 } else { 761 // It's neither PE32 nor PE32+. 762 return errorCodeToError(object_error::parse_failed); 763 } 764 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 765 return errorCodeToError(EC); 766 } 767 768 if (COFFHeader) 769 CurPtr += COFFHeader->SizeOfOptionalHeader; 770 771 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 772 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 773 return errorCodeToError(EC); 774 775 // Initialize the pointer to the symbol table. 776 if (getPointerToSymbolTable() != 0) { 777 if ((EC = initSymbolTablePtr())) { 778 SymbolTable16 = nullptr; 779 SymbolTable32 = nullptr; 780 StringTable = nullptr; 781 StringTableSize = 0; 782 } 783 } else { 784 // We had better not have any symbols if we don't have a symbol table. 785 if (getNumberOfSymbols() != 0) { 786 return errorCodeToError(object_error::parse_failed); 787 } 788 } 789 790 // Initialize the pointer to the beginning of the import table. 791 if ((EC = initImportTablePtr())) 792 return errorCodeToError(EC); 793 if ((EC = initDelayImportTablePtr())) 794 return errorCodeToError(EC); 795 796 // Initialize the pointer to the export table. 797 if ((EC = initExportTablePtr())) 798 return errorCodeToError(EC); 799 800 // Initialize the pointer to the base relocation table. 801 if ((EC = initBaseRelocPtr())) 802 return errorCodeToError(EC); 803 804 // Initialize the pointer to the export table. 805 if ((EC = initDebugDirectoryPtr())) 806 return errorCodeToError(EC); 807 808 if ((EC = initLoadConfigPtr())) 809 return errorCodeToError(EC); 810 811 return Error::success(); 812 } 813 814 basic_symbol_iterator COFFObjectFile::symbol_begin() const { 815 DataRefImpl Ret; 816 Ret.p = getSymbolTable(); 817 return basic_symbol_iterator(SymbolRef(Ret, this)); 818 } 819 820 basic_symbol_iterator COFFObjectFile::symbol_end() const { 821 // The symbol table ends where the string table begins. 822 DataRefImpl Ret; 823 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 824 return basic_symbol_iterator(SymbolRef(Ret, this)); 825 } 826 827 import_directory_iterator COFFObjectFile::import_directory_begin() const { 828 if (!ImportDirectory) 829 return import_directory_end(); 830 if (ImportDirectory->isNull()) 831 return import_directory_end(); 832 return import_directory_iterator( 833 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 834 } 835 836 import_directory_iterator COFFObjectFile::import_directory_end() const { 837 return import_directory_iterator( 838 ImportDirectoryEntryRef(nullptr, -1, this)); 839 } 840 841 delay_import_directory_iterator 842 COFFObjectFile::delay_import_directory_begin() const { 843 return delay_import_directory_iterator( 844 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 845 } 846 847 delay_import_directory_iterator 848 COFFObjectFile::delay_import_directory_end() const { 849 return delay_import_directory_iterator( 850 DelayImportDirectoryEntryRef( 851 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 852 } 853 854 export_directory_iterator COFFObjectFile::export_directory_begin() const { 855 return export_directory_iterator( 856 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 857 } 858 859 export_directory_iterator COFFObjectFile::export_directory_end() const { 860 if (!ExportDirectory) 861 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 862 ExportDirectoryEntryRef Ref(ExportDirectory, 863 ExportDirectory->AddressTableEntries, this); 864 return export_directory_iterator(Ref); 865 } 866 867 section_iterator COFFObjectFile::section_begin() const { 868 DataRefImpl Ret; 869 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 870 return section_iterator(SectionRef(Ret, this)); 871 } 872 873 section_iterator COFFObjectFile::section_end() const { 874 DataRefImpl Ret; 875 int NumSections = 876 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 877 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 878 return section_iterator(SectionRef(Ret, this)); 879 } 880 881 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 882 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 883 } 884 885 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 886 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 887 } 888 889 uint8_t COFFObjectFile::getBytesInAddress() const { 890 return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4; 891 } 892 893 StringRef COFFObjectFile::getFileFormatName() const { 894 switch(getMachine()) { 895 case COFF::IMAGE_FILE_MACHINE_I386: 896 return "COFF-i386"; 897 case COFF::IMAGE_FILE_MACHINE_AMD64: 898 return "COFF-x86-64"; 899 case COFF::IMAGE_FILE_MACHINE_ARMNT: 900 return "COFF-ARM"; 901 case COFF::IMAGE_FILE_MACHINE_ARM64: 902 return "COFF-ARM64"; 903 default: 904 return "COFF-<unknown arch>"; 905 } 906 } 907 908 Triple::ArchType COFFObjectFile::getArch() const { 909 switch (getMachine()) { 910 case COFF::IMAGE_FILE_MACHINE_I386: 911 return Triple::x86; 912 case COFF::IMAGE_FILE_MACHINE_AMD64: 913 return Triple::x86_64; 914 case COFF::IMAGE_FILE_MACHINE_ARMNT: 915 return Triple::thumb; 916 case COFF::IMAGE_FILE_MACHINE_ARM64: 917 return Triple::aarch64; 918 default: 919 return Triple::UnknownArch; 920 } 921 } 922 923 Expected<uint64_t> COFFObjectFile::getStartAddress() const { 924 if (PE32Header) 925 return PE32Header->AddressOfEntryPoint; 926 return 0; 927 } 928 929 iterator_range<import_directory_iterator> 930 COFFObjectFile::import_directories() const { 931 return make_range(import_directory_begin(), import_directory_end()); 932 } 933 934 iterator_range<delay_import_directory_iterator> 935 COFFObjectFile::delay_import_directories() const { 936 return make_range(delay_import_directory_begin(), 937 delay_import_directory_end()); 938 } 939 940 iterator_range<export_directory_iterator> 941 COFFObjectFile::export_directories() const { 942 return make_range(export_directory_begin(), export_directory_end()); 943 } 944 945 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 946 return make_range(base_reloc_begin(), base_reloc_end()); 947 } 948 949 std::error_code 950 COFFObjectFile::getDataDirectory(uint32_t Index, 951 const data_directory *&Res) const { 952 // Error if there's no data directory or the index is out of range. 953 if (!DataDirectory) { 954 Res = nullptr; 955 return object_error::parse_failed; 956 } 957 assert(PE32Header || PE32PlusHeader); 958 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 959 : PE32PlusHeader->NumberOfRvaAndSize; 960 if (Index >= NumEnt) { 961 Res = nullptr; 962 return object_error::parse_failed; 963 } 964 Res = &DataDirectory[Index]; 965 return std::error_code(); 966 } 967 968 Expected<const coff_section *> COFFObjectFile::getSection(int32_t Index) const { 969 // Perhaps getting the section of a reserved section index should be an error, 970 // but callers rely on this to return null. 971 if (COFF::isReservedSectionNumber(Index)) 972 return (const coff_section *)nullptr; 973 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 974 // We already verified the section table data, so no need to check again. 975 return SectionTable + (Index - 1); 976 } 977 return errorCodeToError(object_error::parse_failed); 978 } 979 980 Expected<StringRef> COFFObjectFile::getString(uint32_t Offset) const { 981 if (StringTableSize <= 4) 982 // Tried to get a string from an empty string table. 983 return errorCodeToError(object_error::parse_failed); 984 if (Offset >= StringTableSize) 985 return errorCodeToError(object_error::unexpected_eof); 986 return StringRef(StringTable + Offset); 987 } 988 989 Expected<StringRef> COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const { 990 return getSymbolName(Symbol.getGeneric()); 991 } 992 993 Expected<StringRef> 994 COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const { 995 // Check for string table entry. First 4 bytes are 0. 996 if (Symbol->Name.Offset.Zeroes == 0) 997 return getString(Symbol->Name.Offset.Offset); 998 999 // Null terminated, let ::strlen figure out the length. 1000 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 1001 return StringRef(Symbol->Name.ShortName); 1002 1003 // Not null terminated, use all 8 bytes. 1004 return StringRef(Symbol->Name.ShortName, COFF::NameSize); 1005 } 1006 1007 ArrayRef<uint8_t> 1008 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 1009 const uint8_t *Aux = nullptr; 1010 1011 size_t SymbolSize = getSymbolTableEntrySize(); 1012 if (Symbol.getNumberOfAuxSymbols() > 0) { 1013 // AUX data comes immediately after the symbol in COFF 1014 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 1015 #ifndef NDEBUG 1016 // Verify that the Aux symbol points to a valid entry in the symbol table. 1017 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 1018 if (Offset < getPointerToSymbolTable() || 1019 Offset >= 1020 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 1021 report_fatal_error("Aux Symbol data was outside of symbol table."); 1022 1023 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 1024 "Aux Symbol data did not point to the beginning of a symbol"); 1025 #endif 1026 } 1027 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 1028 } 1029 1030 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const { 1031 uintptr_t Offset = 1032 reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable(); 1033 assert(Offset % getSymbolTableEntrySize() == 0 && 1034 "Symbol did not point to the beginning of a symbol"); 1035 size_t Index = Offset / getSymbolTableEntrySize(); 1036 assert(Index < getNumberOfSymbols()); 1037 return Index; 1038 } 1039 1040 Expected<StringRef> 1041 COFFObjectFile::getSectionName(const coff_section *Sec) const { 1042 StringRef Name; 1043 if (Sec->Name[COFF::NameSize - 1] == 0) 1044 // Null terminated, let ::strlen figure out the length. 