1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/StringSwitch.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/ADT/iterator_range.h" 19 #include "llvm/Support/COFF.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <cctype> 23 #include <limits> 24 25 using namespace llvm; 26 using namespace object; 27 28 using support::ulittle16_t; 29 using support::ulittle32_t; 30 using support::ulittle64_t; 31 using support::little16_t; 32 33 // Returns false if size is greater than the buffer size. And sets ec. 34 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 35 if (M.getBufferSize() < Size) { 36 EC = object_error::unexpected_eof; 37 return false; 38 } 39 return true; 40 } 41 42 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 43 const uint64_t Size) { 44 if (Addr + Size < Addr || Addr + Size < Size || 45 Addr + Size > uintptr_t(M.getBufferEnd()) || 46 Addr < uintptr_t(M.getBufferStart())) { 47 return object_error::unexpected_eof; 48 } 49 return std::error_code(); 50 } 51 52 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 53 // Returns unexpected_eof if error. 54 template <typename T> 55 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 56 const void *Ptr, 57 const uint64_t Size = sizeof(T)) { 58 uintptr_t Addr = uintptr_t(Ptr); 59 if (std::error_code EC = checkOffset(M, Addr, Size)) 60 return EC; 61 Obj = reinterpret_cast<const T *>(Addr); 62 return std::error_code(); 63 } 64 65 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 66 // prefixed slashes. 67 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 68 assert(Str.size() <= 6 && "String too long, possible overflow."); 69 if (Str.size() > 6) 70 return true; 71 72 uint64_t Value = 0; 73 while (!Str.empty()) { 74 unsigned CharVal; 75 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 76 CharVal = Str[0] - 'A'; 77 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 78 CharVal = Str[0] - 'a' + 26; 79 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 80 CharVal = Str[0] - '0' + 52; 81 else if (Str[0] == '+') // 62 82 CharVal = 62; 83 else if (Str[0] == '/') // 63 84 CharVal = 63; 85 else 86 return true; 87 88 Value = (Value * 64) + CharVal; 89 Str = Str.substr(1); 90 } 91 92 if (Value > std::numeric_limits<uint32_t>::max()) 93 return true; 94 95 Result = static_cast<uint32_t>(Value); 96 return false; 97 } 98 99 template <typename coff_symbol_type> 100 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 101 const coff_symbol_type *Addr = 102 reinterpret_cast<const coff_symbol_type *>(Ref.p); 103 104 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 105 #ifndef NDEBUG 106 // Verify that the symbol points to a valid entry in the symbol table. 107 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 108 109 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 110 "Symbol did not point to the beginning of a symbol"); 111 #endif 112 113 return Addr; 114 } 115 116 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 117 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 118 119 # ifndef NDEBUG 120 // Verify that the section points to a valid entry in the section table. 121 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 122 report_fatal_error("Section was outside of section table."); 123 124 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 125 assert(Offset % sizeof(coff_section) == 0 && 126 "Section did not point to the beginning of a section"); 127 # endif 128 129 return Addr; 130 } 131 132 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 133 auto End = reinterpret_cast<uintptr_t>(StringTable); 134 if (SymbolTable16) { 135 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 136 Symb += 1 + Symb->NumberOfAuxSymbols; 137 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 138 } else if (SymbolTable32) { 139 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 140 Symb += 1 + Symb->NumberOfAuxSymbols; 141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 142 } else { 143 llvm_unreachable("no symbol table pointer!"); 144 } 145 } 146 147 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 148 COFFSymbolRef Symb = getCOFFSymbol(Ref); 149 StringRef Result; 150 std::error_code EC = getSymbolName(Symb, Result); 151 if (EC) 152 return errorCodeToError(EC); 153 return Result; 154 } 155 156 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 157 return getCOFFSymbol(Ref).getValue(); 158 } 159 160 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const { 161 // MSVC/link.exe seems to align symbols to the next-power-of-2 162 // up to 32 bytes. 163 COFFSymbolRef Symb = getCOFFSymbol(Ref); 164 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue())); 165 } 166 167 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 168 uint64_t Result = getSymbolValue(Ref); 169 COFFSymbolRef Symb = getCOFFSymbol(Ref); 170 int32_t SectionNumber = Symb.getSectionNumber(); 171 172 if (Symb.isAnyUndefined() || Symb.isCommon() || 173 COFF::isReservedSectionNumber(SectionNumber)) 174 return Result; 175 176 const coff_section *Section = nullptr; 177 if (std::error_code EC = getSection(SectionNumber, Section)) 178 return errorCodeToError(EC); 179 Result += Section->VirtualAddress; 180 181 // The section VirtualAddress does not include ImageBase, and we want to 182 // return virtual addresses. 183 Result += getImageBase(); 184 185 return Result; 186 } 187 188 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 189 COFFSymbolRef Symb = getCOFFSymbol(Ref); 190 int32_t SectionNumber = Symb.getSectionNumber(); 191 192 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 193 return SymbolRef::ST_Function; 194 if (Symb.isAnyUndefined()) 195 return SymbolRef::ST_Unknown; 196 if (Symb.isCommon()) 197 return SymbolRef::ST_Data; 198 if (Symb.isFileRecord()) 199 return SymbolRef::ST_File; 200 201 // TODO: perhaps we need a new symbol type ST_Section. 