1 //===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements XCOFF object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/BinaryFormat/XCOFF.h" 14 #include "llvm/MC/MCAsmBackend.h" 15 #include "llvm/MC/MCAsmLayout.h" 16 #include "llvm/MC/MCAssembler.h" 17 #include "llvm/MC/MCFixup.h" 18 #include "llvm/MC/MCFixupKindInfo.h" 19 #include "llvm/MC/MCObjectWriter.h" 20 #include "llvm/MC/MCSectionXCOFF.h" 21 #include "llvm/MC/MCSymbolXCOFF.h" 22 #include "llvm/MC/MCValue.h" 23 #include "llvm/MC/MCXCOFFObjectWriter.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Support/Casting.h" 26 #include "llvm/Support/EndianStream.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 30 #include <deque> 31 #include <map> 32 33 using namespace llvm; 34 35 // An XCOFF object file has a limited set of predefined sections. The most 36 // important ones for us (right now) are: 37 // .text --> contains program code and read-only data. 38 // .data --> contains initialized data, function descriptors, and the TOC. 39 // .bss --> contains uninitialized data. 40 // Each of these sections is composed of 'Control Sections'. A Control Section 41 // is more commonly referred to as a csect. A csect is an indivisible unit of 42 // code or data, and acts as a container for symbols. A csect is mapped 43 // into a section based on its storage-mapping class, with the exception of 44 // XMC_RW which gets mapped to either .data or .bss based on whether it's 45 // explicitly initialized or not. 46 // 47 // We don't represent the sections in the MC layer as there is nothing 48 // interesting about them at at that level: they carry information that is 49 // only relevant to the ObjectWriter, so we materialize them in this class. 50 namespace { 51 52 constexpr unsigned DefaultSectionAlign = 4; 53 constexpr int16_t MaxSectionIndex = INT16_MAX; 54 55 // Packs the csect's alignment and type into a byte. 56 uint8_t getEncodedType(const MCSectionXCOFF *); 57 58 struct XCOFFRelocation { 59 uint32_t SymbolTableIndex; 60 uint32_t FixupOffsetInCsect; 61 uint8_t SignAndSize; 62 uint8_t Type; 63 }; 64 65 // Wrapper around an MCSymbolXCOFF. 66 struct Symbol { 67 const MCSymbolXCOFF *const MCSym; 68 uint32_t SymbolTableIndex; 69 70 XCOFF::VisibilityType getVisibilityType() const { 71 return MCSym->getVisibilityType(); 72 } 73 74 XCOFF::StorageClass getStorageClass() const { 75 return MCSym->getStorageClass(); 76 } 77 StringRef getSymbolTableName() const { return MCSym->getSymbolTableName(); } 78 Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {} 79 }; 80 81 // Wrapper for an MCSectionXCOFF. 82 // It can be a Csect or debug section or DWARF section and so on. 83 struct XCOFFSection { 84 const MCSectionXCOFF *const MCSec; 85 uint32_t SymbolTableIndex; 86 uint64_t Address; 87 uint64_t Size; 88 89 SmallVector<Symbol, 1> Syms; 90 SmallVector<XCOFFRelocation, 1> Relocations; 91 StringRef getSymbolTableName() const { return MCSec->getSymbolTableName(); } 92 XCOFF::VisibilityType getVisibilityType() const { 93 return MCSec->getVisibilityType(); 94 } 95 XCOFFSection(const MCSectionXCOFF *MCSec) 96 : MCSec(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {} 97 }; 98 99 // Type to be used for a container representing a set of csects with 100 // (approximately) the same storage mapping class. For example all the csects 101 // with a storage mapping class of `xmc_pr` will get placed into the same 102 // container. 103 using CsectGroup = std::deque<XCOFFSection>; 104 using CsectGroups = std::deque<CsectGroup *>; 105 106 // The basic section entry defination. This Section represents a section entry 107 // in XCOFF section header table. 108 struct SectionEntry { 109 char Name[XCOFF::NameSize]; 110 // The physical/virtual address of the section. For an object file these 111 // values are equivalent, except for in the overflow section header, where 112 // the physical address specifies the number of relocation entries and the 113 // virtual address specifies the number of line number entries. 114 // TODO: Divide Address into PhysicalAddress and VirtualAddress when line 115 // number entries are supported. 116 uint64_t Address; 117 uint64_t Size; 118 uint64_t FileOffsetToData; 119 uint64_t FileOffsetToRelocations; 120 uint32_t RelocationCount; 121 int32_t Flags; 122 123 int16_t Index; 124 125 virtual uint64_t advanceFileOffset(const uint64_t MaxRawDataSize, 126 const uint64_t RawPointer) { 127 FileOffsetToData = RawPointer; 128 uint64_t NewPointer = RawPointer + Size; 129 if (NewPointer > MaxRawDataSize) 130 report_fatal_error("Section raw data overflowed this object file."); 131 return NewPointer; 132 } 133 134 // XCOFF has special section numbers for symbols: 135 // -2 Specifies N_DEBUG, a special symbolic debugging symbol. 136 // -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not 137 // relocatable. 138 // 0 Specifies N_UNDEF, an undefined external symbol. 139 // Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that 140 // hasn't been initialized. 141 static constexpr int16_t UninitializedIndex = 142 XCOFF::ReservedSectionNum::N_DEBUG - 1; 143 144 SectionEntry(StringRef N, int32_t Flags) 145 : Name(), Address(0), Size(0), FileOffsetToData(0), 146 FileOffsetToRelocations(0), RelocationCount(0), Flags(Flags), 147 Index(UninitializedIndex) { 148 assert(N.size() <= XCOFF::NameSize && "section name too long"); 149 memcpy(Name, N.data(), N.size()); 150 } 151 152 virtual void reset() { 153 Address = 0; 154 Size = 0; 155 FileOffsetToData = 0; 156 FileOffsetToRelocations = 0; 157 RelocationCount = 0; 158 Index = UninitializedIndex; 159 } 160 161 virtual ~SectionEntry() = default; 162 }; 163 164 // Represents the data related to a section excluding the csects that make up 165 // the raw data of the section. The csects are stored separately as not all 166 // sections contain csects, and some sections contain csects which are better 167 // stored separately, e.g. the .data section containing read-write, descriptor, 168 // TOCBase and TOC-entry csects. 169 struct CsectSectionEntry : public SectionEntry { 170 // Virtual sections do not need storage allocated in the object file. 171 const bool IsVirtual; 172 173 // This is a section containing csect groups. 174 CsectGroups Groups; 175 176 CsectSectionEntry(StringRef N, XCOFF::SectionTypeFlags Flags, bool IsVirtual, 177 CsectGroups Groups) 178 : SectionEntry(N, Flags), IsVirtual(IsVirtual), Groups(Groups) { 179 assert(N.size() <= XCOFF::NameSize && "section name too long"); 180 memcpy(Name, N.data(), N.size()); 181 } 182 183 void reset() override { 184 SectionEntry::reset(); 185 // Clear any csects we have stored. 186 for (auto *Group : Groups) 187 Group->clear(); 188 } 189 190 virtual ~CsectSectionEntry() = default; 191 }; 192 193 struct DwarfSectionEntry : public SectionEntry { 194 // For DWARF section entry. 195 std::unique_ptr<XCOFFSection> DwarfSect; 196 197 // For DWARF section, we must use real size in the section header. MemorySize 198 // is for the size the DWARF section occupies including paddings. 199 uint32_t MemorySize; 200 201 // TODO: Remove this override. Loadable sections (e.g., .text, .data) may need 202 // to be aligned. Other sections generally don't need any alignment, but if 203 // they're aligned, the RawPointer should be adjusted before writing the 204 // section. Then a dwarf-specific function wouldn't be needed. 