1045 Name = Sec->Name; 1046 else 1047 // Not null terminated, use all 8 bytes. 1048 Name = StringRef(Sec->Name, COFF::NameSize); 1049 1050 // Check for string table entry. First byte is '/'. 1051 if (Name.startswith("/")) { 1052 uint32_t Offset; 1053 if (Name.startswith("//")) { 1054 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1055 return createStringError(object_error::parse_failed, 1056 "invalid section name"); 1057 } else { 1058 if (Name.substr(1).getAsInteger(10, Offset)) 1059 return createStringError(object_error::parse_failed, 1060 "invalid section name"); 1061 } 1062 return getString(Offset); 1063 } 1064 1065 return Name; 1066 } 1067 1068 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1069 // SizeOfRawData and VirtualSize change what they represent depending on 1070 // whether or not we have an executable image. 1071 // 1072 // For object files, SizeOfRawData contains the size of section's data; 1073 // VirtualSize should be zero but isn't due to buggy COFF writers. 1074 // 1075 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1076 // actual section size is in VirtualSize. It is possible for VirtualSize to 1077 // be greater than SizeOfRawData; the contents past that point should be 1078 // considered to be zero. 1079 if (getDOSHeader()) 1080 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1081 return Sec->SizeOfRawData; 1082 } 1083 1084 Error COFFObjectFile::getSectionContents(const coff_section *Sec, 1085 ArrayRef<uint8_t> &Res) const { 1086 // In COFF, a virtual section won't have any in-file 1087 // content, so the file pointer to the content will be zero. 1088 if (Sec->PointerToRawData == 0) 1089 return Error::success(); 1090 // The only thing that we need to verify is that the contents is contained 1091 // within the file bounds. We don't need to make sure it doesn't cover other 1092 // data, as there's nothing that says that is not allowed. 1093 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 1094 uint32_t SectionSize = getSectionSize(Sec); 1095 if (checkOffset(Data, ConStart, SectionSize)) 1096 return make_error<BinaryError>(); 1097 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1098 return Error::success(); 1099 } 1100 1101 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1102 return reinterpret_cast<const coff_relocation*>(Rel.p); 1103 } 1104 1105 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1106 Rel.p = reinterpret_cast<uintptr_t>( 1107 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1108 } 1109 1110 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1111 const coff_relocation *R = toRel(Rel); 1112 return R->VirtualAddress; 1113 } 1114 1115 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1116 const coff_relocation *R = toRel(Rel); 1117 DataRefImpl Ref; 1118 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1119 return symbol_end(); 1120 if (SymbolTable16) 1121 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1122 else if (SymbolTable32) 1123 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1124 else 1125 llvm_unreachable("no symbol table pointer!"); 1126 return symbol_iterator(SymbolRef(Ref, this)); 1127 } 1128 1129 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1130 const coff_relocation* R = toRel(Rel); 1131 return R->Type; 1132 } 1133 1134 const coff_section * 1135 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1136 return toSec(Section.getRawDataRefImpl()); 1137 } 1138 1139 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1140 if (SymbolTable16) 1141 return toSymb<coff_symbol16>(Ref); 1142 if (SymbolTable32) 1143 return toSymb<coff_symbol32>(Ref); 1144 llvm_unreachable("no symbol table pointer!"); 1145 } 1146 1147 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1148 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1149 } 1150 1151 const coff_relocation * 1152 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1153 return toRel(Reloc.getRawDataRefImpl()); 1154 } 1155 1156 ArrayRef<coff_relocation> 1157 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1158 return {getFirstReloc(Sec, Data, base()), 1159 getNumberOfRelocations(Sec, Data, base())}; 1160 } 1161 1162 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1163 case COFF::reloc_type: \ 1164 return #reloc_type; 1165 1166 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const { 1167 switch (getMachine()) { 1168 case COFF::IMAGE_FILE_MACHINE_AMD64: 1169 switch (Type) { 1170 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1171 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1172 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1173 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1174 