202 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 203 return SymbolRef::ST_Debug; 204 205 if (!COFF::isReservedSectionNumber(SectionNumber)) 206 return SymbolRef::ST_Data; 207 208 return SymbolRef::ST_Other; 209 } 210 211 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 212 COFFSymbolRef Symb = getCOFFSymbol(Ref); 213 uint32_t Result = SymbolRef::SF_None; 214 215 if (Symb.isExternal() || Symb.isWeakExternal()) 216 Result |= SymbolRef::SF_Global; 217 218 if (Symb.isWeakExternal()) 219 Result |= SymbolRef::SF_Weak; 220 221 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 222 Result |= SymbolRef::SF_Absolute; 223 224 if (Symb.isFileRecord()) 225 Result |= SymbolRef::SF_FormatSpecific; 226 227 if (Symb.isSectionDefinition()) 228 Result |= SymbolRef::SF_FormatSpecific; 229 230 if (Symb.isCommon()) 231 Result |= SymbolRef::SF_Common; 232 233 if (Symb.isAnyUndefined()) 234 Result |= SymbolRef::SF_Undefined; 235 236 return Result; 237 } 238 239 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 240 COFFSymbolRef Symb = getCOFFSymbol(Ref); 241 return Symb.getValue(); 242 } 243 244 Expected<section_iterator> 245 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 246 COFFSymbolRef Symb = getCOFFSymbol(Ref); 247 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 248 return section_end(); 249 const coff_section *Sec = nullptr; 250 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 251 return errorCodeToError(EC); 252 DataRefImpl Ret; 253 Ret.p = reinterpret_cast<uintptr_t>(Sec); 254 return section_iterator(SectionRef(Ret, this)); 255 } 256 257 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 258 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 259 return Symb.getSectionNumber(); 260 } 261 262 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 263 const coff_section *Sec = toSec(Ref); 264 Sec += 1; 265 Ref.p = reinterpret_cast<uintptr_t>(Sec); 266 } 267 268 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 269 StringRef &Result) const { 270 const coff_section *Sec = toSec(Ref); 271 return getSectionName(Sec, Result); 272 } 273 274 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 275 const coff_section *Sec = toSec(Ref); 276 uint64_t Result = Sec->VirtualAddress; 277 278 // The section VirtualAddress does not include ImageBase, and we want to 279 // return virtual addresses. 280 Result += getImageBase(); 281 return Result; 282 } 283 284 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 285 return getSectionSize(toSec(Ref)); 286 } 287 288 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 289 StringRef &Result) const { 290 const coff_section *Sec = toSec(Ref); 291 ArrayRef<uint8_t> Res; 292 std::error_code EC = getSectionContents(Sec, Res); 293 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 294 return EC; 295 } 296 297 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 298 const coff_section *Sec = toSec(Ref); 299 return Sec->getAlignment(); 300 } 301 302 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 303 return false; 304 } 305 306 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 307 const coff_section *Sec = toSec(Ref); 308 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 309 } 310 311 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 312 const coff_section *Sec = toSec(Ref); 313 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 314 } 315 316 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 317 const coff_section *Sec = toSec(Ref); 318 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 319 COFF::IMAGE_SCN_MEM_READ | 320 COFF::IMAGE_SCN_MEM_WRITE; 321 return (Sec->Characteristics & BssFlags) == BssFlags; 322 } 323 324 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 325 uintptr_t Offset = 326 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 327 assert((Offset % sizeof(coff_section)) == 0); 328 return (Offset / sizeof(coff_section)) + 1; 329 } 330 331 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 332 const coff_section *Sec = toSec(Ref); 333 // In COFF, a virtual section won't have any in-file 334 // content, so the file pointer to the content will be zero. 335 return Sec->PointerToRawData == 0; 336 } 337 338 static uint32_t getNumberOfRelocations(const coff_section *Sec, 339 MemoryBufferRef M, const uint8_t *base) { 340 // The field for the number of relocations in COFF section table is only 341 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 342 // NumberOfRelocations field, and the actual relocation count is stored in the 343 // VirtualAddress field in the first relocation entry. 344 if (Sec->hasExtendedRelocations()) { 345 const coff_relocation *FirstReloc; 346 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 347 base + Sec->PointerToRelocations))) 348 return 0; 349 // -1 to exclude this first relocation entry. 350 return FirstReloc->VirtualAddress - 1; 351 } 352 return Sec->NumberOfRelocations; 353 } 354 355 static const coff_relocation * 356 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 357 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 358 if (!NumRelocs) 359 return nullptr; 360 auto begin = reinterpret_cast<const coff_relocation *>( 361 Base + Sec->PointerToRelocations); 362 if (Sec->hasExtendedRelocations()) { 363 // Skip the first relocation entry repurposed to store the number of 364 // relocations. 365 begin++; 366 } 367 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 368 return nullptr; 369 return begin; 370 } 371 372 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 373 const coff_section *Sec = toSec(Ref); 374 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 375 if (begin && Sec->VirtualAddress != 0) 376 report_fatal_error("Sections with relocations should have an address of 0"); 377 DataRefImpl Ret; 378 Ret.p = reinterpret_cast<uintptr_t>(begin); 379 return relocation_iterator(RelocationRef(Ret, this)); 380 } 381 382 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 383 const coff_section *Sec = toSec(Ref); 384 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 385 if (I) 386 I += getNumberOfRelocations(Sec, Data, base()); 387 DataRefImpl Ret; 388 Ret.p = reinterpret_cast<uintptr_t>(I); 389 return relocation_iterator(RelocationRef(Ret, this)); 390 } 391 392 // Initialize the pointer to the symbol table. 393 std::error_code COFFObjectFile::initSymbolTablePtr() { 394 if (COFFHeader) 395 if (std::error_code EC = getObject( 396 SymbolTable16, Data, base() + getPointerToSymbolTable(), 397 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 398 return EC; 399 400 if (COFFBigObjHeader) 401 if (std::error_code EC = getObject( 402 SymbolTable32, Data, base() + getPointerToSymbolTable(), 403 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 404 return EC; 405 406 // Find string table. The first four byte of the string table contains the 407 // total size of the string table, including the size field itself. If the 408 // string table is empty, the value of the first four byte would be 4. 409 uint32_t StringTableOffset = getPointerToSymbolTable() + 410 getNumberOfSymbols() * getSymbolTableEntrySize(); 411 const uint8_t *StringTableAddr = base() + StringTableOffset; 412 const ulittle32_t *StringTableSizePtr; 413 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 414 return EC; 415 StringTableSize = *StringTableSizePtr; 416 if (std::error_code EC = 417 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 418 return EC; 419 420 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 421 // tools like cvtres write a size of 0 for an empty table instead of 4. 