xref: /llvm-project/llvm/lib/Object/COFFObjectFile.cpp (revision 260fe3eca6903f23fd017bafb7e555f4be8acf11)
1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the COFFObjectFile class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/BinaryFormat/COFF.h"
19 #include "llvm/Object/Binary.h"
20 #include "llvm/Object/COFF.h"
21 #include "llvm/Object/Error.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/Support/BinaryStreamReader.h"
24 #include "llvm/Support/Endian.h"
25 #include "llvm/Support/Error.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/MemoryBuffer.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <cstddef>
32 #include <cstdint>
33 #include <cstring>
34 #include <limits>
35 #include <memory>
36 #include <system_error>
37 
38 using namespace llvm;
39 using namespace object;
40 
41 using support::ulittle16_t;
42 using support::ulittle32_t;
43 using support::ulittle64_t;
44 using support::little16_t;
45 
46 // Returns false if size is greater than the buffer size. And sets ec.
47 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
48   if (M.getBufferSize() < Size) {
49     EC = object_error::unexpected_eof;
50     return false;
51   }
52   return true;
53 }
54 
55 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
56 // Returns unexpected_eof if error.
57 template <typename T>
58 static std::error_code getObject(const T *&Obj, MemoryBufferRef M,
59                                  const void *Ptr,
60                                  const uint64_t Size = sizeof(T)) {
61   uintptr_t Addr = uintptr_t(Ptr);
62   if (std::error_code EC = Binary::checkOffset(M, Addr, Size))
63     return EC;
64   Obj = reinterpret_cast<const T *>(Addr);
65   return std::error_code();
66 }
67 
68 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
69 // prefixed slashes.
70 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
71   assert(Str.size() <= 6 && "String too long, possible overflow.");
72   if (Str.size() > 6)
73     return true;
74 
75   uint64_t Value = 0;
76   while (!Str.empty()) {
77     unsigned CharVal;
78     if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
79       CharVal = Str[0] - 'A';
80     else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
81       CharVal = Str[0] - 'a' + 26;
82     else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
83       CharVal = Str[0] - '0' + 52;
84     else if (Str[0] == '+') // 62
85       CharVal = 62;
86     else if (Str[0] == '/') // 63
87       CharVal = 63;
88     else
89       return true;
90 
91     Value = (Value * 64) + CharVal;
92     Str = Str.substr(1);
93   }
94 
95   if (Value > std::numeric_limits<uint32_t>::max())
96     return true;
97 
98   Result = static_cast<uint32_t>(Value);
99   return false;
100 }
101 
102 template <typename coff_symbol_type>
103 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
104   const coff_symbol_type *Addr =
105       reinterpret_cast<const coff_symbol_type *>(Ref.p);
106 
107   assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr)));
108 #ifndef NDEBUG
109   // Verify that the symbol points to a valid entry in the symbol table.
110   uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base());
111 
112   assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
113          "Symbol did not point to the beginning of a symbol");
114 #endif
115 
116   return Addr;
117 }
118 
119 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
120   const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
121 
122 #ifndef NDEBUG
123   // Verify that the section points to a valid entry in the section table.
124   if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
125     report_fatal_error("Section was outside of section table.");
126 
127   uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable);
128   assert(Offset % sizeof(coff_section) == 0 &&
129          "Section did not point to the beginning of a section");
130 #endif
131 
132   return Addr;
133 }
134 
135 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
136   auto End = reinterpret_cast<uintptr_t>(StringTable);
137   if (SymbolTable16) {
138     const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
139     Symb += 1 + Symb->NumberOfAuxSymbols;
140     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
141   } else if (SymbolTable32) {
142     const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
143     Symb += 1 + Symb->NumberOfAuxSymbols;
144     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
145   } else {
146     llvm_unreachable("no symbol table pointer!");
147   }
148 }
149 
150 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
151   COFFSymbolRef Symb = getCOFFSymbol(Ref);
152   StringRef Result;
153   if (std::error_code EC = getSymbolName(Symb, Result))
154     return errorCodeToError(EC);
155   return Result;
156 }
157 
158 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
159   return getCOFFSymbol(Ref).getValue();
160 }
161 
162 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const {
163   // MSVC/link.exe seems to align symbols to the next-power-of-2
164   // up to 32 bytes.
165   COFFSymbolRef Symb = getCOFFSymbol(Ref);
166   return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue()));
167 }
168 
169 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
170   uint64_t Result = getSymbolValue(Ref);
171   COFFSymbolRef Symb = getCOFFSymbol(Ref);
172   int32_t SectionNumber = Symb.getSectionNumber();
173 
174   if (Symb.isAnyUndefined() || Symb.isCommon() ||
175       COFF::isReservedSectionNumber(SectionNumber))
176     return Result;
177 
178   const coff_section *Section = nullptr;
179   if (std::error_code EC = getSection(SectionNumber, Section))
180     return errorCodeToError(EC);
181   Result += Section->VirtualAddress;
182 
183   // The section VirtualAddress does not include ImageBase, and we want to
184   // return virtual addresses.
185   Result += getImageBase();
186 
187   return Result;
188 }
189 
190 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
191   COFFSymbolRef Symb = getCOFFSymbol(Ref);
192   int32_t SectionNumber = Symb.getSectionNumber();
193 
194   if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
195     return SymbolRef::ST_Function;
196   if (Symb.isAnyUndefined())
197     return SymbolRef::ST_Unknown;
198   if (Symb.isCommon())
199     return SymbolRef::ST_Data;
200   if (Symb.isFileRecord())
201     return SymbolRef::ST_File;
202 
203   // TODO: perhaps we need a new symbol type ST_Section.