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1175 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1176 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1177 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1178 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1179 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1180 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1181 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1182 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1183 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1184 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1185 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1186 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1187 default: 1188 return "Unknown"; 1189 } 1190 break; 1191 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1192 switch (Type) { 1193 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1194 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1195 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1196 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1197 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1198 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1199 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1200 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1201 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32); 1202 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1203 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1204 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1205 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1206 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1207 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1208 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1209 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR); 1210 default: 1211 return "Unknown"; 1212 } 1213 break; 1214 case COFF::IMAGE_FILE_MACHINE_ARM64: 1215 switch (Type) { 1216 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE); 1217 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32); 1218 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB); 1219 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26); 1220 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21); 1221 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21); 1222 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A); 1223 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L); 1224 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL); 1225 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A); 1226 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A); 1227 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L); 1228 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN); 1229 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION); 1230 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64); 1231 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19); 1232 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14); 1233 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32); 1234 default: 1235 return "Unknown"; 1236 } 1237 break; 1238 case COFF::IMAGE_FILE_MACHINE_I386: 1239 switch (Type) { 1240 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1241 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1242 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1243 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1244 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1245 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1246 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1247 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1248 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1249 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1250 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1251 default: 1252 return "Unknown"; 1253 } 1254 break; 1255 default: 1256 return "Unknown"; 1257 } 1258 } 1259 1260 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1261 1262 void COFFObjectFile::getRelocationTypeName( 1263 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1264 const coff_relocation *Reloc = toRel(Rel); 1265 StringRef Res = getRelocationTypeName(Reloc->Type); 1266 Result.append(Res.begin(), Res.end()); 1267 } 1268 1269 bool COFFObjectFile::isRelocatableObject() const { 1270 return !DataDirectory; 1271 } 1272 1273 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const { 1274 return StringSwitch<StringRef>(Name) 1275 .Case("eh_fram", "eh_frame") 1276 .Default(Name); 1277 } 1278 1279 bool ImportDirectoryEntryRef:: 1280 operator==(const ImportDirectoryEntryRef &Other) const { 1281 return ImportTable == Other.ImportTable && Index == Other.Index; 1282 } 1283 1284 void