1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/StringSwitch.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/ADT/iterator_range.h" 19 #include "llvm/Support/COFF.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include <cctype> 23 #include <limits> 24 25 using namespace llvm; 26 using namespace object; 27 28 using support::ulittle16_t; 29 using support::ulittle32_t; 30 using support::ulittle64_t; 31 using support::little16_t; 32 33 // Returns false if size is greater than the buffer size. And sets ec. 34 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 35 if (M.getBufferSize() < Size) { 36 EC = object_error::unexpected_eof; 37 return false; 38 } 39 return true; 40 } 41 42 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 43 const uint64_t Size) { 44 if (Addr + Size < Addr || Addr + Size < Size || 45 Addr + Size > uintptr_t(M.getBufferEnd()) || 46 Addr < uintptr_t(M.getBufferStart())) { 47 return object_error::unexpected_eof; 48 } 49 return std::error_code(); 50 } 51 52 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 53 // Returns unexpected_eof if error. 54 template <typename T> 55 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 56 const void *Ptr, 57 const uint64_t Size = sizeof(T)) { 58 uintptr_t Addr = uintptr_t(Ptr); 59 if (std::error_code EC = checkOffset(M, Addr, Size)) 60 return EC; 61 Obj = reinterpret_cast<const T *>(Addr); 62 return std::error_code(); 63 } 64 65 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 66 // prefixed slashes. 67 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 68 assert(Str.size() <= 6 && "String too long, possible overflow."); 69 if (Str.size() > 6) 70 return true; 71 72 uint64_t Value = 0; 73 while (!Str.empty()) { 74 unsigned CharVal; 75 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 76 CharVal = Str[0] - 'A'; 77 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 78 CharVal = Str[0] - 'a' + 26; 79 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 80 CharVal = Str[0] - '0' + 52; 81 else if (Str[0] == '+') // 62 82 CharVal = 62; 83 else if (Str[0] == '/') // 63 84 CharVal = 63; 85 else 86 return true; 87 88 Value = (Value * 64) + CharVal; 89 Str = Str.substr(1); 90 } 91 92 if (Value > std::numeric_limits<uint32_t>::max()) 93 return true; 94 95 Result = static_cast<uint32_t>(Value); 96 return false; 97 } 98 99 template <typename coff_symbol_type> 100 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 101 const coff_symbol_type *Addr = 102 reinterpret_cast<const coff_symbol_type *>(Ref.p); 103 104 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 105 #ifndef NDEBUG 106 // Verify that the symbol points to a valid entry in the symbol table. 107 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 108 109 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 110 "Symbol did not point to the beginning of a symbol"); 111 #endif 112 113 return Addr; 114 } 115 116 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 117 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 118 119 # ifndef NDEBUG 120 // Verify that the section points to a valid entry in the section table. 121 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 122 report_fatal_error("Section was outside of section table."); 123 124 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 125 assert(Offset % sizeof(coff_section) == 0 && 126 "Section did not point to the beginning of a section"); 127 # endif 128 129 return Addr; 130 } 131 132 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 133 auto End = reinterpret_cast<uintptr_t>(StringTable); 134 if (SymbolTable16) { 135 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 136 Symb += 1 + Symb->NumberOfAuxSymbols; 137 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 138 } else if (SymbolTable32) { 139 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 140 Symb += 1 + Symb->NumberOfAuxSymbols; 141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 142 } else { 143 llvm_unreachable("no symbol table pointer!"); 144 } 145 } 146 147 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 148 COFFSymbolRef Symb = getCOFFSymbol(Ref); 149 StringRef Result; 150 std::error_code EC = getSymbolName(Symb, Result); 151 if (EC) 152 return errorCodeToError(EC); 153 return Result; 154 } 155 156 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 157 return getCOFFSymbol(Ref).getValue(); 158 } 159 160 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 161 uint64_t Result = getSymbolValue(Ref); 162 COFFSymbolRef Symb = getCOFFSymbol(Ref); 163 int32_t SectionNumber = Symb.getSectionNumber(); 164 165 if (Symb.isAnyUndefined() || Symb.isCommon() || 166 COFF::isReservedSectionNumber(SectionNumber)) 167 return Result; 168 169 const coff_section *Section = nullptr; 170 if (std::error_code EC = getSection(SectionNumber, Section)) 171 return errorCodeToError(EC); 172 Result += Section->VirtualAddress; 173 174 // The section VirtualAddress does not include ImageBase, and we want to 175 // return virtual addresses. 176 Result += getImageBase(); 177 178 return Result; 179 } 180 181 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 182 COFFSymbolRef Symb = getCOFFSymbol(Ref); 183 int32_t SectionNumber = Symb.getSectionNumber(); 184 185 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 186 return SymbolRef::ST_Function; 187 if (Symb.isAnyUndefined()) 188 return SymbolRef::ST_Unknown; 189 if (Symb.isCommon()) 190 return SymbolRef::ST_Data; 191 if (Symb.isFileRecord()) 192 return SymbolRef::ST_File; 193 194 // TODO: perhaps we need a new symbol type ST_Section. 195 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 196 return SymbolRef::ST_Debug; 197 198 if (!COFF::isReservedSectionNumber(SectionNumber)) 199 return SymbolRef::ST_Data; 200 201 return SymbolRef::ST_Other; 202 } 203 204 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 205 COFFSymbolRef Symb = getCOFFSymbol(Ref); 206 uint32_t Result = SymbolRef::SF_None; 207 208 if (Symb.isExternal() || Symb.isWeakExternal()) 209 Result |= SymbolRef::SF_Global; 210 211 if (Symb.isWeakExternal()) 212 Result |= SymbolRef::SF_Weak; 213 214 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 215 Result |= SymbolRef::SF_Absolute; 216 217 if (Symb.isFileRecord()) 218 Result |= SymbolRef::SF_FormatSpecific; 219 220 if (Symb.isSectionDefinition()) 221 Result |= SymbolRef::SF_FormatSpecific; 222 223 if (Symb.isCommon()) 224 Result |= SymbolRef::SF_Common; 225 226 if (Symb.isAnyUndefined()) 227 Result |= SymbolRef::SF_Undefined; 228 229 return Result; 230 } 231 232 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 233 COFFSymbolRef Symb = getCOFFSymbol(Ref); 