1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/iterator_range.h" 20 #include "llvm/Support/COFF.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include <cctype> 24 #include <limits> 25 26 using namespace llvm; 27 using namespace object; 28 29 using support::ulittle16_t; 30 using support::ulittle32_t; 31 using support::ulittle64_t; 32 using support::little16_t; 33 34 // Returns false if size is greater than the buffer size. And sets ec. 35 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 36 if (M.getBufferSize() < Size) { 37 EC = object_error::unexpected_eof; 38 return false; 39 } 40 return true; 41 } 42 43 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 44 const uint64_t Size) { 45 if (Addr + Size < Addr || Addr + Size < Size || 46 Addr + Size > uintptr_t(M.getBufferEnd()) || 47 Addr < uintptr_t(M.getBufferStart())) { 48 return object_error::unexpected_eof; 49 } 50 return std::error_code(); 51 } 52 53 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 54 // Returns unexpected_eof if error. 55 template <typename T> 56 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 57 const void *Ptr, 58 const uint64_t Size = sizeof(T)) { 59 uintptr_t Addr = uintptr_t(Ptr); 60 if (std::error_code EC = checkOffset(M, Addr, Size)) 61 return EC; 62 Obj = reinterpret_cast<const T *>(Addr); 63 return std::error_code(); 64 } 65 66 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 67 // prefixed slashes. 68 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 69 assert(Str.size() <= 6 && "String too long, possible overflow."); 70 if (Str.size() > 6) 71 return true; 72 73 uint64_t Value = 0; 74 while (!Str.empty()) { 75 unsigned CharVal; 76 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 77 CharVal = Str[0] - 'A'; 78 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 79 CharVal = Str[0] - 'a' + 26; 80 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 81 CharVal = Str[0] - '0' + 52; 82 else if (Str[0] == '+') // 62 83 CharVal = 62; 84 else if (Str[0] == '/') // 63 85 CharVal = 63; 86 else 87 return true; 88 89 Value = (Value * 64) + CharVal; 90 Str = Str.substr(1); 91 } 92 93 if (Value > std::numeric_limits<uint32_t>::max()) 94 return true; 95 96 Result = static_cast<uint32_t>(Value); 97 return false; 98 } 99 100 template <typename coff_symbol_type> 101 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 102 const coff_symbol_type *Addr = 103 reinterpret_cast<const coff_symbol_type *>(Ref.p); 104 105 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 106 #ifndef NDEBUG 107 // Verify that the symbol points to a valid entry in the symbol table. 108 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 109 110 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 111 "Symbol did not point to the beginning of a symbol"); 112 #endif 113 114 return Addr; 115 } 116 117 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 118 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 119 120 # ifndef NDEBUG 121 // Verify that the section points to a valid entry in the section table. 122 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 123 report_fatal_error("Section was outside of section table."); 124 125 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 126 assert(Offset % sizeof(coff_section) == 0 && 127 "Section did not point to the beginning of a section"); 128 # endif 129 130 return Addr; 131 } 132 133 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 134 auto End = reinterpret_cast<uintptr_t>(StringTable); 135 if (SymbolTable16) { 136 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 137 Symb += 1 + Symb->NumberOfAuxSymbols; 138 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 139 } else if (SymbolTable32) { 140 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 141 Symb += 1 + Symb->NumberOfAuxSymbols; 142 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 143 } else { 144 llvm_unreachable("no symbol table pointer!"); 145 } 146 } 147 148 std::error_code COFFObjectFile::getSymbolName(DataRefImpl Ref, 149 StringRef &Result) const { 150 COFFSymbolRef Symb = getCOFFSymbol(Ref); 151 return getSymbolName(Symb, Result); 152 } 153 154 uint64_t COFFObjectFile::getSymbolValue(DataRefImpl Ref) const { 155 COFFSymbolRef Sym = getCOFFSymbol(Ref); 156 157 if (Sym.isAnyUndefined() || Sym.isCommon()) 158 return UnknownAddress; 159 160 return Sym.getValue(); 161 } 162 163 std::error_code COFFObjectFile::getSymbolAddress(DataRefImpl Ref, 164 uint64_t &Result) const { 165 Result = getSymbolValue(Ref); 166 COFFSymbolRef Symb = getCOFFSymbol(Ref); 167 int32_t SectionNumber = Symb.getSectionNumber(); 168 169 if (Symb.isAnyUndefined() || Symb.isCommon() || 170 COFF::isReservedSectionNumber(SectionNumber)) 171 return std::error_code(); 172 173 const coff_section *Section = nullptr; 174 if (std::error_code EC = getSection(SectionNumber, Section)) 175 return EC; 176 Result += Section->VirtualAddress; 177 return std::error_code(); 178 } 179 180 SymbolRef::Type COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 181 COFFSymbolRef Symb = getCOFFSymbol(Ref); 182 int32_t SectionNumber = Symb.getSectionNumber(); 183 184 if (Symb.isAnyUndefined()) 185 return SymbolRef::ST_Unknown; 186 if (Symb.isFunctionDefinition()) 187 return SymbolRef::ST_Function; 188 if (Symb.isCommon()) 189 return SymbolRef::ST_Data; 190 if (Symb.isFileRecord()) 191 return SymbolRef::ST_File; 192 193 // TODO: perhaps we need a new symbol type ST_Section. 