205 uint64_t advanceFileOffset(const uint64_t MaxRawDataSize, 206 const uint64_t RawPointer) override { 207 FileOffsetToData = RawPointer; 208 uint64_t NewPointer = RawPointer + MemorySize; 209 assert(NewPointer <= MaxRawDataSize && 210 "Section raw data overflowed this object file."); 211 return NewPointer; 212 } 213 214 DwarfSectionEntry(StringRef N, int32_t Flags, 215 std::unique_ptr<XCOFFSection> Sect) 216 : SectionEntry(N, Flags | XCOFF::STYP_DWARF), DwarfSect(std::move(Sect)), 217 MemorySize(0) { 218 assert(DwarfSect->MCSec->isDwarfSect() && 219 "This should be a DWARF section!"); 220 assert(N.size() <= XCOFF::NameSize && "section name too long"); 221 memcpy(Name, N.data(), N.size()); 222 } 223 224 DwarfSectionEntry(DwarfSectionEntry &&s) = default; 225 226 virtual ~DwarfSectionEntry() = default; 227 }; 228 229 struct ExceptionTableEntry { 230 const MCSymbol *Trap; 231 uint64_t TrapAddress = ~0ul; 232 unsigned Lang; 233 unsigned Reason; 234 235 ExceptionTableEntry(const MCSymbol *Trap, unsigned Lang, unsigned Reason) 236 : Trap(Trap), Lang(Lang), Reason(Reason) {} 237 }; 238 239 struct ExceptionInfo { 240 const MCSymbol *FunctionSymbol; 241 unsigned FunctionSize; 242 std::vector<ExceptionTableEntry> Entries; 243 }; 244 245 struct ExceptionSectionEntry : public SectionEntry { 246 std::map<const StringRef, ExceptionInfo> ExceptionTable; 247 bool isDebugEnabled = false; 248 249 ExceptionSectionEntry(StringRef N, int32_t Flags) 250 : SectionEntry(N, Flags | XCOFF::STYP_EXCEPT) { 251 assert(N.size() <= XCOFF::NameSize && "Section too long."); 252 memcpy(Name, N.data(), N.size()); 253 } 254 255 virtual ~ExceptionSectionEntry() = default; 256 }; 257 258 struct CInfoSymInfo { 259 // Name of the C_INFO symbol associated with the section 260 std::string Name; 261 std::string Metadata; 262 // Offset into the start of the metadata in the section 263 uint64_t Offset; 264 265 CInfoSymInfo(std::string Name, std::string Metadata) 266 : Name(Name), Metadata(Metadata) {} 267 // Metadata needs to be padded out to an even word size. 268 uint32_t paddingSize() const { 269 return alignTo(Metadata.size(), sizeof(uint32_t)) - Metadata.size(); 270 }; 271 272 // Total size of the entry, including the 4 byte length 273 uint32_t size() const { 274 return Metadata.size() + paddingSize() + sizeof(uint32_t); 275 }; 276 }; 277 278 struct CInfoSymSectionEntry : public SectionEntry { 279 std::unique_ptr<CInfoSymInfo> Entry; 280 281 CInfoSymSectionEntry(StringRef N, int32_t Flags) : SectionEntry(N, Flags) {} 282 virtual ~CInfoSymSectionEntry() = default; 283 void addEntry(std::unique_ptr<CInfoSymInfo> NewEntry) { 284 Entry = std::move(NewEntry); 285 Entry->Offset = sizeof(uint32_t); 286 Size += Entry->size(); 287 } 288 void reset() override { 289 SectionEntry::reset(); 290 Entry.reset(); 291 } 292 }; 293 294 class XCOFFObjectWriter : public MCObjectWriter { 295 296 uint32_t SymbolTableEntryCount = 0; 297 uint64_t SymbolTableOffset = 0; 298 uint16_t SectionCount = 0; 299 uint32_t PaddingsBeforeDwarf = 0; 300 std::vector<std::pair<std::string, size_t>> FileNames; 301 bool HasVisibility = false; 302 303 support::endian::Writer W; 304 std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter; 305 StringTableBuilder Strings; 306 307 const uint64_t MaxRawDataSize = 308 TargetObjectWriter->is64Bit() ? UINT64_MAX : UINT32_MAX; 309 310 // Maps the MCSection representation to its corresponding XCOFFSection 311 // wrapper. Needed for finding the XCOFFSection to insert an MCSymbol into 312 // from its containing MCSectionXCOFF. 313 DenseMap<const MCSectionXCOFF *, XCOFFSection *> SectionMap; 314 315 // Maps the MCSymbol representation to its corrresponding symbol table index. 316 // Needed for relocation. 317 DenseMap<const MCSymbol *, uint32_t> SymbolIndexMap; 318 319 // CsectGroups. These store the csects which make up different parts of 320 // the sections. Should have one for each set of csects that get mapped into 321 // the same section and get handled in a 'similar' way. 322 CsectGroup UndefinedCsects; 323 CsectGroup ProgramCodeCsects; 324 CsectGroup ReadOnlyCsects; 325 CsectGroup DataCsects; 326 CsectGroup FuncDSCsects; 327 CsectGroup TOCCsects; 328 CsectGroup BSSCsects; 329 CsectGroup TDataCsects; 330 CsectGroup TBSSCsects; 331 332 // The Predefined sections. 333 CsectSectionEntry Text; 334 CsectSectionEntry Data; 335 CsectSectionEntry BSS; 336 CsectSectionEntry TData; 337 CsectSectionEntry TBSS; 338 339 // All the XCOFF sections, in the order they will appear in the section header 340 // table. 341 std::array<CsectSectionEntry *const, 5> Sections{ 342 {&Text, &Data, &BSS, &TData, &TBSS}}; 343 344 std::vector<DwarfSectionEntry> DwarfSections; 345 std::vector<SectionEntry> OverflowSections; 346 347 ExceptionSectionEntry ExceptionSection; 348 CInfoSymSectionEntry CInfoSymSection; 349 350 CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec); 351 352 void reset() override; 353 354 void executePostLayoutBinding(MCAssembler &) override; 355 356 void recordRelocation(MCAssembler &, const MCFragment *, const MCFixup &, 357 MCValue, uint64_t &) override; 358 359 uint64_t writeObject(MCAssembler &) override; 360 361 bool is64Bit() const { return TargetObjectWriter->is64Bit(); } 362 bool nameShouldBeInStringTable(const StringRef &); 363 void writeSymbolName(const StringRef &); 364 bool auxFileSymNameShouldBeInStringTable(const StringRef &); 365 void writeAuxFileSymName(const StringRef &); 366 367 void writeSymbolEntryForCsectMemberLabel(const Symbol &SymbolRef, 368 const XCOFFSection &CSectionRef, 369 int16_t SectionIndex, 370 uint64_t SymbolOffset); 371 void writeSymbolEntryForControlSection(const XCOFFSection &CSectionRef, 372 int16_t SectionIndex, 373 XCOFF::StorageClass StorageClass); 374 void writeSymbolEntryForDwarfSection(const XCOFFSection &DwarfSectionRef, 375 int16_t SectionIndex); 376 void writeFileHeader(); 377 void writeAuxFileHeader(); 378 void writeSectionHeader(const SectionEntry *Sec); 379 void writeSectionHeaderTable(); 380 void writeSections(const MCAssembler &Asm); 381 void writeSectionForControlSectionEntry(const MCAssembler &Asm, 382 const MCAsmLayout &Layout, 383 const CsectSectionEntry &CsectEntry, 384 uint64_t &CurrentAddressLocation); 385 void writeSectionForDwarfSectionEntry(const MCAssembler &Asm, 386 const MCAsmLayout &Layout, 387 const DwarfSectionEntry &DwarfEntry, 388 uint64_t &CurrentAddressLocation); 389 void writeSectionForExceptionSectionEntry( 390 const MCAssembler &Asm, const MCAsmLayout &Layout, 391 ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation); 392 void writeSectionForCInfoSymSectionEntry(const MCAssembler &Asm, 393 const MCAsmLayout &Layout, 394 CInfoSymSectionEntry &CInfoSymEntry, 395 uint64_t &CurrentAddressLocation); 396 void writeSymbolTable(MCAssembler &Asm); 397 void writeSymbolAuxFileEntry(StringRef &Name, uint8_t ftype); 398 void writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion, 399 uint64_t NumberOfRelocEnt = 0); 400 void writeSymbolAuxCsectEntry(uint64_t SectionOrLength, 401 uint8_t SymbolAlignmentAndType, 402 uint8_t StorageMappingClass); 403 void writeSymbolAuxFunctionEntry(uint32_t EntryOffset, uint32_t FunctionSize, 404 uint64_t LineNumberPointer, 405 uint32_t EndIndex); 406 void writeSymbolAuxExceptionEntry(uint64_t EntryOffset, uint32_t FunctionSize, 407 uint32_t EndIndex); 408 void writeSymbolEntry(StringRef SymbolName, uint64_t Value, 409 int16_t SectionNumber, uint16_t SymbolType, 410 uint8_t StorageClass, uint8_t NumberOfAuxEntries = 1); 411 void writeRelocations(); 412 void writeRelocation(XCOFFRelocation Reloc, const XCOFFSection &Section); 413 414 // Called after all the csects and symbols have been processed by 415 // `executePostLayoutBinding`, this function handles building up the majority 416 // of the structures in the object file representation. Namely: 417 // *) Calculates physical/virtual addresses, raw-pointer offsets, and section 418 // sizes. 419 // *) Assigns symbol table indices. 420 // *) Builds up the section header table by adding any non-empty sections to 421 // `Sections`. 422 void assignAddressesAndIndices(MCAssembler &Asm, const MCAsmLayout &); 423 // Called after relocations are recorded. 424 void finalizeSectionInfo(); 425 void finalizeRelocationInfo(SectionEntry *Sec, uint64_t RelCount); 426 void calcOffsetToRelocations(SectionEntry *Sec, uint64_t &RawPointer); 427 428 void addExceptionEntry(const MCSymbol *Symbol, const MCSymbol *Trap, 429 unsigned LanguageCode, unsigned ReasonCode, 430 unsigned FunctionSize, bool hasDebug) override; 431 bool hasExceptionSection() { 432 return !ExceptionSection.ExceptionTable.empty(); 433 } 434 unsigned getExceptionSectionSize(); 435 unsigned getExceptionOffset(const MCSymbol *Symbol); 436 437 void addCInfoSymEntry(StringRef Name, StringRef Metadata) override; 438 size_t auxiliaryHeaderSize() const { 439 // 64-bit object files have no auxiliary header. 