422 if (StringTableSize < 4) 423 StringTableSize = 4; 424 425 // Check that the string table is null terminated if has any in it. 426 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 427 return object_error::parse_failed; 428 return std::error_code(); 429 } 430 431 uint64_t COFFObjectFile::getImageBase() const { 432 if (PE32Header) 433 return PE32Header->ImageBase; 434 else if (PE32PlusHeader) 435 return PE32PlusHeader->ImageBase; 436 // This actually comes up in practice. 437 return 0; 438 } 439 440 // Returns the file offset for the given VA. 441 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 442 uint64_t ImageBase = getImageBase(); 443 uint64_t Rva = Addr - ImageBase; 444 assert(Rva <= UINT32_MAX); 445 return getRvaPtr((uint32_t)Rva, Res); 446 } 447 448 // Returns the file offset for the given RVA. 449 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 450 for (const SectionRef &S : sections()) { 451 const coff_section *Section = getCOFFSection(S); 452 uint32_t SectionStart = Section->VirtualAddress; 453 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 454 if (SectionStart <= Addr && Addr < SectionEnd) { 455 uint32_t Offset = Addr - SectionStart; 456 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 457 return std::error_code(); 458 } 459 } 460 return object_error::parse_failed; 461 } 462 463 std::error_code 464 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 465 ArrayRef<uint8_t> &Contents) const { 466 for (const SectionRef &S : sections()) { 467 const coff_section *Section = getCOFFSection(S); 468 uint32_t SectionStart = Section->VirtualAddress; 469 // Check if this RVA is within the section bounds. Be careful about integer 470 // overflow. 471 uint32_t OffsetIntoSection = RVA - SectionStart; 472 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 473 Size <= Section->VirtualSize - OffsetIntoSection) { 474 uintptr_t Begin = 475 uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection; 476 Contents = 477 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 478 return std::error_code(); 479 } 480 } 481 return object_error::parse_failed; 482 } 483 484 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 485 // table entry. 486 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 487 StringRef &Name) const { 488 uintptr_t IntPtr = 0; 489 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 490 return EC; 491 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 492 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 493 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 494 return std::error_code(); 495 } 496 497 std::error_code 498 COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 499 const codeview::DebugInfo *&PDBInfo, 500 StringRef &PDBFileName) const { 501 ArrayRef<uint8_t> InfoBytes; 502 if (std::error_code EC = getRvaAndSizeAsBytes( 503 DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes)) 504 return EC; 505 if (InfoBytes.size() < sizeof(*PDBInfo) + 1) 506 return object_error::parse_failed; 507 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data()); 508 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); 509 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 510 InfoBytes.size()); 511 // Truncate the name at the first null byte. Ignore any padding. 512 PDBFileName = PDBFileName.split('\0').first; 513 return std::error_code(); 514 } 515 516 std::error_code 517 COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, 518 StringRef &PDBFileName) const { 519 for (const debug_directory &D : debug_directories()) 520 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 521 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 522 // If we get here, there is no PDB info to return. 523 PDBInfo = nullptr; 524 PDBFileName = StringRef(); 525 return std::error_code(); 526 } 527 528 // Find the import table. 529 std::error_code COFFObjectFile::initImportTablePtr() { 530 // First, we get the RVA of the import table. If the file lacks a pointer to 531 // the import table, do nothing. 532 const data_directory *DataEntry; 533 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 534 return std::error_code(); 535 536 // Do nothing if the pointer to import table is NULL. 537 if (DataEntry->RelativeVirtualAddress == 0) 538 return std::error_code(); 539 540 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 541 542 // Find the section that contains the RVA. This is needed because the RVA is 543 // the import table's memory address which is different from its file offset. 544 uintptr_t IntPtr = 0; 545 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 546 return EC; 547 if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size)) 548 return EC; 549 ImportDirectory = reinterpret_cast< 550 const coff_import_directory_table_entry *>(IntPtr); 551 return std::error_code(); 552 } 553 554 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 555 std::error_code COFFObjectFile::initDelayImportTablePtr() { 556 const data_directory *DataEntry; 557 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 558 return std::error_code(); 559 if (DataEntry->RelativeVirtualAddress == 0) 560 return std::error_code(); 561 562 uint32_t RVA = DataEntry->RelativeVirtualAddress; 563 NumberOfDelayImportDirectory = DataEntry->Size / 564 sizeof(delay_import_directory_table_entry) - 1; 565 566 uintptr_t IntPtr = 0; 567 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 568 return EC; 569 DelayImportDirectory = reinterpret_cast< 570 const delay_import_directory_table_entry *>(IntPtr); 571 return std::error_code(); 572 } 573 574 // Find the export table. 575 std::error_code COFFObjectFile::initExportTablePtr() { 576 // First, we get the RVA of the export table. If the file lacks a pointer to 577 // the export table, do nothing. 578 const data_directory *DataEntry; 579 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 580 return std::error_code(); 581 582 // Do nothing if the pointer to export table is NULL. 583 if (DataEntry->RelativeVirtualAddress == 0) 584 return std::error_code(); 585 586 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 587 uintptr_t IntPtr = 0; 588 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 589 return EC; 590 ExportDirectory = 591 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 592 return std::error_code(); 593 } 594 595 std::error_code COFFObjectFile::initBaseRelocPtr() { 596 const data_directory *DataEntry; 597 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 598 return std::error_code(); 599 if (DataEntry->RelativeVirtualAddress == 0) 600 return std::error_code(); 601 602 uintptr_t IntPtr = 0; 603 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 604 return EC; 605 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 606 IntPtr); 607 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 608 IntPtr + DataEntry->Size); 609 return std::error_code(); 610 } 611 612 std::error_code COFFObjectFile::initDebugDirectoryPtr() { 613 // Get the RVA of the debug directory. Do nothing if it does not exist. 