194 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 195 return SymbolRef::ST_Debug; 196 197 if (!COFF::isReservedSectionNumber(SectionNumber)) 198 return SymbolRef::ST_Data; 199 200 return SymbolRef::ST_Other; 201 } 202 203 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 204 COFFSymbolRef Symb = getCOFFSymbol(Ref); 205 uint32_t Result = SymbolRef::SF_None; 206 207 if (Symb.isExternal() || Symb.isWeakExternal()) 208 Result |= SymbolRef::SF_Global; 209 210 if (Symb.isWeakExternal()) 211 Result |= SymbolRef::SF_Weak; 212 213 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 214 Result |= SymbolRef::SF_Absolute; 215 216 if (Symb.isFileRecord()) 217 Result |= SymbolRef::SF_FormatSpecific; 218 219 if (Symb.isSectionDefinition()) 220 Result |= SymbolRef::SF_FormatSpecific; 221 222 if (Symb.isCommon()) 223 Result |= SymbolRef::SF_Common; 224 225 if (Symb.isAnyUndefined()) 226 Result |= SymbolRef::SF_Undefined; 227 228 return Result; 229 } 230 231 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 232 COFFSymbolRef Symb = getCOFFSymbol(Ref); 233 return Symb.getValue(); 234 } 235 236 std::error_code 237 COFFObjectFile::getSymbolSection(DataRefImpl Ref, 238 section_iterator &Result) const { 239 COFFSymbolRef Symb = getCOFFSymbol(Ref); 240 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) { 241 Result = section_end(); 242 } else { 243 const coff_section *Sec = nullptr; 244 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 245 return EC; 246 DataRefImpl Ref; 247 Ref.p = reinterpret_cast<uintptr_t>(Sec); 248 Result = section_iterator(SectionRef(Ref, this)); 249 } 250 return std::error_code(); 251 } 252 253 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 254 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 255 return Symb.getSectionNumber(); 256 } 257 258 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 259 const coff_section *Sec = toSec(Ref); 260 Sec += 1; 261 Ref.p = reinterpret_cast<uintptr_t>(Sec); 262 } 263 264 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 265 StringRef &Result) const { 266 const coff_section *Sec = toSec(Ref); 267 return getSectionName(Sec, Result); 268 } 269 270 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 271 const coff_section *Sec = toSec(Ref); 272 return Sec->VirtualAddress; 273 } 274 275 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 276 return getSectionSize(toSec(Ref)); 277 } 278 279 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 280 StringRef &Result) const { 281 const coff_section *Sec = toSec(Ref); 282 ArrayRef<uint8_t> Res; 283 std::error_code EC = getSectionContents(Sec, Res); 284 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 285 return EC; 286 } 287 288 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 289 const coff_section *Sec = toSec(Ref); 290 return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1); 291 } 292 293 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 294 const coff_section *Sec = toSec(Ref); 295 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 296 } 297 298 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 299 const coff_section *Sec = toSec(Ref); 300 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 301 } 302 303 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 304 const coff_section *Sec = toSec(Ref); 305 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 306 COFF::IMAGE_SCN_MEM_READ | 307 COFF::IMAGE_SCN_MEM_WRITE; 308 return (Sec->Characteristics & BssFlags) == BssFlags; 309 } 310 311 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 312 uintptr_t Offset = 313 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 314 assert((Offset % sizeof(coff_section)) == 0); 315 return (Offset / sizeof(coff_section)) + 1; 316 } 317 318 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 319 const coff_section *Sec = toSec(Ref); 320 // In COFF, a virtual section won't have any in-file 321 // content, so the file pointer to the content will be zero. 322 return Sec->PointerToRawData == 0; 323 } 324 325 static uint32_t getNumberOfRelocations(const coff_section *Sec, 326 MemoryBufferRef M, const uint8_t *base) { 327 // The field for the number of relocations in COFF section table is only 328 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 329 // NumberOfRelocations field, and the actual relocation count is stored in the 330 // VirtualAddress field in the first relocation entry. 331 if (Sec->hasExtendedRelocations()) { 332 const coff_relocation *FirstReloc; 333 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 334 base + Sec->PointerToRelocations))) 335 return 0; 336 // -1 to exclude this first relocation entry. 337 return FirstReloc->VirtualAddress - 1; 338 } 339 return Sec->NumberOfRelocations; 340 } 341 342 static const coff_relocation * 343 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 344 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 345 if (!NumRelocs) 346 return nullptr; 347 auto begin = reinterpret_cast<const coff_relocation *>( 348 Base + Sec->PointerToRelocations); 349 if (Sec->hasExtendedRelocations()) { 350 // Skip the first relocation entry repurposed to store the number of 351 // relocations. 352 begin++; 353 } 354 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 355 return nullptr; 356 return begin; 357 } 358 359 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 360 const coff_section *Sec = toSec(Ref); 361 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 362 DataRefImpl Ret; 363 Ret.p = reinterpret_cast<uintptr_t>(begin); 364 return relocation_iterator(RelocationRef(Ret, this)); 365 } 366 367 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 368 const coff_section *Sec = toSec(Ref); 369 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 370 if (I) 371 I += getNumberOfRelocations(Sec, Data, base()); 372 DataRefImpl Ret; 373 Ret.p = reinterpret_cast<uintptr_t>(I); 374 return relocation_iterator(RelocationRef(Ret, this)); 375 } 376 377 // Initialize the pointer to the symbol table. 378 std::error_code COFFObjectFile::initSymbolTablePtr() { 379 if (COFFHeader) 380 if (std::error_code EC = getObject( 381 SymbolTable16, Data, base() + getPointerToSymbolTable(), 382 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 383 return EC; 384 385 if (COFFBigObjHeader) 386 if (std::error_code EC = getObject( 387 SymbolTable32, Data, base() + getPointerToSymbolTable(), 388 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 389 return EC; 390 391 // Find string table. The first four byte of the string table contains the 392 // total size of the string table, including the size field itself. If the 393 // string table is empty, the value of the first four byte would be 4. 