440 return HasVisibility && !is64Bit() ? XCOFF::AuxFileHeaderSizeShort : 0; 441 } 442 443 public: 444 XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, 445 raw_pwrite_stream &OS); 446 447 void writeWord(uint64_t Word) { 448 is64Bit() ? W.write<uint64_t>(Word) : W.write<uint32_t>(Word); 449 } 450 }; 451 452 XCOFFObjectWriter::XCOFFObjectWriter( 453 std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS) 454 : W(OS, llvm::endianness::big), TargetObjectWriter(std::move(MOTW)), 455 Strings(StringTableBuilder::XCOFF), 456 Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false, 457 CsectGroups{&ProgramCodeCsects, &ReadOnlyCsects}), 458 Data(".data", XCOFF::STYP_DATA, /* IsVirtual */ false, 459 CsectGroups{&DataCsects, &FuncDSCsects, &TOCCsects}), 460 BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true, 461 CsectGroups{&BSSCsects}), 462 TData(".tdata", XCOFF::STYP_TDATA, /* IsVirtual */ false, 463 CsectGroups{&TDataCsects}), 464 TBSS(".tbss", XCOFF::STYP_TBSS, /* IsVirtual */ true, 465 CsectGroups{&TBSSCsects}), 466 ExceptionSection(".except", XCOFF::STYP_EXCEPT), 467 CInfoSymSection(".info", XCOFF::STYP_INFO) {} 468 469 void XCOFFObjectWriter::reset() { 470 // Clear the mappings we created. 471 SymbolIndexMap.clear(); 472 SectionMap.clear(); 473 474 UndefinedCsects.clear(); 475 // Reset any sections we have written to, and empty the section header table. 476 for (auto *Sec : Sections) 477 Sec->reset(); 478 for (auto &DwarfSec : DwarfSections) 479 DwarfSec.reset(); 480 for (auto &OverflowSec : OverflowSections) 481 OverflowSec.reset(); 482 ExceptionSection.reset(); 483 CInfoSymSection.reset(); 484 485 // Reset states in XCOFFObjectWriter. 486 SymbolTableEntryCount = 0; 487 SymbolTableOffset = 0; 488 SectionCount = 0; 489 PaddingsBeforeDwarf = 0; 490 Strings.clear(); 491 492 MCObjectWriter::reset(); 493 } 494 495 CsectGroup &XCOFFObjectWriter::getCsectGroup(const MCSectionXCOFF *MCSec) { 496 switch (MCSec->getMappingClass()) { 497 case XCOFF::XMC_PR: 498 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 499 "Only an initialized csect can contain program code."); 500 return ProgramCodeCsects; 501 case XCOFF::XMC_RO: 502 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 503 "Only an initialized csect can contain read only data."); 504 return ReadOnlyCsects; 505 case XCOFF::XMC_RW: 506 if (XCOFF::XTY_CM == MCSec->getCSectType()) 507 return BSSCsects; 508 509 if (XCOFF::XTY_SD == MCSec->getCSectType()) 510 return DataCsects; 511 512 report_fatal_error("Unhandled mapping of read-write csect to section."); 513 case XCOFF::XMC_DS: 514 return FuncDSCsects; 515 case XCOFF::XMC_BS: 516 assert(XCOFF::XTY_CM == MCSec->getCSectType() && 517 "Mapping invalid csect. CSECT with bss storage class must be " 518 "common type."); 519 return BSSCsects; 520 case XCOFF::XMC_TL: 521 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 522 "Mapping invalid csect. CSECT with tdata storage class must be " 523 "an initialized csect."); 524 return TDataCsects; 525 case XCOFF::XMC_UL: 526 assert(XCOFF::XTY_CM == MCSec->getCSectType() && 527 "Mapping invalid csect. CSECT with tbss storage class must be " 528 "an uninitialized csect."); 529 return TBSSCsects; 530 case XCOFF::XMC_TC0: 531 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 532 "Only an initialized csect can contain TOC-base."); 533 assert(TOCCsects.empty() && 534 "We should have only one TOC-base, and it should be the first csect " 535 "in this CsectGroup."); 536 return TOCCsects; 537 case XCOFF::XMC_TC: 538 case XCOFF::XMC_TE: 539 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 540 "A TOC symbol must be an initialized csect."); 541 assert(!TOCCsects.empty() && 542 "We should at least have a TOC-base in this CsectGroup."); 543 return TOCCsects; 544 case XCOFF::XMC_TD: 545 assert((XCOFF::XTY_SD == MCSec->getCSectType() || 546 XCOFF::XTY_CM == MCSec->getCSectType()) && 547 "Symbol type incompatible with toc-data."); 548 assert(!TOCCsects.empty() && 549 "We should at least have a TOC-base in this CsectGroup."); 550 return TOCCsects; 551 default: 552 report_fatal_error("Unhandled mapping of csect to section."); 553 } 554 } 555 556 static MCSectionXCOFF *getContainingCsect(const MCSymbolXCOFF *XSym) { 557 if (XSym->isDefined()) 558 return cast<MCSectionXCOFF>(XSym->getFragment()->getParent()); 559 return XSym->getRepresentedCsect(); 560 } 561 562 void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm) { 563 for (const auto &S : Asm) { 564 const auto *MCSec = cast<const MCSectionXCOFF>(&S); 565 assert(!SectionMap.contains(MCSec) && "Cannot add a section twice."); 566 567 // If the name does not fit in the storage provided in the symbol table 568 // entry, add it to the string table. 569 if (nameShouldBeInStringTable(MCSec->getSymbolTableName())) 570 Strings.add(MCSec->getSymbolTableName()); 571 if (MCSec->isCsect()) { 572 // A new control section. Its CsectSectionEntry should already be staticly 573 // generated as Text/Data/BSS/TDATA/TBSS. Add this section to the group of 574 // the CsectSectionEntry. 575 assert(XCOFF::XTY_ER != MCSec->getCSectType() && 576 "An undefined csect should not get registered."); 577 CsectGroup &Group = getCsectGroup(MCSec); 578 Group.emplace_back(MCSec); 579 SectionMap[MCSec] = &Group.back(); 580 } else if (MCSec->isDwarfSect()) { 581 // A new DwarfSectionEntry. 582 std::unique_ptr<XCOFFSection> DwarfSec = 583 std::make_unique<XCOFFSection>(MCSec); 584 SectionMap[MCSec] = DwarfSec.get(); 585 586 DwarfSectionEntry SecEntry(MCSec->getName(), 587 *MCSec->getDwarfSubtypeFlags(), 588 std::move(DwarfSec)); 589 DwarfSections.push_back(std::move(SecEntry)); 590 } else 591 llvm_unreachable("unsupport section type!"); 592 } 593 594 for (const MCSymbol &S : Asm.symbols()) { 595 // Nothing to do for temporary symbols. 596 if (S.isTemporary()) 597 continue; 598 599 const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S); 600 const MCSectionXCOFF *ContainingCsect = getContainingCsect(XSym); 601 602 if (XSym->getVisibilityType() != XCOFF::SYM_V_UNSPECIFIED) 603 HasVisibility = true; 604 605 if (ContainingCsect->getCSectType() == XCOFF::XTY_ER) { 606 // Handle undefined symbol. 607 UndefinedCsects.emplace_back(ContainingCsect); 608 SectionMap[ContainingCsect] = &UndefinedCsects.back(); 609 if (nameShouldBeInStringTable(ContainingCsect->getSymbolTableName())) 610 Strings.add(ContainingCsect->getSymbolTableName()); 611 continue; 612 } 613 614 // If the symbol is the csect itself, we don't need to put the symbol 615 // into csect's Syms. 616 if (XSym == ContainingCsect->getQualNameSymbol()) 617 continue; 618 619 // Only put a label into the symbol table when it is an external label. 620 if (!XSym->isExternal()) 621 continue; 622 623 assert(SectionMap.contains(ContainingCsect) && 624 "Expected containing csect to exist in map"); 625 XCOFFSection *Csect = SectionMap[ContainingCsect]; 626 // Lookup the containing csect and add the symbol to it. 627 assert(Csect->MCSec->isCsect() && "only csect is supported now!"); 628 Csect->Syms.emplace_back(XSym); 629 630 // If the name does not fit in the storage provided in the symbol table 631 // entry, add it to the string table. 632 if (nameShouldBeInStringTable(XSym->getSymbolTableName())) 633 Strings.add(XSym->getSymbolTableName()); 634 } 635 636 std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymSection.Entry; 637 if (CISI && nameShouldBeInStringTable(CISI->Name)) 638 Strings.add(CISI->Name); 639 640 FileNames = Asm.getFileNames(); 641 // Emit ".file" as the source file name when there is no file name. 642 if (FileNames.empty()) 643 FileNames.emplace_back(".file", 0); 644 for (const std::pair<std::string, size_t> &F : FileNames) { 645 if (auxFileSymNameShouldBeInStringTable(F.first)) 646 Strings.add(F.first); 647 } 648 649 // Always add ".file" to the symbol table. The actual file name will be in 650 // the AUX_FILE auxiliary entry. 651 if (nameShouldBeInStringTable(".file")) 652 Strings.add(".file"); 653 StringRef Vers = Asm.getCompilerVersion(); 654 if (auxFileSymNameShouldBeInStringTable(Vers)) 655 Strings.add(Vers); 656 657 Strings.finalize(); 658 assignAddressesAndIndices(Asm, *Asm.getLayout()); 659 } 660 661 void XCOFFObjectWriter::recordRelocation(MCAssembler &Asm, 662 const MCFragment *Fragment, 663 const MCFixup &Fixup, MCValue Target, 664 uint64_t &FixedValue) { 665 auto getIndex = [this](const MCSymbol *Sym, 666 const MCSectionXCOFF *ContainingCsect) { 667 // If we could not find the symbol directly in SymbolIndexMap, this symbol 668 // could either be a temporary symbol or an undefined symbol. In this case, 669 // we would need to have the relocation reference its csect instead. 