614 const data_directory *DataEntry; 615 if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry)) 616 return std::error_code(); 617 618 // Do nothing if the RVA is NULL. 619 if (DataEntry->RelativeVirtualAddress == 0) 620 return std::error_code(); 621 622 // Check that the size is a multiple of the entry size. 623 if (DataEntry->Size % sizeof(debug_directory) != 0) 624 return object_error::parse_failed; 625 626 uintptr_t IntPtr = 0; 627 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 628 return EC; 629 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 630 if (std::error_code EC = getRvaPtr( 631 DataEntry->RelativeVirtualAddress + DataEntry->Size, IntPtr)) 632 return EC; 633 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(IntPtr); 634 return std::error_code(); 635 } 636 637 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 638 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 639 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 640 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 641 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 642 ImportDirectory(nullptr), 643 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 644 ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 645 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) { 646 // Check that we at least have enough room for a header. 647 if (!checkSize(Data, EC, sizeof(coff_file_header))) 648 return; 649 650 // The current location in the file where we are looking at. 651 uint64_t CurPtr = 0; 652 653 // PE header is optional and is present only in executables. If it exists, 654 // it is placed right after COFF header. 655 bool HasPEHeader = false; 656 657 // Check if this is a PE/COFF file. 658 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 659 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 660 // PE signature to find 'normal' COFF header. 661 const auto *DH = reinterpret_cast<const dos_header *>(base()); 662 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 663 CurPtr = DH->AddressOfNewExeHeader; 664 // Check the PE magic bytes. ("PE\0\0") 665 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 666 EC = object_error::parse_failed; 667 return; 668 } 669 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 670 HasPEHeader = true; 671 } 672 } 673 674 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 675 return; 676 677 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 678 // import libraries share a common prefix but bigobj is more restrictive. 679 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 680 COFFHeader->NumberOfSections == uint16_t(0xffff) && 681 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 682 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 683 return; 684 685 // Verify that we are dealing with bigobj. 686 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 687 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 688 sizeof(COFF::BigObjMagic)) == 0) { 689 COFFHeader = nullptr; 690 CurPtr += sizeof(coff_bigobj_file_header); 691 } else { 692 // It's not a bigobj. 693 COFFBigObjHeader = nullptr; 694 } 695 } 696 if (COFFHeader) { 697 // The prior checkSize call may have failed. This isn't a hard error 698 // because we were just trying to sniff out bigobj. 699 EC = std::error_code(); 700 CurPtr += sizeof(coff_file_header); 701 702 if (COFFHeader->isImportLibrary()) 703 return; 704 } 705 706 if (HasPEHeader) { 707 const pe32_header *Header; 708 if ((EC = getObject(Header, Data, base() + CurPtr))) 709 return; 710 711 const uint8_t *DataDirAddr; 712 uint64_t DataDirSize; 713 if (Header->Magic == COFF::PE32Header::PE32) { 714 PE32Header = Header; 715 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 716 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 717 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 718 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 719 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 720 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 721 } else { 722 // It's neither PE32 nor PE32+. 723 EC = object_error::parse_failed; 724 return; 725 } 726 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 727 return; 728 } 729 730 if (COFFHeader) 731 CurPtr += COFFHeader->SizeOfOptionalHeader; 732 733 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 734 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 735 return; 736 737 // Initialize the pointer to the symbol table. 738 if (getPointerToSymbolTable() != 0) { 739 if ((EC = initSymbolTablePtr())) { 740 SymbolTable16 = nullptr; 741 SymbolTable32 = nullptr; 742 StringTable = nullptr; 743 StringTableSize = 0; 744 } 745 } else { 746 // We had better not have any symbols if we don't have a symbol table. 747 if (getNumberOfSymbols() != 0) { 748 EC = object_error::parse_failed; 749 return; 750 } 751 } 752 753 // Initialize the pointer to the beginning of the import table. 754 if ((EC = initImportTablePtr())) 755 return; 756 if ((EC = initDelayImportTablePtr())) 757 return; 758 759 // Initialize the pointer to the export table. 760 if ((EC = initExportTablePtr())) 761 return; 762 763 // Initialize the pointer to the base relocation table. 764 if ((EC = initBaseRelocPtr())) 765 return; 766 767 // Initialize the pointer to the export table. 768 if ((EC = initDebugDirectoryPtr())) 769 return; 770 771 EC = std::error_code(); 772 } 773 774 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 775 DataRefImpl Ret; 776 Ret.p = getSymbolTable(); 777 return basic_symbol_iterator(SymbolRef(Ret, this)); 778 } 779 780 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 781 // The symbol table ends where the string table begins. 