1 //===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements XCOFF object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/BinaryFormat/XCOFF.h" 14 #include "llvm/MC/MCAsmBackend.h" 15 #include "llvm/MC/MCAsmLayout.h" 16 #include "llvm/MC/MCAssembler.h" 17 #include "llvm/MC/MCFixup.h" 18 #include "llvm/MC/MCFixupKindInfo.h" 19 #include "llvm/MC/MCObjectWriter.h" 20 #include "llvm/MC/MCSectionXCOFF.h" 21 #include "llvm/MC/MCSymbolXCOFF.h" 22 #include "llvm/MC/MCValue.h" 23 #include "llvm/MC/MCXCOFFObjectWriter.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Support/Casting.h" 26 #include "llvm/Support/EndianStream.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 30 #include <deque> 31 #include <map> 32 33 using namespace llvm; 34 35 // An XCOFF object file has a limited set of predefined sections. The most 36 // important ones for us (right now) are: 37 // .text --> contains program code and read-only data. 38 // .data --> contains initialized data, function descriptors, and the TOC. 39 // .bss --> contains uninitialized data. 40 // Each of these sections is composed of 'Control Sections'. A Control Section 41 // is more commonly referred to as a csect. A csect is an indivisible unit of 42 // code or data, and acts as a container for symbols. A csect is mapped 43 // into a section based on its storage-mapping class, with the exception of 44 // XMC_RW which gets mapped to either .data or .bss based on whether it's 45 // explicitly initialized or not. 46 // 47 // We don't represent the sections in the MC layer as there is nothing 48 // interesting about them at at that level: they carry information that is 49 // only relevant to the ObjectWriter, so we materialize them in this class. 50 namespace { 51 52 constexpr unsigned DefaultSectionAlign = 4; 53 constexpr int16_t MaxSectionIndex = INT16_MAX; 54 55 // Packs the csect's alignment and type into a byte. 56 uint8_t getEncodedType(const MCSectionXCOFF *); 57 58 struct XCOFFRelocation { 59 uint32_t SymbolTableIndex; 60 uint32_t FixupOffsetInCsect; 61 uint8_t SignAndSize; 62 uint8_t Type; 63 }; 64 65 // Wrapper around an MCSymbolXCOFF. 66 struct Symbol { 67 const MCSymbolXCOFF *const MCSym; 68 uint32_t SymbolTableIndex; 69 70 XCOFF::VisibilityType getVisibilityType() const { 71 return MCSym->getVisibilityType(); 72 } 73 74 XCOFF::StorageClass getStorageClass() const { 75 return MCSym->getStorageClass(); 76 } 77 StringRef getSymbolTableName() const { return MCSym->getSymbolTableName(); } 78 Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {} 79 }; 80 81 // Wrapper for an MCSectionXCOFF. 82 // It can be a Csect or debug section or DWARF section and so on. 83 struct XCOFFSection { 84 const MCSectionXCOFF *const MCSec; 85 uint32_t SymbolTableIndex; 86 uint64_t Address; 87 uint64_t Size; 88 89 SmallVector<Symbol, 1> Syms; 90 SmallVector<XCOFFRelocation, 1> Relocations; 91 StringRef getSymbolTableName() const { return MCSec->getSymbolTableName(); } 92 XCOFF::VisibilityType getVisibilityType() const { 93 return MCSec->getVisibilityType(); 94 } 95 XCOFFSection(const MCSectionXCOFF *MCSec) 96 : MCSec(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {} 97 }; 98 99 // Type to be used for a container representing a set of csects with 100 // (approximately) the same storage mapping class. For example all the csects 101 // with a storage mapping class of `xmc_pr` will get placed into the same 102 // container. 103 using CsectGroup = std::deque<XCOFFSection>; 104 using CsectGroups = std::deque<CsectGroup *>; 105 106 // The basic section entry defination. This Section represents a section entry 107 // in XCOFF section header table. 108 struct SectionEntry { 109 char Name[XCOFF::NameSize]; 110 // The physical/virtual address of the section. For an object file these 111 // values are equivalent, except for in the overflow section header, where 112 // the physical address specifies the number of relocation entries and the 113 // virtual address specifies the number of line number entries. 114 // TODO: Divide Address into PhysicalAddress and VirtualAddress when line 115 // number entries are supported. 116 uint64_t Address; 117 uint64_t Size; 118 uint64_t FileOffsetToData; 119 uint64_t FileOffsetToRelocations; 120 uint32_t RelocationCount; 121 int32_t Flags; 122 123 int16_t Index; 124 125 virtual uint64_t advanceFileOffset(const uint64_t MaxRawDataSize, 126 const uint64_t RawPointer) { 127 FileOffsetToData = RawPointer; 128 uint64_t NewPointer = RawPointer + Size; 129 if (NewPointer > MaxRawDataSize) 130 report_fatal_error("Section raw data overflowed this object file."); 131 return NewPointer; 132 } 133 134 // XCOFF has special section numbers for symbols: 135 // -2 Specifies N_DEBUG, a special symbolic debugging symbol. 136 // -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not 137 // relocatable. 138 // 0 Specifies N_UNDEF, an undefined external symbol. 139 // Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that 140 // hasn't been initialized. 141 static constexpr int16_t UninitializedIndex = 142 XCOFF::ReservedSectionNum::N_DEBUG - 1; 143 144 SectionEntry(StringRef N, int32_t Flags) 145 : Name(), Address(0), Size(0), FileOffsetToData(0), 146 FileOffsetToRelocations(0), RelocationCount(0), Flags(Flags), 147 Index(UninitializedIndex) { 148 assert(N.size() <= XCOFF::NameSize && "section name too long"); 149 memcpy(Name, N.data(), N.size()); 150 } 151 152 virtual void reset() { 153 Address = 0; 154 Size = 0; 155 FileOffsetToData = 0; 156 FileOffsetToRelocations = 0; 157 RelocationCount = 0; 158 Index = UninitializedIndex; 159 } 160 161 virtual ~SectionEntry() = default; 162 }; 163 164 // Represents the data related to a section excluding the csects that make up 165 // the raw data of the section. The csects are stored separately as not all 166 // sections contain csects, and some sections contain csects which are better 167 // stored separately, e.g. the .data section containing read-write, descriptor, 168 // TOCBase and TOC-entry csects. 169 struct CsectSectionEntry : public SectionEntry { 170 // Virtual sections do not need storage allocated in the object file. 171 const bool IsVirtual; 172 173 // This is a section containing csect groups. 174 CsectGroups Groups; 175 176 CsectSectionEntry(StringRef N, XCOFF::SectionTypeFlags Flags, bool IsVirtual, 177 CsectGroups Groups) 178 : SectionEntry(N, Flags), IsVirtual(IsVirtual), Groups(Groups) { 179 assert(N.size() <= XCOFF::NameSize && "section name too long"); 180 memcpy(Name, N.data(), N.size()); 181 } 182 183 void reset() override { 184 SectionEntry::reset(); 185 // Clear any csects we have stored. 186 for (auto *Group : Groups) 187 Group->clear(); 188 } 189 190 virtual ~CsectSectionEntry() = default; 191 }; 192 193 struct DwarfSectionEntry : public SectionEntry { 194 // For DWARF section entry. 195 std::unique_ptr<XCOFFSection> DwarfSect; 196 197 // For DWARF section, we must use real size in the section header. MemorySize 198 // is for the size the DWARF section occupies including paddings. 199 uint32_t MemorySize; 200 201 // TODO: Remove this override. Loadable sections (e.g., .text, .data) may need 202 // to be aligned. Other sections generally don't need any alignment, but if 203 // they're aligned, the RawPointer should be adjusted before writing the 204 // section. Then a dwarf-specific function wouldn't be needed. 