ImportDirectoryEntryRef::moveNext() { 1285 ++Index; 1286 if (ImportTable[Index].isNull()) { 1287 Index = -1; 1288 ImportTable = nullptr; 1289 } 1290 } 1291 1292 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1293 const coff_import_directory_table_entry *&Result) const { 1294 return getObject(Result, OwningObject->Data, ImportTable + Index); 1295 } 1296 1297 static imported_symbol_iterator 1298 makeImportedSymbolIterator(const COFFObjectFile *Object, 1299 uintptr_t Ptr, int Index) { 1300 if (Object->getBytesInAddress() == 4) { 1301 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1302 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1303 } 1304 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1305 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1306 } 1307 1308 static imported_symbol_iterator 1309 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1310 uintptr_t IntPtr = 0; 1311 Object->getRvaPtr(RVA, IntPtr); 1312 return makeImportedSymbolIterator(Object, IntPtr, 0); 1313 } 1314 1315 static imported_symbol_iterator 1316 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1317 uintptr_t IntPtr = 0; 1318 Object->getRvaPtr(RVA, IntPtr); 1319 // Forward the pointer to the last entry which is null. 1320 int Index = 0; 1321 if (Object->getBytesInAddress() == 4) { 1322 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1323 while (*Entry++) 1324 ++Index; 1325 } else { 1326 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1327 while (*Entry++) 1328 ++Index; 1329 } 1330 return makeImportedSymbolIterator(Object, IntPtr, Index); 1331 } 1332 1333 imported_symbol_iterator 1334 ImportDirectoryEntryRef::imported_symbol_begin() const { 1335 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1336 OwningObject); 1337 } 1338 1339 imported_symbol_iterator 1340 ImportDirectoryEntryRef::imported_symbol_end() const { 1341 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1342 OwningObject); 1343 } 1344 1345 iterator_range<imported_symbol_iterator> 1346 ImportDirectoryEntryRef::imported_symbols() const { 1347 return make_range(imported_symbol_begin(), imported_symbol_end()); 1348 } 1349 1350 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1351 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1352 OwningObject); 1353 } 1354 1355 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1356 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1357 OwningObject); 1358 } 1359 1360 iterator_range<imported_symbol_iterator> 1361 ImportDirectoryEntryRef::lookup_table_symbols() const { 1362 return make_range(lookup_table_begin(), lookup_table_end()); 1363 } 1364 1365 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1366 uintptr_t IntPtr = 0; 1367 if (std::error_code EC = 1368 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1369 return EC; 1370 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1371 return std::error_code(); 1372 } 1373 1374 std::error_code 1375 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1376 Result = ImportTable[Index].ImportLookupTableRVA; 1377 return std::error_code(); 1378 } 1379 1380 std::error_code 1381 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1382 Result = ImportTable[Index].ImportAddressTableRVA; 1383 return std::error_code(); 1384 } 1385 1386 bool DelayImportDirectoryEntryRef:: 1387 operator==(const DelayImportDirectoryEntryRef &Other) const { 1388 return Table == Other.Table && Index == Other.Index; 1389 } 1390 1391 void DelayImportDirectoryEntryRef::moveNext() { 1392 ++Index; 1393 } 1394 1395 imported_symbol_iterator 1396 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1397 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1398 OwningObject); 1399 } 1400 1401 imported_symbol_iterator 1402 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1403 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1404 OwningObject); 1405 } 1406 1407 iterator_range<imported_symbol_iterator> 1408 DelayImportDirectoryEntryRef::imported_symbols() const { 1409 return make_range(imported_symbol_begin(), imported_symbol_end()); 1410 } 1411 1412 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1413 uintptr_t IntPtr = 0; 1414 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1415 return EC; 1416 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1417 return std::error_code(); 1418 } 1419 1420 std::error_code DelayImportDirectoryEntryRef:: 1421 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1422 Result = &Table[Index]; 1423 return std::error_code(); 1424 } 1425 1426 std::error_code DelayImportDirectoryEntryRef:: 1427 getImportAddress(int AddrIndex, uint64_t &Result) const { 1428 uint32_t RVA = Table[Index].DelayImportAddressTable + 1429 AddrIndex * (OwningObject->is64() ? 