1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/iterator_range.h" 20 #include "llvm/Support/COFF.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include <cctype> 24 #include <limits> 25 26 using namespace llvm; 27 using namespace object; 28 29 using support::ulittle16_t; 30 using support::ulittle32_t; 31 using support::ulittle64_t; 32 using support::little16_t; 33 34 // Returns false if size is greater than the buffer size. And sets ec. 35 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 36 if (M.getBufferSize() < Size) { 37 EC = object_error::unexpected_eof; 38 return false; 39 } 40 return true; 41 } 42 43 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 44 const uint64_t Size) { 45 if (Addr + Size < Addr || Addr + Size < Size || 46 Addr + Size > uintptr_t(M.getBufferEnd()) || 47 Addr < uintptr_t(M.getBufferStart())) { 48 return object_error::unexpected_eof; 49 } 50 return std::error_code(); 51 } 52 53 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 54 // Returns unexpected_eof if error. 55 template <typename T> 56 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 57 const void *Ptr, 58 const uint64_t Size = sizeof(T)) { 59 uintptr_t Addr = uintptr_t(Ptr); 60 if (std::error_code EC = checkOffset(M, Addr, Size)) 61 return EC; 62 Obj = reinterpret_cast<const T *>(Addr); 63 return std::error_code(); 64 } 65 66 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 67 // prefixed slashes. 68 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 69 assert(Str.size() <= 6 && "String too long, possible overflow."); 70 if (Str.size() > 6) 71 return true; 72 73 uint64_t Value = 0; 74 while (!Str.empty()) { 75 unsigned CharVal; 76 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 77 CharVal = Str[0] - 'A'; 78 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 79 CharVal = Str[0] - 'a' + 26; 80 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 81 CharVal = Str[0] - '0' + 52; 82 else if (Str[0] == '+') // 62 83 CharVal = 62; 84 else if (Str[0] == '/') // 63 85 CharVal = 63; 86 else 87 return true; 88 89 Value = (Value * 64) + CharVal; 90 Str = Str.substr(1); 91 } 92 93 if (Value > std::numeric_limits<uint32_t>::max()) 94 return true; 95 96 Result = static_cast<uint32_t>(Value); 97 return false; 98 } 99 100 template <typename coff_symbol_type> 101 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 102 const coff_symbol_type *Addr = 103 reinterpret_cast<const coff_symbol_type *>(Ref.p); 104 105 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 106 #ifndef NDEBUG 107 // Verify that the symbol points to a valid entry in the symbol table. 108 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 109 110 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 111 "Symbol did not point to the beginning of a symbol"); 112 #endif 113 114 return Addr; 115 } 116 117 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 118 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 119 120 # ifndef NDEBUG 121 // Verify that the section points to a valid entry in the section table. 122 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 123 report_fatal_error("Section was outside of section table."); 124 125 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 126 assert(Offset % sizeof(coff_section) == 0 && 127 "Section did not point to the beginning of a section"); 128 # endif 129 130 return Addr; 131 } 132 133 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 134 auto End = reinterpret_cast<uintptr_t>(StringTable); 135 if (SymbolTable16) { 136 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 137 Symb += 1 + Symb->NumberOfAuxSymbols; 138 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 139 } else if (SymbolTable32) { 140 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 141 Symb += 1 + Symb->NumberOfAuxSymbols; 142 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 143 } else { 144 llvm_unreachable("no symbol table pointer!"); 145 } 146 } 147 148 ErrorOr<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 149 COFFSymbolRef Symb = getCOFFSymbol(Ref); 150 StringRef Result; 151 std::error_code EC = getSymbolName(Symb, Result); 152 if (EC) 153 return EC; 154 return Result; 155 } 156 157 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 158 return getCOFFSymbol(Ref).getValue(); 159 } 160 161 ErrorOr<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 162 uint64_t Result = getSymbolValue(Ref); 163 COFFSymbolRef Symb = getCOFFSymbol(Ref); 164 int32_t SectionNumber = Symb.getSectionNumber(); 165 166 if (Symb.isAnyUndefined() || Symb.isCommon() || 167 COFF::isReservedSectionNumber(SectionNumber)) 168 return Result; 169 170 const coff_section *Section = nullptr; 171 if (std::error_code EC = getSection(SectionNumber, Section)) 172 return EC; 173 Result += Section->VirtualAddress; 174 return Result; 175 } 176 177 SymbolRef::Type COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 178 COFFSymbolRef Symb = getCOFFSymbol(Ref); 179 int32_t SectionNumber = Symb.getSectionNumber(); 180 181 if (Symb.isAnyUndefined()) 182 return SymbolRef::ST_Unknown; 183 if (Symb.isFunctionDefinition()) 184 return SymbolRef::ST_Function; 185 if (Symb.isCommon()) 186 return SymbolRef::ST_Data; 187 if (Symb.isFileRecord()) 188 return SymbolRef::ST_File; 189 190 // TODO: perhaps we need a new symbol type ST_Section. 