234 return Symb.getValue(); 235 } 236 237 Expected<section_iterator> 238 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 239 COFFSymbolRef Symb = getCOFFSymbol(Ref); 240 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 241 return section_end(); 242 const coff_section *Sec = nullptr; 243 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 244 return errorCodeToError(EC); 245 DataRefImpl Ret; 246 Ret.p = reinterpret_cast<uintptr_t>(Sec); 247 return section_iterator(SectionRef(Ret, this)); 248 } 249 250 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 251 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 252 return Symb.getSectionNumber(); 253 } 254 255 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 256 const coff_section *Sec = toSec(Ref); 257 Sec += 1; 258 Ref.p = reinterpret_cast<uintptr_t>(Sec); 259 } 260 261 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 262 StringRef &Result) const { 263 const coff_section *Sec = toSec(Ref); 264 return getSectionName(Sec, Result); 265 } 266 267 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 268 const coff_section *Sec = toSec(Ref); 269 uint64_t Result = Sec->VirtualAddress; 270 271 // The section VirtualAddress does not include ImageBase, and we want to 272 // return virtual addresses. 273 Result += getImageBase(); 274 return Result; 275 } 276 277 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 278 return getSectionSize(toSec(Ref)); 279 } 280 281 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 282 StringRef &Result) const { 283 const coff_section *Sec = toSec(Ref); 284 ArrayRef<uint8_t> Res; 285 std::error_code EC = getSectionContents(Sec, Res); 286 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 287 return EC; 288 } 289 290 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 291 const coff_section *Sec = toSec(Ref); 292 return Sec->getAlignment(); 293 } 294 295 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 296 return false; 297 } 298 299 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 300 const coff_section *Sec = toSec(Ref); 301 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 302 } 303 304 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 305 const coff_section *Sec = toSec(Ref); 306 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 307 } 308 309 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 310 const coff_section *Sec = toSec(Ref); 311 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 312 COFF::IMAGE_SCN_MEM_READ | 313 COFF::IMAGE_SCN_MEM_WRITE; 314 return (Sec->Characteristics & BssFlags) == BssFlags; 315 } 316 317 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 318 uintptr_t Offset = 319 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 320 assert((Offset % sizeof(coff_section)) == 0); 321 return (Offset / sizeof(coff_section)) + 1; 322 } 323 324 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 325 const coff_section *Sec = toSec(Ref); 326 // In COFF, a virtual section won't have any in-file 327 // content, so the file pointer to the content will be zero. 328 return Sec->PointerToRawData == 0; 329 } 330 331 static uint32_t getNumberOfRelocations(const coff_section *Sec, 332 MemoryBufferRef M, const uint8_t *base) { 333 // The field for the number of relocations in COFF section table is only 334 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 335 // NumberOfRelocations field, and the actual relocation count is stored in the 336 // VirtualAddress field in the first relocation entry. 337 if (Sec->hasExtendedRelocations()) { 338 const coff_relocation *FirstReloc; 339 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 340 base + Sec->PointerToRelocations))) 341 return 0; 342 // -1 to exclude this first relocation entry. 343 return FirstReloc->VirtualAddress - 1; 344 } 345 return Sec->NumberOfRelocations; 346 } 347 348 static const coff_relocation * 349 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 350 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 351 if (!NumRelocs) 352 return nullptr; 353 auto begin = reinterpret_cast<const coff_relocation *>( 354 Base + Sec->PointerToRelocations); 355 if (Sec->hasExtendedRelocations()) { 356 // Skip the first relocation entry repurposed to store the number of 357 // relocations. 358 begin++; 359 } 360 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 361 return nullptr; 362 return begin; 363 } 364 365 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 366 const coff_section *Sec = toSec(Ref); 367 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 368 if (begin && Sec->VirtualAddress != 0) 369 report_fatal_error("Sections with relocations should have an address of 0"); 370 DataRefImpl Ret; 371 Ret.p = reinterpret_cast<uintptr_t>(begin); 372 return relocation_iterator(RelocationRef(Ret, this)); 373 } 374 375 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 376 const coff_section *Sec = toSec(Ref); 377 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 378 if (I) 379 I += getNumberOfRelocations(Sec, Data, base()); 380 DataRefImpl Ret; 381 Ret.p = reinterpret_cast<uintptr_t>(I); 382 return relocation_iterator(RelocationRef(Ret, this)); 383 } 384 385 // Initialize the pointer to the symbol table. 386 std::error_code COFFObjectFile::initSymbolTablePtr() { 387 if (COFFHeader) 388 if (std::error_code EC = getObject( 389 SymbolTable16, Data, base() + getPointerToSymbolTable(), 390 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 391 return EC; 392 393 if (COFFBigObjHeader) 394 if (std::error_code EC = getObject( 395 SymbolTable32, Data, base() + getPointerToSymbolTable(), 396 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 397 return EC; 398 399 // Find string table. The first four byte of the string table contains the 400 // total size of the string table, including the size field itself. If the 401 // string table is empty, the value of the first four byte would be 4. 402 uint32_t StringTableOffset = getPointerToSymbolTable() + 403 getNumberOfSymbols() * getSymbolTableEntrySize(); 404 const uint8_t *StringTableAddr = base() + StringTableOffset; 405 const ulittle32_t *StringTableSizePtr; 406 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 407 return EC; 408 StringTableSize = *StringTableSizePtr; 409 if (std::error_code EC = 410 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 411 return EC; 412 413 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 414 // tools like cvtres write a size of 0 for an empty table instead of 4. 