670 return SymbolIndexMap.contains(Sym) 671 ? SymbolIndexMap[Sym] 672 : SymbolIndexMap[ContainingCsect->getQualNameSymbol()]; 673 }; 674 675 auto getVirtualAddress = 676 [this, &Asm](const MCSymbol *Sym, 677 const MCSectionXCOFF *ContainingSect) -> uint64_t { 678 // A DWARF section. 679 if (ContainingSect->isDwarfSect()) 680 return Asm.getSymbolOffset(*Sym); 681 682 // A csect. 683 if (!Sym->isDefined()) 684 return SectionMap[ContainingSect]->Address; 685 686 // A label. 687 assert(Sym->isDefined() && "not a valid object that has address!"); 688 return SectionMap[ContainingSect]->Address + Asm.getSymbolOffset(*Sym); 689 }; 690 691 const MCSymbol *const SymA = &Target.getSymA()->getSymbol(); 692 693 MCAsmBackend &Backend = Asm.getBackend(); 694 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 695 MCFixupKindInfo::FKF_IsPCRel; 696 697 uint8_t Type; 698 uint8_t SignAndSize; 699 std::tie(Type, SignAndSize) = 700 TargetObjectWriter->getRelocTypeAndSignSize(Target, Fixup, IsPCRel); 701 702 const MCSectionXCOFF *SymASec = getContainingCsect(cast<MCSymbolXCOFF>(SymA)); 703 assert(SectionMap.contains(SymASec) && 704 "Expected containing csect to exist in map."); 705 706 assert((Fixup.getOffset() <= 707 MaxRawDataSize - Asm.getFragmentOffset(*Fragment)) && 708 "Fragment offset + fixup offset is overflowed."); 709 uint32_t FixupOffsetInCsect = 710 Asm.getFragmentOffset(*Fragment) + Fixup.getOffset(); 711 712 const uint32_t Index = getIndex(SymA, SymASec); 713 if (Type == XCOFF::RelocationType::R_POS || 714 Type == XCOFF::RelocationType::R_TLS || 715 Type == XCOFF::RelocationType::R_TLS_LE || 716 Type == XCOFF::RelocationType::R_TLS_IE || 717 Type == XCOFF::RelocationType::R_TLS_LD) 718 // The FixedValue should be symbol's virtual address in this object file 719 // plus any constant value that we might get. 720 FixedValue = getVirtualAddress(SymA, SymASec) + Target.getConstant(); 721 else if (Type == XCOFF::RelocationType::R_TLSM) 722 // The FixedValue should always be zero since the region handle is only 723 // known at load time. 724 FixedValue = 0; 725 else if (Type == XCOFF::RelocationType::R_TOC || 726 Type == XCOFF::RelocationType::R_TOCL) { 727 // For non toc-data external symbols, R_TOC type relocation will relocate to 728 // data symbols that have XCOFF::XTY_SD type csect. For toc-data external 729 // symbols, R_TOC type relocation will relocate to data symbols that have 730 // XCOFF_ER type csect. For XCOFF_ER kind symbols, there will be no TOC 731 // entry for them, so the FixedValue should always be 0. 732 if (SymASec->getCSectType() == XCOFF::XTY_ER) { 733 FixedValue = 0; 734 } else { 735 // The FixedValue should be the TOC entry offset from the TOC-base plus 736 // any constant offset value. 737 int64_t TOCEntryOffset = SectionMap[SymASec]->Address - 738 TOCCsects.front().Address + Target.getConstant(); 739 // For small code model, if the TOCEntryOffset overflows the 16-bit value, 740 // we truncate it back down to 16 bits. The linker will be able to insert 741 // fix-up code when needed. 742 // For non toc-data symbols, we already did the truncation in 743 // PPCAsmPrinter.cpp through setting Target.getConstant() in the 744 // expression above by calling getTOCEntryLoadingExprForXCOFF for the 745 // various TOC PseudoOps. 746 // For toc-data symbols, we were not able to calculate the offset from 747 // the TOC in PPCAsmPrinter.cpp since the TOC has not been finalized at 748 // that point, so we are adjusting it here though 749 // llvm::SignExtend64<16>(TOCEntryOffset); 750 // TODO: Since the time that the handling for offsets over 16-bits was 751 // added in PPCAsmPrinter.cpp using getTOCEntryLoadingExprForXCOFF, the 752 // system assembler and linker have been updated to be able to handle the 753 // overflowing offsets, so we no longer need to keep 754 // getTOCEntryLoadingExprForXCOFF. 755 if (Type == XCOFF::RelocationType::R_TOC && !isInt<16>(TOCEntryOffset)) 756 TOCEntryOffset = llvm::SignExtend64<16>(TOCEntryOffset); 757 758 FixedValue = TOCEntryOffset; 759 } 760 } else if (Type == XCOFF::RelocationType::R_RBR) { 761 MCSectionXCOFF *ParentSec = cast<MCSectionXCOFF>(Fragment->getParent()); 762 assert((SymASec->getMappingClass() == XCOFF::XMC_PR && 763 ParentSec->getMappingClass() == XCOFF::XMC_PR) && 764 "Only XMC_PR csect may have the R_RBR relocation."); 765 766 // The address of the branch instruction should be the sum of section 767 // address, fragment offset and Fixup offset. 768 uint64_t BRInstrAddress = 769 SectionMap[ParentSec]->Address + FixupOffsetInCsect; 770 // The FixedValue should be the difference between symbol's virtual address 771 // and BR instr address plus any constant value. 772 FixedValue = getVirtualAddress(SymA, SymASec) - BRInstrAddress + 773 Target.getConstant(); 774 } else if (Type == XCOFF::RelocationType::R_REF) { 775 // The FixedValue and FixupOffsetInCsect should always be 0 since it 776 // specifies a nonrelocating reference. 777 FixedValue = 0; 778 FixupOffsetInCsect = 0; 779 } 780 781 XCOFFRelocation Reloc = {Index, FixupOffsetInCsect, SignAndSize, Type}; 782 MCSectionXCOFF *RelocationSec = cast<MCSectionXCOFF>(Fragment->getParent()); 783 assert(SectionMap.contains(RelocationSec) && 784 "Expected containing csect to exist in map."); 785 SectionMap[RelocationSec]->Relocations.push_back(Reloc); 786 787 if (!Target.getSymB()) 788 return; 789 790 const MCSymbol *const SymB = &Target.getSymB()->getSymbol(); 791 if (SymA == SymB) 792 report_fatal_error("relocation for opposite term is not yet supported"); 793 794 const MCSectionXCOFF *SymBSec = getContainingCsect(cast<MCSymbolXCOFF>(SymB)); 795 assert(SectionMap.contains(SymBSec) && 796 "Expected containing csect to exist in map."); 797 if (SymASec == SymBSec) 798 report_fatal_error( 799 "relocation for paired relocatable term is not yet supported"); 800 801 assert(Type == XCOFF::RelocationType::R_POS && 802 "SymA must be R_POS here if it's not opposite term or paired " 803 "relocatable term."); 804 const uint32_t IndexB = getIndex(SymB, SymBSec); 805 // SymB must be R_NEG here, given the general form of Target(MCValue) is 806 // "SymbolA - SymbolB + imm64". 807 const uint8_t TypeB = XCOFF::RelocationType::R_NEG; 808 XCOFFRelocation RelocB = {IndexB, FixupOffsetInCsect, SignAndSize, TypeB}; 809 SectionMap[RelocationSec]->Relocations.push_back(RelocB); 810 // We already folded "SymbolA + imm64" above when Type is R_POS for SymbolA, 811 // now we just need to fold "- SymbolB" here. 812 FixedValue -= getVirtualAddress(SymB, SymBSec); 813 } 814 815 void XCOFFObjectWriter::writeSections(const MCAssembler &Asm) { 816 auto &Layout = *Asm.getLayout(); 817 uint64_t CurrentAddressLocation = 0; 818 for (const auto *Section : Sections) 819 writeSectionForControlSectionEntry(Asm, Layout, *Section, 820 CurrentAddressLocation); 821 for (const auto &DwarfSection : DwarfSections) 822 writeSectionForDwarfSectionEntry(Asm, Layout, DwarfSection, 823 CurrentAddressLocation); 824 writeSectionForExceptionSectionEntry(Asm, Layout, ExceptionSection, 825 CurrentAddressLocation); 826 writeSectionForCInfoSymSectionEntry(Asm, Layout, CInfoSymSection, 827 CurrentAddressLocation); 828 } 829 830 uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm) { 831 // We always emit a timestamp of 0 for reproducibility, so ensure incremental 832 // linking is not enabled, in case, like with Windows COFF, such a timestamp 833 // is incompatible with incremental linking of XCOFF. 834 if (Asm.isIncrementalLinkerCompatible()) 835 report_fatal_error("Incremental linking not supported for XCOFF."); 836 837 finalizeSectionInfo(); 838 uint64_t StartOffset = W.OS.tell(); 839 840 writeFileHeader(); 841 writeAuxFileHeader(); 842 writeSectionHeaderTable(); 843 writeSections(Asm); 844 writeRelocations(); 845 writeSymbolTable(Asm); 846 // Write the string table. 847 Strings.write(W.OS); 848 849 return W.OS.tell() - StartOffset; 850 } 851 852 bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) { 853 return SymbolName.size() > XCOFF::NameSize || is64Bit(); 854 } 855 856 void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) { 857 // Magic, Offset or SymbolName. 