191 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 192 return SymbolRef::ST_Debug; 193 194 if (!COFF::isReservedSectionNumber(SectionNumber)) 195 return SymbolRef::ST_Data; 196 197 return SymbolRef::ST_Other; 198 } 199 200 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 201 COFFSymbolRef Symb = getCOFFSymbol(Ref); 202 uint32_t Result = SymbolRef::SF_None; 203 204 if (Symb.isExternal() || Symb.isWeakExternal()) 205 Result |= SymbolRef::SF_Global; 206 207 if (Symb.isWeakExternal()) 208 Result |= SymbolRef::SF_Weak; 209 210 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 211 Result |= SymbolRef::SF_Absolute; 212 213 if (Symb.isFileRecord()) 214 Result |= SymbolRef::SF_FormatSpecific; 215 216 if (Symb.isSectionDefinition()) 217 Result |= SymbolRef::SF_FormatSpecific; 218 219 if (Symb.isCommon()) 220 Result |= SymbolRef::SF_Common; 221 222 if (Symb.isAnyUndefined()) 223 Result |= SymbolRef::SF_Undefined; 224 225 return Result; 226 } 227 228 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 229 COFFSymbolRef Symb = getCOFFSymbol(Ref); 230 return Symb.getValue(); 231 } 232 233 std::error_code 234 COFFObjectFile::getSymbolSection(DataRefImpl Ref, 235 section_iterator &Result) const { 236 COFFSymbolRef Symb = getCOFFSymbol(Ref); 237 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) { 238 Result = section_end(); 239 } else { 240 const coff_section *Sec = nullptr; 241 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 242 return EC; 243 DataRefImpl Ref; 244 Ref.p = reinterpret_cast<uintptr_t>(Sec); 245 Result = section_iterator(SectionRef(Ref, this)); 246 } 247 return std::error_code(); 248 } 249 250 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 251 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 252 return Symb.getSectionNumber(); 253 } 254 255 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 256 const coff_section *Sec = toSec(Ref); 257 Sec += 1; 258 Ref.p = reinterpret_cast<uintptr_t>(Sec); 259 } 260 261 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 262 StringRef &Result) const { 263 const coff_section *Sec = toSec(Ref); 264 return getSectionName(Sec, Result); 265 } 266 267 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 268 const coff_section *Sec = toSec(Ref); 269 return Sec->VirtualAddress; 270 } 271 272 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 273 return getSectionSize(toSec(Ref)); 274 } 275 276 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 277 StringRef &Result) const { 278 const coff_section *Sec = toSec(Ref); 279 ArrayRef<uint8_t> Res; 280 std::error_code EC = getSectionContents(Sec, Res); 281 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 282 return EC; 283 } 284 285 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 286 const coff_section *Sec = toSec(Ref); 287 return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1); 288 } 289 290 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 291 const coff_section *Sec = toSec(Ref); 292 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 293 } 294 295 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 296 const coff_section *Sec = toSec(Ref); 297 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 298 } 299 300 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 301 const coff_section *Sec = toSec(Ref); 302 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 303 COFF::IMAGE_SCN_MEM_READ | 304 COFF::IMAGE_SCN_MEM_WRITE; 305 return (Sec->Characteristics & BssFlags) == BssFlags; 306 } 307 308 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 309 uintptr_t Offset = 310 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 311 assert((Offset % sizeof(coff_section)) == 0); 312 return (Offset / sizeof(coff_section)) + 1; 313 } 314 315 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 316 const coff_section *Sec = toSec(Ref); 317 // In COFF, a virtual section won't have any in-file 318 // content, so the file pointer to the content will be zero. 319 return Sec->PointerToRawData == 0; 320 } 321 322 static uint32_t getNumberOfRelocations(const coff_section *Sec, 323 MemoryBufferRef M, const uint8_t *base) { 324 // The field for the number of relocations in COFF section table is only 325 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 326 // NumberOfRelocations field, and the actual relocation count is stored in the 327 // VirtualAddress field in the first relocation entry. 328 if (Sec->hasExtendedRelocations()) { 329 const coff_relocation *FirstReloc; 330 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 331 base + Sec->PointerToRelocations))) 332 return 0; 333 // -1 to exclude this first relocation entry. 334 return FirstReloc->VirtualAddress - 1; 335 } 336 return Sec->NumberOfRelocations; 337 } 338 339 static const coff_relocation * 340 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 341 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 342 if (!NumRelocs) 343 return nullptr; 344 auto begin = reinterpret_cast<const coff_relocation *>( 345 Base + Sec->PointerToRelocations); 346 if (Sec->hasExtendedRelocations()) { 347 // Skip the first relocation entry repurposed to store the number of 348 // relocations. 349 begin++; 350 } 351 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 352 return nullptr; 353 return begin; 354 } 355 356 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 357 const coff_section *Sec = toSec(Ref); 358 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 359 if (begin && Sec->VirtualAddress != 0) 360 report_fatal_error("Sections with relocations should have an address of 0"); 361 DataRefImpl Ret; 362 Ret.p = reinterpret_cast<uintptr_t>(begin); 363 return relocation_iterator(RelocationRef(Ret, this)); 364 } 365 366 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 367 const coff_section *Sec = toSec(Ref); 368 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 369 if (I) 370 I += getNumberOfRelocations(Sec, Data, base()); 371 DataRefImpl Ret; 372 Ret.p = reinterpret_cast<uintptr_t>(I); 373 return relocation_iterator(RelocationRef(Ret, this)); 374 } 375 376 // Initialize the pointer to the symbol table. 377 std::error_code COFFObjectFile::initSymbolTablePtr() { 378 if (COFFHeader) 379 if (std::error_code EC = getObject( 380 SymbolTable16, Data, base() + getPointerToSymbolTable(), 381 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 382 return EC; 383 384 if (COFFBigObjHeader) 385 if (std::error_code EC = getObject( 386 SymbolTable32, Data, base() + getPointerToSymbolTable(), 387 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 388 return EC; 389 390 // Find string table. The first four byte of the string table contains the 391 // total size of the string table, including the size field itself. If the 392 // string table is empty, the value of the first four byte would be 4. 