415 if (StringTableSize < 4) 416 StringTableSize = 4; 417 418 // Check that the string table is null terminated if has any in it. 419 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 420 return object_error::parse_failed; 421 return std::error_code(); 422 } 423 424 uint64_t COFFObjectFile::getImageBase() const { 425 if (PE32Header) 426 return PE32Header->ImageBase; 427 else if (PE32PlusHeader) 428 return PE32PlusHeader->ImageBase; 429 // This actually comes up in practice. 430 return 0; 431 } 432 433 // Returns the file offset for the given VA. 434 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 435 uint64_t ImageBase = getImageBase(); 436 uint64_t Rva = Addr - ImageBase; 437 assert(Rva <= UINT32_MAX); 438 return getRvaPtr((uint32_t)Rva, Res); 439 } 440 441 // Returns the file offset for the given RVA. 442 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 443 for (const SectionRef &S : sections()) { 444 const coff_section *Section = getCOFFSection(S); 445 uint32_t SectionStart = Section->VirtualAddress; 446 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 447 if (SectionStart <= Addr && Addr < SectionEnd) { 448 uint32_t Offset = Addr - SectionStart; 449 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 450 return std::error_code(); 451 } 452 } 453 return object_error::parse_failed; 454 } 455 456 std::error_code 457 COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 458 ArrayRef<uint8_t> &Contents) const { 459 for (const SectionRef &S : sections()) { 460 const coff_section *Section = getCOFFSection(S); 461 uint32_t SectionStart = Section->VirtualAddress; 462 // Check if this RVA is within the section bounds. Be careful about integer 463 // overflow. 464 uint32_t OffsetIntoSection = RVA - SectionStart; 465 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 466 Size <= Section->VirtualSize - OffsetIntoSection) { 467 uintptr_t Begin = 468 uintptr_t(base()) + Section->PointerToRawData + OffsetIntoSection; 469 Contents = 470 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 471 return std::error_code(); 472 } 473 } 474 return object_error::parse_failed; 475 } 476 477 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 478 // table entry. 479 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 480 StringRef &Name) const { 481 uintptr_t IntPtr = 0; 482 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 483 return EC; 484 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 485 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 486 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 487 return std::error_code(); 488 } 489 490 std::error_code 491 COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 492 const codeview::DebugInfo *&PDBInfo, 493 StringRef &PDBFileName) const { 494 ArrayRef<uint8_t> InfoBytes; 495 if (std::error_code EC = getRvaAndSizeAsBytes( 496 DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes)) 497 return EC; 498 if (InfoBytes.size() < sizeof(*PDBInfo) + 1) 499 return object_error::parse_failed; 500 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data()); 501 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); 502 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 503 InfoBytes.size()); 504 // Truncate the name at the first null byte. Ignore any padding. 505 PDBFileName = PDBFileName.split('\0').first; 506 return std::error_code(); 507 } 508 509 std::error_code 510 COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, 511 StringRef &PDBFileName) const { 512 for (const debug_directory &D : debug_directories()) 513 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 514 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 515 // If we get here, there is no PDB info to return. 516 PDBInfo = nullptr; 517 PDBFileName = StringRef(); 518 return std::error_code(); 519 } 520 521 // Find the import table. 522 std::error_code COFFObjectFile::initImportTablePtr() { 523 // First, we get the RVA of the import table. If the file lacks a pointer to 524 // the import table, do nothing. 525 const data_directory *DataEntry; 526 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 527 return std::error_code(); 528 529 // Do nothing if the pointer to import table is NULL. 530 if (DataEntry->RelativeVirtualAddress == 0) 531 return std::error_code(); 532 533 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 534 535 // Find the section that contains the RVA. This is needed because the RVA is 536 // the import table's memory address which is different from its file offset. 537 uintptr_t IntPtr = 0; 538 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 539 return EC; 540 if (std::error_code EC = checkOffset(Data, IntPtr, DataEntry->Size)) 541 return EC; 542 ImportDirectory = reinterpret_cast< 543 const coff_import_directory_table_entry *>(IntPtr); 544 return std::error_code(); 545 } 546 547 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 548 std::error_code COFFObjectFile::initDelayImportTablePtr() { 549 const data_directory *DataEntry; 550 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 551 return std::error_code(); 552 if (DataEntry->RelativeVirtualAddress == 0) 553 return std::error_code(); 554 555 uint32_t RVA = DataEntry->RelativeVirtualAddress; 556 NumberOfDelayImportDirectory = DataEntry->Size / 557 sizeof(delay_import_directory_table_entry) - 1; 558 559 uintptr_t IntPtr = 0; 560 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 561 return EC; 562 DelayImportDirectory = reinterpret_cast< 563 const delay_import_directory_table_entry *>(IntPtr); 564 return std::error_code(); 565 } 566 567 // Find the export table. 568 std::error_code COFFObjectFile::initExportTablePtr() { 569 // First, we get the RVA of the export table. If the file lacks a pointer to 570 // the export table, do nothing. 571 const data_directory *DataEntry; 572 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 573 return std::error_code(); 574 575 // Do nothing if the pointer to export table is NULL. 576 if (DataEntry->RelativeVirtualAddress == 0) 577 return std::error_code(); 578 579 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 580 uintptr_t IntPtr = 0; 581 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 582 return EC; 583 ExportDirectory = 584 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 585 return std::error_code(); 586 } 587 588 std::error_code COFFObjectFile::initBaseRelocPtr() { 589 const data_directory *DataEntry; 590 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 591 return std::error_code(); 592 if (DataEntry->RelativeVirtualAddress == 0) 593 return std::error_code(); 594 595 uintptr_t IntPtr = 0; 596 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 597 return EC; 598 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 599 IntPtr); 600 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 601 IntPtr + DataEntry->Size); 602 return std::error_code(); 603 } 604 605 std::error_code COFFObjectFile::initDebugDirectoryPtr() { 606 // Get the RVA of the debug directory. Do nothing if it does not exist. 