205 uint64_t advanceFileOffset(const uint64_t MaxRawDataSize, 206 const uint64_t RawPointer) override { 207 FileOffsetToData = RawPointer; 208 uint64_t NewPointer = RawPointer + MemorySize; 209 assert(NewPointer <= MaxRawDataSize && 210 "Section raw data overflowed this object file."); 211 return NewPointer; 212 } 213 214 DwarfSectionEntry(StringRef N, int32_t Flags, 215 std::unique_ptr<XCOFFSection> Sect) 216 : SectionEntry(N, Flags | XCOFF::STYP_DWARF), DwarfSect(std::move(Sect)), 217 MemorySize(0) { 218 assert(DwarfSect->MCSec->isDwarfSect() && 219 "This should be a DWARF section!"); 220 assert(N.size() <= XCOFF::NameSize && "section name too long"); 221 memcpy(Name, N.data(), N.size()); 222 } 223 224 DwarfSectionEntry(DwarfSectionEntry &&s) = default; 225 226 virtual ~DwarfSectionEntry() = default; 227 }; 228 229 struct ExceptionTableEntry { 230 const MCSymbol *Trap; 231 uint64_t TrapAddress = ~0ul; 232 unsigned Lang; 233 unsigned Reason; 234 235 ExceptionTableEntry(const MCSymbol *Trap, unsigned Lang, unsigned Reason) 236 : Trap(Trap), Lang(Lang), Reason(Reason) {} 237 }; 238 239 struct ExceptionInfo { 240 const MCSymbol *FunctionSymbol; 241 unsigned FunctionSize; 242 std::vector<ExceptionTableEntry> Entries; 243 }; 244 245 struct ExceptionSectionEntry : public SectionEntry { 246 std::map<const StringRef, ExceptionInfo> ExceptionTable; 247 bool isDebugEnabled = false; 248 249 ExceptionSectionEntry(StringRef N, int32_t Flags) 250 : SectionEntry(N, Flags | XCOFF::STYP_EXCEPT) { 251 assert(N.size() <= XCOFF::NameSize && "Section too long."); 252 memcpy(Name, N.data(), N.size()); 253 } 254 255 virtual ~ExceptionSectionEntry() = default; 256 }; 257 258 struct CInfoSymInfo { 259 // Name of the C_INFO symbol associated with the section 260 std::string Name; 261 std::string Metadata; 262 // Offset into the start of the metadata in the section 263 uint64_t Offset; 264 265 CInfoSymInfo(std::string Name, std::string Metadata) 266 : Name(Name), Metadata(Metadata) {} 267 // Metadata needs to be padded out to an even word size. 268 uint32_t paddingSize() const { 269 return alignTo(Metadata.size(), sizeof(uint32_t)) - Metadata.size(); 270 }; 271 272 // Total size of the entry, including the 4 byte length 273 uint32_t size() const { 274 return Metadata.size() + paddingSize() + sizeof(uint32_t); 275 }; 276 }; 277 278 struct CInfoSymSectionEntry : public SectionEntry { 279 std::unique_ptr<CInfoSymInfo> Entry; 280 281 CInfoSymSectionEntry(StringRef N, int32_t Flags) : SectionEntry(N, Flags) {} 282 virtual ~CInfoSymSectionEntry() = default; 283 void addEntry(std::unique_ptr<CInfoSymInfo> NewEntry) { 284 Entry = std::move(NewEntry); 285 Entry->Offset = sizeof(uint32_t); 286 Size += Entry->size(); 287 } 288 void reset() override { 289 SectionEntry::reset(); 290 Entry.reset(); 291 } 292 }; 293 294 class XCOFFObjectWriter : public MCObjectWriter { 295 296 uint32_t SymbolTableEntryCount = 0; 297 uint64_t SymbolTableOffset = 0; 298 uint16_t SectionCount = 0; 299 uint32_t PaddingsBeforeDwarf = 0; 300 std::vector<std::pair<std::string, size_t>> FileNames; 301 bool HasVisibility = false; 302 303 support::endian::Writer W; 304 std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter; 305 StringTableBuilder Strings; 306 307 const uint64_t MaxRawDataSize = 308 TargetObjectWriter->is64Bit() ? UINT64_MAX : UINT32_MAX; 309 310 // Maps the MCSection representation to its corresponding XCOFFSection 311 // wrapper. Needed for finding the XCOFFSection to insert an MCSymbol into 312 // from its containing MCSectionXCOFF. 313 DenseMap<const MCSectionXCOFF *, XCOFFSection *> SectionMap; 314 315 // Maps the MCSymbol representation to its corrresponding symbol table index. 316 // Needed for relocation. 317 DenseMap<const MCSymbol *, uint32_t> SymbolIndexMap; 318 319 // CsectGroups. These store the csects which make up different parts of 320 // the sections. Should have one for each set of csects that get mapped into 321 // the same section and get handled in a 'similar' way. 322 CsectGroup UndefinedCsects; 323 CsectGroup ProgramCodeCsects; 324 CsectGroup ReadOnlyCsects; 325 CsectGroup DataCsects; 326 CsectGroup FuncDSCsects; 327 CsectGroup TOCCsects; 328 CsectGroup BSSCsects; 329 CsectGroup TDataCsects; 330 CsectGroup TBSSCsects; 331 332 // The Predefined sections. 333 CsectSectionEntry Text; 334 CsectSectionEntry Data; 335 CsectSectionEntry BSS; 336 CsectSectionEntry TData; 337 CsectSectionEntry TBSS; 338 339 // All the XCOFF sections, in the order they will appear in the section header 340 // table. 341 std::array<CsectSectionEntry *const, 5> Sections{ 342 {&Text, &Data, &BSS, &TData, &TBSS}}; 343 344 std::vector<DwarfSectionEntry> DwarfSections; 345 std::vector<SectionEntry> OverflowSections; 346 347 ExceptionSectionEntry ExceptionSection; 348 CInfoSymSectionEntry CInfoSymSection; 349 350 CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec); 351 352 void reset() override; 353 354 void executePostLayoutBinding(MCAssembler &, const MCAsmLayout &) override; 355 356 void recordRelocation(MCAssembler &, const MCAsmLayout &, const MCFragment *, 357 const MCFixup &, MCValue, uint64_t &) override; 358 359 uint64_t writeObject(MCAssembler &, const MCAsmLayout &) override; 360 361 bool is64Bit() const { return TargetObjectWriter->is64Bit(); } 362 bool nameShouldBeInStringTable(const StringRef &); 363 void writeSymbolName(const StringRef &); 364 365 void writeSymbolEntryForCsectMemberLabel(const Symbol &SymbolRef, 366 const XCOFFSection &CSectionRef, 367 int16_t SectionIndex, 368 uint64_t SymbolOffset); 369 void writeSymbolEntryForControlSection(const XCOFFSection &CSectionRef, 370 int16_t SectionIndex, 371 XCOFF::StorageClass StorageClass); 372 void writeSymbolEntryForDwarfSection(const XCOFFSection &DwarfSectionRef, 373 int16_t SectionIndex); 374 void writeFileHeader(); 375 void writeAuxFileHeader(); 376 void writeSectionHeader(const SectionEntry *Sec); 377 void writeSectionHeaderTable(); 378 void writeSections(const MCAssembler &Asm, const MCAsmLayout &Layout); 379 void writeSectionForControlSectionEntry(const MCAssembler &Asm, 380 const MCAsmLayout &Layout, 381 const CsectSectionEntry &CsectEntry, 382 uint64_t &CurrentAddressLocation); 383 void writeSectionForDwarfSectionEntry(const MCAssembler &Asm, 384 const MCAsmLayout &Layout, 385 const DwarfSectionEntry &DwarfEntry, 386 uint64_t &CurrentAddressLocation); 387 void writeSectionForExceptionSectionEntry( 388 const MCAssembler &Asm, const MCAsmLayout &Layout, 389 ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation); 390 void writeSectionForCInfoSymSectionEntry(const MCAssembler &Asm, 391 const MCAsmLayout &Layout, 392 CInfoSymSectionEntry &CInfoSymEntry, 393 uint64_t &CurrentAddressLocation); 394 void writeSymbolTable(const MCAsmLayout &Layout); 395 void writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion, 396 uint64_t NumberOfRelocEnt = 0); 397 void writeSymbolAuxCsectEntry(uint64_t SectionOrLength, 398 uint8_t SymbolAlignmentAndType, 399 uint8_t StorageMappingClass); 400 void writeSymbolAuxFunctionEntry(uint32_t EntryOffset, uint32_t FunctionSize, 401 uint64_t LineNumberPointer, 402 uint32_t EndIndex); 403 void writeSymbolAuxExceptionEntry(uint64_t EntryOffset, uint32_t FunctionSize, 404 uint32_t EndIndex); 405 void writeSymbolEntry(StringRef SymbolName, uint64_t Value, 406 int16_t SectionNumber, uint16_t SymbolType, 407 uint8_t StorageClass, uint8_t NumberOfAuxEntries = 1); 408 void writeRelocations(); 409 void writeRelocation(XCOFFRelocation Reloc, const XCOFFSection &Section); 410 411 // Called after all the csects and symbols have been processed by 412 // `executePostLayoutBinding`, this function handles building up the majority 413 // of the structures in the object file representation. Namely: 414 // *) Calculates physical/virtual addresses, raw-pointer offsets, and section 415 // sizes. 416 // *) Assigns symbol table indices. 417 // *) Builds up the section header table by adding any non-empty sections to 418 // `Sections`. 419 void assignAddressesAndIndices(const MCAsmLayout &); 420 // Called after relocations are recorded. 421 void finalizeSectionInfo(); 422 void finalizeRelocationInfo(SectionEntry *Sec, uint64_t RelCount); 423 void calcOffsetToRelocations(SectionEntry *Sec, uint64_t &RawPointer); 424 425 void addExceptionEntry(const MCSymbol *Symbol, const MCSymbol *Trap, 426 unsigned LanguageCode, unsigned ReasonCode, 427 unsigned FunctionSize, bool hasDebug) override; 428 bool hasExceptionSection() { 429 return !ExceptionSection.ExceptionTable.empty(); 430 } 431 unsigned getExceptionSectionSize(); 432 unsigned getExceptionOffset(const MCSymbol *Symbol); 433 434 void addCInfoSymEntry(StringRef Name, StringRef Metadata) override; 435 size_t auxiliaryHeaderSize() const { 436 // 64-bit object files have no auxiliary header. 