394 uint32_t StringTableOffset = getPointerToSymbolTable() + 395 getNumberOfSymbols() * getSymbolTableEntrySize(); 396 const uint8_t *StringTableAddr = base() + StringTableOffset; 397 const ulittle32_t *StringTableSizePtr; 398 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 399 return EC; 400 StringTableSize = *StringTableSizePtr; 401 if (std::error_code EC = 402 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 403 return EC; 404 405 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 406 // tools like cvtres write a size of 0 for an empty table instead of 4. 407 if (StringTableSize < 4) 408 StringTableSize = 4; 409 410 // Check that the string table is null terminated if has any in it. 411 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 412 return object_error::parse_failed; 413 return std::error_code(); 414 } 415 416 // Returns the file offset for the given VA. 417 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 418 uint64_t ImageBase = PE32Header ? (uint64_t)PE32Header->ImageBase 419 : (uint64_t)PE32PlusHeader->ImageBase; 420 uint64_t Rva = Addr - ImageBase; 421 assert(Rva <= UINT32_MAX); 422 return getRvaPtr((uint32_t)Rva, Res); 423 } 424 425 // Returns the file offset for the given RVA. 426 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 427 for (const SectionRef &S : sections()) { 428 const coff_section *Section = getCOFFSection(S); 429 uint32_t SectionStart = Section->VirtualAddress; 430 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 431 if (SectionStart <= Addr && Addr < SectionEnd) { 432 uint32_t Offset = Addr - SectionStart; 433 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 434 return std::error_code(); 435 } 436 } 437 return object_error::parse_failed; 438 } 439 440 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 441 // table entry. 442 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 443 StringRef &Name) const { 444 uintptr_t IntPtr = 0; 445 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 446 return EC; 447 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 448 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 449 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 450 return std::error_code(); 451 } 452 453 // Find the import table. 454 std::error_code COFFObjectFile::initImportTablePtr() { 455 // First, we get the RVA of the import table. If the file lacks a pointer to 456 // the import table, do nothing. 457 const data_directory *DataEntry; 458 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 459 return std::error_code(); 460 461 // Do nothing if the pointer to import table is NULL. 462 if (DataEntry->RelativeVirtualAddress == 0) 463 return std::error_code(); 464 465 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 466 // -1 because the last entry is the null entry. 467 NumberOfImportDirectory = DataEntry->Size / 468 sizeof(import_directory_table_entry) - 1; 469 470 // Find the section that contains the RVA. This is needed because the RVA is 471 // the import table's memory address which is different from its file offset. 472 uintptr_t IntPtr = 0; 473 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 474 return EC; 475 ImportDirectory = reinterpret_cast< 476 const import_directory_table_entry *>(IntPtr); 477 return std::error_code(); 478 } 479 480 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 481 std::error_code COFFObjectFile::initDelayImportTablePtr() { 482 const data_directory *DataEntry; 483 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 484 return std::error_code(); 485 if (DataEntry->RelativeVirtualAddress == 0) 486 return std::error_code(); 487 488 uint32_t RVA = DataEntry->RelativeVirtualAddress; 489 NumberOfDelayImportDirectory = DataEntry->Size / 490 sizeof(delay_import_directory_table_entry) - 1; 491 492 uintptr_t IntPtr = 0; 493 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 494 return EC; 495 DelayImportDirectory = reinterpret_cast< 496 const delay_import_directory_table_entry *>(IntPtr); 497 return std::error_code(); 498 } 499 500 // Find the export table. 501 std::error_code COFFObjectFile::initExportTablePtr() { 502 // First, we get the RVA of the export table. If the file lacks a pointer to 503 // the export table, do nothing. 504 const data_directory *DataEntry; 505 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 506 return std::error_code(); 507 508 // Do nothing if the pointer to export table is NULL. 509 if (DataEntry->RelativeVirtualAddress == 0) 510 return std::error_code(); 511 512 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 513 uintptr_t IntPtr = 0; 514 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 515 return EC; 516 ExportDirectory = 517 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 518 return std::error_code(); 519 } 520 521 std::error_code COFFObjectFile::initBaseRelocPtr() { 522 const data_directory *DataEntry; 523 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 524 return std::error_code(); 525 if (DataEntry->RelativeVirtualAddress == 0) 526 return std::error_code(); 527 528 uintptr_t IntPtr = 0; 529 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 530 return EC; 531 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 532 IntPtr); 533 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 534 IntPtr + DataEntry->Size); 535 return std::error_code(); 536 } 537 538 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 539 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 540 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 541 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 542 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 543 ImportDirectory(nullptr), NumberOfImportDirectory(0), 544 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 545 ExportDirectory(nullptr), BaseRelocHeader(nullptr), 546 BaseRelocEnd(nullptr) { 547 // Check that we at least have enough room for a header. 