607 const data_directory *DataEntry; 608 if (getDataDirectory(COFF::DEBUG_DIRECTORY, DataEntry)) 609 return std::error_code(); 610 611 // Do nothing if the RVA is NULL. 612 if (DataEntry->RelativeVirtualAddress == 0) 613 return std::error_code(); 614 615 // Check that the size is a multiple of the entry size. 616 if (DataEntry->Size % sizeof(debug_directory) != 0) 617 return object_error::parse_failed; 618 619 uintptr_t IntPtr = 0; 620 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 621 return EC; 622 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 623 if (std::error_code EC = getRvaPtr( 624 DataEntry->RelativeVirtualAddress + DataEntry->Size, IntPtr)) 625 return EC; 626 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(IntPtr); 627 return std::error_code(); 628 } 629 630 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 631 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 632 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 633 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 634 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 635 ImportDirectory(nullptr), 636 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 637 ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 638 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr) { 639 // Check that we at least have enough room for a header. 640 if (!checkSize(Data, EC, sizeof(coff_file_header))) 641 return; 642 643 // The current location in the file where we are looking at. 644 uint64_t CurPtr = 0; 645 646 // PE header is optional and is present only in executables. If it exists, 647 // it is placed right after COFF header. 648 bool HasPEHeader = false; 649 650 // Check if this is a PE/COFF file. 651 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 652 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 653 // PE signature to find 'normal' COFF header. 654 const auto *DH = reinterpret_cast<const dos_header *>(base()); 655 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 656 CurPtr = DH->AddressOfNewExeHeader; 657 // Check the PE magic bytes. ("PE\0\0") 658 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 659 EC = object_error::parse_failed; 660 return; 661 } 662 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 663 HasPEHeader = true; 664 } 665 } 666 667 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 668 return; 669 670 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 671 // import libraries share a common prefix but bigobj is more restrictive. 672 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 673 COFFHeader->NumberOfSections == uint16_t(0xffff) && 674 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 675 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 676 return; 677 678 // Verify that we are dealing with bigobj. 679 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 680 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 681 sizeof(COFF::BigObjMagic)) == 0) { 682 COFFHeader = nullptr; 683 CurPtr += sizeof(coff_bigobj_file_header); 684 } else { 685 // It's not a bigobj. 686 COFFBigObjHeader = nullptr; 687 } 688 } 689 if (COFFHeader) { 690 // The prior checkSize call may have failed. This isn't a hard error 691 // because we were just trying to sniff out bigobj. 692 EC = std::error_code(); 693 CurPtr += sizeof(coff_file_header); 694 695 if (COFFHeader->isImportLibrary()) 696 return; 697 } 698 699 if (HasPEHeader) { 700 const pe32_header *Header; 701 if ((EC = getObject(Header, Data, base() + CurPtr))) 702 return; 703 704 const uint8_t *DataDirAddr; 705 uint64_t DataDirSize; 706 if (Header->Magic == COFF::PE32Header::PE32) { 707 PE32Header = Header; 708 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 709 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 710 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 711 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 712 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 713 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 714 } else { 715 // It's neither PE32 nor PE32+. 716 EC = object_error::parse_failed; 717 return; 718 } 719 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 720 return; 721 CurPtr += COFFHeader->SizeOfOptionalHeader; 722 } 723 724 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 725 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 726 return; 727 728 // Initialize the pointer to the symbol table. 729 if (getPointerToSymbolTable() != 0) { 730 if ((EC = initSymbolTablePtr())) 731 return; 732 } else { 733 // We had better not have any symbols if we don't have a symbol table. 734 if (getNumberOfSymbols() != 0) { 735 EC = object_error::parse_failed; 736 return; 737 } 738 } 739 740 // Initialize the pointer to the beginning of the import table. 741 if ((EC = initImportTablePtr())) 742 return; 743 if ((EC = initDelayImportTablePtr())) 744 return; 745 746 // Initialize the pointer to the export table. 747 if ((EC = initExportTablePtr())) 748 return; 749 750 // Initialize the pointer to the base relocation table. 751 if ((EC = initBaseRelocPtr())) 752 return; 753 754 // Initialize the pointer to the export table. 755 if ((EC = initDebugDirectoryPtr())) 756 return; 757 758 EC = std::error_code(); 759 } 760 761 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 762 DataRefImpl Ret; 763 Ret.p = getSymbolTable(); 764 return basic_symbol_iterator(SymbolRef(Ret, this)); 765 } 766 767 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 768 // The symbol table ends where the string table begins. 