858 if (nameShouldBeInStringTable(SymbolName)) { 859 W.write<int32_t>(0); 860 W.write<uint32_t>(Strings.getOffset(SymbolName)); 861 } else { 862 char Name[XCOFF::NameSize + 1]; 863 std::strncpy(Name, SymbolName.data(), XCOFF::NameSize); 864 ArrayRef<char> NameRef(Name, XCOFF::NameSize); 865 W.write(NameRef); 866 } 867 } 868 869 void XCOFFObjectWriter::writeSymbolEntry(StringRef SymbolName, uint64_t Value, 870 int16_t SectionNumber, 871 uint16_t SymbolType, 872 uint8_t StorageClass, 873 uint8_t NumberOfAuxEntries) { 874 if (is64Bit()) { 875 W.write<uint64_t>(Value); 876 W.write<uint32_t>(Strings.getOffset(SymbolName)); 877 } else { 878 writeSymbolName(SymbolName); 879 W.write<uint32_t>(Value); 880 } 881 W.write<int16_t>(SectionNumber); 882 W.write<uint16_t>(SymbolType); 883 W.write<uint8_t>(StorageClass); 884 W.write<uint8_t>(NumberOfAuxEntries); 885 } 886 887 void XCOFFObjectWriter::writeSymbolAuxCsectEntry(uint64_t SectionOrLength, 888 uint8_t SymbolAlignmentAndType, 889 uint8_t StorageMappingClass) { 890 W.write<uint32_t>(is64Bit() ? Lo_32(SectionOrLength) : SectionOrLength); 891 W.write<uint32_t>(0); // ParameterHashIndex 892 W.write<uint16_t>(0); // TypeChkSectNum 893 W.write<uint8_t>(SymbolAlignmentAndType); 894 W.write<uint8_t>(StorageMappingClass); 895 if (is64Bit()) { 896 W.write<uint32_t>(Hi_32(SectionOrLength)); 897 W.OS.write_zeros(1); // Reserved 898 W.write<uint8_t>(XCOFF::AUX_CSECT); 899 } else { 900 W.write<uint32_t>(0); // StabInfoIndex 901 W.write<uint16_t>(0); // StabSectNum 902 } 903 } 904 905 bool XCOFFObjectWriter::auxFileSymNameShouldBeInStringTable( 906 const StringRef &SymbolName) { 907 return SymbolName.size() > XCOFF::AuxFileEntNameSize; 908 } 909 910 void XCOFFObjectWriter::writeAuxFileSymName(const StringRef &SymbolName) { 911 // Magic, Offset or SymbolName. 912 if (auxFileSymNameShouldBeInStringTable(SymbolName)) { 913 W.write<int32_t>(0); 914 W.write<uint32_t>(Strings.getOffset(SymbolName)); 915 W.OS.write_zeros(XCOFF::FileNamePadSize); 916 } else { 917 char Name[XCOFF::AuxFileEntNameSize + 1]; 918 std::strncpy(Name, SymbolName.data(), XCOFF::AuxFileEntNameSize); 919 ArrayRef<char> NameRef(Name, XCOFF::AuxFileEntNameSize); 920 W.write(NameRef); 921 } 922 } 923 924 void XCOFFObjectWriter::writeSymbolAuxFileEntry(StringRef &Name, 925 uint8_t ftype) { 926 writeAuxFileSymName(Name); 927 W.write<uint8_t>(ftype); 928 W.OS.write_zeros(2); 929 if (is64Bit()) 930 W.write<uint8_t>(XCOFF::AUX_FILE); 931 else 932 W.OS.write_zeros(1); 933 } 934 935 void XCOFFObjectWriter::writeSymbolAuxDwarfEntry( 936 uint64_t LengthOfSectionPortion, uint64_t NumberOfRelocEnt) { 937 writeWord(LengthOfSectionPortion); 938 if (!is64Bit()) 939 W.OS.write_zeros(4); // Reserved 940 writeWord(NumberOfRelocEnt); 941 if (is64Bit()) { 942 W.OS.write_zeros(1); // Reserved 943 W.write<uint8_t>(XCOFF::AUX_SECT); 944 } else { 945 W.OS.write_zeros(6); // Reserved 946 } 947 } 948 949 void XCOFFObjectWriter::writeSymbolEntryForCsectMemberLabel( 950 const Symbol &SymbolRef, const XCOFFSection &CSectionRef, 951 int16_t SectionIndex, uint64_t SymbolOffset) { 952 assert(SymbolOffset <= MaxRawDataSize - CSectionRef.Address && 953 "Symbol address overflowed."); 954 955 auto Entry = ExceptionSection.ExceptionTable.find(SymbolRef.MCSym->getName()); 956 if (Entry != ExceptionSection.ExceptionTable.end()) { 957 writeSymbolEntry(SymbolRef.getSymbolTableName(), 958 CSectionRef.Address + SymbolOffset, SectionIndex, 959 // In the old version of the 32-bit XCOFF interpretation, 960 // symbols may require bit 10 (0x0020) to be set if the 961 // symbol is a function, otherwise the bit should be 0. 962 is64Bit() ? SymbolRef.getVisibilityType() 963 : SymbolRef.getVisibilityType() | 0x0020, 964 SymbolRef.getStorageClass(), 965 (is64Bit() && ExceptionSection.isDebugEnabled) ? 3 : 2); 966 if (is64Bit() && ExceptionSection.isDebugEnabled) { 967 // On 64 bit with debugging enabled, we have a csect, exception, and 968 // function auxilliary entries, so we must increment symbol index by 4. 969 writeSymbolAuxExceptionEntry( 970 ExceptionSection.FileOffsetToData + 971 getExceptionOffset(Entry->second.FunctionSymbol), 972 Entry->second.FunctionSize, 973 SymbolIndexMap[Entry->second.FunctionSymbol] + 4); 974 } 975 // For exception section entries, csect and function auxilliary entries 976 // must exist. On 64-bit there is also an exception auxilliary entry. 977 writeSymbolAuxFunctionEntry( 978 ExceptionSection.FileOffsetToData + 979 getExceptionOffset(Entry->second.FunctionSymbol), 980 Entry->second.FunctionSize, 0, 981 (is64Bit() && ExceptionSection.isDebugEnabled) 982 ? SymbolIndexMap[Entry->second.FunctionSymbol] + 4 983 : SymbolIndexMap[Entry->second.FunctionSymbol] + 3); 984 } else { 985 writeSymbolEntry(SymbolRef.getSymbolTableName(), 986 CSectionRef.Address + SymbolOffset, SectionIndex, 987 SymbolRef.getVisibilityType(), 988 SymbolRef.getStorageClass()); 989 } 990 writeSymbolAuxCsectEntry(CSectionRef.SymbolTableIndex, XCOFF::XTY_LD, 991 CSectionRef.MCSec->getMappingClass()); 992 } 993 994 void XCOFFObjectWriter::writeSymbolEntryForDwarfSection( 995 const XCOFFSection &DwarfSectionRef, int16_t SectionIndex) { 996 assert(DwarfSectionRef.MCSec->isDwarfSect() && "Not a DWARF section!"); 997 998 writeSymbolEntry(DwarfSectionRef.getSymbolTableName(), /*Value=*/0, 999 SectionIndex, /*SymbolType=*/0, XCOFF::C_DWARF); 1000 1001 writeSymbolAuxDwarfEntry(DwarfSectionRef.Size); 1002 } 1003 1004 void XCOFFObjectWriter::writeSymbolEntryForControlSection( 1005 const XCOFFSection &CSectionRef, int16_t SectionIndex, 1006 XCOFF::StorageClass StorageClass) { 1007 writeSymbolEntry(CSectionRef.getSymbolTableName(), CSectionRef.Address, 1008 SectionIndex, CSectionRef.getVisibilityType(), StorageClass); 1009 1010 writeSymbolAuxCsectEntry(CSectionRef.Size, getEncodedType(CSectionRef.MCSec), 1011 CSectionRef.MCSec->getMappingClass()); 1012 } 1013 1014 void XCOFFObjectWriter::writeSymbolAuxFunctionEntry(uint32_t EntryOffset, 1015 uint32_t FunctionSize, 1016 uint64_t LineNumberPointer, 1017 uint32_t EndIndex) { 1018 if (is64Bit()) 1019 writeWord(LineNumberPointer); 1020 else 1021 W.write<uint32_t>(EntryOffset); 1022 W.write<uint32_t>(FunctionSize); 1023 if (!is64Bit()) 1024 writeWord(LineNumberPointer); 1025 W.write<uint32_t>(EndIndex); 1026 if (is64Bit()) { 1027 W.OS.write_zeros(1); 1028 W.write<uint8_t>(XCOFF::AUX_FCN); 1029 } else { 1030 W.OS.write_zeros(2); 1031 } 1032 } 1033 1034 void XCOFFObjectWriter::writeSymbolAuxExceptionEntry(uint64_t EntryOffset, 1035 uint32_t FunctionSize, 1036 uint32_t EndIndex) { 1037 assert(is64Bit() && "Exception auxilliary entries are 64-bit only."); 1038 W.write<uint64_t>(EntryOffset); 1039 W.write<uint32_t>(FunctionSize); 1040 W.write<uint32_t>(EndIndex); 1041 W.OS.write_zeros(1); // Pad (unused) 1042 W.write<uint8_t>(XCOFF::AUX_EXCEPT); 1043 } 1044 1045 void XCOFFObjectWriter::writeFileHeader() { 1046 W.write<uint16_t>(is64Bit() ? XCOFF::XCOFF64 : XCOFF::XCOFF32); 1047 W.write<uint16_t>(SectionCount); 1048 W.write<int32_t>(0); // TimeStamp 1049 writeWord(SymbolTableOffset); 1050 if (is64Bit()) { 1051 W.write<uint16_t>(auxiliaryHeaderSize()); 1052 W.write<uint16_t>(0); // Flags 1053 W.write<int32_t>(SymbolTableEntryCount); 1054 } else { 1055 W.write<int32_t>(SymbolTableEntryCount); 1056 W.write<uint16_t>(auxiliaryHeaderSize()); 1057 W.write<uint16_t>(0); // Flags 1058 } 1059 } 1060 1061 void XCOFFObjectWriter::writeAuxFileHeader() { 1062 if (!auxiliaryHeaderSize()) 1063 return; 1064 W.write<uint16_t>(0); // Magic 1065 W.write<uint16_t>( 1066 XCOFF::NEW_XCOFF_INTERPRET); // Version. The new interpretation of the 1067 // n_type field in the symbol table entry is 1068 // used in XCOFF32. 1069 W.write<uint32_t>(Sections[0]->Size); // TextSize 1070 W.write<uint32_t>(Sections[1]->Size); // InitDataSize 1071 W.write<uint32_t>(Sections[2]->Size); // BssDataSize 1072 W.write<uint32_t>(0); // EntryPointAddr 1073 W.write<uint32_t>(Sections[0]->Address); // TextStartAddr 1074 W.write<uint32_t>(Sections[1]->Address); // DataStartAddr 1075 } 1076 1077 void XCOFFObjectWriter::writeSectionHeader(const SectionEntry *Sec) { 1078 bool IsDwarf = (Sec->Flags & XCOFF::STYP_DWARF) != 0; 1079 bool IsOvrflo = (Sec->Flags & XCOFF::STYP_OVRFLO) != 0; 1080 // Nothing to write for this Section. 1081 if (Sec->Index == SectionEntry::UninitializedIndex) 1082 return; 1083 1084 // Write Name. 1085 ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize); 1086 W.write(NameRef); 1087 1088 // Write the Physical Address and Virtual Address. 