393 uint32_t StringTableOffset = getPointerToSymbolTable() + 394 getNumberOfSymbols() * getSymbolTableEntrySize(); 395 const uint8_t *StringTableAddr = base() + StringTableOffset; 396 const ulittle32_t *StringTableSizePtr; 397 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 398 return EC; 399 StringTableSize = *StringTableSizePtr; 400 if (std::error_code EC = 401 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 402 return EC; 403 404 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 405 // tools like cvtres write a size of 0 for an empty table instead of 4. 406 if (StringTableSize < 4) 407 StringTableSize = 4; 408 409 // Check that the string table is null terminated if has any in it. 410 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 411 return object_error::parse_failed; 412 return std::error_code(); 413 } 414 415 // Returns the file offset for the given VA. 416 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 417 uint64_t ImageBase = PE32Header ? (uint64_t)PE32Header->ImageBase 418 : (uint64_t)PE32PlusHeader->ImageBase; 419 uint64_t Rva = Addr - ImageBase; 420 assert(Rva <= UINT32_MAX); 421 return getRvaPtr((uint32_t)Rva, Res); 422 } 423 424 // Returns the file offset for the given RVA. 425 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 426 for (const SectionRef &S : sections()) { 427 const coff_section *Section = getCOFFSection(S); 428 uint32_t SectionStart = Section->VirtualAddress; 429 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 430 if (SectionStart <= Addr && Addr < SectionEnd) { 431 uint32_t Offset = Addr - SectionStart; 432 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 433 return std::error_code(); 434 } 435 } 436 return object_error::parse_failed; 437 } 438 439 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 440 // table entry. 441 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 442 StringRef &Name) const { 443 uintptr_t IntPtr = 0; 444 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 445 return EC; 446 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 447 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 448 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 449 return std::error_code(); 450 } 451 452 // Find the import table. 453 std::error_code COFFObjectFile::initImportTablePtr() { 454 // First, we get the RVA of the import table. If the file lacks a pointer to 455 // the import table, do nothing. 456 const data_directory *DataEntry; 457 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 458 return std::error_code(); 459 460 // Do nothing if the pointer to import table is NULL. 461 if (DataEntry->RelativeVirtualAddress == 0) 462 return std::error_code(); 463 464 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 465 // -1 because the last entry is the null entry. 466 NumberOfImportDirectory = DataEntry->Size / 467 sizeof(import_directory_table_entry) - 1; 468 469 // Find the section that contains the RVA. This is needed because the RVA is 470 // the import table's memory address which is different from its file offset. 471 uintptr_t IntPtr = 0; 472 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 473 return EC; 474 ImportDirectory = reinterpret_cast< 475 const import_directory_table_entry *>(IntPtr); 476 return std::error_code(); 477 } 478 479 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 480 std::error_code COFFObjectFile::initDelayImportTablePtr() { 481 const data_directory *DataEntry; 482 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 483 return std::error_code(); 484 if (DataEntry->RelativeVirtualAddress == 0) 485 return std::error_code(); 486 487 uint32_t RVA = DataEntry->RelativeVirtualAddress; 488 NumberOfDelayImportDirectory = DataEntry->Size / 489 sizeof(delay_import_directory_table_entry) - 1; 490 491 uintptr_t IntPtr = 0; 492 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 493 return EC; 494 DelayImportDirectory = reinterpret_cast< 495 const delay_import_directory_table_entry *>(IntPtr); 496 return std::error_code(); 497 } 498 499 // Find the export table. 500 std::error_code COFFObjectFile::initExportTablePtr() { 501 // First, we get the RVA of the export table. If the file lacks a pointer to 502 // the export table, do nothing. 503 const data_directory *DataEntry; 504 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 505 return std::error_code(); 506 507 // Do nothing if the pointer to export table is NULL. 508 if (DataEntry->RelativeVirtualAddress == 0) 509 return std::error_code(); 510 511 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 512 uintptr_t IntPtr = 0; 513 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 514 return EC; 515 ExportDirectory = 516 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 517 return std::error_code(); 518 } 519 520 std::error_code COFFObjectFile::initBaseRelocPtr() { 521 const data_directory *DataEntry; 522 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 523 return std::error_code(); 524 if (DataEntry->RelativeVirtualAddress == 0) 525 return std::error_code(); 526 527 uintptr_t IntPtr = 0; 528 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 529 return EC; 530 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 531 IntPtr); 532 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 533 IntPtr + DataEntry->Size); 534 return std::error_code(); 535 } 536 537 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 538 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 539 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 540 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 541 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 542 ImportDirectory(nullptr), NumberOfImportDirectory(0), 543 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 544 ExportDirectory(nullptr), BaseRelocHeader(nullptr), 545 BaseRelocEnd(nullptr) { 546 // Check that we at least have enough room for a header. 