204   if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
205     return SymbolRef::ST_Debug;
206 
207   if (!COFF::isReservedSectionNumber(SectionNumber))
208     return SymbolRef::ST_Data;
209 
210   return SymbolRef::ST_Other;
211 }
212 
213 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
214   COFFSymbolRef Symb = getCOFFSymbol(Ref);
215   uint32_t Result = SymbolRef::SF_None;
216 
217   if (Symb.isExternal() || Symb.isWeakExternal())
218     Result |= SymbolRef::SF_Global;
219 
220   if (Symb.isWeakExternal()) {
221     Result |= SymbolRef::SF_Weak;
222     // We use indirect to allow the archiver to write weak externs
223     Result |= SymbolRef::SF_Indirect;
224   }
225 
226   if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
227     Result |= SymbolRef::SF_Absolute;
228 
229   if (Symb.isFileRecord())
230     Result |= SymbolRef::SF_FormatSpecific;
231 
232   if (Symb.isSectionDefinition())
233     Result |= SymbolRef::SF_FormatSpecific;
234 
235   if (Symb.isCommon())
236     Result |= SymbolRef::SF_Common;
237 
238   if (Symb.isAnyUndefined())
239     Result |= SymbolRef::SF_Undefined;
240 
241   return Result;
242 }
243 
244 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
245   COFFSymbolRef Symb = getCOFFSymbol(Ref);
246   return Symb.getValue();
247 }
248 
249 Expected<section_iterator>
250 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
251   COFFSymbolRef Symb = getCOFFSymbol(Ref);
252   if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
253     return section_end();
254   const coff_section *Sec = nullptr;
255   if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec))
256     return errorCodeToError(EC);
257   DataRefImpl Ret;
258   Ret.p = reinterpret_cast<uintptr_t>(Sec);
259   return section_iterator(SectionRef(Ret, this));
260 }
261 
262 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
263   COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
264   return Symb.getSectionNumber();
265 }
266 
267 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
268   const coff_section *Sec = toSec(Ref);
269   Sec += 1;
270   Ref.p = reinterpret_cast<uintptr_t>(Sec);
271 }
272 
273 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref,
274                                                StringRef &Result) const {
275   const coff_section *Sec = toSec(Ref);
276   return getSectionName(Sec, Result);
277 }
278 
279 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
280   const coff_section *Sec = toSec(Ref);
281   uint64_t Result = Sec->VirtualAddress;
282 
283   // The section VirtualAddress does not include ImageBase, and we want to
284   // return virtual addresses.
285   Result += getImageBase();
286   return Result;
287 }
288 
289 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const {
290   return toSec(Sec) - SectionTable;
291 }
292 
293 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
294   return getSectionSize(toSec(Ref));
295 }
296 
297 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref,
298                                                    StringRef &Result) const {
299   const coff_section *Sec = toSec(Ref);
300   ArrayRef<uint8_t> Res;
301   std::error_code EC = getSectionContents(Sec, Res);
302   Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size());
303   return EC;
304 }
305 
306 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
307   const coff_section *Sec = toSec(Ref);
308   return Sec->getAlignment();
309 }
310 
311 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
312   return false;
313 }
314 
315 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
316   const coff_section *Sec = toSec(Ref);
317   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
318 }
319 
320 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
321   const coff_section *Sec = toSec(Ref);
322   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
323 }
324 
325 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
326   const coff_section *Sec = toSec(Ref);
327   const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
328                             COFF::IMAGE_SCN_MEM_READ |
329                             COFF::IMAGE_SCN_MEM_WRITE;
330   return (Sec->Characteristics & BssFlags) == BssFlags;
331 }
332 
333 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
334   uintptr_t Offset =
335       uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable);
336   assert((Offset % sizeof(coff_section)) == 0);
337   return (Offset / sizeof(coff_section)) + 1;
338 }
339 
340 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
341   const coff_section *Sec = toSec(Ref);
342   // In COFF, a virtual section won't have any in-file
343   // content, so the file pointer to the content will be zero.
344   return Sec->PointerToRawData == 0;
345 }
346 
347 static uint32_t getNumberOfRelocations(const coff_section *Sec,
348                                        MemoryBufferRef M, const uint8_t *base) {
349   // The field for the number of relocations in COFF section table is only
350   // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
351   // NumberOfRelocations field, and the actual relocation count is stored in the
352   // VirtualAddress field in the first relocation entry.
353   if (Sec->hasExtendedRelocations()) {
354     const coff_relocation *FirstReloc;
355     if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>(
356         base + Sec->PointerToRelocations)))
357       return 0;
358     // -1 to exclude this first relocation entry.
359     return FirstReloc->VirtualAddress - 1;
360   }
361   return Sec->NumberOfRelocations;
362 }
363 
364 static const coff_relocation *
365 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
366   uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
367   if (!NumRelocs)
368     return nullptr;
369   auto begin = reinterpret_cast<const coff_relocation *>(
370       Base + Sec->PointerToRelocations);
371   if (Sec->hasExtendedRelocations()) {
372     // Skip the first relocation entry repurposed to store the number of
373     // relocations.
374     begin++;
375   }
376   if (Binary::checkOffset(M, uintptr_t(begin),
377                           sizeof(coff_relocation) * NumRelocs))
378     return nullptr;
379   return begin;
380 }
381 
382 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
383   const coff_section *Sec = toSec(Ref);
384   const coff_relocation *begin = getFirstReloc(Sec, Data, base());
385   if (begin && Sec->VirtualAddress != 0)
386     report_fatal_error("Sections with relocations should have an address of 0");
387   DataRefImpl Ret;
388   Ret.p = reinterpret_cast<uintptr_t>(begin);
389   return relocation_iterator(RelocationRef(Ret, this));
390 }
391 
392 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
393   const coff_section *Sec = toSec(Ref);
394   const coff_relocation *I = getFirstReloc(Sec, Data, base());
395   if (I)
396     I += getNumberOfRelocations(Sec, Data, base());
397   DataRefImpl Ret;
398   Ret.p = reinterpret_cast<uintptr_t>(I);
399   return relocation_iterator(RelocationRef(Ret, this));
400 }
401 
402 // Initialize the pointer to the symbol table.
403 std::error_code COFFObjectFile::initSymbolTablePtr() {
404   if (COFFHeader)
405     if (std::error_code EC = getObject(
406             SymbolTable16, Data, base() + getPointerToSymbolTable(),
407             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
408       return EC;
409 
410   if (COFFBigObjHeader)
411     if (std::error_code EC = getObject(
412             SymbolTable32, Data, base() + getPointerToSymbolTable(),
413             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
414       return EC;
415 
416   // Find string table. The first four byte of the string table contains the
417   // total size of the string table, including the size field itself. If the
418   // string table is empty, the value of the first four byte would be 4.
419   uint32_t StringTableOffset = getPointerToSymbolTable() +
420                                getNumberOfSymbols() * getSymbolTableEntrySize();
421   const uint8_t *StringTableAddr = base() + StringTableOffset;
422   const ulittle32_t *StringTableSizePtr;
423   if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr))
424     return EC;
425   StringTableSize = *StringTableSizePtr;
426   if (std::error_code EC =
427           getObject(StringTable, Data, StringTableAddr, StringTableSize))
428     return EC;
429 
430   // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
431   // tools like cvtres write a size of 0 for an empty table instead of 4.