782 DataRefImpl Ret; 783 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 784 return basic_symbol_iterator(SymbolRef(Ret, this)); 785 } 786 787 import_directory_iterator COFFObjectFile::import_directory_begin() const { 788 if (!ImportDirectory) 789 return import_directory_end(); 790 if (ImportDirectory->isNull()) 791 return import_directory_end(); 792 return import_directory_iterator( 793 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 794 } 795 796 import_directory_iterator COFFObjectFile::import_directory_end() const { 797 return import_directory_iterator( 798 ImportDirectoryEntryRef(nullptr, -1, this)); 799 } 800 801 delay_import_directory_iterator 802 COFFObjectFile::delay_import_directory_begin() const { 803 return delay_import_directory_iterator( 804 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 805 } 806 807 delay_import_directory_iterator 808 COFFObjectFile::delay_import_directory_end() const { 809 return delay_import_directory_iterator( 810 DelayImportDirectoryEntryRef( 811 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 812 } 813 814 export_directory_iterator COFFObjectFile::export_directory_begin() const { 815 return export_directory_iterator( 816 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 817 } 818 819 export_directory_iterator COFFObjectFile::export_directory_end() const { 820 if (!ExportDirectory) 821 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 822 ExportDirectoryEntryRef Ref(ExportDirectory, 823 ExportDirectory->AddressTableEntries, this); 824 return export_directory_iterator(Ref); 825 } 826 827 section_iterator COFFObjectFile::section_begin() const { 828 DataRefImpl Ret; 829 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 830 return section_iterator(SectionRef(Ret, this)); 831 } 832 833 section_iterator COFFObjectFile::section_end() const { 834 DataRefImpl Ret; 835 int NumSections = 836 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 837 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 838 return section_iterator(SectionRef(Ret, this)); 839 } 840 841 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 842 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 843 } 844 845 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 846 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 847 } 848 849 uint8_t COFFObjectFile::getBytesInAddress() const { 850 return getArch() == Triple::x86_64 ? 8 : 4; 851 } 852 853 StringRef COFFObjectFile::getFileFormatName() const { 854 switch(getMachine()) { 855 case COFF::IMAGE_FILE_MACHINE_I386: 856 return "COFF-i386"; 857 case COFF::IMAGE_FILE_MACHINE_AMD64: 858 return "COFF-x86-64"; 859 case COFF::IMAGE_FILE_MACHINE_ARMNT: 860 return "COFF-ARM"; 861 case COFF::IMAGE_FILE_MACHINE_ARM64: 862 return "COFF-ARM64"; 863 default: 864 return "COFF-<unknown arch>"; 865 } 866 } 867 868 unsigned COFFObjectFile::getArch() const { 869 switch (getMachine()) { 870 case COFF::IMAGE_FILE_MACHINE_I386: 871 return Triple::x86; 872 case COFF::IMAGE_FILE_MACHINE_AMD64: 873 return Triple::x86_64; 874 case COFF::IMAGE_FILE_MACHINE_ARMNT: 875 return Triple::thumb; 876 case COFF::IMAGE_FILE_MACHINE_ARM64: 877 return Triple::aarch64; 878 default: 879 return Triple::UnknownArch; 880 } 881 } 882 883 iterator_range<import_directory_iterator> 884 COFFObjectFile::import_directories() const { 885 return make_range(import_directory_begin(), import_directory_end()); 886 } 887 888 iterator_range<delay_import_directory_iterator> 889 COFFObjectFile::delay_import_directories() const { 890 return make_range(delay_import_directory_begin(), 891 delay_import_directory_end()); 892 } 893 894 iterator_range<export_directory_iterator> 895 COFFObjectFile::export_directories() const { 896 return make_range(export_directory_begin(), export_directory_end()); 897 } 898 899 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 900 return make_range(base_reloc_begin(), base_reloc_end()); 901 } 902 903 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 904 Res = PE32Header; 905 return std::error_code(); 906 } 907 908 std::error_code 909 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 910 Res = PE32PlusHeader; 911 return std::error_code(); 912 } 913 914 std::error_code 915 COFFObjectFile::getDataDirectory(uint32_t Index, 916 const data_directory *&Res) const { 917 // Error if if there's no data directory or the index is out of range. 918 if (!DataDirectory) { 919 Res = nullptr; 920 return object_error::parse_failed; 921 } 922 assert(PE32Header || PE32PlusHeader); 923 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 924 : PE32PlusHeader->NumberOfRvaAndSize; 925 if (Index >= NumEnt) { 926 Res = nullptr; 927 return object_error::parse_failed; 928 } 929 Res = &DataDirectory[Index]; 930 return std::error_code(); 931 } 932 933 std::error_code COFFObjectFile::getSection(int32_t Index, 934 const coff_section *&Result) const { 935 Result = nullptr; 936 if (COFF::isReservedSectionNumber(Index)) 937 return std::error_code(); 938 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 939 // We already verified the section table data, so no need to check again. 940 Result = SectionTable + (Index - 1); 941 return std::error_code(); 942 } 943 return object_error::parse_failed; 944 } 945 946 std::error_code COFFObjectFile::getString(uint32_t Offset, 947 StringRef &Result) const { 948 if (StringTableSize <= 4) 949 // Tried to get a string from an empty string table. 950 return object_error::parse_failed; 951 if (Offset >= StringTableSize) 952 return object_error::unexpected_eof; 953 Result = StringRef(StringTable + Offset); 954 return std::error_code(); 955 } 956 957 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 958 StringRef &Res) const { 959 return getSymbolName(Symbol.getGeneric(), Res); 960 } 961 962 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol, 963 StringRef &Res) const { 964 // Check for string table entry. First 4 bytes are 0. 965 if (Symbol->Name.Offset.Zeroes == 0) { 966 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res)) 967 return EC; 968 return std::error_code(); 969 } 970 971 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 972 // Null terminated, let ::strlen figure out the length. 973 Res = StringRef(Symbol->Name.ShortName); 974 else 975 // Not null terminated, use all 8 bytes. 976 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize); 977 return std::error_code(); 978 } 979 980 ArrayRef<uint8_t> 981 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 982 const uint8_t *Aux = nullptr; 983 984 size_t SymbolSize = getSymbolTableEntrySize(); 985 if (Symbol.getNumberOfAuxSymbols() > 0) { 986 // AUX data comes immediately after the symbol in COFF 987 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 988 # ifndef NDEBUG 989 // Verify that the Aux symbol points to a valid entry in the symbol table. 990 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 991 if (Offset < getPointerToSymbolTable() || 992 Offset >= 993 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 994 report_fatal_error("Aux Symbol data was outside of symbol table."); 995 996 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 997 "Aux Symbol data did not point to the beginning of a symbol"); 998 # endif 999 } 1000 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 1001 } 1002 1003 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 1004 StringRef &Res) const { 1005 StringRef Name; 1006 if (Sec->Name[COFF::NameSize - 1] == 0) 1007 // Null terminated, let ::strlen figure out the length. 