547 if (!checkSize(Data, EC, sizeof(coff_file_header))) 548 return; 549 550 // The current location in the file where we are looking at. 551 uint64_t CurPtr = 0; 552 553 // PE header is optional and is present only in executables. If it exists, 554 // it is placed right after COFF header. 555 bool HasPEHeader = false; 556 557 // Check if this is a PE/COFF file. 558 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 559 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 560 // PE signature to find 'normal' COFF header. 561 const auto *DH = reinterpret_cast<const dos_header *>(base()); 562 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 563 CurPtr = DH->AddressOfNewExeHeader; 564 // Check the PE magic bytes. ("PE\0\0") 565 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 566 EC = object_error::parse_failed; 567 return; 568 } 569 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 570 HasPEHeader = true; 571 } 572 } 573 574 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 575 return; 576 577 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 578 // import libraries share a common prefix but bigobj is more restrictive. 579 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 580 COFFHeader->NumberOfSections == uint16_t(0xffff) && 581 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 582 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 583 return; 584 585 // Verify that we are dealing with bigobj. 586 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 587 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 588 sizeof(COFF::BigObjMagic)) == 0) { 589 COFFHeader = nullptr; 590 CurPtr += sizeof(coff_bigobj_file_header); 591 } else { 592 // It's not a bigobj. 593 COFFBigObjHeader = nullptr; 594 } 595 } 596 if (COFFHeader) { 597 // The prior checkSize call may have failed. This isn't a hard error 598 // because we were just trying to sniff out bigobj. 599 EC = std::error_code(); 600 CurPtr += sizeof(coff_file_header); 601 602 if (COFFHeader->isImportLibrary()) 603 return; 604 } 605 606 if (HasPEHeader) { 607 const pe32_header *Header; 608 if ((EC = getObject(Header, Data, base() + CurPtr))) 609 return; 610 611 const uint8_t *DataDirAddr; 612 uint64_t DataDirSize; 613 if (Header->Magic == COFF::PE32Header::PE32) { 614 PE32Header = Header; 615 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 616 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 617 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 618 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 619 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 620 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 621 } else { 622 // It's neither PE32 nor PE32+. 623 EC = object_error::parse_failed; 624 return; 625 } 626 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 627 return; 628 CurPtr += COFFHeader->SizeOfOptionalHeader; 629 } 630 631 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 632 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 633 return; 634 635 // Initialize the pointer to the symbol table. 636 if (getPointerToSymbolTable() != 0) { 637 if ((EC = initSymbolTablePtr())) 638 return; 639 } else { 640 // We had better not have any symbols if we don't have a symbol table. 641 if (getNumberOfSymbols() != 0) { 642 EC = object_error::parse_failed; 643 return; 644 } 645 } 646 647 // Initialize the pointer to the beginning of the import table. 648 if ((EC = initImportTablePtr())) 649 return; 650 if ((EC = initDelayImportTablePtr())) 651 return; 652 653 // Initialize the pointer to the export table. 654 if ((EC = initExportTablePtr())) 655 return; 656 657 // Initialize the pointer to the base relocation table. 658 if ((EC = initBaseRelocPtr())) 659 return; 660 661 EC = std::error_code(); 662 } 663 664 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 665 DataRefImpl Ret; 666 Ret.p = getSymbolTable(); 667 return basic_symbol_iterator(SymbolRef(Ret, this)); 668 } 669 670 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 671 // The symbol table ends where the string table begins. 672 DataRefImpl Ret; 673 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 674 return basic_symbol_iterator(SymbolRef(Ret, this)); 675 } 676 677 import_directory_iterator COFFObjectFile::import_directory_begin() const { 678 return import_directory_iterator( 679 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 680 } 681 682 import_directory_iterator COFFObjectFile::import_directory_end() const { 683 return import_directory_iterator( 684 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); 685 } 686 687 delay_import_directory_iterator 688 COFFObjectFile::delay_import_directory_begin() const { 689 return delay_import_directory_iterator( 690 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 691 } 692 693 delay_import_directory_iterator 694 COFFObjectFile::delay_import_directory_end() const { 695 return delay_import_directory_iterator( 696 DelayImportDirectoryEntryRef( 697 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 698 } 699 700 export_directory_iterator COFFObjectFile::export_directory_begin() const { 701 return export_directory_iterator( 702 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 703 } 704 705 export_directory_iterator COFFObjectFile::export_directory_end() const { 706 if (!ExportDirectory) 707 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 708 ExportDirectoryEntryRef Ref(ExportDirectory, 709 ExportDirectory->AddressTableEntries, this); 710 return export_directory_iterator(Ref); 711 } 712 713 section_iterator COFFObjectFile::section_begin() const { 714 DataRefImpl Ret; 715 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 716 return section_iterator(SectionRef(Ret, this)); 717 } 718 719 section_iterator COFFObjectFile::section_end() const { 720 DataRefImpl Ret; 721 int NumSections = 722 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 723 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 724 return section_iterator(SectionRef(Ret, this)); 725 } 726 727 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 728 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 729 } 730 731 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 732 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 733 } 734 735 uint8_t COFFObjectFile::getBytesInAddress() const { 736 return getArch() == Triple::x86_64 ? 