437 return HasVisibility && !is64Bit() ? XCOFF::AuxFileHeaderSizeShort : 0; 438 } 439 440 public: 441 XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, 442 raw_pwrite_stream &OS); 443 444 void writeWord(uint64_t Word) { 445 is64Bit() ? W.write<uint64_t>(Word) : W.write<uint32_t>(Word); 446 } 447 }; 448 449 XCOFFObjectWriter::XCOFFObjectWriter( 450 std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS) 451 : W(OS, llvm::endianness::big), TargetObjectWriter(std::move(MOTW)), 452 Strings(StringTableBuilder::XCOFF), 453 Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false, 454 CsectGroups{&ProgramCodeCsects, &ReadOnlyCsects}), 455 Data(".data", XCOFF::STYP_DATA, /* IsVirtual */ false, 456 CsectGroups{&DataCsects, &FuncDSCsects, &TOCCsects}), 457 BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true, 458 CsectGroups{&BSSCsects}), 459 TData(".tdata", XCOFF::STYP_TDATA, /* IsVirtual */ false, 460 CsectGroups{&TDataCsects}), 461 TBSS(".tbss", XCOFF::STYP_TBSS, /* IsVirtual */ true, 462 CsectGroups{&TBSSCsects}), 463 ExceptionSection(".except", XCOFF::STYP_EXCEPT), 464 CInfoSymSection(".info", XCOFF::STYP_INFO) {} 465 466 void XCOFFObjectWriter::reset() { 467 // Clear the mappings we created. 468 SymbolIndexMap.clear(); 469 SectionMap.clear(); 470 471 UndefinedCsects.clear(); 472 // Reset any sections we have written to, and empty the section header table. 473 for (auto *Sec : Sections) 474 Sec->reset(); 475 for (auto &DwarfSec : DwarfSections) 476 DwarfSec.reset(); 477 for (auto &OverflowSec : OverflowSections) 478 OverflowSec.reset(); 479 ExceptionSection.reset(); 480 CInfoSymSection.reset(); 481 482 // Reset states in XCOFFObjectWriter. 483 SymbolTableEntryCount = 0; 484 SymbolTableOffset = 0; 485 SectionCount = 0; 486 PaddingsBeforeDwarf = 0; 487 Strings.clear(); 488 489 MCObjectWriter::reset(); 490 } 491 492 CsectGroup &XCOFFObjectWriter::getCsectGroup(const MCSectionXCOFF *MCSec) { 493 switch (MCSec->getMappingClass()) { 494 case XCOFF::XMC_PR: 495 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 496 "Only an initialized csect can contain program code."); 497 return ProgramCodeCsects; 498 case XCOFF::XMC_RO: 499 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 500 "Only an initialized csect can contain read only data."); 501 return ReadOnlyCsects; 502 case XCOFF::XMC_RW: 503 if (XCOFF::XTY_CM == MCSec->getCSectType()) 504 return BSSCsects; 505 506 if (XCOFF::XTY_SD == MCSec->getCSectType()) 507 return DataCsects; 508 509 report_fatal_error("Unhandled mapping of read-write csect to section."); 510 case XCOFF::XMC_DS: 511 return FuncDSCsects; 512 case XCOFF::XMC_BS: 513 assert(XCOFF::XTY_CM == MCSec->getCSectType() && 514 "Mapping invalid csect. CSECT with bss storage class must be " 515 "common type."); 516 return BSSCsects; 517 case XCOFF::XMC_TL: 518 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 519 "Mapping invalid csect. CSECT with tdata storage class must be " 520 "an initialized csect."); 521 return TDataCsects; 522 case XCOFF::XMC_UL: 523 assert(XCOFF::XTY_CM == MCSec->getCSectType() && 524 "Mapping invalid csect. CSECT with tbss storage class must be " 525 "an uninitialized csect."); 526 return TBSSCsects; 527 case XCOFF::XMC_TC0: 528 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 529 "Only an initialized csect can contain TOC-base."); 530 assert(TOCCsects.empty() && 531 "We should have only one TOC-base, and it should be the first csect " 532 "in this CsectGroup."); 533 return TOCCsects; 534 case XCOFF::XMC_TC: 535 case XCOFF::XMC_TE: 536 assert(XCOFF::XTY_SD == MCSec->getCSectType() && 537 "A TOC symbol must be an initialized csect."); 538 assert(!TOCCsects.empty() && 539 "We should at least have a TOC-base in this CsectGroup."); 540 return TOCCsects; 541 case XCOFF::XMC_TD: 542 assert((XCOFF::XTY_SD == MCSec->getCSectType() || 543 XCOFF::XTY_CM == MCSec->getCSectType()) && 544 "Symbol type incompatible with toc-data."); 545 assert(!TOCCsects.empty() && 546 "We should at least have a TOC-base in this CsectGroup."); 547 return TOCCsects; 548 default: 549 report_fatal_error("Unhandled mapping of csect to section."); 550 } 551 } 552 553 static MCSectionXCOFF *getContainingCsect(const MCSymbolXCOFF *XSym) { 554 if (XSym->isDefined()) 555 return cast<MCSectionXCOFF>(XSym->getFragment()->getParent()); 556 return XSym->getRepresentedCsect(); 557 } 558 559 void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 560 const MCAsmLayout &Layout) { 561 for (const auto &S : Asm) { 562 const auto *MCSec = cast<const MCSectionXCOFF>(&S); 563 assert(!SectionMap.contains(MCSec) && "Cannot add a section twice."); 564 565 // If the name does not fit in the storage provided in the symbol table 566 // entry, add it to the string table. 567 if (nameShouldBeInStringTable(MCSec->getSymbolTableName())) 568 Strings.add(MCSec->getSymbolTableName()); 569 if (MCSec->isCsect()) { 570 // A new control section. Its CsectSectionEntry should already be staticly 571 // generated as Text/Data/BSS/TDATA/TBSS. Add this section to the group of 572 // the CsectSectionEntry. 573 assert(XCOFF::XTY_ER != MCSec->getCSectType() && 574 "An undefined csect should not get registered."); 575 CsectGroup &Group = getCsectGroup(MCSec); 576 Group.emplace_back(MCSec); 577 SectionMap[MCSec] = &Group.back(); 578 } else if (MCSec->isDwarfSect()) { 579 // A new DwarfSectionEntry. 580 std::unique_ptr<XCOFFSection> DwarfSec = 581 std::make_unique<XCOFFSection>(MCSec); 582 SectionMap[MCSec] = DwarfSec.get(); 583 584 DwarfSectionEntry SecEntry(MCSec->getName(), 585 *MCSec->getDwarfSubtypeFlags(), 586 std::move(DwarfSec)); 587 DwarfSections.push_back(std::move(SecEntry)); 588 } else 589 llvm_unreachable("unsupport section type!"); 590 } 591 592 for (const MCSymbol &S : Asm.symbols()) { 593 // Nothing to do for temporary symbols. 594 if (S.isTemporary()) 595 continue; 596 597 const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S); 598 const MCSectionXCOFF *ContainingCsect = getContainingCsect(XSym); 599 600 if (XSym->getVisibilityType() != XCOFF::SYM_V_UNSPECIFIED) 601 HasVisibility = true; 602 603 if (ContainingCsect->getCSectType() == XCOFF::XTY_ER) { 604 // Handle undefined symbol. 605 UndefinedCsects.emplace_back(ContainingCsect); 606 SectionMap[ContainingCsect] = &UndefinedCsects.back(); 607 if (nameShouldBeInStringTable(ContainingCsect->getSymbolTableName())) 608 Strings.add(ContainingCsect->getSymbolTableName()); 609 continue; 610 } 611 612 // If the symbol is the csect itself, we don't need to put the symbol 613 // into csect's Syms. 614 if (XSym == ContainingCsect->getQualNameSymbol()) 615 continue; 616 617 // Only put a label into the symbol table when it is an external label. 618 if (!XSym->isExternal()) 619 continue; 620 621 assert(SectionMap.contains(ContainingCsect) && 622 "Expected containing csect to exist in map"); 623 XCOFFSection *Csect = SectionMap[ContainingCsect]; 624 // Lookup the containing csect and add the symbol to it. 625 assert(Csect->MCSec->isCsect() && "only csect is supported now!"); 626 Csect->Syms.emplace_back(XSym); 627 628 // If the name does not fit in the storage provided in the symbol table 629 // entry, add it to the string table. 