1008 Name = Sec->Name; 1009 else 1010 // Not null terminated, use all 8 bytes. 1011 Name = StringRef(Sec->Name, COFF::NameSize); 1012 1013 // Check for string table entry. First byte is '/'. 1014 if (Name.startswith("/")) { 1015 uint32_t Offset; 1016 if (Name.startswith("//")) { 1017 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1018 return object_error::parse_failed; 1019 } else { 1020 if (Name.substr(1).getAsInteger(10, Offset)) 1021 return object_error::parse_failed; 1022 } 1023 if (std::error_code EC = getString(Offset, Name)) 1024 return EC; 1025 } 1026 1027 Res = Name; 1028 return std::error_code(); 1029 } 1030 1031 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1032 // SizeOfRawData and VirtualSize change what they represent depending on 1033 // whether or not we have an executable image. 1034 // 1035 // For object files, SizeOfRawData contains the size of section's data; 1036 // VirtualSize should be zero but isn't due to buggy COFF writers. 1037 // 1038 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1039 // actual section size is in VirtualSize. It is possible for VirtualSize to 1040 // be greater than SizeOfRawData; the contents past that point should be 1041 // considered to be zero. 1042 if (getDOSHeader()) 1043 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1044 return Sec->SizeOfRawData; 1045 } 1046 1047 std::error_code 1048 COFFObjectFile::getSectionContents(const coff_section *Sec, 1049 ArrayRef<uint8_t> &Res) const { 1050 // In COFF, a virtual section won't have any in-file 1051 // content, so the file pointer to the content will be zero. 1052 if (Sec->PointerToRawData == 0) 1053 return object_error::parse_failed; 1054 // The only thing that we need to verify is that the contents is contained 1055 // within the file bounds. We don't need to make sure it doesn't cover other 1056 // data, as there's nothing that says that is not allowed. 1057 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 1058 uint32_t SectionSize = getSectionSize(Sec); 1059 if (checkOffset(Data, ConStart, SectionSize)) 1060 return object_error::parse_failed; 1061 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1062 return std::error_code(); 1063 } 1064 1065 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1066 return reinterpret_cast<const coff_relocation*>(Rel.p); 1067 } 1068 1069 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1070 Rel.p = reinterpret_cast<uintptr_t>( 1071 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1072 } 1073 1074 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1075 const coff_relocation *R = toRel(Rel); 1076 return R->VirtualAddress; 1077 } 1078 1079 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1080 const coff_relocation *R = toRel(Rel); 1081 DataRefImpl Ref; 1082 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1083 return symbol_end(); 1084 if (SymbolTable16) 1085 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1086 else if (SymbolTable32) 1087 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1088 else 1089 llvm_unreachable("no symbol table pointer!"); 1090 return symbol_iterator(SymbolRef(Ref, this)); 1091 } 1092 1093 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1094 const coff_relocation* R = toRel(Rel); 1095 return R->Type; 1096 } 1097 1098 const coff_section * 1099 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1100 return toSec(Section.getRawDataRefImpl()); 1101 } 1102 1103 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1104 if (SymbolTable16) 1105 return toSymb<coff_symbol16>(Ref); 1106 if (SymbolTable32) 1107 return toSymb<coff_symbol32>(Ref); 1108 llvm_unreachable("no symbol table pointer!"); 1109 } 1110 1111 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1112 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1113 } 1114 1115 const coff_relocation * 1116 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1117 return toRel(Reloc.getRawDataRefImpl()); 1118 } 1119 1120 iterator_range<const coff_relocation *> 1121 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1122 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 1123 const coff_relocation *E = I; 1124 if (I) 1125 E += getNumberOfRelocations(Sec, Data, base()); 1126 return make_range(I, E); 1127 } 1128 1129 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1130 case COFF::reloc_type: \ 1131 Res = #reloc_type; \ 1132 break; 1133 1134 void COFFObjectFile::getRelocationTypeName( 1135 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1136 const coff_relocation *Reloc = toRel(Rel); 1137 StringRef Res; 1138 switch (getMachine()) { 1139 case COFF::IMAGE_FILE_MACHINE_AMD64: 1140 switch (Reloc->Type) { 1141 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1142 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1143 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1144 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1145 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1146 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1147 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1148 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1149 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1150 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1151 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1152 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1153 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1154 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1155 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1156 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1157 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1158 default: 1159 Res = "Unknown"; 1160 } 1161 break; 1162 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1163 switch (Reloc->Type) { 1164 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1165 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1166 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1167 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1168 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1169 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1170 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1171 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1172 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1173 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1174 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1175 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1176 