432   if (StringTableSize < 4)
433       StringTableSize = 4;
434 
435   // Check that the string table is null terminated if has any in it.
436   if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
437     return  object_error::parse_failed;
438   return std::error_code();
439 }
440 
441 uint64_t COFFObjectFile::getImageBase() const {
442   if (PE32Header)
443     return PE32Header->ImageBase;
444   else if (PE32PlusHeader)
445     return PE32PlusHeader->ImageBase;
446   // This actually comes up in practice.
447   return 0;
448 }
449 
450 // Returns the file offset for the given VA.
451 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
452   uint64_t ImageBase = getImageBase();
453   uint64_t Rva = Addr - ImageBase;
454   assert(Rva <= UINT32_MAX);
455   return getRvaPtr((uint32_t)Rva, Res);
456 }
457 
458 // Returns the file offset for the given RVA.
459 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const {
460   for (const SectionRef &S : sections()) {
461     const coff_section *Section = getCOFFSection(S);
462     uint32_t SectionStart = Section->VirtualAddress;
463     uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
464     if (SectionStart <= Addr && Addr < SectionEnd) {
465       uint32_t Offset = Addr - SectionStart;
466       Res = uintptr_t(base()) + Section->PointerToRawData + Offset;
467       return std::error_code();
468     }
469   }
470   return object_error::parse_failed;
471 }
472 
473 std::error_code
474 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size,
475                                      ArrayRef<uint8_t> &Contents) const {
476   for (const SectionRef &S : sections()) {
477     const coff_section *Section = getCOFFSection(S);
478     uint32_t SectionStart = Section->VirtualAddress;
479     // Check if this RVA is within the section bounds. Be careful about integer
480     // overflow.
481     uint32_t OffsetIntoSection = RVA - SectionStart;
482     if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize &&
483         Size <= Section->VirtualSize - OffsetIntoSection) {
484       uintptr_t Begin =
485           uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection;
486       Contents =
487           ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size);
488       return std::error_code();
489     }
490   }
491   return object_error::parse_failed;
492 }
493 
494 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
495 // table entry.
496 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
497                                             StringRef &Name) const {
498   uintptr_t IntPtr = 0;
499   if (std::error_code EC = getRvaPtr(Rva, IntPtr))
500     return EC;
501   const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
502   Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
503   Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
504   return std::error_code();
505 }
506 
507 std::error_code
508 COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir,
509                                 const codeview::DebugInfo *&PDBInfo,
510                                 StringRef &PDBFileName) const {
511   ArrayRef<uint8_t> InfoBytes;
512   if (std::error_code EC = getRvaAndSizeAsBytes(
513           DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes))
514     return EC;
515   if (InfoBytes.size() < sizeof(*PDBInfo) + 1)
516     return object_error::parse_failed;
517   PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data());
518   InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo));
519   PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()),
520                           InfoBytes.size());
521   // Truncate the name at the first null byte. Ignore any padding.
522   PDBFileName = PDBFileName.split('\0').first;
523   return std::error_code();
524 }
525 
526 std::error_code
527 COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo,
528                                 StringRef &PDBFileName) const {
529   for (const debug_directory &D : debug_directories())
530     if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW)
531       return getDebugPDBInfo(&D, PDBInfo, PDBFileName);
532   // If we get here, there is no PDB info to return.
533   PDBInfo = nullptr;
534   PDBFileName = StringRef();
535   return std::error_code();
536 }
537 
538 // Find the import table.
539 std::error_code COFFObjectFile::initImportTablePtr() {
540   // First, we get the RVA of the import table. If the file lacks a pointer to
541   // the import table, do nothing.
542   const data_directory *DataEntry;
543   if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry))
544     return std::error_code();
545 
546   // Do nothing if the pointer to import table is NULL.
547   if (DataEntry->RelativeVirtualAddress == 0)
548     return std::error_code();
549 
550   uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
551 
552   // Find the section that contains the RVA. This is needed because the RVA is
553   // the import table's memory address which is different from its file offset.
554   uintptr_t IntPtr = 0;
555   if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr))
556     return EC;
557   if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size))
558     return EC;
559   ImportDirectory = reinterpret_cast<
560       const coff_import_directory_table_entry *>(IntPtr);
561   return std::error_code();
562 }
563 
564 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
565 std::error_code COFFObjectFile::initDelayImportTablePtr() {
566   const data_directory *DataEntry;
567   if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry))
568     return std::error_code();
569   if (DataEntry->RelativeVirtualAddress == 0)
570     return std::error_code();
571 
572   uint32_t RVA = DataEntry->RelativeVirtualAddress;
573   NumberOfDelayImportDirectory = DataEntry->Size /
574       sizeof(delay_import_directory_table_entry) - 1;
575 
576   uintptr_t IntPtr = 0;
577   if (std::error_code EC = getRvaPtr(RVA, IntPtr))
578     return EC;
579   DelayImportDirectory = reinterpret_cast<
580       const delay_import_directory_table_entry *>(IntPtr);
581   return std::error_code();
582 }
583 
584 // Find the export table.
585 std::error_code COFFObjectFile::initExportTablePtr() {
586   // First, we get the RVA of the export table. If the file lacks a pointer to
587   // the export table, do nothing.
588   const data_directory *DataEntry;
589   if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
590     return std::error_code();
591 
592   // Do nothing if the pointer to export table is NULL.
593   if (DataEntry->RelativeVirtualAddress == 0)
594     return std::error_code();
595 
596   uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
597   uintptr_t IntPtr = 0;
598   if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr))
599     return EC;
600   ExportDirectory =
601       reinterpret_cast<const export_directory_table_entry *>(IntPtr);
602   return std::error_code();
603 }
604 
605 std::error_code COFFObjectFile::initBaseRelocPtr() {
606   const data_directory *DataEntry;
607   if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry))
608     return std::error_code();
609   if (DataEntry->RelativeVirtualAddress == 0)
610     return std::error_code();
611 
612   uintptr_t IntPtr = 0;
613   if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
614     return EC;
615   BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
616       IntPtr);
617   BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
618       IntPtr + DataEntry->Size);
619   return std::error_code();
620 }
621 
622 std::error_code COFFObjectFile::initDebugDirectoryPtr() {
623   // Get the RVA of the debug directory. Do nothing if it does not exist.