630 if (nameShouldBeInStringTable(XSym->getSymbolTableName())) 631 Strings.add(XSym->getSymbolTableName()); 632 } 633 634 std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymSection.Entry; 635 if (CISI && nameShouldBeInStringTable(CISI->Name)) 636 Strings.add(CISI->Name); 637 638 FileNames = Asm.getFileNames(); 639 // Emit ".file" as the source file name when there is no file name. 640 if (FileNames.empty()) 641 FileNames.emplace_back(".file", 0); 642 for (const std::pair<std::string, size_t> &F : FileNames) { 643 if (nameShouldBeInStringTable(F.first)) 644 Strings.add(F.first); 645 } 646 647 Strings.finalize(); 648 assignAddressesAndIndices(Layout); 649 } 650 651 void XCOFFObjectWriter::recordRelocation(MCAssembler &Asm, 652 const MCAsmLayout &Layout, 653 const MCFragment *Fragment, 654 const MCFixup &Fixup, MCValue Target, 655 uint64_t &FixedValue) { 656 auto getIndex = [this](const MCSymbol *Sym, 657 const MCSectionXCOFF *ContainingCsect) { 658 // If we could not find the symbol directly in SymbolIndexMap, this symbol 659 // could either be a temporary symbol or an undefined symbol. In this case, 660 // we would need to have the relocation reference its csect instead. 661 return SymbolIndexMap.contains(Sym) 662 ? SymbolIndexMap[Sym] 663 : SymbolIndexMap[ContainingCsect->getQualNameSymbol()]; 664 }; 665 666 auto getVirtualAddress = 667 [this, &Layout](const MCSymbol *Sym, 668 const MCSectionXCOFF *ContainingSect) -> uint64_t { 669 // A DWARF section. 670 if (ContainingSect->isDwarfSect()) 671 return Layout.getSymbolOffset(*Sym); 672 673 // A csect. 674 if (!Sym->isDefined()) 675 return SectionMap[ContainingSect]->Address; 676 677 // A label. 678 assert(Sym->isDefined() && "not a valid object that has address!"); 679 return SectionMap[ContainingSect]->Address + Layout.getSymbolOffset(*Sym); 680 }; 681 682 const MCSymbol *const SymA = &Target.getSymA()->getSymbol(); 683 684 MCAsmBackend &Backend = Asm.getBackend(); 685 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 686 MCFixupKindInfo::FKF_IsPCRel; 687 688 uint8_t Type; 689 uint8_t SignAndSize; 690 std::tie(Type, SignAndSize) = 691 TargetObjectWriter->getRelocTypeAndSignSize(Target, Fixup, IsPCRel); 692 693 const MCSectionXCOFF *SymASec = getContainingCsect(cast<MCSymbolXCOFF>(SymA)); 694 assert(SectionMap.contains(SymASec) && 695 "Expected containing csect to exist in map."); 696 697 assert((Fixup.getOffset() <= 698 MaxRawDataSize - Layout.getFragmentOffset(Fragment)) && 699 "Fragment offset + fixup offset is overflowed."); 700 uint32_t FixupOffsetInCsect = 701 Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 702 703 const uint32_t Index = getIndex(SymA, SymASec); 704 if (Type == XCOFF::RelocationType::R_POS || 705 Type == XCOFF::RelocationType::R_TLS || 706 Type == XCOFF::RelocationType::R_TLS_LE || 707 Type == XCOFF::RelocationType::R_TLS_IE) 708 // The FixedValue should be symbol's virtual address in this object file 709 // plus any constant value that we might get. 710 FixedValue = getVirtualAddress(SymA, SymASec) + Target.getConstant(); 711 else if (Type == XCOFF::RelocationType::R_TLSM) 712 // The FixedValue should always be zero since the region handle is only 713 // known at load time. 714 FixedValue = 0; 715 else if (Type == XCOFF::RelocationType::R_TOC || 716 Type == XCOFF::RelocationType::R_TOCL) { 717 // For non toc-data external symbols, R_TOC type relocation will relocate to 718 // data symbols that have XCOFF::XTY_SD type csect. For toc-data external 719 // symbols, R_TOC type relocation will relocate to data symbols that have 720 // XCOFF_ER type csect. For XCOFF_ER kind symbols, there will be no TOC 721 // entry for them, so the FixedValue should always be 0. 722 if (SymASec->getCSectType() == XCOFF::XTY_ER) { 723 FixedValue = 0; 724 } else { 725 // The FixedValue should be the TOC entry offset from the TOC-base plus 726 // any constant offset value. 727 const int64_t TOCEntryOffset = SectionMap[SymASec]->Address - 728 TOCCsects.front().Address + 729 Target.getConstant(); 730 if (Type == XCOFF::RelocationType::R_TOC && !isInt<16>(TOCEntryOffset)) 731 report_fatal_error("TOCEntryOffset overflows in small code model mode"); 732 733 FixedValue = TOCEntryOffset; 734 } 735 } else if (Type == XCOFF::RelocationType::R_RBR) { 736 MCSectionXCOFF *ParentSec = cast<MCSectionXCOFF>(Fragment->getParent()); 737 assert((SymASec->getMappingClass() == XCOFF::XMC_PR && 738 ParentSec->getMappingClass() == XCOFF::XMC_PR) && 739 "Only XMC_PR csect may have the R_RBR relocation."); 740 741 // The address of the branch instruction should be the sum of section 742 // address, fragment offset and Fixup offset. 743 uint64_t BRInstrAddress = 744 SectionMap[ParentSec]->Address + FixupOffsetInCsect; 745 // The FixedValue should be the difference between symbol's virtual address 746 // and BR instr address plus any constant value. 747 FixedValue = getVirtualAddress(SymA, SymASec) - BRInstrAddress + 748 Target.getConstant(); 749 } else if (Type == XCOFF::RelocationType::R_REF) { 750 // The FixedValue and FixupOffsetInCsect should always be 0 since it 751 // specifies a nonrelocating reference. 752 FixedValue = 0; 753 FixupOffsetInCsect = 0; 754 } 755 756 XCOFFRelocation Reloc = {Index, FixupOffsetInCsect, SignAndSize, Type}; 757 MCSectionXCOFF *RelocationSec = cast<MCSectionXCOFF>(Fragment->getParent()); 758 assert(SectionMap.contains(RelocationSec) && 759 "Expected containing csect to exist in map."); 760 SectionMap[RelocationSec]->Relocations.push_back(Reloc); 761 762 if (!Target.getSymB()) 763 return; 764 765 const MCSymbol *const SymB = &Target.getSymB()->getSymbol(); 766 if (SymA == SymB) 767 report_fatal_error("relocation for opposite term is not yet supported"); 768 769 const MCSectionXCOFF *SymBSec = getContainingCsect(cast<MCSymbolXCOFF>(SymB)); 770 assert(SectionMap.contains(SymBSec) && 771 "Expected containing csect to exist in map."); 772 if (SymASec == SymBSec) 773 report_fatal_error( 774 "relocation for paired relocatable term is not yet supported"); 775 776 assert(Type == XCOFF::RelocationType::R_POS && 777 "SymA must be R_POS here if it's not opposite term or paired " 778 "relocatable term."); 779 const uint32_t IndexB = getIndex(SymB, SymBSec); 780 // SymB must be R_NEG here, given the general form of Target(MCValue) is 781 // "SymbolA - SymbolB + imm64". 782 const uint8_t TypeB = XCOFF::RelocationType::R_NEG; 783 XCOFFRelocation RelocB = {IndexB, FixupOffsetInCsect, SignAndSize, TypeB}; 784 SectionMap[RelocationSec]->Relocations.push_back(RelocB); 785 // We already folded "SymbolA + imm64" above when Type is R_POS for SymbolA, 786 // now we just need to fold "- SymbolB" here. 787 FixedValue -= getVirtualAddress(SymB, SymBSec); 788 } 789 790 void XCOFFObjectWriter::writeSections(const MCAssembler &Asm, 791 const MCAsmLayout &Layout) { 792 uint64_t CurrentAddressLocation = 0; 793 for (const auto *Section : Sections) 794 writeSectionForControlSectionEntry(Asm, Layout, *Section, 795 CurrentAddressLocation); 796 for (const auto &DwarfSection : DwarfSections) 797 writeSectionForDwarfSectionEntry(Asm, Layout, DwarfSection, 798 CurrentAddressLocation); 799 writeSectionForExceptionSectionEntry(Asm, Layout, ExceptionSection, 800 CurrentAddressLocation); 801 writeSectionForCInfoSymSectionEntry(Asm, Layout, CInfoSymSection, 802 CurrentAddressLocation); 803 } 804 805 uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm, 806 const MCAsmLayout &Layout) { 807 // We always emit a timestamp of 0 for reproducibility, so ensure incremental 808 // linking is not enabled, in case, like with Windows COFF, such a timestamp 809 // is incompatible with incremental linking of XCOFF. 810 if (Asm.isIncrementalLinkerCompatible()) 811 report_fatal_error("Incremental linking not supported for XCOFF."); 812 813 finalizeSectionInfo(); 814 uint64_t StartOffset = W.OS.tell(); 815 816 writeFileHeader(); 817 writeAuxFileHeader(); 818 writeSectionHeaderTable(); 819 writeSections(Asm, Layout); 820 writeRelocations(); 821 writeSymbolTable(Layout); 822 // Write the string table. 823 Strings.write(W.OS); 824 825 return W.OS.tell() - StartOffset; 826 } 827 828 bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) { 829 return SymbolName.size() > XCOFF::NameSize || is64Bit(); 830 } 831 832 void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) { 833 // Magic, Offset or SymbolName. 