769 DataRefImpl Ret; 770 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 771 return basic_symbol_iterator(SymbolRef(Ret, this)); 772 } 773 774 import_directory_iterator COFFObjectFile::import_directory_begin() const { 775 if (!ImportDirectory) 776 return import_directory_end(); 777 if (ImportDirectory->isNull()) 778 return import_directory_end(); 779 return import_directory_iterator( 780 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 781 } 782 783 import_directory_iterator COFFObjectFile::import_directory_end() const { 784 return import_directory_iterator( 785 ImportDirectoryEntryRef(nullptr, -1, this)); 786 } 787 788 delay_import_directory_iterator 789 COFFObjectFile::delay_import_directory_begin() const { 790 return delay_import_directory_iterator( 791 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 792 } 793 794 delay_import_directory_iterator 795 COFFObjectFile::delay_import_directory_end() const { 796 return delay_import_directory_iterator( 797 DelayImportDirectoryEntryRef( 798 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 799 } 800 801 export_directory_iterator COFFObjectFile::export_directory_begin() const { 802 return export_directory_iterator( 803 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 804 } 805 806 export_directory_iterator COFFObjectFile::export_directory_end() const { 807 if (!ExportDirectory) 808 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 809 ExportDirectoryEntryRef Ref(ExportDirectory, 810 ExportDirectory->AddressTableEntries, this); 811 return export_directory_iterator(Ref); 812 } 813 814 section_iterator COFFObjectFile::section_begin() const { 815 DataRefImpl Ret; 816 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 817 return section_iterator(SectionRef(Ret, this)); 818 } 819 820 section_iterator COFFObjectFile::section_end() const { 821 DataRefImpl Ret; 822 int NumSections = 823 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 824 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 825 return section_iterator(SectionRef(Ret, this)); 826 } 827 828 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 829 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 830 } 831 832 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 833 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 834 } 835 836 uint8_t COFFObjectFile::getBytesInAddress() const { 837 return getArch() == Triple::x86_64 ? 8 : 4; 838 } 839 840 StringRef COFFObjectFile::getFileFormatName() const { 841 switch(getMachine()) { 842 case COFF::IMAGE_FILE_MACHINE_I386: 843 return "COFF-i386"; 844 case COFF::IMAGE_FILE_MACHINE_AMD64: 845 return "COFF-x86-64"; 846 case COFF::IMAGE_FILE_MACHINE_ARMNT: 847 return "COFF-ARM"; 848 case COFF::IMAGE_FILE_MACHINE_ARM64: 849 return "COFF-ARM64"; 850 default: 851 return "COFF-<unknown arch>"; 852 } 853 } 854 855 unsigned COFFObjectFile::getArch() const { 856 switch (getMachine()) { 857 case COFF::IMAGE_FILE_MACHINE_I386: 858 return Triple::x86; 859 case COFF::IMAGE_FILE_MACHINE_AMD64: 860 return Triple::x86_64; 861 case COFF::IMAGE_FILE_MACHINE_ARMNT: 862 return Triple::thumb; 863 case COFF::IMAGE_FILE_MACHINE_ARM64: 864 return Triple::aarch64; 865 default: 866 return Triple::UnknownArch; 867 } 868 } 869 870 iterator_range<import_directory_iterator> 871 COFFObjectFile::import_directories() const { 872 return make_range(import_directory_begin(), import_directory_end()); 873 } 874 875 iterator_range<delay_import_directory_iterator> 876 COFFObjectFile::delay_import_directories() const { 877 return make_range(delay_import_directory_begin(), 878 delay_import_directory_end()); 879 } 880 881 iterator_range<export_directory_iterator> 882 COFFObjectFile::export_directories() const { 883 return make_range(export_directory_begin(), export_directory_end()); 884 } 885 886 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 887 return make_range(base_reloc_begin(), base_reloc_end()); 888 } 889 890 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 891 Res = PE32Header; 892 return std::error_code(); 893 } 894 895 std::error_code 896 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 897 Res = PE32PlusHeader; 898 return std::error_code(); 899 } 900 901 std::error_code 902 COFFObjectFile::getDataDirectory(uint32_t Index, 903 const data_directory *&Res) const { 904 // Error if if there's no data directory or the index is out of range. 905 if (!DataDirectory) { 906 Res = nullptr; 907 return object_error::parse_failed; 908 } 909 assert(PE32Header || PE32PlusHeader); 910 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 911 : PE32PlusHeader->NumberOfRvaAndSize; 912 if (Index >= NumEnt) { 913 Res = nullptr; 914 return object_error::parse_failed; 915 } 916 Res = &DataDirectory[Index]; 917 return std::error_code(); 918 } 919 920 std::error_code COFFObjectFile::getSection(int32_t Index, 921 const coff_section *&Result) const { 922 Result = nullptr; 923 if (COFF::isReservedSectionNumber(Index)) 924 return std::error_code(); 925 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 926 // We already verified the section table data, so no need to check again. 927 Result = SectionTable + (Index - 1); 928 return std::error_code(); 929 } 930 return object_error::parse_failed; 931 } 932 933 std::error_code COFFObjectFile::getString(uint32_t Offset, 934 StringRef &Result) const { 935 if (StringTableSize <= 4) 936 // Tried to get a string from an empty string table. 937 return object_error::parse_failed; 938 if (Offset >= StringTableSize) 939 return object_error::unexpected_eof; 940 Result = StringRef(StringTable + Offset); 941 return std::error_code(); 942 } 943 944 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 945 StringRef &Res) const { 946 return getSymbolName(Symbol.getGeneric(), Res); 947 } 948 949 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol, 950 StringRef &Res) const { 951 // Check for string table entry. First 4 bytes are 0. 952 if (Symbol->Name.Offset.Zeroes == 0) { 953 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res)) 954 return EC; 955 return std::error_code(); 956 } 957 958 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 959 // Null terminated, let ::strlen figure out the length. 960 Res = StringRef(Symbol->Name.ShortName); 961 else 962 // Not null terminated, use all 8 bytes. 963 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize); 964 return std::error_code(); 965 } 966 967 ArrayRef<uint8_t> 968 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 969 const uint8_t *Aux = nullptr; 970 971 size_t SymbolSize = getSymbolTableEntrySize(); 972 if (Symbol.getNumberOfAuxSymbols() > 0) { 973 // AUX data comes immediately after the symbol in COFF 974 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 975 # ifndef NDEBUG 976 // Verify that the Aux symbol points to a valid entry in the symbol table. 977 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 978 if (Offset < getPointerToSymbolTable() || 979 Offset >= 980 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 981 report_fatal_error("Aux Symbol data was outside of symbol table."); 982 983 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 984 "Aux Symbol data did not point to the beginning of a symbol"); 985 # endif 986 } 987 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 988 } 989 990 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 991 StringRef &Res) const { 992 StringRef Name; 993 if (Sec->Name[COFF::NameSize - 1] == 0) 994 // Null terminated, let ::strlen figure out the length. 