8 : 4; 737 } 738 739 StringRef COFFObjectFile::getFileFormatName() const { 740 switch(getMachine()) { 741 case COFF::IMAGE_FILE_MACHINE_I386: 742 return "COFF-i386"; 743 case COFF::IMAGE_FILE_MACHINE_AMD64: 744 return "COFF-x86-64"; 745 case COFF::IMAGE_FILE_MACHINE_ARMNT: 746 return "COFF-ARM"; 747 case COFF::IMAGE_FILE_MACHINE_ARM64: 748 return "COFF-ARM64"; 749 default: 750 return "COFF-<unknown arch>"; 751 } 752 } 753 754 unsigned COFFObjectFile::getArch() const { 755 switch (getMachine()) { 756 case COFF::IMAGE_FILE_MACHINE_I386: 757 return Triple::x86; 758 case COFF::IMAGE_FILE_MACHINE_AMD64: 759 return Triple::x86_64; 760 case COFF::IMAGE_FILE_MACHINE_ARMNT: 761 return Triple::thumb; 762 case COFF::IMAGE_FILE_MACHINE_ARM64: 763 return Triple::aarch64; 764 default: 765 return Triple::UnknownArch; 766 } 767 } 768 769 iterator_range<import_directory_iterator> 770 COFFObjectFile::import_directories() const { 771 return make_range(import_directory_begin(), import_directory_end()); 772 } 773 774 iterator_range<delay_import_directory_iterator> 775 COFFObjectFile::delay_import_directories() const { 776 return make_range(delay_import_directory_begin(), 777 delay_import_directory_end()); 778 } 779 780 iterator_range<export_directory_iterator> 781 COFFObjectFile::export_directories() const { 782 return make_range(export_directory_begin(), export_directory_end()); 783 } 784 785 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 786 return make_range(base_reloc_begin(), base_reloc_end()); 787 } 788 789 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 790 Res = PE32Header; 791 return std::error_code(); 792 } 793 794 std::error_code 795 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 796 Res = PE32PlusHeader; 797 return std::error_code(); 798 } 799 800 std::error_code 801 COFFObjectFile::getDataDirectory(uint32_t Index, 802 const data_directory *&Res) const { 803 // Error if if there's no data directory or the index is out of range. 804 if (!DataDirectory) { 805 Res = nullptr; 806 return object_error::parse_failed; 807 } 808 assert(PE32Header || PE32PlusHeader); 809 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 810 : PE32PlusHeader->NumberOfRvaAndSize; 811 if (Index >= NumEnt) { 812 Res = nullptr; 813 return object_error::parse_failed; 814 } 815 Res = &DataDirectory[Index]; 816 return std::error_code(); 817 } 818 819 std::error_code COFFObjectFile::getSection(int32_t Index, 820 const coff_section *&Result) const { 821 Result = nullptr; 822 if (COFF::isReservedSectionNumber(Index)) 823 return std::error_code(); 824 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 825 // We already verified the section table data, so no need to check again. 826 Result = SectionTable + (Index - 1); 827 return std::error_code(); 828 } 829 return object_error::parse_failed; 830 } 831 832 std::error_code COFFObjectFile::getString(uint32_t Offset, 833 StringRef &Result) const { 834 if (StringTableSize <= 4) 835 // Tried to get a string from an empty string table. 836 return object_error::parse_failed; 837 if (Offset >= StringTableSize) 838 return object_error::unexpected_eof; 839 Result = StringRef(StringTable + Offset); 840 return std::error_code(); 841 } 842 843 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 844 StringRef &Res) const { 845 return getSymbolName(Symbol.getGeneric(), Res); 846 } 847 848 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol, 849 StringRef &Res) const { 850 // Check for string table entry. First 4 bytes are 0. 851 if (Symbol->Name.Offset.Zeroes == 0) { 852 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res)) 853 return EC; 854 return std::error_code(); 855 } 856 857 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 858 // Null terminated, let ::strlen figure out the length. 859 Res = StringRef(Symbol->Name.ShortName); 860 else 861 // Not null terminated, use all 8 bytes. 862 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize); 863 return std::error_code(); 864 } 865 866 ArrayRef<uint8_t> 867 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 868 const uint8_t *Aux = nullptr; 869 870 size_t SymbolSize = getSymbolTableEntrySize(); 871 if (Symbol.getNumberOfAuxSymbols() > 0) { 872 // AUX data comes immediately after the symbol in COFF 873 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 874 # ifndef NDEBUG 875 // Verify that the Aux symbol points to a valid entry in the symbol table. 876 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 877 if (Offset < getPointerToSymbolTable() || 878 Offset >= 879 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 880 report_fatal_error("Aux Symbol data was outside of symbol table."); 881 882 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 883 "Aux Symbol data did not point to the beginning of a symbol"); 884 # endif 885 } 886 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 887 } 888 889 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 890 StringRef &Res) const { 891 StringRef Name; 892 if (Sec->Name[COFF::NameSize - 1] == 0) 893 // Null terminated, let ::strlen figure out the length. 894 Name = Sec->Name; 895 else 896 // Not null terminated, use all 8 bytes. 897 Name = StringRef(Sec->Name, COFF::NameSize); 898 899 // Check for string table entry. First byte is '/'. 