624   const data_directory *DataEntry;
625   if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry))
626     return std::error_code();
627 
628   // Do nothing if the RVA is NULL.
629   if (DataEntry->RelativeVirtualAddress == 0)
630     return std::error_code();
631 
632   // Check that the size is a multiple of the entry size.
633   if (DataEntry->Size % sizeof(debug_directory) != 0)
634     return object_error::parse_failed;
635 
636   uintptr_t IntPtr = 0;
637   if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
638     return EC;
639   DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr);
640   if (std::error_code EC = getRvaPtr(
641           DataEntry->RelativeVirtualAddress + DataEntry->Size, IntPtr))
642     return EC;
643   DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(IntPtr);
644   return std::error_code();
645 }
646 
647 std::error_code COFFObjectFile::initLoadConfigPtr() {
648   // Get the RVA of the debug directory. Do nothing if it does not exist.
649   const data_directory *DataEntry;
650   if (getDataDirectory(COFF::LOAD_CONFIG_TABLE, DataEntry))
651     return std::error_code();
652 
653   // Do nothing if the RVA is NULL.
654   if (DataEntry->RelativeVirtualAddress == 0)
655     return std::error_code();
656   uintptr_t IntPtr = 0;
657   if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
658     return EC;
659 
660   LoadConfig = (const void *)IntPtr;
661   return std::error_code();
662 }
663 
664 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC)
665     : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
666       COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
667       DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
668       SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
669       ImportDirectory(nullptr),
670       DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0),
671       ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr),
672       DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) {
673   // Check that we at least have enough room for a header.
674   if (!checkSize(Data, EC, sizeof(coff_file_header)))
675     return;
676 
677   // The current location in the file where we are looking at.
678   uint64_t CurPtr = 0;
679 
680   // PE header is optional and is present only in executables. If it exists,
681   // it is placed right after COFF header.
682   bool HasPEHeader = false;
683 
684   // Check if this is a PE/COFF file.
685   if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
686     // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
687     // PE signature to find 'normal' COFF header.
688     const auto *DH = reinterpret_cast<const dos_header *>(base());
689     if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
690       CurPtr = DH->AddressOfNewExeHeader;
691       // Check the PE magic bytes. ("PE\0\0")
692       if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
693         EC = object_error::parse_failed;
694         return;
695       }
696       CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
697       HasPEHeader = true;
698     }
699   }
700 
701   if ((EC = getObject(COFFHeader, Data, base() + CurPtr)))
702     return;
703 
704   // It might be a bigobj file, let's check.  Note that COFF bigobj and COFF
705   // import libraries share a common prefix but bigobj is more restrictive.
706   if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
707       COFFHeader->NumberOfSections == uint16_t(0xffff) &&
708       checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
709     if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr)))
710       return;
711 
712     // Verify that we are dealing with bigobj.
713     if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
714         std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
715                     sizeof(COFF::BigObjMagic)) == 0) {
716       COFFHeader = nullptr;
717       CurPtr += sizeof(coff_bigobj_file_header);
718     } else {
719       // It's not a bigobj.
720       COFFBigObjHeader = nullptr;
721     }
722   }
723   if (COFFHeader) {
724     // The prior checkSize call may have failed.  This isn't a hard error
725     // because we were just trying to sniff out bigobj.
726     EC = std::error_code();
727     CurPtr += sizeof(coff_file_header);
728 
729     if (COFFHeader->isImportLibrary())
730       return;
731   }
732 
733   if (HasPEHeader) {
734     const pe32_header *Header;
735     if ((EC = getObject(Header, Data, base() + CurPtr)))
736       return;
737 
738     const uint8_t *DataDirAddr;
739     uint64_t DataDirSize;
740     if (Header->Magic == COFF::PE32Header::PE32) {
741       PE32Header = Header;
742       DataDirAddr = base() + CurPtr + sizeof(pe32_header);
743       DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
744     } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
745       PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
746       DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
747       DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
748     } else {
749       // It's neither PE32 nor PE32+.
750       EC = object_error::parse_failed;
751       return;
752     }
753     if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)))
754       return;
755   }
756 
757   if (COFFHeader)
758     CurPtr += COFFHeader->SizeOfOptionalHeader;
759 
760   if ((EC = getObject(SectionTable, Data, base() + CurPtr,
761                       (uint64_t)getNumberOfSections() * sizeof(coff_section))))
762     return;
763 
764   // Initialize the pointer to the symbol table.
765   if (getPointerToSymbolTable() != 0) {
766     if ((EC = initSymbolTablePtr())) {
767       SymbolTable16 = nullptr;
768       SymbolTable32 = nullptr;
769       StringTable = nullptr;
770       StringTableSize = 0;
771     }
772   } else {
773     // We had better not have any symbols if we don't have a symbol table.
774     if (getNumberOfSymbols() != 0) {
775       EC = object_error::parse_failed;
776       return;
777     }
778   }
779 
780   // Initialize the pointer to the beginning of the import table.
781   if ((EC = initImportTablePtr()))
782     return;
783   if ((EC = initDelayImportTablePtr()))
784     return;
785 
786   // Initialize the pointer to the export table.
787   if ((EC = initExportTablePtr()))
788     return;
789 
790   // Initialize the pointer to the base relocation table.
791   if ((EC = initBaseRelocPtr()))
792     return;
793 
794   // Initialize the pointer to the export table.
795   if ((EC = initDebugDirectoryPtr()))
796     return;
797 
798   if ((EC = initLoadConfigPtr()))
799     return;
800 
801   EC = std::error_code();
802 }
803 
804 basic_symbol_iterator COFFObjectFile::symbol_begin() const {
805   DataRefImpl Ret;
806   Ret.p = getSymbolTable();
807   return basic_symbol_iterator(SymbolRef(Ret, this));
808 }
809 
810 basic_symbol_iterator COFFObjectFile::symbol_end() const {
811   // The symbol table ends where the string table begins.