834 if (nameShouldBeInStringTable(SymbolName)) { 835 W.write<int32_t>(0); 836 W.write<uint32_t>(Strings.getOffset(SymbolName)); 837 } else { 838 char Name[XCOFF::NameSize + 1]; 839 std::strncpy(Name, SymbolName.data(), XCOFF::NameSize); 840 ArrayRef<char> NameRef(Name, XCOFF::NameSize); 841 W.write(NameRef); 842 } 843 } 844 845 void XCOFFObjectWriter::writeSymbolEntry(StringRef SymbolName, uint64_t Value, 846 int16_t SectionNumber, 847 uint16_t SymbolType, 848 uint8_t StorageClass, 849 uint8_t NumberOfAuxEntries) { 850 if (is64Bit()) { 851 W.write<uint64_t>(Value); 852 W.write<uint32_t>(Strings.getOffset(SymbolName)); 853 } else { 854 writeSymbolName(SymbolName); 855 W.write<uint32_t>(Value); 856 } 857 W.write<int16_t>(SectionNumber); 858 W.write<uint16_t>(SymbolType); 859 W.write<uint8_t>(StorageClass); 860 W.write<uint8_t>(NumberOfAuxEntries); 861 } 862 863 void XCOFFObjectWriter::writeSymbolAuxCsectEntry(uint64_t SectionOrLength, 864 uint8_t SymbolAlignmentAndType, 865 uint8_t StorageMappingClass) { 866 W.write<uint32_t>(is64Bit() ? Lo_32(SectionOrLength) : SectionOrLength); 867 W.write<uint32_t>(0); // ParameterHashIndex 868 W.write<uint16_t>(0); // TypeChkSectNum 869 W.write<uint8_t>(SymbolAlignmentAndType); 870 W.write<uint8_t>(StorageMappingClass); 871 if (is64Bit()) { 872 W.write<uint32_t>(Hi_32(SectionOrLength)); 873 W.OS.write_zeros(1); // Reserved 874 W.write<uint8_t>(XCOFF::AUX_CSECT); 875 } else { 876 W.write<uint32_t>(0); // StabInfoIndex 877 W.write<uint16_t>(0); // StabSectNum 878 } 879 } 880 881 void XCOFFObjectWriter::writeSymbolAuxDwarfEntry( 882 uint64_t LengthOfSectionPortion, uint64_t NumberOfRelocEnt) { 883 writeWord(LengthOfSectionPortion); 884 if (!is64Bit()) 885 W.OS.write_zeros(4); // Reserved 886 writeWord(NumberOfRelocEnt); 887 if (is64Bit()) { 888 W.OS.write_zeros(1); // Reserved 889 W.write<uint8_t>(XCOFF::AUX_SECT); 890 } else { 891 W.OS.write_zeros(6); // Reserved 892 } 893 } 894 895 void XCOFFObjectWriter::writeSymbolEntryForCsectMemberLabel( 896 const Symbol &SymbolRef, const XCOFFSection &CSectionRef, 897 int16_t SectionIndex, uint64_t SymbolOffset) { 898 assert(SymbolOffset <= MaxRawDataSize - CSectionRef.Address && 899 "Symbol address overflowed."); 900 901 auto Entry = ExceptionSection.ExceptionTable.find(SymbolRef.MCSym->getName()); 902 if (Entry != ExceptionSection.ExceptionTable.end()) { 903 writeSymbolEntry(SymbolRef.getSymbolTableName(), 904 CSectionRef.Address + SymbolOffset, SectionIndex, 905 // In the old version of the 32-bit XCOFF interpretation, 906 // symbols may require bit 10 (0x0020) to be set if the 907 // symbol is a function, otherwise the bit should be 0. 908 is64Bit() ? SymbolRef.getVisibilityType() 909 : SymbolRef.getVisibilityType() | 0x0020, 910 SymbolRef.getStorageClass(), 911 (is64Bit() && ExceptionSection.isDebugEnabled) ? 3 : 2); 912 if (is64Bit() && ExceptionSection.isDebugEnabled) { 913 // On 64 bit with debugging enabled, we have a csect, exception, and 914 // function auxilliary entries, so we must increment symbol index by 4. 915 writeSymbolAuxExceptionEntry( 916 ExceptionSection.FileOffsetToData + 917 getExceptionOffset(Entry->second.FunctionSymbol), 918 Entry->second.FunctionSize, 919 SymbolIndexMap[Entry->second.FunctionSymbol] + 4); 920 } 921 // For exception section entries, csect and function auxilliary entries 922 // must exist. On 64-bit there is also an exception auxilliary entry. 923 writeSymbolAuxFunctionEntry( 924 ExceptionSection.FileOffsetToData + 925 getExceptionOffset(Entry->second.FunctionSymbol), 926 Entry->second.FunctionSize, 0, 927 (is64Bit() && ExceptionSection.isDebugEnabled) 928 ? SymbolIndexMap[Entry->second.FunctionSymbol] + 4 929 : SymbolIndexMap[Entry->second.FunctionSymbol] + 3); 930 } else { 931 writeSymbolEntry(SymbolRef.getSymbolTableName(), 932 CSectionRef.Address + SymbolOffset, SectionIndex, 933 SymbolRef.getVisibilityType(), 934 SymbolRef.getStorageClass()); 935 } 936 writeSymbolAuxCsectEntry(CSectionRef.SymbolTableIndex, XCOFF::XTY_LD, 937 CSectionRef.MCSec->getMappingClass()); 938 } 939 940 void XCOFFObjectWriter::writeSymbolEntryForDwarfSection( 941 const XCOFFSection &DwarfSectionRef, int16_t SectionIndex) { 942 assert(DwarfSectionRef.MCSec->isDwarfSect() && "Not a DWARF section!"); 943 944 writeSymbolEntry(DwarfSectionRef.getSymbolTableName(), /*Value=*/0, 945 SectionIndex, /*SymbolType=*/0, XCOFF::C_DWARF); 946 947 writeSymbolAuxDwarfEntry(DwarfSectionRef.Size); 948 } 949 950 void XCOFFObjectWriter::writeSymbolEntryForControlSection( 951 const XCOFFSection &CSectionRef, int16_t SectionIndex, 952 XCOFF::StorageClass StorageClass) { 953 writeSymbolEntry(CSectionRef.getSymbolTableName(), CSectionRef.Address, 954 SectionIndex, CSectionRef.getVisibilityType(), StorageClass); 955 956 writeSymbolAuxCsectEntry(CSectionRef.Size, getEncodedType(CSectionRef.MCSec), 957 CSectionRef.MCSec->getMappingClass()); 958 } 959 960 void XCOFFObjectWriter::writeSymbolAuxFunctionEntry(uint32_t EntryOffset, 961 uint32_t FunctionSize, 962 uint64_t LineNumberPointer, 963 uint32_t EndIndex) { 964 if (is64Bit()) 965 writeWord(LineNumberPointer); 966 else 967 W.write<uint32_t>(EntryOffset); 968 W.write<uint32_t>(FunctionSize); 969 if (!is64Bit()) 970 writeWord(LineNumberPointer); 971 W.write<uint32_t>(EndIndex); 972 if (is64Bit()) { 973 W.OS.write_zeros(1); 974 W.write<uint8_t>(XCOFF::AUX_FCN); 975 } else { 976 W.OS.write_zeros(2); 977 } 978 } 979 980 void XCOFFObjectWriter::writeSymbolAuxExceptionEntry(uint64_t EntryOffset, 981 uint32_t FunctionSize, 982 uint32_t EndIndex) { 983 assert(is64Bit() && "Exception auxilliary entries are 64-bit only."); 984 W.write<uint64_t>(EntryOffset); 985 W.write<uint32_t>(FunctionSize); 986 W.write<uint32_t>(EndIndex); 987 W.OS.write_zeros(1); // Pad (unused) 988 W.write<uint8_t>(XCOFF::AUX_EXCEPT); 989 } 990 991 void XCOFFObjectWriter::writeFileHeader() { 992 W.write<uint16_t>(is64Bit() ? XCOFF::XCOFF64 : XCOFF::XCOFF32); 993 W.write<uint16_t>(SectionCount); 994 W.write<int32_t>(0); // TimeStamp 995 writeWord(SymbolTableOffset); 996 if (is64Bit()) { 997 W.write<uint16_t>(auxiliaryHeaderSize()); 998 W.write<uint16_t>(0); // Flags 999 W.write<int32_t>(SymbolTableEntryCount); 1000 } else { 1001 W.write<int32_t>(SymbolTableEntryCount); 1002 W.write<uint16_t>(auxiliaryHeaderSize()); 1003 W.write<uint16_t>(0); // Flags 1004 } 1005 } 1006 1007 void XCOFFObjectWriter::writeAuxFileHeader() { 1008 if (!auxiliaryHeaderSize()) 1009 return; 1010 W.write<uint16_t>(0); // Magic 1011 W.write<uint16_t>( 1012 XCOFF::NEW_XCOFF_INTERPRET); // Version. The new interpretation of the 1013 // n_type field in the symbol table entry is 1014 // used in XCOFF32. 1015 W.write<uint32_t>(Sections[0]->Size); // TextSize 1016 W.write<uint32_t>(Sections[1]->Size); // InitDataSize 1017 W.write<uint32_t>(Sections[2]->Size); // BssDataSize 1018 W.write<uint32_t>(0); // EntryPointAddr 1019 W.write<uint32_t>(Sections[0]->Address); // TextStartAddr 1020 W.write<uint32_t>(Sections[1]->Address); // DataStartAddr 1021 } 1022 1023 void XCOFFObjectWriter::writeSectionHeader(const SectionEntry *Sec) { 1024 bool IsDwarf = (Sec->Flags & XCOFF::STYP_DWARF) != 0; 1025 bool IsOvrflo = (Sec->Flags & XCOFF::STYP_OVRFLO) != 0; 1026 // Nothing to write for this Section. 1027 if (Sec->Index == SectionEntry::UninitializedIndex) 1028 return; 1029 1030 // Write Name. 1031 ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize); 1032 W.write(NameRef); 1033 1034 // Write the Physical Address and Virtual Address. 1035 // We use 0 for DWARF sections' Physical and Virtual Addresses. 1036 writeWord(IsDwarf ? 0 : Sec->Address); 1037 // Since line number is not supported, we set it to 0 for overflow sections. 1038 writeWord((IsDwarf || IsOvrflo) ? 0 : Sec->Address); 1039 1040 writeWord(Sec->Size); 1041 writeWord(Sec->FileOffsetToData); 1042 writeWord(Sec->FileOffsetToRelocations); 1043 writeWord(0); // FileOffsetToLineNumberInfo. Not supported yet. 1044 1045 if (is64Bit()) { 1046 W.write<uint32_t>(Sec->RelocationCount); 1047 W.write<uint32_t>(0); // NumberOfLineNumbers. Not supported yet. 1048 W.write<int32_t>(Sec->Flags); 1049 W.OS.write_zeros(4); 1050 } else { 1051 // For the overflow section header, s_nreloc provides a reference to the 1052 // primary section header and s_nlnno must have the same value. 