900 if (Name.startswith("/")) { 901 uint32_t Offset; 902 if (Name.startswith("//")) { 903 if (decodeBase64StringEntry(Name.substr(2), Offset)) 904 return object_error::parse_failed; 905 } else { 906 if (Name.substr(1).getAsInteger(10, Offset)) 907 return object_error::parse_failed; 908 } 909 if (std::error_code EC = getString(Offset, Name)) 910 return EC; 911 } 912 913 Res = Name; 914 return std::error_code(); 915 } 916 917 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 918 // SizeOfRawData and VirtualSize change what they represent depending on 919 // whether or not we have an executable image. 920 // 921 // For object files, SizeOfRawData contains the size of section's data; 922 // VirtualSize should be zero but isn't due to buggy COFF writers. 923 // 924 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 925 // actual section size is in VirtualSize. It is possible for VirtualSize to 926 // be greater than SizeOfRawData; the contents past that point should be 927 // considered to be zero. 928 if (getDOSHeader()) 929 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 930 return Sec->SizeOfRawData; 931 } 932 933 std::error_code 934 COFFObjectFile::getSectionContents(const coff_section *Sec, 935 ArrayRef<uint8_t> &Res) const { 936 // PointerToRawData and SizeOfRawData won't make sense for BSS sections, 937 // don't do anything interesting for them. 938 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && 939 "BSS sections don't have contents!"); 940 // The only thing that we need to verify is that the contents is contained 941 // within the file bounds. We don't need to make sure it doesn't cover other 942 // data, as there's nothing that says that is not allowed. 943 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 944 uint32_t SectionSize = getSectionSize(Sec); 945 if (checkOffset(Data, ConStart, SectionSize)) 946 return object_error::parse_failed; 947 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 948 return std::error_code(); 949 } 950 951 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 952 return reinterpret_cast<const coff_relocation*>(Rel.p); 953 } 954 955 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 956 Rel.p = reinterpret_cast<uintptr_t>( 957 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 958 } 959 960 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 961 const coff_relocation *R = toRel(Rel); 962 return R->VirtualAddress; 963 } 964 965 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 966 const coff_relocation *R = toRel(Rel); 967 DataRefImpl Ref; 968 if (R->SymbolTableIndex >= getNumberOfSymbols()) 969 return symbol_end(); 970 if (SymbolTable16) 971 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 972 else if (SymbolTable32) 973 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 974 else 975 llvm_unreachable("no symbol table pointer!"); 976 return symbol_iterator(SymbolRef(Ref, this)); 977 } 978 979 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 980 const coff_relocation* R = toRel(Rel); 981 return R->Type; 982 } 983 984 const coff_section * 985 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 986 return toSec(Section.getRawDataRefImpl()); 987 } 988 989 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 990 if (SymbolTable16) 991 return toSymb<coff_symbol16>(Ref); 992 if (SymbolTable32) 993 return toSymb<coff_symbol32>(Ref); 994 llvm_unreachable("no symbol table pointer!"); 995 } 996 997 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 998 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 999 } 1000 1001 const coff_relocation * 1002 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1003 return toRel(Reloc.getRawDataRefImpl()); 1004 } 1005 1006 iterator_range<const coff_relocation *> 1007 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1008 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 1009 const coff_relocation *E = I; 1010 if (I) 1011 E += getNumberOfRelocations(Sec, Data, base()); 1012 return make_range(I, E); 1013 } 1014 1015 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1016 case COFF::reloc_type: \ 1017 Res = #reloc_type; \ 1018 break; 1019 1020 void COFFObjectFile::getRelocationTypeName( 1021 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1022 const coff_relocation *Reloc = toRel(Rel); 1023 StringRef Res; 1024 switch (getMachine()) { 1025 case COFF::IMAGE_FILE_MACHINE_AMD64: 1026 switch (Reloc->Type) { 1027 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1028 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1029 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1030 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1031 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1032 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1033 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1034 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1035 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1036 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1037 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1038 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1039 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1040 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1041 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1042 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1043 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1044 default: 1045 Res = "Unknown"; 1046 } 1047 break; 1048 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1049 switch (Reloc->Type) { 1050 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1051 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1052 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1053 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1054 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1055 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1056 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1057 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1058 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1059 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1060 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1061 