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1177 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1178 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1179 default: 1180 Res = "Unknown"; 1181 } 1182 break; 1183 case COFF::IMAGE_FILE_MACHINE_I386: 1184 switch (Reloc->Type) { 1185 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1186 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1187 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1188 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1189 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1190 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1191 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1192 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1193 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1194 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1195 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1196 default: 1197 Res = "Unknown"; 1198 } 1199 break; 1200 default: 1201 Res = "Unknown"; 1202 } 1203 Result.append(Res.begin(), Res.end()); 1204 } 1205 1206 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1207 1208 bool COFFObjectFile::isRelocatableObject() const { 1209 return !DataDirectory; 1210 } 1211 1212 bool ImportDirectoryEntryRef:: 1213 operator==(const ImportDirectoryEntryRef &Other) const { 1214 return ImportTable == Other.ImportTable && Index == Other.Index; 1215 } 1216 1217 void ImportDirectoryEntryRef::moveNext() { 1218 ++Index; 1219 if (ImportTable[Index].isNull()) { 1220 Index = -1; 1221 ImportTable = nullptr; 1222 } 1223 } 1224 1225 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1226 const coff_import_directory_table_entry *&Result) const { 1227 return getObject(Result, OwningObject->Data, ImportTable + Index); 1228 } 1229 1230 static imported_symbol_iterator 1231 makeImportedSymbolIterator(const COFFObjectFile *Object, 1232 uintptr_t Ptr, int Index) { 1233 if (Object->getBytesInAddress() == 4) { 1234 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1235 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1236 } 1237 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1238 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1239 } 1240 1241 static imported_symbol_iterator 1242 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1243 uintptr_t IntPtr = 0; 1244 Object->getRvaPtr(RVA, IntPtr); 1245 return makeImportedSymbolIterator(Object, IntPtr, 0); 1246 } 1247 1248 static imported_symbol_iterator 1249 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1250 uintptr_t IntPtr = 0; 1251 Object->getRvaPtr(RVA, IntPtr); 1252 // Forward the pointer to the last entry which is null. 1253 int Index = 0; 1254 if (Object->getBytesInAddress() == 4) { 1255 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1256 while (*Entry++) 1257 ++Index; 1258 } else { 1259 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1260 while (*Entry++) 1261 ++Index; 1262 } 1263 return makeImportedSymbolIterator(Object, IntPtr, Index); 1264 } 1265 1266 imported_symbol_iterator 1267 ImportDirectoryEntryRef::imported_symbol_begin() const { 1268 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1269 OwningObject); 1270 } 1271 1272 imported_symbol_iterator 1273 ImportDirectoryEntryRef::imported_symbol_end() const { 1274 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1275 OwningObject); 1276 } 1277 1278 iterator_range<imported_symbol_iterator> 1279 ImportDirectoryEntryRef::imported_symbols() const { 1280 return make_range(imported_symbol_begin(), imported_symbol_end()); 1281 } 1282 1283 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1284 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1285 OwningObject); 1286 } 1287 1288 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1289 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1290 OwningObject); 1291 } 1292 1293 iterator_range<imported_symbol_iterator> 1294 ImportDirectoryEntryRef::lookup_table_symbols() const { 1295 return make_range(lookup_table_begin(), lookup_table_end()); 1296 } 1297 1298 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1299 uintptr_t IntPtr = 0; 1300 if (std::error_code EC = 1301 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1302 return EC; 1303 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1304 return std::error_code(); 1305 } 1306 1307 std::error_code 1308 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1309 Result = ImportTable[Index].ImportLookupTableRVA; 1310 return std::error_code(); 1311 } 1312 1313 std::error_code 1314 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1315 Result = ImportTable[Index].ImportAddressTableRVA; 1316 return std::error_code(); 1317 } 1318 1319 bool DelayImportDirectoryEntryRef:: 1320 operator==(const DelayImportDirectoryEntryRef &Other) const { 1321 return Table == Other.Table && Index == Other.Index; 1322 } 1323 1324 void DelayImportDirectoryEntryRef::moveNext() { 1325 ++Index; 1326 } 1327 1328 imported_symbol_iterator 1329 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1330 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1331 OwningObject); 1332 } 1333 1334 imported_symbol_iterator 1335 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1336 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1337 OwningObject); 1338 } 1339 1340 iterator_range<imported_symbol_iterator> 1341 DelayImportDirectoryEntryRef::imported_symbols() const { 1342 return make_range(imported_symbol_begin(), imported_symbol_end()); 1343 } 1344 1345 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1346 uintptr_t IntPtr = 0; 1347 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1348 return EC; 1349 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1350 return std::error_code(); 1351 } 1352 1353 std::error_code DelayImportDirectoryEntryRef:: 1354 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1355 Result = Table; 1356 return std::error_code(); 1357 } 1358 1359 std::error_code DelayImportDirectoryEntryRef:: 1360 getImportAddress(int AddrIndex, uint64_t &Result) const { 1361 uint32_t RVA = Table[Index].DelayImportAddressTable + 1362 AddrIndex * (OwningObject->is64() ? 8 : 4); 1363 uintptr_t IntPtr = 0; 1364 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1365 return EC; 1366 if (OwningObject->is64()) 1367 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1368 else 1369 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1370 return std::error_code(); 1371 } 1372 1373 bool ExportDirectoryEntryRef:: 1374 operator==(const ExportDirectoryEntryRef &Other) const { 1375 return ExportTable == Other.ExportTable && Index == Other.Index; 1376 } 1377 1378 void ExportDirectoryEntryRef::moveNext() { 1379 ++Index; 1380 } 1381 1382 // Returns the name of the current export symbol. If the symbol is exported only 1383 // by ordinal, the empty string is set as a result. 