8 : 4); 1430 uintptr_t IntPtr = 0; 1431 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1432 return EC; 1433 if (OwningObject->is64()) 1434 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1435 else 1436 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1437 return std::error_code(); 1438 } 1439 1440 bool ExportDirectoryEntryRef:: 1441 operator==(const ExportDirectoryEntryRef &Other) const { 1442 return ExportTable == Other.ExportTable && Index == Other.Index; 1443 } 1444 1445 void ExportDirectoryEntryRef::moveNext() { 1446 ++Index; 1447 } 1448 1449 // Returns the name of the current export symbol. If the symbol is exported only 1450 // by ordinal, the empty string is set as a result. 1451 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1452 uintptr_t IntPtr = 0; 1453 if (std::error_code EC = 1454 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1455 return EC; 1456 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1457 return std::error_code(); 1458 } 1459 1460 // Returns the starting ordinal number. 1461 std::error_code 1462 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1463 Result = ExportTable->OrdinalBase; 1464 return std::error_code(); 1465 } 1466 1467 // Returns the export ordinal of the current export symbol. 1468 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1469 Result = ExportTable->OrdinalBase + Index; 1470 return std::error_code(); 1471 } 1472 1473 // Returns the address of the current export symbol. 1474 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1475 uintptr_t IntPtr = 0; 1476 if (std::error_code EC = 1477 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1478 return EC; 1479 const export_address_table_entry *entry = 1480 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1481 Result = entry[Index].ExportRVA; 1482 return std::error_code(); 1483 } 1484 1485 // Returns the name of the current export symbol. If the symbol is exported only 1486 // by ordinal, the empty string is set as a result. 1487 std::error_code 1488 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1489 uintptr_t IntPtr = 0; 1490 if (std::error_code EC = 1491 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1492 return EC; 1493 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1494 1495 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1496 int Offset = 0; 1497 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1498 I < E; ++I, ++Offset) { 1499 if (*I != Index) 1500 continue; 1501 if (std::error_code EC = 1502 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1503 return EC; 1504 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1505 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1506 return EC; 1507 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1508 return std::error_code(); 1509 } 1510 Result = ""; 1511 return std::error_code(); 1512 } 1513 1514 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1515 const data_directory *DataEntry; 1516 if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 1517 return EC; 1518 uint32_t RVA; 1519 if (auto EC = getExportRVA(RVA)) 1520 return EC; 1521 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1522 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1523 Result = (Begin <= RVA && RVA < End); 1524 return std::error_code(); 1525 } 1526 1527 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1528 uint32_t RVA; 1529 if (auto EC = getExportRVA(RVA)) 1530 return EC; 1531 uintptr_t IntPtr = 0; 1532 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1533 return EC; 1534 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1535 return std::error_code(); 1536 } 1537 1538 bool ImportedSymbolRef:: 1539 operator==(const ImportedSymbolRef &Other) const { 1540 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1541 && Index == Other.Index; 1542 } 1543 1544 void ImportedSymbolRef::moveNext() { 1545 ++Index; 1546 } 1547 1548 std::error_code 1549 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1550 uint32_t RVA; 1551 if (Entry32) { 1552 // If a symbol is imported only by ordinal, it has no name. 1553 if (Entry32[Index].isOrdinal()) 1554 return std::error_code(); 1555 RVA = Entry32[Index].getHintNameRVA(); 1556 } else { 1557 if (Entry64[Index].isOrdinal()) 1558 return std::error_code(); 1559 RVA = Entry64[Index].getHintNameRVA(); 1560 } 1561 uintptr_t IntPtr = 0; 1562 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1563 return EC; 1564 // +2 because the first two bytes is hint. 1565 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1566 return std::error_code(); 1567 } 1568 1569 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const { 1570 if (Entry32) 1571 Result = Entry32[Index].isOrdinal(); 1572 else 1573 Result = Entry64[Index].isOrdinal(); 1574 return std::error_code(); 1575 } 1576 1577 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1578 if (Entry32) 1579 