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1062 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1063 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1064 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1065 default: 1066 Res = "Unknown"; 1067 } 1068 break; 1069 case COFF::IMAGE_FILE_MACHINE_I386: 1070 switch (Reloc->Type) { 1071 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1072 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1073 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1074 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1075 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1076 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1077 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1078 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1079 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1080 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1081 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1082 default: 1083 Res = "Unknown"; 1084 } 1085 break; 1086 default: 1087 Res = "Unknown"; 1088 } 1089 Result.append(Res.begin(), Res.end()); 1090 } 1091 1092 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1093 1094 bool COFFObjectFile::isRelocatableObject() const { 1095 return !DataDirectory; 1096 } 1097 1098 bool ImportDirectoryEntryRef:: 1099 operator==(const ImportDirectoryEntryRef &Other) const { 1100 return ImportTable == Other.ImportTable && Index == Other.Index; 1101 } 1102 1103 void ImportDirectoryEntryRef::moveNext() { 1104 ++Index; 1105 } 1106 1107 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1108 const import_directory_table_entry *&Result) const { 1109 Result = ImportTable + Index; 1110 return std::error_code(); 1111 } 1112 1113 static imported_symbol_iterator 1114 makeImportedSymbolIterator(const COFFObjectFile *Object, 1115 uintptr_t Ptr, int Index) { 1116 if (Object->getBytesInAddress() == 4) { 1117 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1118 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1119 } 1120 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1121 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1122 } 1123 1124 static imported_symbol_iterator 1125 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1126 uintptr_t IntPtr = 0; 1127 Object->getRvaPtr(RVA, IntPtr); 1128 return makeImportedSymbolIterator(Object, IntPtr, 0); 1129 } 1130 1131 static imported_symbol_iterator 1132 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1133 uintptr_t IntPtr = 0; 1134 Object->getRvaPtr(RVA, IntPtr); 1135 // Forward the pointer to the last entry which is null. 1136 int Index = 0; 1137 if (Object->getBytesInAddress() == 4) { 1138 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1139 while (*Entry++) 1140 ++Index; 1141 } else { 1142 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1143 while (*Entry++) 1144 ++Index; 1145 } 1146 return makeImportedSymbolIterator(Object, IntPtr, Index); 1147 } 1148 1149 imported_symbol_iterator 1150 ImportDirectoryEntryRef::imported_symbol_begin() const { 1151 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1152 OwningObject); 1153 } 1154 1155 imported_symbol_iterator 1156 ImportDirectoryEntryRef::imported_symbol_end() const { 1157 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1158 OwningObject); 1159 } 1160 1161 iterator_range<imported_symbol_iterator> 1162 ImportDirectoryEntryRef::imported_symbols() const { 1163 return make_range(imported_symbol_begin(), imported_symbol_end()); 1164 } 1165 1166 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1167 uintptr_t IntPtr = 0; 1168 if (std::error_code EC = 1169 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1170 return EC; 1171 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1172 return std::error_code(); 1173 } 1174 1175 std::error_code 1176 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1177 Result = ImportTable[Index].ImportLookupTableRVA; 1178 return std::error_code(); 1179 } 1180 1181 std::error_code 1182 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1183 Result = ImportTable[Index].ImportAddressTableRVA; 1184 return std::error_code(); 1185 } 1186 1187 std::error_code ImportDirectoryEntryRef::getImportLookupEntry( 1188 const import_lookup_table_entry32 *&Result) const { 1189 uintptr_t IntPtr = 0; 1190 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; 1191 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1192 return EC; 1193 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr); 1194 return std::error_code(); 1195 } 1196 1197 bool DelayImportDirectoryEntryRef:: 1198 operator==(const DelayImportDirectoryEntryRef &Other) const { 1199 return Table == Other.Table && Index == Other.Index; 1200 } 1201 1202 void DelayImportDirectoryEntryRef::moveNext() { 1203 ++Index; 1204 } 1205 1206 imported_symbol_iterator 1207 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1208 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1209 OwningObject); 1210 } 1211 1212 imported_symbol_iterator 1213 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1214 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1215 OwningObject); 1216 } 1217 1218 iterator_range<imported_symbol_iterator> 1219 DelayImportDirectoryEntryRef::imported_symbols() const { 1220 return make_range(imported_symbol_begin(), imported_symbol_end()); 1221 } 1222 1223 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1224 uintptr_t IntPtr = 0; 1225 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1226 return EC; 1227 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1228 return std::error_code(); 1229 } 1230 1231 std::error_code DelayImportDirectoryEntryRef:: 1232 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1233 Result = Table; 1234 return std::error_code(); 1235 } 1236 1237 std::error_code DelayImportDirectoryEntryRef:: 1238 getImportAddress(int AddrIndex, uint64_t &Result) const { 1239 uint32_t RVA = Table[Index].DelayImportAddressTable + 1240 AddrIndex * (OwningObject->is64() ? 