995 Name = Sec->Name; 996 else 997 // Not null terminated, use all 8 bytes. 998 Name = StringRef(Sec->Name, COFF::NameSize); 999 1000 // Check for string table entry. First byte is '/'. 1001 if (Name.startswith("/")) { 1002 uint32_t Offset; 1003 if (Name.startswith("//")) { 1004 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1005 return object_error::parse_failed; 1006 } else { 1007 if (Name.substr(1).getAsInteger(10, Offset)) 1008 return object_error::parse_failed; 1009 } 1010 if (std::error_code EC = getString(Offset, Name)) 1011 return EC; 1012 } 1013 1014 Res = Name; 1015 return std::error_code(); 1016 } 1017 1018 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1019 // SizeOfRawData and VirtualSize change what they represent depending on 1020 // whether or not we have an executable image. 1021 // 1022 // For object files, SizeOfRawData contains the size of section's data; 1023 // VirtualSize should be zero but isn't due to buggy COFF writers. 1024 // 1025 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1026 // actual section size is in VirtualSize. It is possible for VirtualSize to 1027 // be greater than SizeOfRawData; the contents past that point should be 1028 // considered to be zero. 1029 if (getDOSHeader()) 1030 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1031 return Sec->SizeOfRawData; 1032 } 1033 1034 std::error_code 1035 COFFObjectFile::getSectionContents(const coff_section *Sec, 1036 ArrayRef<uint8_t> &Res) const { 1037 // In COFF, a virtual section won't have any in-file 1038 // content, so the file pointer to the content will be zero. 1039 if (Sec->PointerToRawData == 0) 1040 return object_error::parse_failed; 1041 // The only thing that we need to verify is that the contents is contained 1042 // within the file bounds. We don't need to make sure it doesn't cover other 1043 // data, as there's nothing that says that is not allowed. 1044 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 1045 uint32_t SectionSize = getSectionSize(Sec); 1046 if (checkOffset(Data, ConStart, SectionSize)) 1047 return object_error::parse_failed; 1048 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1049 return std::error_code(); 1050 } 1051 1052 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1053 return reinterpret_cast<const coff_relocation*>(Rel.p); 1054 } 1055 1056 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1057 Rel.p = reinterpret_cast<uintptr_t>( 1058 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1059 } 1060 1061 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1062 const coff_relocation *R = toRel(Rel); 1063 return R->VirtualAddress; 1064 } 1065 1066 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1067 const coff_relocation *R = toRel(Rel); 1068 DataRefImpl Ref; 1069 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1070 return symbol_end(); 1071 if (SymbolTable16) 1072 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1073 else if (SymbolTable32) 1074 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1075 else 1076 llvm_unreachable("no symbol table pointer!"); 1077 return symbol_iterator(SymbolRef(Ref, this)); 1078 } 1079 1080 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1081 const coff_relocation* R = toRel(Rel); 1082 return R->Type; 1083 } 1084 1085 const coff_section * 1086 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1087 return toSec(Section.getRawDataRefImpl()); 1088 } 1089 1090 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1091 if (SymbolTable16) 1092 return toSymb<coff_symbol16>(Ref); 1093 if (SymbolTable32) 1094 return toSymb<coff_symbol32>(Ref); 1095 llvm_unreachable("no symbol table pointer!"); 1096 } 1097 1098 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1099 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1100 } 1101 1102 const coff_relocation * 1103 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1104 return toRel(Reloc.getRawDataRefImpl()); 1105 } 1106 1107 iterator_range<const coff_relocation *> 1108 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1109 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 1110 const coff_relocation *E = I; 1111 if (I) 1112 E += getNumberOfRelocations(Sec, Data, base()); 1113 return make_range(I, E); 1114 } 1115 1116 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1117 case COFF::reloc_type: \ 1118 Res = #reloc_type; \ 1119 break; 1120 1121 void COFFObjectFile::getRelocationTypeName( 1122 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1123 const coff_relocation *Reloc = toRel(Rel); 1124 StringRef Res; 1125 switch (getMachine()) { 1126 case COFF::IMAGE_FILE_MACHINE_AMD64: 1127 switch (Reloc->Type) { 1128 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1129 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1130 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1131 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1132 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1133 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1134 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1135 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1136 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1137 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1138 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1139 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1140 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1141 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1142 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1143 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1144 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1145 default: 1146 Res = "Unknown"; 1147 } 1148 break; 1149 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1150 switch (Reloc->Type) { 1151 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1152 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1153 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1154 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1155 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1156 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1157 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1158 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1159 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1160 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1161 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1162 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1163 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1164 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1165 