1053 // For common section headers, if either of s_nreloc or s_nlnno are set to 1054 // 65535, the other one must also be set to 65535. 1055 W.write<uint16_t>(Sec->RelocationCount); 1056 W.write<uint16_t>((IsOvrflo || Sec->RelocationCount == XCOFF::RelocOverflow) 1057 ? Sec->RelocationCount 1058 : 0); // NumberOfLineNumbers. Not supported yet. 1059 W.write<int32_t>(Sec->Flags); 1060 } 1061 } 1062 1063 void XCOFFObjectWriter::writeSectionHeaderTable() { 1064 for (const auto *CsectSec : Sections) 1065 writeSectionHeader(CsectSec); 1066 for (const auto &DwarfSec : DwarfSections) 1067 writeSectionHeader(&DwarfSec); 1068 for (const auto &OverflowSec : OverflowSections) 1069 writeSectionHeader(&OverflowSec); 1070 if (hasExceptionSection()) 1071 writeSectionHeader(&ExceptionSection); 1072 if (CInfoSymSection.Entry) 1073 writeSectionHeader(&CInfoSymSection); 1074 } 1075 1076 void XCOFFObjectWriter::writeRelocation(XCOFFRelocation Reloc, 1077 const XCOFFSection &Section) { 1078 if (Section.MCSec->isCsect()) 1079 writeWord(Section.Address + Reloc.FixupOffsetInCsect); 1080 else { 1081 // DWARF sections' address is set to 0. 1082 assert(Section.MCSec->isDwarfSect() && "unsupport section type!"); 1083 writeWord(Reloc.FixupOffsetInCsect); 1084 } 1085 W.write<uint32_t>(Reloc.SymbolTableIndex); 1086 W.write<uint8_t>(Reloc.SignAndSize); 1087 W.write<uint8_t>(Reloc.Type); 1088 } 1089 1090 void XCOFFObjectWriter::writeRelocations() { 1091 for (const auto *Section : Sections) { 1092 if (Section->Index == SectionEntry::UninitializedIndex) 1093 // Nothing to write for this Section. 1094 continue; 1095 1096 for (const auto *Group : Section->Groups) { 1097 if (Group->empty()) 1098 continue; 1099 1100 for (const auto &Csect : *Group) { 1101 for (const auto Reloc : Csect.Relocations) 1102 writeRelocation(Reloc, Csect); 1103 } 1104 } 1105 } 1106 1107 for (const auto &DwarfSection : DwarfSections) 1108 for (const auto &Reloc : DwarfSection.DwarfSect->Relocations) 1109 writeRelocation(Reloc, *DwarfSection.DwarfSect); 1110 } 1111 1112 void XCOFFObjectWriter::writeSymbolTable(const MCAsmLayout &Layout) { 1113 // Write C_FILE symbols. 1114 for (const std::pair<std::string, size_t> &F : FileNames) { 1115 // The n_name of a C_FILE symbol is the source file's name when no auxiliary 1116 // entries are present. 1117 StringRef FileName = F.first; 1118 1119 // For C_FILE symbols, the Source Language ID overlays the high-order byte 1120 // of the SymbolType field, and the CPU Version ID is defined as the 1121 // low-order byte. 1122 // AIX's system assembler determines the source language ID based on the 1123 // source file's name suffix, and the behavior here is consistent with it. 1124 uint8_t LangID; 1125 if (FileName.ends_with(".c")) 1126 LangID = XCOFF::TB_C; 1127 else if (FileName.ends_with_insensitive(".f") || 1128 FileName.ends_with_insensitive(".f77") || 1129 FileName.ends_with_insensitive(".f90") || 1130 FileName.ends_with_insensitive(".f95") || 1131 FileName.ends_with_insensitive(".f03") || 1132 FileName.ends_with_insensitive(".f08")) 1133 LangID = XCOFF::TB_Fortran; 1134 else 1135 LangID = XCOFF::TB_CPLUSPLUS; 1136 uint8_t CpuID; 1137 if (is64Bit()) 1138 CpuID = XCOFF::TCPU_PPC64; 1139 else 1140 CpuID = XCOFF::TCPU_COM; 1141 1142 writeSymbolEntry(FileName, /*Value=*/0, XCOFF::ReservedSectionNum::N_DEBUG, 1143 /*SymbolType=*/(LangID << 8) | CpuID, XCOFF::C_FILE, 1144 /*NumberOfAuxEntries=*/0); 1145 } 1146 1147 if (CInfoSymSection.Entry) 1148 writeSymbolEntry(CInfoSymSection.Entry->Name, CInfoSymSection.Entry->Offset, 1149 CInfoSymSection.Index, 1150 /*SymbolType=*/0, XCOFF::C_INFO, 1151 /*NumberOfAuxEntries=*/0); 1152 1153 for (const auto &Csect : UndefinedCsects) { 1154 writeSymbolEntryForControlSection(Csect, XCOFF::ReservedSectionNum::N_UNDEF, 1155 Csect.MCSec->getStorageClass()); 1156 } 1157 1158 for (const auto *Section : Sections) { 1159 if (Section->Index == SectionEntry::UninitializedIndex) 1160 // Nothing to write for this Section. 1161 continue; 1162 1163 for (const auto *Group : Section->Groups) { 1164 if (Group->empty()) 1165 continue; 1166 1167 const int16_t SectionIndex = Section->Index; 1168 for (const auto &Csect : *Group) { 1169 // Write out the control section first and then each symbol in it. 1170 writeSymbolEntryForControlSection(Csect, SectionIndex, 1171 Csect.MCSec->getStorageClass()); 1172 1173 for (const auto &Sym : Csect.Syms) 1174 writeSymbolEntryForCsectMemberLabel( 1175 Sym, Csect, SectionIndex, Layout.getSymbolOffset(*(Sym.MCSym))); 1176 } 1177 } 1178 } 1179 1180 for (const auto &DwarfSection : DwarfSections) 1181 writeSymbolEntryForDwarfSection(*DwarfSection.DwarfSect, 1182 DwarfSection.Index); 1183 } 1184 1185 void XCOFFObjectWriter::finalizeRelocationInfo(SectionEntry *Sec, 1186 uint64_t RelCount) { 1187 // Handles relocation field overflows in an XCOFF32 file. An XCOFF64 file 1188 // may not contain an overflow section header. 1189 if (!is64Bit() && (RelCount >= static_cast<uint32_t>(XCOFF::RelocOverflow))) { 1190 // Generate an overflow section header. 1191 SectionEntry SecEntry(".ovrflo", XCOFF::STYP_OVRFLO); 1192 1193 // This field specifies the file section number of the section header that 1194 // overflowed. 1195 SecEntry.RelocationCount = Sec->Index; 1196 1197 // This field specifies the number of relocation entries actually 1198 // required. 1199 SecEntry.Address = RelCount; 1200 SecEntry.Index = ++SectionCount; 1201 OverflowSections.push_back(std::move(SecEntry)); 1202 1203 // The field in the primary section header is always 65535 1204 // (XCOFF::RelocOverflow). 1205 Sec->RelocationCount = XCOFF::RelocOverflow; 1206 } else { 1207 Sec->RelocationCount = RelCount; 1208 } 1209 } 1210 1211 void XCOFFObjectWriter::calcOffsetToRelocations(SectionEntry *Sec, 1212 uint64_t &RawPointer) { 1213 if (!Sec->RelocationCount) 1214 return; 1215 1216 Sec->FileOffsetToRelocations = RawPointer; 1217 uint64_t RelocationSizeInSec = 0; 1218 if (!is64Bit() && 1219 Sec->RelocationCount == static_cast<uint32_t>(XCOFF::RelocOverflow)) { 1220 // Find its corresponding overflow section. 1221 for (auto &OverflowSec : OverflowSections) { 1222 if (OverflowSec.RelocationCount == static_cast<uint32_t>(Sec->Index)) { 1223 RelocationSizeInSec = 1224 OverflowSec.Address * XCOFF::RelocationSerializationSize32; 1225 1226 // This field must have the same values as in the corresponding 1227 // primary section header. 1228 OverflowSec.FileOffsetToRelocations = Sec->FileOffsetToRelocations; 1229 } 1230 } 1231 assert(RelocationSizeInSec && "Overflow section header doesn't exist."); 1232 } else { 1233 RelocationSizeInSec = Sec->RelocationCount * 1234 (is64Bit() ? XCOFF::RelocationSerializationSize64 1235 : XCOFF::RelocationSerializationSize32); 1236 } 1237 1238 RawPointer += RelocationSizeInSec; 1239 if (RawPointer > MaxRawDataSize) 1240 report_fatal_error("Relocation data overflowed this object file."); 1241 } 1242 1243 void XCOFFObjectWriter::finalizeSectionInfo() { 1244 for (auto *Section : Sections) { 1245 if (Section->Index == SectionEntry::UninitializedIndex) 1246 // Nothing to record for this Section. 1247 continue; 1248 1249 uint64_t RelCount = 0; 1250 for (const auto *Group : Section->Groups) { 1251 if (Group->empty()) 1252 continue; 1253 1254 for (auto &Csect : *Group) 1255 RelCount += Csect.Relocations.size(); 1256 } 1257 finalizeRelocationInfo(Section, RelCount); 1258 } 1259 1260 for (auto &DwarfSection : DwarfSections) 1261 finalizeRelocationInfo(&DwarfSection, 1262 DwarfSection.DwarfSect->Relocations.size()); 1263 1264 // Calculate the RawPointer value for all headers. 