8 : 4); 1241 uintptr_t IntPtr = 0; 1242 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1243 return EC; 1244 if (OwningObject->is64()) 1245 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1246 else 1247 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1248 return std::error_code(); 1249 } 1250 1251 bool ExportDirectoryEntryRef:: 1252 operator==(const ExportDirectoryEntryRef &Other) const { 1253 return ExportTable == Other.ExportTable && Index == Other.Index; 1254 } 1255 1256 void ExportDirectoryEntryRef::moveNext() { 1257 ++Index; 1258 } 1259 1260 // Returns the name of the current export symbol. If the symbol is exported only 1261 // by ordinal, the empty string is set as a result. 1262 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1263 uintptr_t IntPtr = 0; 1264 if (std::error_code EC = 1265 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1266 return EC; 1267 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1268 return std::error_code(); 1269 } 1270 1271 // Returns the starting ordinal number. 1272 std::error_code 1273 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1274 Result = ExportTable->OrdinalBase; 1275 return std::error_code(); 1276 } 1277 1278 // Returns the export ordinal of the current export symbol. 1279 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1280 Result = ExportTable->OrdinalBase + Index; 1281 return std::error_code(); 1282 } 1283 1284 // Returns the address of the current export symbol. 1285 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1286 uintptr_t IntPtr = 0; 1287 if (std::error_code EC = 1288 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1289 return EC; 1290 const export_address_table_entry *entry = 1291 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1292 Result = entry[Index].ExportRVA; 1293 return std::error_code(); 1294 } 1295 1296 // Returns the name of the current export symbol. If the symbol is exported only 1297 // by ordinal, the empty string is set as a result. 1298 std::error_code 1299 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1300 uintptr_t IntPtr = 0; 1301 if (std::error_code EC = 1302 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1303 return EC; 1304 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1305 1306 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1307 int Offset = 0; 1308 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1309 I < E; ++I, ++Offset) { 1310 if (*I != Index) 1311 continue; 1312 if (std::error_code EC = 1313 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1314 return EC; 1315 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1316 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1317 return EC; 1318 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1319 return std::error_code(); 1320 } 1321 Result = ""; 1322 return std::error_code(); 1323 } 1324 1325 bool ImportedSymbolRef:: 1326 operator==(const ImportedSymbolRef &Other) const { 1327 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1328 && Index == Other.Index; 1329 } 1330 1331 void ImportedSymbolRef::moveNext() { 1332 ++Index; 1333 } 1334 1335 std::error_code 1336 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1337 uint32_t RVA; 1338 if (Entry32) { 1339 // If a symbol is imported only by ordinal, it has no name. 1340 if (Entry32[Index].isOrdinal()) 1341 return std::error_code(); 1342 RVA = Entry32[Index].getHintNameRVA(); 1343 } else { 1344 if (Entry64[Index].isOrdinal()) 1345 return std::error_code(); 1346 RVA = Entry64[Index].getHintNameRVA(); 1347 } 1348 uintptr_t IntPtr = 0; 1349 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1350 return EC; 1351 // +2 because the first two bytes is hint. 1352 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1353 return std::error_code(); 1354 } 1355 1356 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1357 uint32_t RVA; 1358 if (Entry32) { 1359 if (Entry32[Index].isOrdinal()) { 1360 Result = Entry32[Index].getOrdinal(); 1361 return std::error_code(); 1362 } 1363 RVA = Entry32[Index].getHintNameRVA(); 1364 } else { 1365 if (Entry64[Index].isOrdinal()) { 1366 Result = Entry64[Index].getOrdinal(); 1367 return std::error_code(); 1368 } 1369 RVA = Entry64[Index].getHintNameRVA(); 1370 } 1371 uintptr_t IntPtr = 0; 1372 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1373 return EC; 1374 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1375 return std::error_code(); 1376 } 1377 1378 ErrorOr<std::unique_ptr<COFFObjectFile>> 1379 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1380 std::error_code EC; 1381 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1382 if (EC) 1383 return EC; 1384 return std::move(Ret); 1385 } 1386 1387 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1388 return Header == Other.Header && Index == Other.Index; 1389 } 1390 1391 void BaseRelocRef::moveNext() { 1392 // Header->BlockSize is the size of the current block, including the 1393 // size of the header itself. 1394 uint32_t Size = sizeof(*Header) + 1395 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1396 if (Size == Header->BlockSize) { 1397 // .reloc contains a list of base relocation blocks. Each block 1398 // consists of the header followed by entries. The header contains 1399 // how many entories will follow. When we reach the end of the 1400 // current block, proceed to the next block. 1401 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1402 reinterpret_cast<const uint8_t *>(Header) + Size); 1403 Index = 0; 1404 } else { 1405 ++Index; 1406 } 1407 } 1408 1409 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1410 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1411 Type = Entry[Index].getType(); 1412 return std::error_code(); 1413 } 1414 1415 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1416 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1417 Result = Header->PageRVA + Entry[Index].getOffset(); 1418 return std::error_code(); 1419 } 1420