812   DataRefImpl Ret;
813   Ret.p = reinterpret_cast<uintptr_t>(StringTable);
814   return basic_symbol_iterator(SymbolRef(Ret, this));
815 }
816 
817 import_directory_iterator COFFObjectFile::import_directory_begin() const {
818   if (!ImportDirectory)
819     return import_directory_end();
820   if (ImportDirectory->isNull())
821     return import_directory_end();
822   return import_directory_iterator(
823       ImportDirectoryEntryRef(ImportDirectory, 0, this));
824 }
825 
826 import_directory_iterator COFFObjectFile::import_directory_end() const {
827   return import_directory_iterator(
828       ImportDirectoryEntryRef(nullptr, -1, this));
829 }
830 
831 delay_import_directory_iterator
832 COFFObjectFile::delay_import_directory_begin() const {
833   return delay_import_directory_iterator(
834       DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
835 }
836 
837 delay_import_directory_iterator
838 COFFObjectFile::delay_import_directory_end() const {
839   return delay_import_directory_iterator(
840       DelayImportDirectoryEntryRef(
841           DelayImportDirectory, NumberOfDelayImportDirectory, this));
842 }
843 
844 export_directory_iterator COFFObjectFile::export_directory_begin() const {
845   return export_directory_iterator(
846       ExportDirectoryEntryRef(ExportDirectory, 0, this));
847 }
848 
849 export_directory_iterator COFFObjectFile::export_directory_end() const {
850   if (!ExportDirectory)
851     return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
852   ExportDirectoryEntryRef Ref(ExportDirectory,
853                               ExportDirectory->AddressTableEntries, this);
854   return export_directory_iterator(Ref);
855 }
856 
857 section_iterator COFFObjectFile::section_begin() const {
858   DataRefImpl Ret;
859   Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
860   return section_iterator(SectionRef(Ret, this));
861 }
862 
863 section_iterator COFFObjectFile::section_end() const {
864   DataRefImpl Ret;
865   int NumSections =
866       COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
867   Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
868   return section_iterator(SectionRef(Ret, this));
869 }
870 
871 base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
872   return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
873 }
874 
875 base_reloc_iterator COFFObjectFile::base_reloc_end() const {
876   return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
877 }
878 
879 uint8_t COFFObjectFile::getBytesInAddress() const {
880   return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4;
881 }
882 
883 StringRef COFFObjectFile::getFileFormatName() const {
884   switch(getMachine()) {
885   case COFF::IMAGE_FILE_MACHINE_I386:
886     return "COFF-i386";
887   case COFF::IMAGE_FILE_MACHINE_AMD64:
888     return "COFF-x86-64";
889   case COFF::IMAGE_FILE_MACHINE_ARMNT:
890     return "COFF-ARM";
891   case COFF::IMAGE_FILE_MACHINE_ARM64:
892     return "COFF-ARM64";
893   default:
894     return "COFF-<unknown arch>";
895   }
896 }
897 
898 Triple::ArchType COFFObjectFile::getArch() const {
899   switch (getMachine()) {
900   case COFF::IMAGE_FILE_MACHINE_I386:
901     return Triple::x86;
902   case COFF::IMAGE_FILE_MACHINE_AMD64:
903     return Triple::x86_64;
904   case COFF::IMAGE_FILE_MACHINE_ARMNT:
905     return Triple::thumb;
906   case COFF::IMAGE_FILE_MACHINE_ARM64:
907     return Triple::aarch64;
908   default:
909     return Triple::UnknownArch;
910   }
911 }
912 
913 iterator_range<import_directory_iterator>
914 COFFObjectFile::import_directories() const {
915   return make_range(import_directory_begin(), import_directory_end());
916 }
917 
918 iterator_range<delay_import_directory_iterator>
919 COFFObjectFile::delay_import_directories() const {
920   return make_range(delay_import_directory_begin(),
921                     delay_import_directory_end());
922 }
923 
924 iterator_range<export_directory_iterator>
925 COFFObjectFile::export_directories() const {
926   return make_range(export_directory_begin(), export_directory_end());
927 }
928 
929 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
930   return make_range(base_reloc_begin(), base_reloc_end());
931 }
932 
933 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const {
934   Res = PE32Header;
935   return std::error_code();
936 }
937 
938 std::error_code
939 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const {
940   Res = PE32PlusHeader;
941   return std::error_code();
942 }
943 
944 std::error_code
945 COFFObjectFile::getDataDirectory(uint32_t Index,
946                                  const data_directory *&Res) const {
947   // Error if if there's no data directory or the index is out of range.
948   if (!DataDirectory) {
949     Res = nullptr;
950     return object_error::parse_failed;
951   }
952   assert(PE32Header || PE32PlusHeader);
953   uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
954                                : PE32PlusHeader->NumberOfRvaAndSize;
955   if (Index >= NumEnt) {
956     Res = nullptr;
957     return object_error::parse_failed;
958   }
959   Res = &DataDirectory[Index];
960   return std::error_code();
961 }
962 
963 std::error_code COFFObjectFile::getSection(int32_t Index,
964                                            const coff_section *&Result) const {
965   Result = nullptr;
966   if (COFF::isReservedSectionNumber(Index))
967     return std::error_code();
968   if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
969     // We already verified the section table data, so no need to check again.
970     Result = SectionTable + (Index - 1);
971     return std::error_code();
972   }
973   return object_error::parse_failed;
974 }
975 
976 std::error_code COFFObjectFile::getString(uint32_t Offset,
977                                           StringRef &Result) const {
978   if (StringTableSize <= 4)
979     // Tried to get a string from an empty string table.
980     return object_error::parse_failed;
981   if (Offset >= StringTableSize)
982     return object_error::unexpected_eof;
983   Result = StringRef(StringTable + Offset);
984   return std::error_code();
985 }
986 
987 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol,
988                                               StringRef &Res) const {
989   return getSymbolName(Symbol.getGeneric(), Res);
990 }
991 
992 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol,
993                                               StringRef &Res) const {
994   // Check for string table entry. First 4 bytes are 0.
995   if (Symbol->Name.Offset.Zeroes == 0) {
996     if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res))
997       return EC;
998     return std::error_code();
999   }
1000 
1001   if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
1002     // Null terminated, let ::strlen figure out the length.
1003     Res = StringRef(Symbol->Name.ShortName);
1004   else
1005     // Not null terminated, use all 8 bytes.
1006     Res = StringRef(Symbol->Name.ShortName, COFF::NameSize);
1007   return std::error_code();
1008 }
1009 
1010 ArrayRef<uint8_t>
1011 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
1012   const uint8_t *Aux = nullptr;
1013 
1014   size_t SymbolSize = getSymbolTableEntrySize();
1015   if (Symbol.getNumberOfAuxSymbols() > 0) {
1016     // AUX data comes immediately after the symbol in COFF
1017     Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
1018 #ifndef NDEBUG
1019     // Verify that the Aux symbol points to a valid entry in the symbol table.