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1166 default: 1167 Res = "Unknown"; 1168 } 1169 break; 1170 case COFF::IMAGE_FILE_MACHINE_I386: 1171 switch (Reloc->Type) { 1172 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1173 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1174 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1175 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1176 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1177 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1178 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1179 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1180 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1181 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1182 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1183 default: 1184 Res = "Unknown"; 1185 } 1186 break; 1187 default: 1188 Res = "Unknown"; 1189 } 1190 Result.append(Res.begin(), Res.end()); 1191 } 1192 1193 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1194 1195 bool COFFObjectFile::isRelocatableObject() const { 1196 return !DataDirectory; 1197 } 1198 1199 bool ImportDirectoryEntryRef:: 1200 operator==(const ImportDirectoryEntryRef &Other) const { 1201 return ImportTable == Other.ImportTable && Index == Other.Index; 1202 } 1203 1204 void ImportDirectoryEntryRef::moveNext() { 1205 ++Index; 1206 if (ImportTable[Index].isNull()) { 1207 Index = -1; 1208 ImportTable = nullptr; 1209 } 1210 } 1211 1212 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1213 const coff_import_directory_table_entry *&Result) const { 1214 return getObject(Result, OwningObject->Data, ImportTable + Index); 1215 } 1216 1217 static imported_symbol_iterator 1218 makeImportedSymbolIterator(const COFFObjectFile *Object, 1219 uintptr_t Ptr, int Index) { 1220 if (Object->getBytesInAddress() == 4) { 1221 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1222 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1223 } 1224 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1225 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1226 } 1227 1228 static imported_symbol_iterator 1229 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1230 uintptr_t IntPtr = 0; 1231 Object->getRvaPtr(RVA, IntPtr); 1232 return makeImportedSymbolIterator(Object, IntPtr, 0); 1233 } 1234 1235 static imported_symbol_iterator 1236 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1237 uintptr_t IntPtr = 0; 1238 Object->getRvaPtr(RVA, IntPtr); 1239 // Forward the pointer to the last entry which is null. 1240 int Index = 0; 1241 if (Object->getBytesInAddress() == 4) { 1242 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1243 while (*Entry++) 1244 ++Index; 1245 } else { 1246 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1247 while (*Entry++) 1248 ++Index; 1249 } 1250 return makeImportedSymbolIterator(Object, IntPtr, Index); 1251 } 1252 1253 imported_symbol_iterator 1254 ImportDirectoryEntryRef::imported_symbol_begin() const { 1255 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1256 OwningObject); 1257 } 1258 1259 imported_symbol_iterator 1260 ImportDirectoryEntryRef::imported_symbol_end() const { 1261 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1262 OwningObject); 1263 } 1264 1265 iterator_range<imported_symbol_iterator> 1266 ImportDirectoryEntryRef::imported_symbols() const { 1267 return make_range(imported_symbol_begin(), imported_symbol_end()); 1268 } 1269 1270 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1271 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1272 OwningObject); 1273 } 1274 1275 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1276 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1277 OwningObject); 1278 } 1279 1280 iterator_range<imported_symbol_iterator> 1281 ImportDirectoryEntryRef::lookup_table_symbols() const { 1282 return make_range(lookup_table_begin(), lookup_table_end()); 1283 } 1284 1285 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1286 uintptr_t IntPtr = 0; 1287 if (std::error_code EC = 1288 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1289 return EC; 1290 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1291 return std::error_code(); 1292 } 1293 1294 std::error_code 1295 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1296 Result = ImportTable[Index].ImportLookupTableRVA; 1297 return std::error_code(); 1298 } 1299 1300 std::error_code 1301 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1302 Result = ImportTable[Index].ImportAddressTableRVA; 1303 return std::error_code(); 1304 } 1305 1306 bool DelayImportDirectoryEntryRef:: 1307 operator==(const DelayImportDirectoryEntryRef &Other) const { 1308 return Table == Other.Table && Index == Other.Index; 1309 } 1310 1311 void DelayImportDirectoryEntryRef::moveNext() { 1312 ++Index; 1313 } 1314 1315 imported_symbol_iterator 1316 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1317 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1318 OwningObject); 1319 } 1320 1321 imported_symbol_iterator 1322 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1323 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1324 OwningObject); 1325 } 1326 1327 iterator_range<imported_symbol_iterator> 1328 DelayImportDirectoryEntryRef::imported_symbols() const { 1329 return make_range(imported_symbol_begin(), imported_symbol_end()); 1330 } 1331 1332 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1333 uintptr_t IntPtr = 0; 1334 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1335 return EC; 1336 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1337 return std::error_code(); 1338 } 1339 1340 std::error_code DelayImportDirectoryEntryRef:: 1341 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1342 Result = Table; 1343 return std::error_code(); 1344 } 1345 1346 std::error_code DelayImportDirectoryEntryRef:: 1347 getImportAddress(int AddrIndex, uint64_t &Result) const { 1348 uint32_t RVA = Table[Index].DelayImportAddressTable + 1349 AddrIndex * (OwningObject->is64() ? 8 : 4); 1350 uintptr_t IntPtr = 0; 1351 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1352 return EC; 1353 if (OwningObject->is64()) 1354 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1355 else 1356 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1357 return std::error_code(); 1358 } 1359 1360 bool ExportDirectoryEntryRef:: 1361 operator==(const ExportDirectoryEntryRef &Other) const { 1362 return ExportTable == Other.ExportTable && Index == Other.Index; 1363 } 1364 1365 void ExportDirectoryEntryRef::moveNext() { 1366 ++Index; 1367 } 1368 1369 // Returns the name of the current export symbol. If the symbol is exported only 1370 // by ordinal, the empty string is set as a result. 