1384 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1385 uintptr_t IntPtr = 0; 1386 if (std::error_code EC = 1387 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1388 return EC; 1389 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1390 return std::error_code(); 1391 } 1392 1393 // Returns the starting ordinal number. 1394 std::error_code 1395 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1396 Result = ExportTable->OrdinalBase; 1397 return std::error_code(); 1398 } 1399 1400 // Returns the export ordinal of the current export symbol. 1401 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1402 Result = ExportTable->OrdinalBase + Index; 1403 return std::error_code(); 1404 } 1405 1406 // Returns the address of the current export symbol. 1407 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1408 uintptr_t IntPtr = 0; 1409 if (std::error_code EC = 1410 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1411 return EC; 1412 const export_address_table_entry *entry = 1413 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1414 Result = entry[Index].ExportRVA; 1415 return std::error_code(); 1416 } 1417 1418 // Returns the name of the current export symbol. If the symbol is exported only 1419 // by ordinal, the empty string is set as a result. 1420 std::error_code 1421 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1422 uintptr_t IntPtr = 0; 1423 if (std::error_code EC = 1424 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1425 return EC; 1426 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1427 1428 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1429 int Offset = 0; 1430 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1431 I < E; ++I, ++Offset) { 1432 if (*I != Index) 1433 continue; 1434 if (std::error_code EC = 1435 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1436 return EC; 1437 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1438 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1439 return EC; 1440 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1441 return std::error_code(); 1442 } 1443 Result = ""; 1444 return std::error_code(); 1445 } 1446 1447 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1448 const data_directory *DataEntry; 1449 if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 1450 return EC; 1451 uint32_t RVA; 1452 if (auto EC = getExportRVA(RVA)) 1453 return EC; 1454 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1455 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1456 Result = (Begin <= RVA && RVA < End); 1457 return std::error_code(); 1458 } 1459 1460 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1461 uint32_t RVA; 1462 if (auto EC = getExportRVA(RVA)) 1463 return EC; 1464 uintptr_t IntPtr = 0; 1465 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1466 return EC; 1467 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1468 return std::error_code(); 1469 } 1470 1471 bool ImportedSymbolRef:: 1472 operator==(const ImportedSymbolRef &Other) const { 1473 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1474 && Index == Other.Index; 1475 } 1476 1477 void ImportedSymbolRef::moveNext() { 1478 ++Index; 1479 } 1480 1481 std::error_code 1482 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1483 uint32_t RVA; 1484 if (Entry32) { 1485 // If a symbol is imported only by ordinal, it has no name. 1486 if (Entry32[Index].isOrdinal()) 1487 return std::error_code(); 1488 RVA = Entry32[Index].getHintNameRVA(); 1489 } else { 1490 if (Entry64[Index].isOrdinal()) 1491 return std::error_code(); 1492 RVA = Entry64[Index].getHintNameRVA(); 1493 } 1494 uintptr_t IntPtr = 0; 1495 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1496 return EC; 1497 // +2 because the first two bytes is hint. 1498 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1499 return std::error_code(); 1500 } 1501 1502 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const { 1503 if (Entry32) 1504 Result = Entry32[Index].isOrdinal(); 1505 else 1506 Result = Entry64[Index].isOrdinal(); 1507 return std::error_code(); 1508 } 1509 1510 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1511 if (Entry32) 1512 Result = Entry32[Index].getHintNameRVA(); 1513 else 1514 Result = Entry64[Index].getHintNameRVA(); 1515 return std::error_code(); 1516 } 1517 1518 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1519 uint32_t RVA; 1520 if (Entry32) { 1521 if (Entry32[Index].isOrdinal()) { 1522 Result = Entry32[Index].getOrdinal(); 1523 return std::error_code(); 1524 } 1525 RVA = Entry32[Index].getHintNameRVA(); 1526 } else { 1527 if (Entry64[Index].isOrdinal()) { 1528 Result = Entry64[Index].getOrdinal(); 1529 return std::error_code(); 1530 } 1531 RVA = Entry64[Index].getHintNameRVA(); 1532 } 1533 uintptr_t IntPtr = 0; 1534 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1535 return EC; 1536 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1537 return std::error_code(); 1538 } 1539 1540 ErrorOr<std::unique_ptr<COFFObjectFile>> 1541 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1542 std::error_code EC; 1543 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1544 if (EC) 1545 return EC; 1546 return std::move(Ret); 1547 } 1548 1549 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1550 return Header == Other.Header && Index == Other.Index; 1551 } 1552 1553 void BaseRelocRef::moveNext() { 1554 // Header->BlockSize is the size of the current block, including the 1555 // size of the header itself. 1556 uint32_t Size = sizeof(*Header) + 1557 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1558 if (Size == Header->BlockSize) { 1559 // .reloc contains a list of base relocation blocks. Each block 1560 // consists of the header followed by entries. The header contains 1561 // how many entories will follow. When we reach the end of the 1562 // current block, proceed to the next block. 1563 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1564 reinterpret_cast<const uint8_t *>(Header) + Size); 1565 Index = 0; 1566 } else { 1567 ++Index; 1568 } 1569 } 1570 1571 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1572 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1573 Type = Entry[Index].getType(); 1574 return std::error_code(); 1575 } 1576 1577 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1578 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1579 Result = Header->PageRVA + Entry[Index].getOffset(); 1580 return std::error_code(); 1581 } 1582