548 if (!checkSize(Data, EC, sizeof(coff_file_header))) 549 return; 550 551 // The current location in the file where we are looking at. 552 uint64_t CurPtr = 0; 553 554 // PE header is optional and is present only in executables. If it exists, 555 // it is placed right after COFF header. 556 bool HasPEHeader = false; 557 558 // Check if this is a PE/COFF file. 559 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 560 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 561 // PE signature to find 'normal' COFF header. 562 const auto *DH = reinterpret_cast<const dos_header *>(base()); 563 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 564 CurPtr = DH->AddressOfNewExeHeader; 565 // Check the PE magic bytes. ("PE\0\0") 566 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 567 EC = object_error::parse_failed; 568 return; 569 } 570 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 571 HasPEHeader = true; 572 } 573 } 574 575 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 576 return; 577 578 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 579 // import libraries share a common prefix but bigobj is more restrictive. 580 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 581 COFFHeader->NumberOfSections == uint16_t(0xffff) && 582 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 583 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 584 return; 585 586 // Verify that we are dealing with bigobj. 587 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 588 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 589 sizeof(COFF::BigObjMagic)) == 0) { 590 COFFHeader = nullptr; 591 CurPtr += sizeof(coff_bigobj_file_header); 592 } else { 593 // It's not a bigobj. 594 COFFBigObjHeader = nullptr; 595 } 596 } 597 if (COFFHeader) { 598 // The prior checkSize call may have failed. This isn't a hard error 599 // because we were just trying to sniff out bigobj. 600 EC = std::error_code(); 601 CurPtr += sizeof(coff_file_header); 602 603 if (COFFHeader->isImportLibrary()) 604 return; 605 } 606 607 if (HasPEHeader) { 608 const pe32_header *Header; 609 if ((EC = getObject(Header, Data, base() + CurPtr))) 610 return; 611 612 const uint8_t *DataDirAddr; 613 uint64_t DataDirSize; 614 if (Header->Magic == COFF::PE32Header::PE32) { 615 PE32Header = Header; 616 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 617 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 618 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 619 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 620 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 621 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 622 } else { 623 // It's neither PE32 nor PE32+. 624 EC = object_error::parse_failed; 625 return; 626 } 627 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 628 return; 629 CurPtr += COFFHeader->SizeOfOptionalHeader; 630 } 631 632 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 633 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 634 return; 635 636 // Initialize the pointer to the symbol table. 637 if (getPointerToSymbolTable() != 0) { 638 if ((EC = initSymbolTablePtr())) 639 return; 640 } else { 641 // We had better not have any symbols if we don't have a symbol table. 642 if (getNumberOfSymbols() != 0) { 643 EC = object_error::parse_failed; 644 return; 645 } 646 } 647 648 // Initialize the pointer to the beginning of the import table. 649 if ((EC = initImportTablePtr())) 650 return; 651 if ((EC = initDelayImportTablePtr())) 652 return; 653 654 // Initialize the pointer to the export table. 655 if ((EC = initExportTablePtr())) 656 return; 657 658 // Initialize the pointer to the base relocation table. 659 if ((EC = initBaseRelocPtr())) 660 return; 661 662 EC = std::error_code(); 663 } 664 665 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 666 DataRefImpl Ret; 667 Ret.p = getSymbolTable(); 668 return basic_symbol_iterator(SymbolRef(Ret, this)); 669 } 670 671 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 672 // The symbol table ends where the string table begins. 673 DataRefImpl Ret; 674 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 675 return basic_symbol_iterator(SymbolRef(Ret, this)); 676 } 677 678 import_directory_iterator COFFObjectFile::import_directory_begin() const { 679 return import_directory_iterator( 680 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 681 } 682 683 import_directory_iterator COFFObjectFile::import_directory_end() const { 684 return import_directory_iterator( 685 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); 686 } 687 688 delay_import_directory_iterator 689 COFFObjectFile::delay_import_directory_begin() const { 690 return delay_import_directory_iterator( 691 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 692 } 693 694 delay_import_directory_iterator 695 COFFObjectFile::delay_import_directory_end() const { 696 return delay_import_directory_iterator( 697 DelayImportDirectoryEntryRef( 698 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 699 } 700 701 export_directory_iterator COFFObjectFile::export_directory_begin() const { 702 return export_directory_iterator( 703 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 704 } 705 706 export_directory_iterator COFFObjectFile::export_directory_end() const { 707 if (!ExportDirectory) 708 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 709 ExportDirectoryEntryRef Ref(ExportDirectory, 710 ExportDirectory->AddressTableEntries, this); 711 return export_directory_iterator(Ref); 712 } 713 714 section_iterator COFFObjectFile::section_begin() const { 715 DataRefImpl Ret; 716 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 717 return section_iterator(SectionRef(Ret, this)); 718 } 719 720 section_iterator COFFObjectFile::section_end() const { 721 DataRefImpl Ret; 722 int NumSections = 723 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 724 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 725 return section_iterator(SectionRef(Ret, this)); 726 } 727 728 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 729 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 730 } 731 732 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 733 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 734 } 735 736 uint8_t COFFObjectFile::getBytesInAddress() const { 737 return getArch() == Triple::x86_64 ? 