1265 uint64_t RawPointer = 1266 (is64Bit() ? (XCOFF::FileHeaderSize64 + 1267 SectionCount * XCOFF::SectionHeaderSize64) 1268 : (XCOFF::FileHeaderSize32 + 1269 SectionCount * XCOFF::SectionHeaderSize32)) + 1270 auxiliaryHeaderSize(); 1271 1272 // Calculate the file offset to the section data. 1273 for (auto *Sec : Sections) { 1274 if (Sec->Index == SectionEntry::UninitializedIndex || Sec->IsVirtual) 1275 continue; 1276 1277 RawPointer = Sec->advanceFileOffset(MaxRawDataSize, RawPointer); 1278 } 1279 1280 if (!DwarfSections.empty()) { 1281 RawPointer += PaddingsBeforeDwarf; 1282 for (auto &DwarfSection : DwarfSections) { 1283 RawPointer = DwarfSection.advanceFileOffset(MaxRawDataSize, RawPointer); 1284 } 1285 } 1286 1287 if (hasExceptionSection()) 1288 RawPointer = ExceptionSection.advanceFileOffset(MaxRawDataSize, RawPointer); 1289 1290 if (CInfoSymSection.Entry) 1291 RawPointer = CInfoSymSection.advanceFileOffset(MaxRawDataSize, RawPointer); 1292 1293 for (auto *Sec : Sections) { 1294 if (Sec->Index != SectionEntry::UninitializedIndex) 1295 calcOffsetToRelocations(Sec, RawPointer); 1296 } 1297 1298 for (auto &DwarfSec : DwarfSections) 1299 calcOffsetToRelocations(&DwarfSec, RawPointer); 1300 1301 // TODO Error check that the number of symbol table entries fits in 32-bits 1302 // signed ... 1303 if (SymbolTableEntryCount) 1304 SymbolTableOffset = RawPointer; 1305 } 1306 1307 void XCOFFObjectWriter::addExceptionEntry( 1308 const MCSymbol *Symbol, const MCSymbol *Trap, unsigned LanguageCode, 1309 unsigned ReasonCode, unsigned FunctionSize, bool hasDebug) { 1310 // If a module had debug info, debugging is enabled and XCOFF emits the 1311 // exception auxilliary entry. 1312 if (hasDebug) 1313 ExceptionSection.isDebugEnabled = true; 1314 auto Entry = ExceptionSection.ExceptionTable.find(Symbol->getName()); 1315 if (Entry != ExceptionSection.ExceptionTable.end()) { 1316 Entry->second.Entries.push_back( 1317 ExceptionTableEntry(Trap, LanguageCode, ReasonCode)); 1318 return; 1319 } 1320 ExceptionInfo NewEntry; 1321 NewEntry.FunctionSymbol = Symbol; 1322 NewEntry.FunctionSize = FunctionSize; 1323 NewEntry.Entries.push_back( 1324 ExceptionTableEntry(Trap, LanguageCode, ReasonCode)); 1325 ExceptionSection.ExceptionTable.insert( 1326 std::pair<const StringRef, ExceptionInfo>(Symbol->getName(), NewEntry)); 1327 } 1328 1329 unsigned XCOFFObjectWriter::getExceptionSectionSize() { 1330 unsigned EntryNum = 0; 1331 1332 for (auto it = ExceptionSection.ExceptionTable.begin(); 1333 it != ExceptionSection.ExceptionTable.end(); ++it) 1334 // The size() gets +1 to account for the initial entry containing the 1335 // symbol table index. 1336 EntryNum += it->second.Entries.size() + 1; 1337 1338 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64 1339 : XCOFF::ExceptionSectionEntrySize32); 1340 } 1341 1342 unsigned XCOFFObjectWriter::getExceptionOffset(const MCSymbol *Symbol) { 1343 unsigned EntryNum = 0; 1344 for (auto it = ExceptionSection.ExceptionTable.begin(); 1345 it != ExceptionSection.ExceptionTable.end(); ++it) { 1346 if (Symbol == it->second.FunctionSymbol) 1347 break; 1348 EntryNum += it->second.Entries.size() + 1; 1349 } 1350 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64 1351 : XCOFF::ExceptionSectionEntrySize32); 1352 } 1353 1354 void XCOFFObjectWriter::addCInfoSymEntry(StringRef Name, StringRef Metadata) { 1355 assert(!CInfoSymSection.Entry && "Multiple entries are not supported"); 1356 CInfoSymSection.addEntry( 1357 std::make_unique<CInfoSymInfo>(Name.str(), Metadata.str())); 1358 } 1359 1360 void XCOFFObjectWriter::assignAddressesAndIndices(const MCAsmLayout &Layout) { 1361 // The symbol table starts with all the C_FILE symbols. 1362 uint32_t SymbolTableIndex = FileNames.size(); 1363 1364 if (CInfoSymSection.Entry) 1365 SymbolTableIndex++; 1366 1367 // Calculate indices for undefined symbols. 1368 for (auto &Csect : UndefinedCsects) { 1369 Csect.Size = 0; 1370 Csect.Address = 0; 1371 Csect.SymbolTableIndex = SymbolTableIndex; 1372 SymbolIndexMap[Csect.MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex; 1373 // 1 main and 1 auxiliary symbol table entry for each contained symbol. 1374 SymbolTableIndex += 2; 1375 } 1376 1377 // The address corrresponds to the address of sections and symbols in the 1378 // object file. We place the shared address 0 immediately after the 1379 // section header table. 1380 uint64_t Address = 0; 1381 // Section indices are 1-based in XCOFF. 1382 int32_t SectionIndex = 1; 1383 bool HasTDataSection = false; 1384 1385 for (auto *Section : Sections) { 1386 const bool IsEmpty = 1387 llvm::all_of(Section->Groups, 1388 [](const CsectGroup *Group) { return Group->empty(); }); 1389 if (IsEmpty) 1390 continue; 1391 1392 if (SectionIndex > MaxSectionIndex) 1393 report_fatal_error("Section index overflow!"); 1394 Section->Index = SectionIndex++; 1395 SectionCount++; 1396 1397 bool SectionAddressSet = false; 1398 // Reset the starting address to 0 for TData section. 1399 if (Section->Flags == XCOFF::STYP_TDATA) { 1400 Address = 0; 1401 HasTDataSection = true; 1402 } 1403 // Reset the starting address to 0 for TBSS section if the object file does 1404 // not contain TData Section. 1405 if ((Section->Flags == XCOFF::STYP_TBSS) && !HasTDataSection) 1406 Address = 0; 1407 1408 for (auto *Group : Section->Groups) { 1409 if (Group->empty()) 1410 continue; 1411 1412 for (auto &Csect : *Group) { 1413 const MCSectionXCOFF *MCSec = Csect.MCSec; 1414 Csect.Address = alignTo(Address, MCSec->getAlign()); 1415 Csect.Size = Layout.getSectionAddressSize(MCSec); 1416 Address = Csect.Address + Csect.Size; 1417 Csect.SymbolTableIndex = SymbolTableIndex; 1418 SymbolIndexMap[MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex; 1419 // 1 main and 1 auxiliary symbol table entry for the csect. 1420 SymbolTableIndex += 2; 1421 1422 for (auto &Sym : Csect.Syms) { 1423 bool hasExceptEntry = false; 1424 auto Entry = 1425 ExceptionSection.ExceptionTable.find(Sym.MCSym->getName()); 1426 if (Entry != ExceptionSection.ExceptionTable.end()) { 1427 hasExceptEntry = true; 1428 for (auto &TrapEntry : Entry->second.Entries) { 1429 TrapEntry.TrapAddress = Layout.getSymbolOffset(*(Sym.MCSym)) + 1430 TrapEntry.Trap->getOffset(); 1431 } 1432 } 1433 Sym.SymbolTableIndex = SymbolTableIndex; 1434 SymbolIndexMap[Sym.MCSym] = Sym.SymbolTableIndex; 1435 // 1 main and 1 auxiliary symbol table entry for each contained 1436 // symbol. For symbols with exception section entries, a function 1437 // auxilliary entry is needed, and on 64-bit XCOFF with debugging 1438 // enabled, an additional exception auxilliary entry is needed. 1439 SymbolTableIndex += 2; 1440 if (hasExceptionSection() && hasExceptEntry) { 1441 if (is64Bit() && ExceptionSection.isDebugEnabled) 1442 SymbolTableIndex += 2; 1443 else 1444 SymbolTableIndex += 1; 1445 } 1446 } 1447 } 1448 1449 if (!SectionAddressSet) { 1450 Section->Address = Group->front().Address; 1451 SectionAddressSet = true; 1452 } 1453 } 1454 1455 // Make sure the address of the next section aligned to 1456 // DefaultSectionAlign. 1457 Address = alignTo(Address, DefaultSectionAlign); 1458 Section->Size = Address - Section->Address; 1459 } 1460 1461 // Start to generate DWARF sections. Sections other than DWARF section use 1462 // DefaultSectionAlign as the default alignment, while DWARF sections have 1463 // their own alignments. If these two alignments are not the same, we need 1464 // some paddings here and record the paddings bytes for FileOffsetToData 1465 // calculation. 1466 if (!DwarfSections.empty()) 1467 PaddingsBeforeDwarf = 1468 alignTo(Address, 1469 (*DwarfSections.begin()).DwarfSect->MCSec->getAlign()) - 1470 Address; 1471 1472 DwarfSectionEntry *LastDwarfSection = nullptr; 1473 for (auto &DwarfSection : DwarfSections) { 1474 assert((SectionIndex <= MaxSectionIndex) && "Section index overflow!"); 1475 1476 XCOFFSection &DwarfSect = *DwarfSection.DwarfSect; 1477 const MCSectionXCOFF *MCSec = DwarfSect.MCSec; 1478 1479 // Section index. 1480 DwarfSection.Index = SectionIndex++; 1481 SectionCount++; 1482 1483 // Symbol index. 