1020     uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
1021     if (Offset < getPointerToSymbolTable() ||
1022         Offset >=
1023             getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
1024       report_fatal_error("Aux Symbol data was outside of symbol table.");
1025 
1026     assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
1027            "Aux Symbol data did not point to the beginning of a symbol");
1028 #endif
1029   }
1030   return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
1031 }
1032 
1033 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec,
1034                                                StringRef &Res) const {
1035   StringRef Name;
1036   if (Sec->Name[COFF::NameSize - 1] == 0)
1037     // Null terminated, let ::strlen figure out the length.
1038     Name = Sec->Name;
1039   else
1040     // Not null terminated, use all 8 bytes.
1041     Name = StringRef(Sec->Name, COFF::NameSize);
1042 
1043   // Check for string table entry. First byte is '/'.
1044   if (Name.startswith("/")) {
1045     uint32_t Offset;
1046     if (Name.startswith("//")) {
1047       if (decodeBase64StringEntry(Name.substr(2), Offset))
1048         return object_error::parse_failed;
1049     } else {
1050       if (Name.substr(1).getAsInteger(10, Offset))
1051         return object_error::parse_failed;
1052     }
1053     if (std::error_code EC = getString(Offset, Name))
1054       return EC;
1055   }
1056 
1057   Res = Name;
1058   return std::error_code();
1059 }
1060 
1061 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
1062   // SizeOfRawData and VirtualSize change what they represent depending on
1063   // whether or not we have an executable image.
1064   //
1065   // For object files, SizeOfRawData contains the size of section's data;
1066   // VirtualSize should be zero but isn't due to buggy COFF writers.
1067   //
1068   // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
1069   // actual section size is in VirtualSize.  It is possible for VirtualSize to
1070   // be greater than SizeOfRawData; the contents past that point should be
1071   // considered to be zero.
1072   if (getDOSHeader())
1073     return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
1074   return Sec->SizeOfRawData;
1075 }
1076 
1077 std::error_code
1078 COFFObjectFile::getSectionContents(const coff_section *Sec,
1079                                    ArrayRef<uint8_t> &Res) const {
1080   // In COFF, a virtual section won't have any in-file
1081   // content, so the file pointer to the content will be zero.
1082   if (Sec->PointerToRawData == 0)
1083     return std::error_code();
1084   // The only thing that we need to verify is that the contents is contained
1085   // within the file bounds. We don't need to make sure it doesn't cover other
1086   // data, as there's nothing that says that is not allowed.
1087   uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
1088   uint32_t SectionSize = getSectionSize(Sec);
1089   if (checkOffset(Data, ConStart, SectionSize))
1090     return object_error::parse_failed;
1091   Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
1092   return std::error_code();
1093 }
1094 
1095 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
1096   return reinterpret_cast<const coff_relocation*>(Rel.p);
1097 }
1098 
1099 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
1100   Rel.p = reinterpret_cast<uintptr_t>(
1101             reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
1102 }
1103 
1104 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
1105   const coff_relocation *R = toRel(Rel);
1106   return R->VirtualAddress;
1107 }
1108 
1109 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
1110   const coff_relocation *R = toRel(Rel);
1111   DataRefImpl Ref;
1112   if (R->SymbolTableIndex >= getNumberOfSymbols())
1113     return symbol_end();
1114   if (SymbolTable16)
1115     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
1116   else if (SymbolTable32)
1117     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
1118   else
1119     llvm_unreachable("no symbol table pointer!");
1120   return symbol_iterator(SymbolRef(Ref, this));
1121 }
1122 
1123 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
1124   const coff_relocation* R = toRel(Rel);
1125   return R->Type;
1126 }
1127 
1128 const coff_section *
1129 COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1130   return toSec(Section.getRawDataRefImpl());
1131 }
1132 
1133 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1134   if (SymbolTable16)
1135     return toSymb<coff_symbol16>(Ref);
1136   if (SymbolTable32)
1137     return toSymb<coff_symbol32>(Ref);
1138   llvm_unreachable("no symbol table pointer!");
1139 }
1140 
1141 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1142   return getCOFFSymbol(Symbol.getRawDataRefImpl());
1143 }
1144 
1145 const coff_relocation *
1146 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1147   return toRel(Reloc.getRawDataRefImpl());
1148 }
1149 
1150 iterator_range<const coff_relocation *>
1151 COFFObjectFile::getRelocations(const coff_section *Sec) const {
1152   const coff_relocation *I = getFirstReloc(Sec, Data, base());
1153   const coff_relocation *E = I;
1154   if (I)
1155     E += getNumberOfRelocations(Sec, Data, base());
1156   return make_range(I, E);
1157 }
1158 
1159 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type)                           \
1160   case COFF::reloc_type:                                                       \
1161     Res = #reloc_type;                                                         \
1162     break;
1163 
1164 void COFFObjectFile::getRelocationTypeName(
1165     DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1166   const coff_relocation *Reloc = toRel(Rel);
1167   StringRef Res;
1168   switch (getMachine()) {
1169   case COFF::IMAGE_FILE_MACHINE_AMD64:
1170     switch (Reloc->Type) {
1171     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1172     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1173     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1174     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1175     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1176     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1177     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1178     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1179     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1180     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1181     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1182     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1183     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1184     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1185     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1186     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1187     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1188     default:
1189       Res = "Unknown";
1190     }
1191     break;
1192   case COFF::IMAGE_FILE_MACHINE_ARMNT:
1193     switch (Reloc->Type) {
1194     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1195     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1196     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1197     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1198     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1199     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1200     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1201     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1202     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1203     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1204     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1205     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1206     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1207     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1208     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1209     default:
1210       Res = "Unknown";
1211     }
1212     break;
1213   case COFF::IMAGE_FILE_MACHINE_ARM64:
1214     switch (Reloc->Type) {
1215     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE);
1216     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32);
1217     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB);
1218     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26);
1219     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21);
1220     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21);
1221     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A);
1222     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L);
1223     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL);
1224     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A);
1225     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A);
1226     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L);
1227     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN);
1228     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION);
1229     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64);
1230     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19);
1231     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14);
1232     default:
1233       Res = "Unknown";
1234     }
1235     break;
1236   case COFF::IMAGE_FILE_MACHINE_I386:
1237     switch (Reloc->Type) {
1238     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1239     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1240     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1241     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1242     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1243     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1244     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1245     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1246     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1247     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1248     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1249     default:
1250       Res = "Unknown";
1251     }
1252     break;
1253   default:
1254     Res = "Unknown";
1255   }
1256   Result.append(Res.begin(), Res.end());
1257 }
1258 
1259 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1260 
1261 bool COFFObjectFile::isRelocatableObject() const {
1262   return !DataDirectory;
1263 }
1264 
1265 bool ImportDirectoryEntryRef::
1266 operator==(const ImportDirectoryEntryRef &Other) const {
1267   return ImportTable == Other.ImportTable && Index == Other.Index;
1268 }
1269 
1270 void ImportDirectoryEntryRef::moveNext() {
1271   ++Index;
1272   if (ImportTable[Index].isNull()) {
1273     Index = -1;
1274     ImportTable = nullptr;
1275   }
1276 }
1277 
1278 std::error_code ImportDirectoryEntryRef::getImportTableEntry(
1279     const coff_import_directory_table_entry *&Result) const {
1280   return getObject(Result, OwningObject->Data, ImportTable + Index);
1281 }
1282 
1283 static imported_symbol_iterator
1284 makeImportedSymbolIterator(const COFFObjectFile *Object,
1285                            uintptr_t Ptr, int Index) {
1286   if (Object->getBytesInAddress() == 4) {
1287     auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1288     return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1289   }
1290   auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1291   return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1292 }
1293 
1294 static imported_symbol_iterator
1295 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1296   uintptr_t IntPtr = 0;
1297   Object->getRvaPtr(RVA, IntPtr);
1298   return makeImportedSymbolIterator(Object, IntPtr, 0);
1299 }
1300 
1301 static imported_symbol_iterator
1302 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1303   uintptr_t IntPtr = 0;
1304   Object->getRvaPtr(RVA, IntPtr);
1305   // Forward the pointer to the last entry which is null.