1089 // We use 0 for DWARF sections' Physical and Virtual Addresses. 1090 writeWord(IsDwarf ? 0 : Sec->Address); 1091 // Since line number is not supported, we set it to 0 for overflow sections. 1092 writeWord((IsDwarf || IsOvrflo) ? 0 : Sec->Address); 1093 1094 writeWord(Sec->Size); 1095 writeWord(Sec->FileOffsetToData); 1096 writeWord(Sec->FileOffsetToRelocations); 1097 writeWord(0); // FileOffsetToLineNumberInfo. Not supported yet. 1098 1099 if (is64Bit()) { 1100 W.write<uint32_t>(Sec->RelocationCount); 1101 W.write<uint32_t>(0); // NumberOfLineNumbers. Not supported yet. 1102 W.write<int32_t>(Sec->Flags); 1103 W.OS.write_zeros(4); 1104 } else { 1105 // For the overflow section header, s_nreloc provides a reference to the 1106 // primary section header and s_nlnno must have the same value. 1107 // For common section headers, if either of s_nreloc or s_nlnno are set to 1108 // 65535, the other one must also be set to 65535. 1109 W.write<uint16_t>(Sec->RelocationCount); 1110 W.write<uint16_t>((IsOvrflo || Sec->RelocationCount == XCOFF::RelocOverflow) 1111 ? Sec->RelocationCount 1112 : 0); // NumberOfLineNumbers. Not supported yet. 1113 W.write<int32_t>(Sec->Flags); 1114 } 1115 } 1116 1117 void XCOFFObjectWriter::writeSectionHeaderTable() { 1118 for (const auto *CsectSec : Sections) 1119 writeSectionHeader(CsectSec); 1120 for (const auto &DwarfSec : DwarfSections) 1121 writeSectionHeader(&DwarfSec); 1122 for (const auto &OverflowSec : OverflowSections) 1123 writeSectionHeader(&OverflowSec); 1124 if (hasExceptionSection()) 1125 writeSectionHeader(&ExceptionSection); 1126 if (CInfoSymSection.Entry) 1127 writeSectionHeader(&CInfoSymSection); 1128 } 1129 1130 void XCOFFObjectWriter::writeRelocation(XCOFFRelocation Reloc, 1131 const XCOFFSection &Section) { 1132 if (Section.MCSec->isCsect()) 1133 writeWord(Section.Address + Reloc.FixupOffsetInCsect); 1134 else { 1135 // DWARF sections' address is set to 0. 1136 assert(Section.MCSec->isDwarfSect() && "unsupport section type!"); 1137 writeWord(Reloc.FixupOffsetInCsect); 1138 } 1139 W.write<uint32_t>(Reloc.SymbolTableIndex); 1140 W.write<uint8_t>(Reloc.SignAndSize); 1141 W.write<uint8_t>(Reloc.Type); 1142 } 1143 1144 void XCOFFObjectWriter::writeRelocations() { 1145 for (const auto *Section : Sections) { 1146 if (Section->Index == SectionEntry::UninitializedIndex) 1147 // Nothing to write for this Section. 1148 continue; 1149 1150 for (const auto *Group : Section->Groups) { 1151 if (Group->empty()) 1152 continue; 1153 1154 for (const auto &Csect : *Group) { 1155 for (const auto Reloc : Csect.Relocations) 1156 writeRelocation(Reloc, Csect); 1157 } 1158 } 1159 } 1160 1161 for (const auto &DwarfSection : DwarfSections) 1162 for (const auto &Reloc : DwarfSection.DwarfSect->Relocations) 1163 writeRelocation(Reloc, *DwarfSection.DwarfSect); 1164 } 1165 1166 void XCOFFObjectWriter::writeSymbolTable(MCAssembler &Asm) { 1167 // Write C_FILE symbols. 1168 StringRef Vers = Asm.getCompilerVersion(); 1169 1170 for (const std::pair<std::string, size_t> &F : FileNames) { 1171 // The n_name of a C_FILE symbol is the source file's name when no auxiliary 1172 // entries are present. 1173 StringRef FileName = F.first; 1174 1175 // For C_FILE symbols, the Source Language ID overlays the high-order byte 1176 // of the SymbolType field, and the CPU Version ID is defined as the 1177 // low-order byte. 1178 // AIX's system assembler determines the source language ID based on the 1179 // source file's name suffix, and the behavior here is consistent with it. 1180 uint8_t LangID; 1181 if (FileName.ends_with(".c")) 1182 LangID = XCOFF::TB_C; 1183 else if (FileName.ends_with_insensitive(".f") || 1184 FileName.ends_with_insensitive(".f77") || 1185 FileName.ends_with_insensitive(".f90") || 1186 FileName.ends_with_insensitive(".f95") || 1187 FileName.ends_with_insensitive(".f03") || 1188 FileName.ends_with_insensitive(".f08")) 1189 LangID = XCOFF::TB_Fortran; 1190 else 1191 LangID = XCOFF::TB_CPLUSPLUS; 1192 uint8_t CpuID; 1193 if (is64Bit()) 1194 CpuID = XCOFF::TCPU_PPC64; 1195 else 1196 CpuID = XCOFF::TCPU_COM; 1197 1198 int NumberOfFileAuxEntries = 1; 1199 if (!Vers.empty()) 1200 ++NumberOfFileAuxEntries; 1201 writeSymbolEntry(".file", /*Value=*/0, XCOFF::ReservedSectionNum::N_DEBUG, 1202 /*SymbolType=*/(LangID << 8) | CpuID, XCOFF::C_FILE, 1203 NumberOfFileAuxEntries); 1204 writeSymbolAuxFileEntry(FileName, XCOFF::XFT_FN); 1205 if (!Vers.empty()) 1206 writeSymbolAuxFileEntry(Vers, XCOFF::XFT_CV); 1207 } 1208 1209 if (CInfoSymSection.Entry) 1210 writeSymbolEntry(CInfoSymSection.Entry->Name, CInfoSymSection.Entry->Offset, 1211 CInfoSymSection.Index, 1212 /*SymbolType=*/0, XCOFF::C_INFO, 1213 /*NumberOfAuxEntries=*/0); 1214 1215 for (const auto &Csect : UndefinedCsects) { 1216 writeSymbolEntryForControlSection(Csect, XCOFF::ReservedSectionNum::N_UNDEF, 1217 Csect.MCSec->getStorageClass()); 1218 } 1219 1220 for (const auto *Section : Sections) { 1221 if (Section->Index == SectionEntry::UninitializedIndex) 1222 // Nothing to write for this Section. 1223 continue; 1224 1225 for (const auto *Group : Section->Groups) { 1226 if (Group->empty()) 1227 continue; 1228 1229 const int16_t SectionIndex = Section->Index; 1230 for (const auto &Csect : *Group) { 1231 // Write out the control section first and then each symbol in it. 1232 writeSymbolEntryForControlSection(Csect, SectionIndex, 1233 Csect.MCSec->getStorageClass()); 1234 1235 for (const auto &Sym : Csect.Syms) 1236 writeSymbolEntryForCsectMemberLabel( 1237 Sym, Csect, SectionIndex, Asm.getSymbolOffset(*(Sym.MCSym))); 1238 } 1239 } 1240 } 1241 1242 for (const auto &DwarfSection : DwarfSections) 1243 writeSymbolEntryForDwarfSection(*DwarfSection.DwarfSect, 1244 DwarfSection.Index); 1245 } 1246 1247 void XCOFFObjectWriter::finalizeRelocationInfo(SectionEntry *Sec, 1248 uint64_t RelCount) { 1249 // Handles relocation field overflows in an XCOFF32 file. An XCOFF64 file 1250 // may not contain an overflow section header. 1251 if (!is64Bit() && (RelCount >= static_cast<uint32_t>(XCOFF::RelocOverflow))) { 1252 // Generate an overflow section header. 1253 SectionEntry SecEntry(".ovrflo", XCOFF::STYP_OVRFLO); 1254 1255 // This field specifies the file section number of the section header that 1256 // overflowed. 1257 SecEntry.RelocationCount = Sec->Index; 1258 1259 // This field specifies the number of relocation entries actually 1260 // required. 1261 SecEntry.Address = RelCount; 1262 SecEntry.Index = ++SectionCount; 1263 OverflowSections.push_back(std::move(SecEntry)); 1264 1265 // The field in the primary section header is always 65535 1266 // (XCOFF::RelocOverflow). 1267 Sec->RelocationCount = XCOFF::RelocOverflow; 1268 } else { 1269 Sec->RelocationCount = RelCount; 1270 } 1271 } 1272 1273 void XCOFFObjectWriter::calcOffsetToRelocations(SectionEntry *Sec, 1274 uint64_t &RawPointer) { 1275 if (!Sec->RelocationCount) 1276 return; 1277 1278 Sec->FileOffsetToRelocations = RawPointer; 1279 uint64_t RelocationSizeInSec = 0; 1280 if (!is64Bit() && 1281 Sec->RelocationCount == static_cast<uint32_t>(XCOFF::RelocOverflow)) { 1282 // Find its corresponding overflow section. 1283 for (auto &OverflowSec : OverflowSections) { 1284 if (OverflowSec.RelocationCount == static_cast<uint32_t>(Sec->Index)) { 1285 RelocationSizeInSec = 1286 OverflowSec.Address * XCOFF::RelocationSerializationSize32; 1287 1288 // This field must have the same values as in the corresponding 1289 // primary section header. 1290 OverflowSec.FileOffsetToRelocations = Sec->FileOffsetToRelocations; 1291 } 1292 } 1293 assert(RelocationSizeInSec && "Overflow section header doesn't exist."); 1294 } else { 1295 RelocationSizeInSec = Sec->RelocationCount * 1296 (is64Bit() ? XCOFF::RelocationSerializationSize64 1297 : XCOFF::RelocationSerializationSize32); 1298 } 1299 1300 RawPointer += RelocationSizeInSec; 1301 if (RawPointer > MaxRawDataSize) 1302 report_fatal_error("Relocation data overflowed this object file."); 1303 } 1304 1305 void XCOFFObjectWriter::finalizeSectionInfo() { 1306 for (auto *Section : Sections) { 1307 if (Section->Index == SectionEntry::UninitializedIndex) 1308 // Nothing to record for this Section. 