1484 DwarfSect.SymbolTableIndex = SymbolTableIndex; 1485 SymbolIndexMap[MCSec->getQualNameSymbol()] = DwarfSect.SymbolTableIndex; 1486 // 1 main and 1 auxiliary symbol table entry for the csect. 1487 SymbolTableIndex += 2; 1488 1489 // Section address. Make it align to section alignment. 1490 // We use address 0 for DWARF sections' Physical and Virtual Addresses. 1491 // This address is used to tell where is the section in the final object. 1492 // See writeSectionForDwarfSectionEntry(). 1493 DwarfSection.Address = DwarfSect.Address = 1494 alignTo(Address, MCSec->getAlign()); 1495 1496 // Section size. 1497 // For DWARF section, we must use the real size which may be not aligned. 1498 DwarfSection.Size = DwarfSect.Size = Layout.getSectionAddressSize(MCSec); 1499 1500 Address = DwarfSection.Address + DwarfSection.Size; 1501 1502 if (LastDwarfSection) 1503 LastDwarfSection->MemorySize = 1504 DwarfSection.Address - LastDwarfSection->Address; 1505 LastDwarfSection = &DwarfSection; 1506 } 1507 if (LastDwarfSection) { 1508 // Make the final DWARF section address align to the default section 1509 // alignment for follow contents. 1510 Address = alignTo(LastDwarfSection->Address + LastDwarfSection->Size, 1511 DefaultSectionAlign); 1512 LastDwarfSection->MemorySize = Address - LastDwarfSection->Address; 1513 } 1514 if (hasExceptionSection()) { 1515 ExceptionSection.Index = SectionIndex++; 1516 SectionCount++; 1517 ExceptionSection.Address = 0; 1518 ExceptionSection.Size = getExceptionSectionSize(); 1519 Address += ExceptionSection.Size; 1520 Address = alignTo(Address, DefaultSectionAlign); 1521 } 1522 1523 if (CInfoSymSection.Entry) { 1524 CInfoSymSection.Index = SectionIndex++; 1525 SectionCount++; 1526 CInfoSymSection.Address = 0; 1527 Address += CInfoSymSection.Size; 1528 Address = alignTo(Address, DefaultSectionAlign); 1529 } 1530 1531 SymbolTableEntryCount = SymbolTableIndex; 1532 } 1533 1534 void XCOFFObjectWriter::writeSectionForControlSectionEntry( 1535 const MCAssembler &Asm, const MCAsmLayout &Layout, 1536 const CsectSectionEntry &CsectEntry, uint64_t &CurrentAddressLocation) { 1537 // Nothing to write for this Section. 1538 if (CsectEntry.Index == SectionEntry::UninitializedIndex) 1539 return; 1540 1541 // There could be a gap (without corresponding zero padding) between 1542 // sections. 1543 // There could be a gap (without corresponding zero padding) between 1544 // sections. 1545 assert(((CurrentAddressLocation <= CsectEntry.Address) || 1546 (CsectEntry.Flags == XCOFF::STYP_TDATA) || 1547 (CsectEntry.Flags == XCOFF::STYP_TBSS)) && 1548 "CurrentAddressLocation should be less than or equal to section " 1549 "address if the section is not TData or TBSS."); 1550 1551 CurrentAddressLocation = CsectEntry.Address; 1552 1553 // For virtual sections, nothing to write. But need to increase 1554 // CurrentAddressLocation for later sections like DWARF section has a correct 1555 // writing location. 1556 if (CsectEntry.IsVirtual) { 1557 CurrentAddressLocation += CsectEntry.Size; 1558 return; 1559 } 1560 1561 for (const auto &Group : CsectEntry.Groups) { 1562 for (const auto &Csect : *Group) { 1563 if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation) 1564 W.OS.write_zeros(PaddingSize); 1565 if (Csect.Size) 1566 Asm.writeSectionData(W.OS, Csect.MCSec, Layout); 1567 CurrentAddressLocation = Csect.Address + Csect.Size; 1568 } 1569 } 1570 1571 // The size of the tail padding in a section is the end virtual address of 1572 // the current section minus the end virtual address of the last csect 1573 // in that section. 1574 if (uint64_t PaddingSize = 1575 CsectEntry.Address + CsectEntry.Size - CurrentAddressLocation) { 1576 W.OS.write_zeros(PaddingSize); 1577 CurrentAddressLocation += PaddingSize; 1578 } 1579 } 1580 1581 void XCOFFObjectWriter::writeSectionForDwarfSectionEntry( 1582 const MCAssembler &Asm, const MCAsmLayout &Layout, 1583 const DwarfSectionEntry &DwarfEntry, uint64_t &CurrentAddressLocation) { 1584 // There could be a gap (without corresponding zero padding) between 1585 // sections. For example DWARF section alignment is bigger than 1586 // DefaultSectionAlign. 1587 assert(CurrentAddressLocation <= DwarfEntry.Address && 1588 "CurrentAddressLocation should be less than or equal to section " 1589 "address."); 1590 1591 if (uint64_t PaddingSize = DwarfEntry.Address - CurrentAddressLocation) 1592 W.OS.write_zeros(PaddingSize); 1593 1594 if (DwarfEntry.Size) 1595 Asm.writeSectionData(W.OS, DwarfEntry.DwarfSect->MCSec, Layout); 1596 1597 CurrentAddressLocation = DwarfEntry.Address + DwarfEntry.Size; 1598 1599 // DWARF section size is not aligned to DefaultSectionAlign. 1600 // Make sure CurrentAddressLocation is aligned to DefaultSectionAlign. 1601 uint32_t Mod = CurrentAddressLocation % DefaultSectionAlign; 1602 uint32_t TailPaddingSize = Mod ? DefaultSectionAlign - Mod : 0; 1603 if (TailPaddingSize) 1604 W.OS.write_zeros(TailPaddingSize); 1605 1606 CurrentAddressLocation += TailPaddingSize; 1607 } 1608 1609 void XCOFFObjectWriter::writeSectionForExceptionSectionEntry( 1610 const MCAssembler &Asm, const MCAsmLayout &Layout, 1611 ExceptionSectionEntry &ExceptionEntry, uint64_t &CurrentAddressLocation) { 1612 for (auto it = ExceptionEntry.ExceptionTable.begin(); 1613 it != ExceptionEntry.ExceptionTable.end(); it++) { 1614 // For every symbol that has exception entries, you must start the entries 1615 // with an initial symbol table index entry 1616 W.write<uint32_t>(SymbolIndexMap[it->second.FunctionSymbol]); 1617 if (is64Bit()) { 1618 // 4-byte padding on 64-bit. 1619 W.OS.write_zeros(4); 1620 } 1621 W.OS.write_zeros(2); 1622 for (auto &TrapEntry : it->second.Entries) { 1623 writeWord(TrapEntry.TrapAddress); 1624 W.write<uint8_t>(TrapEntry.Lang); 1625 W.write<uint8_t>(TrapEntry.Reason); 1626 } 1627 } 1628 1629 CurrentAddressLocation += getExceptionSectionSize(); 1630 } 1631 1632 void XCOFFObjectWriter::writeSectionForCInfoSymSectionEntry( 1633 const MCAssembler &Asm, const MCAsmLayout &Layout, 1634 CInfoSymSectionEntry &CInfoSymEntry, uint64_t &CurrentAddressLocation) { 1635 if (!CInfoSymSection.Entry) 1636 return; 1637 1638 constexpr int WordSize = sizeof(uint32_t); 1639 std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymEntry.Entry; 1640 const std::string &Metadata = CISI->Metadata; 1641 1642 // Emit the 4-byte length of the metadata. 1643 W.write<uint32_t>(Metadata.size()); 1644 1645 if (Metadata.size() == 0) 1646 return; 1647 1648 // Write out the payload one word at a time. 1649 size_t Index = 0; 1650 while (Index + WordSize <= Metadata.size()) { 1651 uint32_t NextWord = 1652 llvm::support::endian::read32be(Metadata.data() + Index); 1653 W.write<uint32_t>(NextWord); 1654 Index += WordSize; 1655 } 1656 1657 // If there is padding, we have at least one byte of payload left to emit. 1658 if (CISI->paddingSize()) { 1659 std::array<uint8_t, WordSize> LastWord = {0}; 1660 ::memcpy(LastWord.data(), Metadata.data() + Index, Metadata.size() - Index); 1661 W.write<uint32_t>(llvm::support::endian::read32be(LastWord.data())); 1662 } 1663 1664 CurrentAddressLocation += CISI->size(); 1665 } 1666 1667 // Takes the log base 2 of the alignment and shifts the result into the 5 most 1668 // significant bits of a byte, then or's in the csect type into the least 1669 // significant 3 bits. 1670 uint8_t getEncodedType(const MCSectionXCOFF *Sec) { 1671 unsigned Log2Align = Log2(Sec->getAlign()); 1672 // Result is a number in the range [0, 31] which fits in the 5 least 1673 // significant bits. Shift this value into the 5 most significant bits, and 1674 // bitwise-or in the csect type. 1675 uint8_t EncodedAlign = Log2Align << 3; 1676 return EncodedAlign | Sec->getCSectType(); 1677 } 1678 1679 } // end anonymous namespace 1680 1681 std::unique_ptr<MCObjectWriter> 1682 llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, 1683 raw_pwrite_stream &OS) { 1684 return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS); 1685 } 1686