Result = Entry32[Index].getHintNameRVA(); 1580 else 1581 Result = Entry64[Index].getHintNameRVA(); 1582 return std::error_code(); 1583 } 1584 1585 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1586 uint32_t RVA; 1587 if (Entry32) { 1588 if (Entry32[Index].isOrdinal()) { 1589 Result = Entry32[Index].getOrdinal(); 1590 return std::error_code(); 1591 } 1592 RVA = Entry32[Index].getHintNameRVA(); 1593 } else { 1594 if (Entry64[Index].isOrdinal()) { 1595 Result = Entry64[Index].getOrdinal(); 1596 return std::error_code(); 1597 } 1598 RVA = Entry64[Index].getHintNameRVA(); 1599 } 1600 uintptr_t IntPtr = 0; 1601 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1602 return EC; 1603 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1604 return std::error_code(); 1605 } 1606 1607 Expected<std::unique_ptr<COFFObjectFile>> 1608 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1609 return COFFObjectFile::create(Object); 1610 } 1611 1612 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1613 return Header == Other.Header && Index == Other.Index; 1614 } 1615 1616 void BaseRelocRef::moveNext() { 1617 // Header->BlockSize is the size of the current block, including the 1618 // size of the header itself. 1619 uint32_t Size = sizeof(*Header) + 1620 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1621 if (Size == Header->BlockSize) { 1622 // .reloc contains a list of base relocation blocks. Each block 1623 // consists of the header followed by entries. The header contains 1624 // how many entories will follow. When we reach the end of the 1625 // current block, proceed to the next block. 1626 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1627 reinterpret_cast<const uint8_t *>(Header) + Size); 1628 Index = 0; 1629 } else { 1630 ++Index; 1631 } 1632 } 1633 1634 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1635 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1636 Type = Entry[Index].getType(); 1637 return std::error_code(); 1638 } 1639 1640 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1641 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1642 Result = Header->PageRVA + Entry[Index].getOffset(); 1643 return std::error_code(); 1644 } 1645 1646 #define RETURN_IF_ERROR(Expr) \ 1647 do { \ 1648 Error E = (Expr); \ 1649 if (E) \ 1650 return std::move(E); \ 1651 } while (0) 1652 1653 Expected<ArrayRef<UTF16>> 1654 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) { 1655 BinaryStreamReader Reader = BinaryStreamReader(BBS); 1656 Reader.setOffset(Offset); 1657 uint16_t Length; 1658 RETURN_IF_ERROR(Reader.readInteger(Length)); 1659 ArrayRef<UTF16> RawDirString; 1660 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length)); 1661 return RawDirString; 1662 } 1663 1664 Expected<ArrayRef<UTF16>> 1665 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) { 1666 return getDirStringAtOffset(Entry.Identifier.getNameOffset()); 1667 } 1668 1669 Expected<const coff_resource_dir_table &> 1670 ResourceSectionRef::getTableAtOffset(uint32_t Offset) { 1671 const coff_resource_dir_table *Table = nullptr; 1672 1673 BinaryStreamReader Reader(BBS); 1674 Reader.setOffset(Offset); 1675 RETURN_IF_ERROR(Reader.readObject(Table)); 1676 assert(Table != nullptr); 1677 return *Table; 1678 } 1679 1680 Expected<const coff_resource_dir_entry &> 1681 ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) { 1682 const coff_resource_dir_entry *Entry = nullptr; 1683 1684 BinaryStreamReader Reader(BBS); 1685 Reader.setOffset(Offset); 1686 RETURN_IF_ERROR(Reader.readObject(Entry)); 1687 assert(Entry != nullptr); 1688 return *Entry; 1689 } 1690 1691 Expected<const coff_resource_data_entry &> 1692 ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) { 1693 const coff_resource_data_entry *Entry = nullptr; 1694 1695 BinaryStreamReader Reader(BBS); 1696 Reader.setOffset(Offset); 1697 RETURN_IF_ERROR(Reader.readObject(Entry)); 1698 assert(Entry != nullptr); 1699 return *Entry; 1700 } 1701 1702 Expected<const coff_resource_dir_table &> 1703 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) { 1704 assert(Entry.Offset.isSubDir()); 1705 return getTableAtOffset(Entry.Offset.value()); 1706 } 1707 1708 Expected<const coff_resource_data_entry &> 1709 ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) { 1710 assert(!Entry.Offset.isSubDir()); 1711 return getDataEntryAtOffset(Entry.Offset.value()); 1712 } 1713 1714 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() { 1715 return getTableAtOffset(0); 1716 } 1717 1718 Expected<const coff_resource_dir_entry &> 1719 ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table, 1720 uint32_t Index) { 1721 if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries)) 1722 return createStringError(object_error::parse_failed, "index out of range"); 1723 