8 : 4; 738 } 739 740 StringRef COFFObjectFile::getFileFormatName() const { 741 switch(getMachine()) { 742 case COFF::IMAGE_FILE_MACHINE_I386: 743 return "COFF-i386"; 744 case COFF::IMAGE_FILE_MACHINE_AMD64: 745 return "COFF-x86-64"; 746 case COFF::IMAGE_FILE_MACHINE_ARMNT: 747 return "COFF-ARM"; 748 default: 749 return "COFF-<unknown arch>"; 750 } 751 } 752 753 unsigned COFFObjectFile::getArch() const { 754 switch (getMachine()) { 755 case COFF::IMAGE_FILE_MACHINE_I386: 756 return Triple::x86; 757 case COFF::IMAGE_FILE_MACHINE_AMD64: 758 return Triple::x86_64; 759 case COFF::IMAGE_FILE_MACHINE_ARMNT: 760 return Triple::thumb; 761 default: 762 return Triple::UnknownArch; 763 } 764 } 765 766 iterator_range<import_directory_iterator> 767 COFFObjectFile::import_directories() const { 768 return make_range(import_directory_begin(), import_directory_end()); 769 } 770 771 iterator_range<delay_import_directory_iterator> 772 COFFObjectFile::delay_import_directories() const { 773 return make_range(delay_import_directory_begin(), 774 delay_import_directory_end()); 775 } 776 777 iterator_range<export_directory_iterator> 778 COFFObjectFile::export_directories() const { 779 return make_range(export_directory_begin(), export_directory_end()); 780 } 781 782 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 783 return make_range(base_reloc_begin(), base_reloc_end()); 784 } 785 786 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 787 Res = PE32Header; 788 return std::error_code(); 789 } 790 791 std::error_code 792 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 793 Res = PE32PlusHeader; 794 return std::error_code(); 795 } 796 797 std::error_code 798 COFFObjectFile::getDataDirectory(uint32_t Index, 799 const data_directory *&Res) const { 800 // Error if if there's no data directory or the index is out of range. 801 if (!DataDirectory) { 802 Res = nullptr; 803 return object_error::parse_failed; 804 } 805 assert(PE32Header || PE32PlusHeader); 806 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 807 : PE32PlusHeader->NumberOfRvaAndSize; 808 if (Index >= NumEnt) { 809 Res = nullptr; 810 return object_error::parse_failed; 811 } 812 Res = &DataDirectory[Index]; 813 return std::error_code(); 814 } 815 816 std::error_code COFFObjectFile::getSection(int32_t Index, 817 const coff_section *&Result) const { 818 Result = nullptr; 819 if (COFF::isReservedSectionNumber(Index)) 820 return std::error_code(); 821 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 822 // We already verified the section table data, so no need to check again. 823 Result = SectionTable + (Index - 1); 824 return std::error_code(); 825 } 826 return object_error::parse_failed; 827 } 828 829 std::error_code COFFObjectFile::getString(uint32_t Offset, 830 StringRef &Result) const { 831 if (StringTableSize <= 4) 832 // Tried to get a string from an empty string table. 833 return object_error::parse_failed; 834 if (Offset >= StringTableSize) 835 return object_error::unexpected_eof; 836 Result = StringRef(StringTable + Offset); 837 return std::error_code(); 838 } 839 840 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 841 StringRef &Res) const { 842 return getSymbolName(Symbol.getGeneric(), Res); 843 } 844 845 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol, 846 StringRef &Res) const { 847 // Check for string table entry. First 4 bytes are 0. 848 if (Symbol->Name.Offset.Zeroes == 0) { 849 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res)) 850 return EC; 851 return std::error_code(); 852 } 853 854 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 855 // Null terminated, let ::strlen figure out the length. 856 Res = StringRef(Symbol->Name.ShortName); 857 else 858 // Not null terminated, use all 8 bytes. 859 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize); 860 return std::error_code(); 861 } 862 863 ArrayRef<uint8_t> 864 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 865 const uint8_t *Aux = nullptr; 866 867 size_t SymbolSize = getSymbolTableEntrySize(); 868 if (Symbol.getNumberOfAuxSymbols() > 0) { 869 // AUX data comes immediately after the symbol in COFF 870 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 871 # ifndef NDEBUG 872 // Verify that the Aux symbol points to a valid entry in the symbol table. 873 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 874 if (Offset < getPointerToSymbolTable() || 875 Offset >= 876 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 877 report_fatal_error("Aux Symbol data was outside of symbol table."); 878 879 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 880 "Aux Symbol data did not point to the beginning of a symbol"); 881 # endif 882 } 883 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 884 } 885 886 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 887 StringRef &Res) const { 888 StringRef Name; 889 if (Sec->Name[COFF::NameSize - 1] == 0) 890 // Null terminated, let ::strlen figure out the length. 891 Name = Sec->Name; 892 else 893 // Not null terminated, use all 8 bytes. 894 Name = StringRef(Sec->Name, COFF::NameSize); 895 896 // Check for string table entry. First byte is '/'. 897 if (Name.startswith("/")) { 898 uint32_t Offset; 899 if (Name.startswith("//")) { 900 if (decodeBase64StringEntry(Name.substr(2), Offset)) 901 return object_error::parse_failed; 902 } else { 903 if (Name.substr(1).getAsInteger(10, Offset)) 904 return object_error::parse_failed; 905 } 906 if (std::error_code EC = getString(Offset, Name)) 907 return EC; 908 } 909 910 Res = Name; 911 return std::error_code(); 912 } 913 914 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 915 // SizeOfRawData and VirtualSize change what they represent depending on 916 // whether or not we have an executable image. 