1371 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1372 uintptr_t IntPtr = 0; 1373 if (std::error_code EC = 1374 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1375 return EC; 1376 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1377 return std::error_code(); 1378 } 1379 1380 // Returns the starting ordinal number. 1381 std::error_code 1382 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1383 Result = ExportTable->OrdinalBase; 1384 return std::error_code(); 1385 } 1386 1387 // Returns the export ordinal of the current export symbol. 1388 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1389 Result = ExportTable->OrdinalBase + Index; 1390 return std::error_code(); 1391 } 1392 1393 // Returns the address of the current export symbol. 1394 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1395 uintptr_t IntPtr = 0; 1396 if (std::error_code EC = 1397 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1398 return EC; 1399 const export_address_table_entry *entry = 1400 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1401 Result = entry[Index].ExportRVA; 1402 return std::error_code(); 1403 } 1404 1405 // Returns the name of the current export symbol. If the symbol is exported only 1406 // by ordinal, the empty string is set as a result. 1407 std::error_code 1408 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1409 uintptr_t IntPtr = 0; 1410 if (std::error_code EC = 1411 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1412 return EC; 1413 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1414 1415 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1416 int Offset = 0; 1417 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1418 I < E; ++I, ++Offset) { 1419 if (*I != Index) 1420 continue; 1421 if (std::error_code EC = 1422 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1423 return EC; 1424 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1425 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1426 return EC; 1427 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1428 return std::error_code(); 1429 } 1430 Result = ""; 1431 return std::error_code(); 1432 } 1433 1434 std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1435 const data_directory *DataEntry; 1436 if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 1437 return EC; 1438 uint32_t RVA; 1439 if (auto EC = getExportRVA(RVA)) 1440 return EC; 1441 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1442 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1443 Result = (Begin <= RVA && RVA < End); 1444 return std::error_code(); 1445 } 1446 1447 std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1448 uint32_t RVA; 1449 if (auto EC = getExportRVA(RVA)) 1450 return EC; 1451 uintptr_t IntPtr = 0; 1452 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1453 return EC; 1454 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1455 return std::error_code(); 1456 } 1457 1458 bool ImportedSymbolRef:: 1459 operator==(const ImportedSymbolRef &Other) const { 1460 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1461 && Index == Other.Index; 1462 } 1463 1464 void ImportedSymbolRef::moveNext() { 1465 ++Index; 1466 } 1467 1468 std::error_code 1469 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1470 uint32_t RVA; 1471 if (Entry32) { 1472 // If a symbol is imported only by ordinal, it has no name. 1473 if (Entry32[Index].isOrdinal()) 1474 return std::error_code(); 1475 RVA = Entry32[Index].getHintNameRVA(); 1476 } else { 1477 if (Entry64[Index].isOrdinal()) 1478 return std::error_code(); 1479 RVA = Entry64[Index].getHintNameRVA(); 1480 } 1481 uintptr_t IntPtr = 0; 1482 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1483 return EC; 1484 // +2 because the first two bytes is hint. 1485 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1486 return std::error_code(); 1487 } 1488 1489 std::error_code ImportedSymbolRef::isOrdinal(bool &Result) const { 1490 if (Entry32) 1491 Result = Entry32[Index].isOrdinal(); 1492 else 1493 Result = Entry64[Index].isOrdinal(); 1494 return std::error_code(); 1495 } 1496 1497 std::error_code ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1498 if (Entry32) 1499 Result = Entry32[Index].getHintNameRVA(); 1500 else 1501 Result = Entry64[Index].getHintNameRVA(); 1502 return std::error_code(); 1503 } 1504 1505 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1506 uint32_t RVA; 1507 if (Entry32) { 1508 if (Entry32[Index].isOrdinal()) { 1509 Result = Entry32[Index].getOrdinal(); 1510 return std::error_code(); 1511 } 1512 RVA = Entry32[Index].getHintNameRVA(); 1513 } else { 1514 if (Entry64[Index].isOrdinal()) { 1515 Result = Entry64[Index].getOrdinal(); 1516 return std::error_code(); 1517 } 1518 RVA = Entry64[Index].getHintNameRVA(); 1519 } 1520 uintptr_t IntPtr = 0; 1521 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1522 return EC; 1523 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1524 return std::error_code(); 1525 } 1526 1527 ErrorOr<std::unique_ptr<COFFObjectFile>> 1528 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1529 std::error_code EC; 1530 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1531 if (EC) 1532 return EC; 1533 return std::move(Ret); 1534 } 1535 1536 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1537 return Header == Other.Header && Index == Other.Index; 1538 } 1539 1540 void BaseRelocRef::moveNext() { 1541 // Header->BlockSize is the size of the current block, including the 1542 // size of the header itself. 1543 uint32_t Size = sizeof(*Header) + 1544 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1545 if (Size == Header->BlockSize) { 1546 // .reloc contains a list of base relocation blocks. Each block 1547 // consists of the header followed by entries. The header contains 1548 // how many entories will follow. When we reach the end of the 1549 // current block, proceed to the next block. 1550 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1551 reinterpret_cast<const uint8_t *>(Header) + Size); 1552 Index = 0; 1553 } else { 1554 ++Index; 1555 } 1556 } 1557 1558 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1559 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1560 Type = Entry[Index].getType(); 1561 return std::error_code(); 1562 } 1563 1564 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1565 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1566 Result = Header->PageRVA + Entry[Index].getOffset(); 1567 return std::error_code(); 1568 } 1569