1306   int Index = 0;
1307   if (Object->getBytesInAddress() == 4) {
1308     auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1309     while (*Entry++)
1310       ++Index;
1311   } else {
1312     auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1313     while (*Entry++)
1314       ++Index;
1315   }
1316   return makeImportedSymbolIterator(Object, IntPtr, Index);
1317 }
1318 
1319 imported_symbol_iterator
1320 ImportDirectoryEntryRef::imported_symbol_begin() const {
1321   return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA,
1322                              OwningObject);
1323 }
1324 
1325 imported_symbol_iterator
1326 ImportDirectoryEntryRef::imported_symbol_end() const {
1327   return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA,
1328                            OwningObject);
1329 }
1330 
1331 iterator_range<imported_symbol_iterator>
1332 ImportDirectoryEntryRef::imported_symbols() const {
1333   return make_range(imported_symbol_begin(), imported_symbol_end());
1334 }
1335 
1336 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const {
1337   return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1338                              OwningObject);
1339 }
1340 
1341 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const {
1342   return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1343                            OwningObject);
1344 }
1345 
1346 iterator_range<imported_symbol_iterator>
1347 ImportDirectoryEntryRef::lookup_table_symbols() const {
1348   return make_range(lookup_table_begin(), lookup_table_end());
1349 }
1350 
1351 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const {
1352   uintptr_t IntPtr = 0;
1353   if (std::error_code EC =
1354           OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr))
1355     return EC;
1356   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1357   return std::error_code();
1358 }
1359 
1360 std::error_code
1361 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t  &Result) const {
1362   Result = ImportTable[Index].ImportLookupTableRVA;
1363   return std::error_code();
1364 }
1365 
1366 std::error_code
1367 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const {
1368   Result = ImportTable[Index].ImportAddressTableRVA;
1369   return std::error_code();
1370 }
1371 
1372 bool DelayImportDirectoryEntryRef::
1373 operator==(const DelayImportDirectoryEntryRef &Other) const {
1374   return Table == Other.Table && Index == Other.Index;
1375 }
1376 
1377 void DelayImportDirectoryEntryRef::moveNext() {
1378   ++Index;
1379 }
1380 
1381 imported_symbol_iterator
1382 DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1383   return importedSymbolBegin(Table[Index].DelayImportNameTable,
1384                              OwningObject);
1385 }
1386 
1387 imported_symbol_iterator
1388 DelayImportDirectoryEntryRef::imported_symbol_end() const {
1389   return importedSymbolEnd(Table[Index].DelayImportNameTable,
1390                            OwningObject);
1391 }
1392 
1393 iterator_range<imported_symbol_iterator>
1394 DelayImportDirectoryEntryRef::imported_symbols() const {
1395   return make_range(imported_symbol_begin(), imported_symbol_end());
1396 }
1397 
1398 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1399   uintptr_t IntPtr = 0;
1400   if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr))
1401     return EC;
1402   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1403   return std::error_code();
1404 }
1405 
1406 std::error_code DelayImportDirectoryEntryRef::
1407 getDelayImportTable(const delay_import_directory_table_entry *&Result) const {
1408   Result = Table;
1409   return std::error_code();
1410 }
1411 
1412 std::error_code DelayImportDirectoryEntryRef::
1413 getImportAddress(int AddrIndex, uint64_t &Result) const {
1414   uint32_t RVA = Table[Index].DelayImportAddressTable +
1415       AddrIndex * (OwningObject->is64() ? 8 : 4);
1416   uintptr_t IntPtr = 0;
1417   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1418     return EC;
1419   if (OwningObject->is64())
1420     Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1421   else
1422     Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1423   return std::error_code();
1424 }
1425 
1426 bool ExportDirectoryEntryRef::
1427 operator==(const ExportDirectoryEntryRef &Other) const {
1428   return ExportTable == Other.ExportTable && Index == Other.Index;
1429 }
1430 
1431 void ExportDirectoryEntryRef::moveNext() {
1432   ++Index;
1433 }
1434 
1435 // Returns the name of the current export symbol. If the symbol is exported only
1436 // by ordinal, the empty string is set as a result.
1437 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1438   uintptr_t IntPtr = 0;
1439   if (std::error_code EC =
1440           OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr))
1441     return EC;
1442   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1443   return std::error_code();
1444 }
1445 
1446 // Returns the starting ordinal number.
1447 std::error_code
1448 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1449   Result = ExportTable->OrdinalBase;
1450   return std::error_code();
1451 }
1452 
1453 // Returns the export ordinal of the current export symbol.
1454 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1455   Result = ExportTable->OrdinalBase + Index;
1456   return std::error_code();
1457 }
1458 
1459 // Returns the address of the current export symbol.