917 // 918 // For object files, SizeOfRawData contains the size of section's data; 919 // VirtualSize is always zero. 920 // 921 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 922 // actual section size is in VirtualSize. It is possible for VirtualSize to 923 // be greater than SizeOfRawData; the contents past that point should be 924 // considered to be zero. 925 uint32_t SectionSize; 926 if (Sec->VirtualSize) 927 SectionSize = std::min(Sec->VirtualSize, Sec->SizeOfRawData); 928 else 929 SectionSize = Sec->SizeOfRawData; 930 931 return SectionSize; 932 } 933 934 std::error_code 935 COFFObjectFile::getSectionContents(const coff_section *Sec, 936 ArrayRef<uint8_t> &Res) const { 937 // PointerToRawData and SizeOfRawData won't make sense for BSS sections, 938 // don't do anything interesting for them. 939 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && 940 "BSS sections don't have contents!"); 941 // The only thing that we need to verify is that the contents is contained 942 // within the file bounds. We don't need to make sure it doesn't cover other 943 // data, as there's nothing that says that is not allowed. 944 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 945 uint32_t SectionSize = getSectionSize(Sec); 946 if (checkOffset(Data, ConStart, SectionSize)) 947 return object_error::parse_failed; 948 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 949 return std::error_code(); 950 } 951 952 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 953 return reinterpret_cast<const coff_relocation*>(Rel.p); 954 } 955 956 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 957 Rel.p = reinterpret_cast<uintptr_t>( 958 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 959 } 960 961 ErrorOr<uint64_t> COFFObjectFile::getRelocationAddress(DataRefImpl Rel) const { 962 report_fatal_error("getRelocationAddress not implemented in COFFObjectFile"); 963 } 964 965 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 966 const coff_relocation *R = toRel(Rel); 967 return R->VirtualAddress; 968 } 969 970 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 971 const coff_relocation *R = toRel(Rel); 972 DataRefImpl Ref; 973 if (R->SymbolTableIndex >= getNumberOfSymbols()) 974 return symbol_end(); 975 if (SymbolTable16) 976 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 977 else if (SymbolTable32) 978 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 979 else 980 llvm_unreachable("no symbol table pointer!"); 981 return symbol_iterator(SymbolRef(Ref, this)); 982 } 983 984 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 985 const coff_relocation* R = toRel(Rel); 986 return R->Type; 987 } 988 989 const coff_section * 990 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 991 return toSec(Section.getRawDataRefImpl()); 992 } 993 994 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 995 if (SymbolTable16) 996 return toSymb<coff_symbol16>(Ref); 997 if (SymbolTable32) 998 return toSymb<coff_symbol32>(Ref); 999 llvm_unreachable("no symbol table pointer!"); 1000 } 1001 1002 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1003 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1004 } 1005 1006 const coff_relocation * 1007 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1008 return toRel(Reloc.getRawDataRefImpl()); 1009 } 1010 1011 iterator_range<const coff_relocation *> 1012 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1013 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 1014 const coff_relocation *E = I; 1015 if (I) 1016 E += getNumberOfRelocations(Sec, Data, base()); 1017 return make_range(I, E); 1018 } 1019 1020 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1021 case COFF::reloc_type: \ 1022 Res = #reloc_type; \ 1023 break; 1024 1025 void COFFObjectFile::getRelocationTypeName( 1026 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1027 const coff_relocation *Reloc = toRel(Rel); 1028 StringRef Res; 1029 switch (getMachine()) { 1030 case COFF::IMAGE_FILE_MACHINE_AMD64: 1031 switch (Reloc->Type) { 1032 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1033 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1034 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1035 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1036 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1037 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1038 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1039 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1040 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1041 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1042 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1043 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1044 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1045 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1046 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1047 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1048 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1049 default: 1050 Res = "Unknown"; 1051 } 1052 break; 1053 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1054 switch (Reloc->Type) { 1055 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1056 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1057 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1058 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1059 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1060 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1061 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1062 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1063 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1064 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1065 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1066 