const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table); 1724 ptrdiff_t TableOffset = TablePtr - BBS.data().data(); 1725 return getTableEntryAtOffset(TableOffset + sizeof(Table) + 1726 Index * sizeof(coff_resource_dir_entry)); 1727 } 1728 1729 Error ResourceSectionRef::load(const COFFObjectFile *O) { 1730 for (const SectionRef &S : O->sections()) { 1731 Expected<StringRef> Name = S.getName(); 1732 if (!Name) 1733 return Name.takeError(); 1734 1735 if (*Name == ".rsrc" || *Name == ".rsrc$01") 1736 return load(O, S); 1737 } 1738 return createStringError(object_error::parse_failed, 1739 "no resource section found"); 1740 } 1741 1742 Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) { 1743 Obj = O; 1744 Section = S; 1745 Expected<StringRef> Contents = Section.getContents(); 1746 if (!Contents) 1747 return Contents.takeError(); 1748 BBS = BinaryByteStream(*Contents, support::little); 1749 const coff_section *COFFSect = Obj->getCOFFSection(Section); 1750 ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect); 1751 Relocs.reserve(OrigRelocs.size()); 1752 for (const coff_relocation &R : OrigRelocs) 1753 Relocs.push_back(&R); 1754 std::sort(Relocs.begin(), Relocs.end(), 1755 [](const coff_relocation *A, const coff_relocation *B) { 1756 return A->VirtualAddress < B->VirtualAddress; 1757 }); 1758 return Error::success(); 1759 } 1760 1761 Expected<StringRef> 1762 ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) { 1763 if (!Obj) 1764 return createStringError(object_error::parse_failed, "no object provided"); 1765 1766 // Find a potential relocation at the DataRVA field (first member of 1767 // the coff_resource_data_entry struct). 1768 const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry); 1769 ptrdiff_t EntryOffset = EntryPtr - BBS.data().data(); 1770 coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0), 1771 ulittle16_t(0)}; 1772 auto RelocsForOffset = 1773 std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget, 1774 [](const coff_relocation *A, const coff_relocation *B) { 1775 return A->VirtualAddress < B->VirtualAddress; 1776 }); 1777 1778 if (RelocsForOffset.first != RelocsForOffset.second) { 1779 // We found a relocation with the right offset. Check that it does have 1780 // the expected type. 1781 const coff_relocation &R = **RelocsForOffset.first; 1782 uint16_t RVAReloc; 1783 switch (Obj->getMachine()) { 1784 case COFF::IMAGE_FILE_MACHINE_I386: 1785 RVAReloc = COFF::IMAGE_REL_I386_DIR32NB; 1786 break; 1787 case COFF::IMAGE_FILE_MACHINE_AMD64: 1788 RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB; 1789 break; 1790 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1791 RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB; 1792 break; 1793 case COFF::IMAGE_FILE_MACHINE_ARM64: 1794 RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB; 1795 break; 1796 default: 1797 return createStringError(object_error::parse_failed, 1798 "unsupported architecture"); 1799 } 1800 if (R.Type != RVAReloc) 1801 return createStringError(object_error::parse_failed, 1802 "unexpected relocation type"); 1803 // Get the relocation's symbol 1804 Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex); 1805 if (!Sym) 1806 return Sym.takeError(); 1807 // And the symbol's section 1808 Expected<const coff_section *> Section = 1809 Obj->getSection(Sym->getSectionNumber()); 1810 if (!Section) 1811 return Section.takeError(); 1812 // Add the initial value of DataRVA to the symbol's offset to find the 1813 // data it points at. 1814 uint64_t Offset = Entry.DataRVA + Sym->getValue(); 1815 ArrayRef<uint8_t> Contents; 1816 if (Error E = Obj->getSectionContents(*Section, Contents)) 1817 return std::move(E); 1818 if (Offset + Entry.DataSize > Contents.size()) 1819 return createStringError(object_error::parse_failed, 1820 "data outside of section"); 1821 // Return a reference to the data inside the section. 1822 return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset, 1823 Entry.DataSize); 1824 } else { 1825 // Relocatable objects need a relocation for the DataRVA field. 1826 if (Obj->isRelocatableObject()) 1827 return createStringError(object_error::parse_failed, 1828 "no relocation found for DataRVA"); 1829 1830 // Locate the section that contains the address that DataRVA points at. 1831 uint64_t VA = Entry.DataRVA + Obj->getImageBase(); 1832 for (const SectionRef &S : Obj->sections()) { 1833 if (VA >= S.getAddress() && 1834 VA + Entry.DataSize <= S.getAddress() + S.getSize()) { 1835 uint64_t Offset = VA - S.getAddress(); 1836 Expected<StringRef> Contents = S.getContents(); 1837 if (!Contents) 1838 return Contents.takeError(); 1839 return Contents->slice(Offset, Offset + Entry.DataSize); 1840 } 1841 } 1842 return createStringError(object_error::parse_failed, 1843 "address not found in image"); 1844 } 1845 } 1846