1460 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1461   uintptr_t IntPtr = 0;
1462   if (std::error_code EC =
1463           OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr))
1464     return EC;
1465   const export_address_table_entry *entry =
1466       reinterpret_cast<const export_address_table_entry *>(IntPtr);
1467   Result = entry[Index].ExportRVA;
1468   return std::error_code();
1469 }
1470 
1471 // Returns the name of the current export symbol. If the symbol is exported only
1472 // by ordinal, the empty string is set as a result.
1473 std::error_code
1474 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1475   uintptr_t IntPtr = 0;
1476   if (std::error_code EC =
1477           OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr))
1478     return EC;
1479   const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1480 
1481   uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1482   int Offset = 0;
1483   for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1484        I < E; ++I, ++Offset) {
1485     if (*I != Index)
1486       continue;
1487     if (std::error_code EC =
1488             OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr))
1489       return EC;
1490     const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1491     if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr))
1492       return EC;
1493     Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1494     return std::error_code();
1495   }
1496   Result = "";
1497   return std::error_code();
1498 }
1499 
1500 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1501   const data_directory *DataEntry;
1502   if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
1503     return EC;
1504   uint32_t RVA;
1505   if (auto EC = getExportRVA(RVA))
1506     return EC;
1507   uint32_t Begin = DataEntry->RelativeVirtualAddress;
1508   uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1509   Result = (Begin <= RVA && RVA < End);
1510   return std::error_code();
1511 }
1512 
1513 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1514   uint32_t RVA;
1515   if (auto EC = getExportRVA(RVA))
1516     return EC;
1517   uintptr_t IntPtr = 0;
1518   if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr))
1519     return EC;
1520   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1521   return std::error_code();
1522 }
1523 
1524 bool ImportedSymbolRef::
1525 operator==(const ImportedSymbolRef &Other) const {
1526   return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1527       && Index == Other.Index;
1528 }
1529 
1530 void ImportedSymbolRef::moveNext() {
1531   ++Index;
1532 }
1533 
1534 std::error_code
1535 ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1536   uint32_t RVA;
1537   if (Entry32) {
1538     // If a symbol is imported only by ordinal, it has no name.
1539     if (Entry32[Index].isOrdinal())
1540       return std::error_code();
1541     RVA = Entry32[Index].getHintNameRVA();
1542   } else {
1543     if (Entry64[Index].isOrdinal())
1544       return std::error_code();
1545     RVA = Entry64[Index].getHintNameRVA();
1546   }
1547   uintptr_t IntPtr = 0;
1548   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1549     return EC;
1550   // +2 because the first two bytes is hint.
1551   Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1552   return std::error_code();
1553 }
1554 
1555 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const {
1556   if (Entry32)
1557     Result = Entry32[Index].isOrdinal();
1558   else
1559     Result = Entry64[Index].isOrdinal();
1560   return std::error_code();
1561 }
1562 
1563 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const {
1564   if (Entry32)
1565     Result = Entry32[Index].getHintNameRVA();
1566   else
1567     Result = Entry64[Index].getHintNameRVA();
1568   return std::error_code();
1569 }
1570 
1571 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1572   uint32_t RVA;
1573   if (Entry32) {
1574     if (Entry32[Index].isOrdinal()) {
1575       Result = Entry32[Index].getOrdinal();
1576       return std::error_code();
1577     }
1578     RVA = Entry32[Index].getHintNameRVA();
1579   } else {
1580     if (Entry64[Index].isOrdinal()) {
1581       Result = Entry64[Index].getOrdinal();
1582       return std::error_code();
1583     }
1584     RVA = Entry64[Index].getHintNameRVA();
1585   }
1586   uintptr_t IntPtr = 0;
1587   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1588     return EC;
1589   Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1590   return std::error_code();
1591 }
1592 
1593 Expected<std::unique_ptr<COFFObjectFile>>
1594 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1595   std::error_code EC;
1596   std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC));
1597   if (EC)
1598     return errorCodeToError(EC);
1599   return std::move(Ret);
1600 }
1601 
1602 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1603   return Header == Other.Header && Index == Other.Index;
1604 }
1605 
1606 void BaseRelocRef::moveNext() {
1607   // Header->BlockSize is the size of the current block, including the
1608   // size of the header itself.
1609   uint32_t Size = sizeof(*Header) +
1610       sizeof(coff_base_reloc_block_entry) * (Index + 1);
1611   if (Size == Header->BlockSize) {
1612     // .reloc contains a list of base relocation blocks. Each block
1613     // consists of the header followed by entries. The header contains
1614     // how many entories will follow. When we reach the end of the
1615     // current block, proceed to the next block.
1616     Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1617         reinterpret_cast<const uint8_t *>(Header) + Size);
1618     Index = 0;
1619   } else {
1620     ++Index;
1621   }
1622 }
1623 
1624 std::error_code BaseRelocRef::getType(uint8_t &Type) const {
1625   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1626   Type = Entry[Index].getType();
1627   return std::error_code();
1628 }
1629 
1630 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const {
1631   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1632   Result = Header->PageRVA + Entry[Index].getOffset();
1633   return std::error_code();
1634 }
1635 
1636 #define RETURN_IF_ERROR(E)                                                     \
1637   if (E)                                                                       \
1638     return E;
1639 
1640 Expected<ArrayRef<UTF16>>
1641 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) {
1642   BinaryStreamReader Reader = BinaryStreamReader(BBS);
1643   Reader.setOffset(Offset);
1644   uint16_t Length;
1645   RETURN_IF_ERROR(Reader.readInteger(Length));
1646   ArrayRef<UTF16> RawDirString;
1647   RETURN_IF_ERROR(Reader.readArray(RawDirString, Length));
1648   return RawDirString;
1649 }
1650 
1651 Expected<ArrayRef<UTF16>>
1652 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) {
1653   return getDirStringAtOffset(Entry.Identifier.getNameOffset());
1654 }
1655 
1656 Expected<const coff_resource_dir_table &>
1657 ResourceSectionRef::getTableAtOffset(uint32_t Offset) {
1658   const coff_resource_dir_table *Table = nullptr;
1659 
1660   BinaryStreamReader Reader(BBS);
1661   Reader.setOffset(Offset);
1662   RETURN_IF_ERROR(Reader.readObject(Table));
1663   assert(Table != nullptr);
1664   return *Table;
1665 }
1666 
1667 Expected<const coff_resource_dir_table &>
1668 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) {
1669   return getTableAtOffset(Entry.Offset.value());
1670 }
1671 
1672 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() {
1673   return getTableAtOffset(0);
1674 }
1675