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1067 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1068 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1069 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1070 default: 1071 Res = "Unknown"; 1072 } 1073 break; 1074 case COFF::IMAGE_FILE_MACHINE_I386: 1075 switch (Reloc->Type) { 1076 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1077 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1078 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1079 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1080 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1081 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1082 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1083 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1084 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1085 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1086 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1087 default: 1088 Res = "Unknown"; 1089 } 1090 break; 1091 default: 1092 Res = "Unknown"; 1093 } 1094 Result.append(Res.begin(), Res.end()); 1095 } 1096 1097 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1098 1099 bool COFFObjectFile::isRelocatableObject() const { 1100 return !DataDirectory; 1101 } 1102 1103 bool ImportDirectoryEntryRef:: 1104 operator==(const ImportDirectoryEntryRef &Other) const { 1105 return ImportTable == Other.ImportTable && Index == Other.Index; 1106 } 1107 1108 void ImportDirectoryEntryRef::moveNext() { 1109 ++Index; 1110 } 1111 1112 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1113 const import_directory_table_entry *&Result) const { 1114 Result = ImportTable + Index; 1115 return std::error_code(); 1116 } 1117 1118 static imported_symbol_iterator 1119 makeImportedSymbolIterator(const COFFObjectFile *Object, 1120 uintptr_t Ptr, int Index) { 1121 if (Object->getBytesInAddress() == 4) { 1122 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1123 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1124 } 1125 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1126 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1127 } 1128 1129 static imported_symbol_iterator 1130 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1131 uintptr_t IntPtr = 0; 1132 Object->getRvaPtr(RVA, IntPtr); 1133 return makeImportedSymbolIterator(Object, IntPtr, 0); 1134 } 1135 1136 static imported_symbol_iterator 1137 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1138 uintptr_t IntPtr = 0; 1139 Object->getRvaPtr(RVA, IntPtr); 1140 // Forward the pointer to the last entry which is null. 1141 int Index = 0; 1142 if (Object->getBytesInAddress() == 4) { 1143 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1144 while (*Entry++) 1145 ++Index; 1146 } else { 1147 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1148 while (*Entry++) 1149 ++Index; 1150 } 1151 return makeImportedSymbolIterator(Object, IntPtr, Index); 1152 } 1153 1154 imported_symbol_iterator 1155 ImportDirectoryEntryRef::imported_symbol_begin() const { 1156 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1157 OwningObject); 1158 } 1159 1160 imported_symbol_iterator 1161 ImportDirectoryEntryRef::imported_symbol_end() const { 1162 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1163 OwningObject); 1164 } 1165 1166 iterator_range<imported_symbol_iterator> 1167 ImportDirectoryEntryRef::imported_symbols() const { 1168 return make_range(imported_symbol_begin(), imported_symbol_end()); 1169 } 1170 1171 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1172 uintptr_t IntPtr = 0; 1173 if (std::error_code EC = 1174 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1175 return EC; 1176 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1177 return std::error_code(); 1178 } 1179 1180 std::error_code 1181 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1182 Result = ImportTable[Index].ImportLookupTableRVA; 1183 return std::error_code(); 1184 } 1185 1186 std::error_code 1187 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1188 Result = ImportTable[Index].ImportAddressTableRVA; 1189 return std::error_code(); 1190 } 1191 1192 std::error_code ImportDirectoryEntryRef::getImportLookupEntry( 1193 const import_lookup_table_entry32 *&Result) const { 1194 uintptr_t IntPtr = 0; 1195 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; 1196 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1197 return EC; 1198 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr); 1199 return std::error_code(); 1200 } 1201 1202 bool DelayImportDirectoryEntryRef:: 1203 operator==(const DelayImportDirectoryEntryRef &Other) const { 1204 return Table == Other.Table && Index == Other.Index; 1205 } 1206 1207 void DelayImportDirectoryEntryRef::moveNext() { 1208 ++Index; 1209 } 1210 1211 imported_symbol_iterator 1212 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1213 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1214 OwningObject); 1215 } 1216 1217 imported_symbol_iterator 1218 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1219 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1220 OwningObject); 1221 } 1222 1223 iterator_range<imported_symbol_iterator> 1224 DelayImportDirectoryEntryRef::imported_symbols() const { 1225 return make_range(imported_symbol_begin(), imported_symbol_end()); 1226 } 1227 1228 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1229 uintptr_t IntPtr = 0; 1230 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1231 return EC; 1232 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1233 return std::error_code(); 1234 } 1235 1236 std::error_code DelayImportDirectoryEntryRef:: 1237 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1238 Result = Table; 1239 return std::error_code(); 1240 } 1241 1242 std::error_code DelayImportDirectoryEntryRef:: 1243 getImportAddress(int AddrIndex, uint64_t &Result) const { 1244 uint32_t RVA = Table[Index].DelayImportAddressTable + 1245 AddrIndex * (OwningObject->is64() ? 