1309 continue; 1310 1311 uint64_t RelCount = 0; 1312 for (const auto *Group : Section->Groups) { 1313 if (Group->empty()) 1314 continue; 1315 1316 for (auto &Csect : *Group) 1317 RelCount += Csect.Relocations.size(); 1318 } 1319 finalizeRelocationInfo(Section, RelCount); 1320 } 1321 1322 for (auto &DwarfSection : DwarfSections) 1323 finalizeRelocationInfo(&DwarfSection, 1324 DwarfSection.DwarfSect->Relocations.size()); 1325 1326 // Calculate the RawPointer value for all headers. 1327 uint64_t RawPointer = 1328 (is64Bit() ? (XCOFF::FileHeaderSize64 + 1329 SectionCount * XCOFF::SectionHeaderSize64) 1330 : (XCOFF::FileHeaderSize32 + 1331 SectionCount * XCOFF::SectionHeaderSize32)) + 1332 auxiliaryHeaderSize(); 1333 1334 // Calculate the file offset to the section data. 1335 for (auto *Sec : Sections) { 1336 if (Sec->Index == SectionEntry::UninitializedIndex || Sec->IsVirtual) 1337 continue; 1338 1339 RawPointer = Sec->advanceFileOffset(MaxRawDataSize, RawPointer); 1340 } 1341 1342 if (!DwarfSections.empty()) { 1343 RawPointer += PaddingsBeforeDwarf; 1344 for (auto &DwarfSection : DwarfSections) { 1345 RawPointer = DwarfSection.advanceFileOffset(MaxRawDataSize, RawPointer); 1346 } 1347 } 1348 1349 if (hasExceptionSection()) 1350 RawPointer = ExceptionSection.advanceFileOffset(MaxRawDataSize, RawPointer); 1351 1352 if (CInfoSymSection.Entry) 1353 RawPointer = CInfoSymSection.advanceFileOffset(MaxRawDataSize, RawPointer); 1354 1355 for (auto *Sec : Sections) { 1356 if (Sec->Index != SectionEntry::UninitializedIndex) 1357 calcOffsetToRelocations(Sec, RawPointer); 1358 } 1359 1360 for (auto &DwarfSec : DwarfSections) 1361 calcOffsetToRelocations(&DwarfSec, RawPointer); 1362 1363 // TODO Error check that the number of symbol table entries fits in 32-bits 1364 // signed ... 1365 if (SymbolTableEntryCount) 1366 SymbolTableOffset = RawPointer; 1367 } 1368 1369 void XCOFFObjectWriter::addExceptionEntry( 1370 const MCSymbol *Symbol, const MCSymbol *Trap, unsigned LanguageCode, 1371 unsigned ReasonCode, unsigned FunctionSize, bool hasDebug) { 1372 // If a module had debug info, debugging is enabled and XCOFF emits the 1373 // exception auxilliary entry. 1374 if (hasDebug) 1375 ExceptionSection.isDebugEnabled = true; 1376 auto Entry = ExceptionSection.ExceptionTable.find(Symbol->getName()); 1377 if (Entry != ExceptionSection.ExceptionTable.end()) { 1378 Entry->second.Entries.push_back( 1379 ExceptionTableEntry(Trap, LanguageCode, ReasonCode)); 1380 return; 1381 } 1382 ExceptionInfo NewEntry; 1383 NewEntry.FunctionSymbol = Symbol; 1384 NewEntry.FunctionSize = FunctionSize; 1385 NewEntry.Entries.push_back( 1386 ExceptionTableEntry(Trap, LanguageCode, ReasonCode)); 1387 ExceptionSection.ExceptionTable.insert( 1388 std::pair<const StringRef, ExceptionInfo>(Symbol->getName(), NewEntry)); 1389 } 1390 1391 unsigned XCOFFObjectWriter::getExceptionSectionSize() { 1392 unsigned EntryNum = 0; 1393 1394 for (auto it = ExceptionSection.ExceptionTable.begin(); 1395 it != ExceptionSection.ExceptionTable.end(); ++it) 1396 // The size() gets +1 to account for the initial entry containing the 1397 // symbol table index. 1398 EntryNum += it->second.Entries.size() + 1; 1399 1400 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64 1401 : XCOFF::ExceptionSectionEntrySize32); 1402 } 1403 1404 unsigned XCOFFObjectWriter::getExceptionOffset(const MCSymbol *Symbol) { 1405 unsigned EntryNum = 0; 1406 for (auto it = ExceptionSection.ExceptionTable.begin(); 1407 it != ExceptionSection.ExceptionTable.end(); ++it) { 1408 if (Symbol == it->second.FunctionSymbol) 1409 break; 1410 EntryNum += it->second.Entries.size() + 1; 1411 } 1412 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64 1413 : XCOFF::ExceptionSectionEntrySize32); 1414 } 1415 1416 void XCOFFObjectWriter::addCInfoSymEntry(StringRef Name, StringRef Metadata) { 1417 assert(!CInfoSymSection.Entry && "Multiple entries are not supported"); 1418 CInfoSymSection.addEntry( 1419 std::make_unique<CInfoSymInfo>(Name.str(), Metadata.str())); 1420 } 1421 1422 void XCOFFObjectWriter::assignAddressesAndIndices(MCAssembler &Asm, 1423 const MCAsmLayout &Layout) { 1424 // The symbol table starts with all the C_FILE symbols. Each C_FILE symbol 1425 // requires 1 or 2 auxiliary entries. 1426 uint32_t SymbolTableIndex = 1427 (2 + (Asm.getCompilerVersion().empty() ? 0 : 1)) * FileNames.size(); 1428 1429 if (CInfoSymSection.Entry) 1430 SymbolTableIndex++; 1431 1432 // Calculate indices for undefined symbols. 1433 for (auto &Csect : UndefinedCsects) { 1434 Csect.Size = 0; 1435 Csect.Address = 0; 1436 Csect.SymbolTableIndex = SymbolTableIndex; 1437 SymbolIndexMap[Csect.MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex; 1438 // 1 main and 1 auxiliary symbol table entry for each contained symbol. 1439 SymbolTableIndex += 2; 1440 } 1441 1442 // The address corrresponds to the address of sections and symbols in the 1443 // object file. We place the shared address 0 immediately after the 1444 // section header table. 1445 uint64_t Address = 0; 1446 // Section indices are 1-based in XCOFF. 1447 int32_t SectionIndex = 1; 1448 bool HasTDataSection = false; 1449 1450 for (auto *Section : Sections) { 1451 const bool IsEmpty = 1452 llvm::all_of(Section->Groups, 1453 [](const CsectGroup *Group) { return Group->empty(); }); 1454 if (IsEmpty) 1455 continue; 1456 1457 if (SectionIndex > MaxSectionIndex) 1458 report_fatal_error("Section index overflow!"); 1459 Section->Index = SectionIndex++; 1460 SectionCount++; 1461 1462 bool SectionAddressSet = false; 1463 // Reset the starting address to 0 for TData section. 1464 if (Section->Flags == XCOFF::STYP_TDATA) { 1465 Address = 0; 1466 HasTDataSection = true; 1467 } 1468 // Reset the starting address to 0 for TBSS section if the object file does 1469 // not contain TData Section. 1470 if ((Section->Flags == XCOFF::STYP_TBSS) && !HasTDataSection) 1471 Address = 0; 1472 1473 for (auto *Group : Section->Groups) { 1474 if (Group->empty()) 1475 continue; 1476 1477 for (auto &Csect : *Group) { 1478 const MCSectionXCOFF *MCSec = Csect.MCSec; 1479 Csect.Address = alignTo(Address, MCSec->getAlign()); 1480 Csect.Size = Asm.getSectionAddressSize(*MCSec); 1481 Address = Csect.Address + Csect.Size; 1482 Csect.SymbolTableIndex = SymbolTableIndex; 1483 SymbolIndexMap[MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex; 1484 // 1 main and 1 auxiliary symbol table entry for the csect. 1485 SymbolTableIndex += 2; 1486 1487 for (auto &Sym : Csect.Syms) { 1488 bool hasExceptEntry = false; 1489 auto Entry = 1490 ExceptionSection.ExceptionTable.find(Sym.MCSym->getName()); 1491 if (Entry != ExceptionSection.ExceptionTable.end()) { 1492 hasExceptEntry = true; 1493 for (auto &TrapEntry : Entry->second.Entries) { 1494 TrapEntry.TrapAddress = Layout.getSymbolOffset(*(Sym.MCSym)) + 1495 TrapEntry.Trap->getOffset(); 1496 } 1497 } 1498 Sym.SymbolTableIndex = SymbolTableIndex; 1499 SymbolIndexMap[Sym.MCSym] = Sym.SymbolTableIndex; 1500 // 1 main and 1 auxiliary symbol table entry for each contained 1501 // symbol. For symbols with exception section entries, a function 1502 // auxilliary entry is needed, and on 64-bit XCOFF with debugging 1503 // enabled, an additional exception auxilliary entry is needed. 1504 SymbolTableIndex += 2; 1505 if (hasExceptionSection() && hasExceptEntry) { 1506 if (is64Bit() && ExceptionSection.isDebugEnabled) 1507 SymbolTableIndex += 2; 1508 else 1509 SymbolTableIndex += 1; 1510 } 1511 } 1512 } 1513 1514 if (!SectionAddressSet) { 1515 Section->Address = Group->front().Address; 1516 SectionAddressSet = true; 1517 } 1518 } 1519 1520 // Make sure the address of the next section aligned to 1521 // DefaultSectionAlign. 1522 Address = alignTo(Address, DefaultSectionAlign); 1523 Section->Size = Address - Section->Address; 1524 } 1525 1526 // Start to generate DWARF sections. Sections other than DWARF section use 1527 // DefaultSectionAlign as the default alignment, while DWARF sections have 1528 // their own alignments. If these two alignments are not the same, we need 1529 // some paddings here and record the paddings bytes for FileOffsetToData 1530 // calculation. 