8 : 4); 1246 uintptr_t IntPtr = 0; 1247 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1248 return EC; 1249 if (OwningObject->is64()) 1250 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1251 else 1252 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1253 return std::error_code(); 1254 } 1255 1256 bool ExportDirectoryEntryRef:: 1257 operator==(const ExportDirectoryEntryRef &Other) const { 1258 return ExportTable == Other.ExportTable && Index == Other.Index; 1259 } 1260 1261 void ExportDirectoryEntryRef::moveNext() { 1262 ++Index; 1263 } 1264 1265 // Returns the name of the current export symbol. If the symbol is exported only 1266 // by ordinal, the empty string is set as a result. 1267 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1268 uintptr_t IntPtr = 0; 1269 if (std::error_code EC = 1270 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1271 return EC; 1272 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1273 return std::error_code(); 1274 } 1275 1276 // Returns the starting ordinal number. 1277 std::error_code 1278 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1279 Result = ExportTable->OrdinalBase; 1280 return std::error_code(); 1281 } 1282 1283 // Returns the export ordinal of the current export symbol. 1284 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1285 Result = ExportTable->OrdinalBase + Index; 1286 return std::error_code(); 1287 } 1288 1289 // Returns the address of the current export symbol. 1290 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1291 uintptr_t IntPtr = 0; 1292 if (std::error_code EC = 1293 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1294 return EC; 1295 const export_address_table_entry *entry = 1296 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1297 Result = entry[Index].ExportRVA; 1298 return std::error_code(); 1299 } 1300 1301 // Returns the name of the current export symbol. If the symbol is exported only 1302 // by ordinal, the empty string is set as a result. 1303 std::error_code 1304 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1305 uintptr_t IntPtr = 0; 1306 if (std::error_code EC = 1307 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1308 return EC; 1309 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1310 1311 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1312 int Offset = 0; 1313 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1314 I < E; ++I, ++Offset) { 1315 if (*I != Index) 1316 continue; 1317 if (std::error_code EC = 1318 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1319 return EC; 1320 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1321 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1322 return EC; 1323 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1324 return std::error_code(); 1325 } 1326 Result = ""; 1327 return std::error_code(); 1328 } 1329 1330 bool ImportedSymbolRef:: 1331 operator==(const ImportedSymbolRef &Other) const { 1332 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1333 && Index == Other.Index; 1334 } 1335 1336 void ImportedSymbolRef::moveNext() { 1337 ++Index; 1338 } 1339 1340 std::error_code 1341 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1342 uint32_t RVA; 1343 if (Entry32) { 1344 // If a symbol is imported only by ordinal, it has no name. 1345 if (Entry32[Index].isOrdinal()) 1346 return std::error_code(); 1347 RVA = Entry32[Index].getHintNameRVA(); 1348 } else { 1349 if (Entry64[Index].isOrdinal()) 1350 return std::error_code(); 1351 RVA = Entry64[Index].getHintNameRVA(); 1352 } 1353 uintptr_t IntPtr = 0; 1354 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1355 return EC; 1356 // +2 because the first two bytes is hint. 1357 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1358 return std::error_code(); 1359 } 1360 1361 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1362 uint32_t RVA; 1363 if (Entry32) { 1364 if (Entry32[Index].isOrdinal()) { 1365 Result = Entry32[Index].getOrdinal(); 1366 return std::error_code(); 1367 } 1368 RVA = Entry32[Index].getHintNameRVA(); 1369 } else { 1370 if (Entry64[Index].isOrdinal()) { 1371 Result = Entry64[Index].getOrdinal(); 1372 return std::error_code(); 1373 } 1374 RVA = Entry64[Index].getHintNameRVA(); 1375 } 1376 uintptr_t IntPtr = 0; 1377 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1378 return EC; 1379 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1380 return std::error_code(); 1381 } 1382 1383 ErrorOr<std::unique_ptr<COFFObjectFile>> 1384 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1385 std::error_code EC; 1386 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1387 if (EC) 1388 return EC; 1389 return std::move(Ret); 1390 } 1391 1392 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1393 return Header == Other.Header && Index == Other.Index; 1394 } 1395 1396 void BaseRelocRef::moveNext() { 1397 // Header->BlockSize is the size of the current block, including the 1398 // size of the header itself. 1399 uint32_t Size = sizeof(*Header) + 1400 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1401 if (Size == Header->BlockSize) { 1402 // .reloc contains a list of base relocation blocks. Each block 1403 // consists of the header followed by entries. The header contains 1404 // how many entories will follow. When we reach the end of the 1405 // current block, proceed to the next block. 1406 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1407 reinterpret_cast<const uint8_t *>(Header) + Size); 1408 Index = 0; 1409 } else { 1410 ++Index; 1411 } 1412 } 1413 1414 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1415 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1416 Type = Entry[Index].getType(); 1417 return std::error_code(); 1418 } 1419 1420 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1421 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1422 Result = Header->PageRVA + Entry[Index].getOffset(); 1423 return std::error_code(); 1424 } 1425