1531 if (!DwarfSections.empty()) 1532 PaddingsBeforeDwarf = 1533 alignTo(Address, 1534 (*DwarfSections.begin()).DwarfSect->MCSec->getAlign()) - 1535 Address; 1536 1537 DwarfSectionEntry *LastDwarfSection = nullptr; 1538 for (auto &DwarfSection : DwarfSections) { 1539 assert((SectionIndex <= MaxSectionIndex) && "Section index overflow!"); 1540 1541 XCOFFSection &DwarfSect = *DwarfSection.DwarfSect; 1542 const MCSectionXCOFF *MCSec = DwarfSect.MCSec; 1543 1544 // Section index. 1545 DwarfSection.Index = SectionIndex++; 1546 SectionCount++; 1547 1548 // Symbol index. 1549 DwarfSect.SymbolTableIndex = SymbolTableIndex; 1550 SymbolIndexMap[MCSec->getQualNameSymbol()] = DwarfSect.SymbolTableIndex; 1551 // 1 main and 1 auxiliary symbol table entry for the csect. 1552 SymbolTableIndex += 2; 1553 1554 // Section address. Make it align to section alignment. 1555 // We use address 0 for DWARF sections' Physical and Virtual Addresses. 1556 // This address is used to tell where is the section in the final object. 1557 // See writeSectionForDwarfSectionEntry(). 1558 DwarfSection.Address = DwarfSect.Address = 1559 alignTo(Address, MCSec->getAlign()); 1560 1561 // Section size. 1562 // For DWARF section, we must use the real size which may be not aligned. 1563 DwarfSection.Size = DwarfSect.Size = Asm.getSectionAddressSize(*MCSec); 1564 1565 Address = DwarfSection.Address + DwarfSection.Size; 1566 1567 if (LastDwarfSection) 1568 LastDwarfSection->MemorySize = 1569 DwarfSection.Address - LastDwarfSection->Address; 1570 LastDwarfSection = &DwarfSection; 1571 } 1572 if (LastDwarfSection) { 1573 // Make the final DWARF section address align to the default section 1574 // alignment for follow contents. 1575 Address = alignTo(LastDwarfSection->Address + LastDwarfSection->Size, 1576 DefaultSectionAlign); 1577 LastDwarfSection->MemorySize = Address - LastDwarfSection->Address; 1578 } 1579 if (hasExceptionSection()) { 1580 ExceptionSection.Index = SectionIndex++; 1581 SectionCount++; 1582 ExceptionSection.Address = 0; 1583 ExceptionSection.Size = getExceptionSectionSize(); 1584 Address += ExceptionSection.Size; 1585 Address = alignTo(Address, DefaultSectionAlign); 1586 } 1587 1588 if (CInfoSymSection.Entry) { 1589 CInfoSymSection.Index = SectionIndex++; 1590 SectionCount++; 1591 CInfoSymSection.Address = 0; 1592 Address += CInfoSymSection.Size; 1593 Address = alignTo(Address, DefaultSectionAlign); 1594 } 1595 1596 SymbolTableEntryCount = SymbolTableIndex; 1597 } 1598 1599 void XCOFFObjectWriter::writeSectionForControlSectionEntry( 1600 const MCAssembler &Asm, const MCAsmLayout &Layout, 1601 const CsectSectionEntry &CsectEntry, uint64_t &CurrentAddressLocation) { 1602 // Nothing to write for this Section. 1603 if (CsectEntry.Index == SectionEntry::UninitializedIndex) 1604 return; 1605 1606 // There could be a gap (without corresponding zero padding) between 1607 // sections. 1608 // There could be a gap (without corresponding zero padding) between 1609 // sections. 1610 assert(((CurrentAddressLocation <= CsectEntry.Address) || 1611 (CsectEntry.Flags == XCOFF::STYP_TDATA) || 1612 (CsectEntry.Flags == XCOFF::STYP_TBSS)) && 1613 "CurrentAddressLocation should be less than or equal to section " 1614 "address if the section is not TData or TBSS."); 1615 1616 CurrentAddressLocation = CsectEntry.Address; 1617 1618 // For virtual sections, nothing to write. But need to increase 1619 // CurrentAddressLocation for later sections like DWARF section has a correct 1620 // writing location. 1621 if (CsectEntry.IsVirtual) { 1622 CurrentAddressLocation += CsectEntry.Size; 1623 return; 1624 } 1625 1626 for (const auto &Group : CsectEntry.Groups) { 1627 for (const auto &Csect : *Group) { 1628 if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation) 1629 W.OS.write_zeros(PaddingSize); 1630 if (Csect.Size) 1631 Asm.writeSectionData(W.OS, Csect.MCSec); 1632 CurrentAddressLocation = Csect.Address + Csect.Size; 1633 } 1634 } 1635 1636 // The size of the tail padding in a section is the end virtual address of 1637 // the current section minus the end virtual address of the last csect 1638 // in that section. 1639 if (uint64_t PaddingSize = 1640 CsectEntry.Address + CsectEntry.Size - CurrentAddressLocation) { 1641 W.OS.write_zeros(PaddingSize); 1642 CurrentAddressLocation += PaddingSize; 1643 } 1644 } 1645 1646 void XCOFFObjectWriter::writeSectionForDwarfSectionEntry( 1647 const MCAssembler &Asm, const MCAsmLayout &Layout, 1648 const DwarfSectionEntry &DwarfEntry, uint64_t &CurrentAddressLocation) { 1649 // There could be a gap (without corresponding zero padding) between 1650 // sections. For example DWARF section alignment is bigger than 1651 // DefaultSectionAlign. 1652 assert(CurrentAddressLocation <= DwarfEntry.Address && 1653 "CurrentAddressLocation should be less than or equal to section " 1654 "address."); 1655 1656 if (uint64_t PaddingSize = DwarfEntry.Address - CurrentAddressLocation) 1657 W.OS.write_zeros(PaddingSize); 1658 1659 if (DwarfEntry.Size) 1660 Asm.writeSectionData(W.OS, DwarfEntry.DwarfSect->MCSec); 1661 1662 CurrentAddressLocation = DwarfEntry.Address + DwarfEntry.Size; 1663 1664 // DWARF section size is not aligned to DefaultSectionAlign. 1665 // Make sure CurrentAddressLocation is aligned to DefaultSectionAlign. 1666 uint32_t Mod = CurrentAddressLocation % DefaultSectionAlign; 1667 uint32_t TailPaddingSize = Mod ? DefaultSectionAlign - Mod : 0; 1668 if (TailPaddingSize) 1669 W.OS.write_zeros(TailPaddingSize); 1670 1671 CurrentAddressLocation += TailPaddingSize; 1672 } 1673 1674 void XCOFFObjectWriter::writeSectionForExceptionSectionEntry( 1675 const MCAssembler &Asm, const MCAsmLayout &Layout, 1676 ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation) { 1677 for (auto it = ExceptionEntry.ExceptionTable.begin(); 1678 it != ExceptionEntry.ExceptionTable.end(); it++) { 1679 // For every symbol that has exception entries, you must start the entries 1680 // with an initial symbol table index entry 1681 W.write<uint32_t>(SymbolIndexMap[it->second.FunctionSymbol]); 1682 if (is64Bit()) { 1683 // 4-byte padding on 64-bit. 1684 W.OS.write_zeros(4); 1685 } 1686 W.OS.write_zeros(2); 1687 for (auto &TrapEntry : it->second.Entries) { 1688 writeWord(TrapEntry.TrapAddress); 1689 W.write<uint8_t>(TrapEntry.Lang); 1690 W.write<uint8_t>(TrapEntry.Reason); 1691 } 1692 } 1693 1694 CurrentAddressLocation += getExceptionSectionSize(); 1695 } 1696 1697 void XCOFFObjectWriter::writeSectionForCInfoSymSectionEntry( 1698 const MCAssembler &Asm, const MCAsmLayout &Layout, 1699 CInfoSymSectionEntry &CInfoSymEntry, uint64_t &CurrentAddressLocation) { 1700 if (!CInfoSymSection.Entry) 1701 return; 1702 1703 constexpr int WordSize = sizeof(uint32_t); 1704 std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymEntry.Entry; 1705 const std::string &Metadata = CISI->Metadata; 1706 1707 // Emit the 4-byte length of the metadata. 1708 W.write<uint32_t>(Metadata.size()); 1709 1710 if (Metadata.size() == 0) 1711 return; 1712 1713 // Write out the payload one word at a time. 1714 size_t Index = 0; 1715 while (Index + WordSize <= Metadata.size()) { 1716 uint32_t NextWord = 1717 llvm::support::endian::read32be(Metadata.data() + Index); 1718 W.write<uint32_t>(NextWord); 1719 Index += WordSize; 1720 } 1721 1722 // If there is padding, we have at least one byte of payload left to emit. 1723 if (CISI->paddingSize()) { 1724 std::array<uint8_t, WordSize> LastWord = {0}; 1725 ::memcpy(LastWord.data(), Metadata.data() + Index, Metadata.size() - Index); 1726 W.write<uint32_t>(llvm::support::endian::read32be(LastWord.data())); 1727 } 1728 1729 CurrentAddressLocation += CISI->size(); 1730 } 1731 1732 // Takes the log base 2 of the alignment and shifts the result into the 5 most 1733 // significant bits of a byte, then or's in the csect type into the least 1734 // significant 3 bits. 1735 uint8_t getEncodedType(const MCSectionXCOFF *Sec) { 1736 unsigned Log2Align = Log2(Sec->getAlign()); 1737 // Result is a number in the range [0, 31] which fits in the 5 least 1738 // significant bits. Shift this value into the 5 most significant bits, and 1739 // bitwise-or in the csect type. 1740 uint8_t EncodedAlign = Log2Align << 3; 1741 return EncodedAlign | Sec->getCSectType(); 1742 } 1743 1744 } // end anonymous namespace 1745 1746 std::unique_ptr<MCObjectWriter> 1747 llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, 1748 raw_pwrite_stream &OS) { 1749 return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS); 1750 } 1751