1 //===- lib/MC/WasmObjectWriter.cpp - Wasm File Writer ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements Wasm object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/BinaryFormat/Wasm.h" 15 #include "llvm/BinaryFormat/WasmTraits.h" 16 #include "llvm/Config/llvm-config.h" 17 #include "llvm/MC/MCAsmBackend.h" 18 #include "llvm/MC/MCAsmLayout.h" 19 #include "llvm/MC/MCAssembler.h" 20 #include "llvm/MC/MCContext.h" 21 #include "llvm/MC/MCExpr.h" 22 #include "llvm/MC/MCFixupKindInfo.h" 23 #include "llvm/MC/MCObjectWriter.h" 24 #include "llvm/MC/MCSectionWasm.h" 25 #include "llvm/MC/MCSymbolWasm.h" 26 #include "llvm/MC/MCValue.h" 27 #include "llvm/MC/MCWasmObjectWriter.h" 28 #include "llvm/Support/Casting.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/EndianStream.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/LEB128.h" 33 #include <vector> 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "mc" 38 39 namespace { 40 41 // When we create the indirect function table we start at 1, so that there is 42 // and empty slot at 0 and therefore calling a null function pointer will trap. 43 static const uint32_t InitialTableOffset = 1; 44 45 // For patching purposes, we need to remember where each section starts, both 46 // for patching up the section size field, and for patching up references to 47 // locations within the section. 48 struct SectionBookkeeping { 49 // Where the size of the section is written. 50 uint64_t SizeOffset; 51 // Where the section header ends (without custom section name). 52 uint64_t PayloadOffset; 53 // Where the contents of the section starts. 54 uint64_t ContentsOffset; 55 uint32_t Index; 56 }; 57 58 // A wasm data segment. A wasm binary contains only a single data section 59 // but that can contain many segments, each with their own virtual location 60 // in memory. Each MCSection data created by llvm is modeled as its own 61 // wasm data segment. 62 struct WasmDataSegment { 63 MCSectionWasm *Section; 64 StringRef Name; 65 uint32_t InitFlags; 66 uint64_t Offset; 67 uint32_t Alignment; 68 uint32_t LinkingFlags; 69 SmallVector<char, 4> Data; 70 }; 71 72 // A wasm function to be written into the function section. 73 struct WasmFunction { 74 uint32_t SigIndex; 75 MCSection *Section; 76 }; 77 78 // A wasm global to be written into the global section. 79 struct WasmGlobal { 80 wasm::WasmGlobalType Type; 81 uint64_t InitialValue; 82 }; 83 84 // Information about a single item which is part of a COMDAT. For each data 85 // segment or function which is in the COMDAT, there is a corresponding 86 // WasmComdatEntry. 87 struct WasmComdatEntry { 88 unsigned Kind; 89 uint32_t Index; 90 }; 91 92 // Information about a single relocation. 93 struct WasmRelocationEntry { 94 uint64_t Offset; // Where is the relocation. 95 const MCSymbolWasm *Symbol; // The symbol to relocate with. 96 int64_t Addend; // A value to add to the symbol. 97 unsigned Type; // The type of the relocation. 98 const MCSectionWasm *FixupSection; // The section the relocation is targeting. 99 100 WasmRelocationEntry(uint64_t Offset, const MCSymbolWasm *Symbol, 101 int64_t Addend, unsigned Type, 102 const MCSectionWasm *FixupSection) 103 : Offset(Offset), Symbol(Symbol), Addend(Addend), Type(Type), 104 FixupSection(FixupSection) {} 105 106 bool hasAddend() const { return wasm::relocTypeHasAddend(Type); } 107 108 void print(raw_ostream &Out) const { 109 Out << wasm::relocTypetoString(Type) << " Off=" << Offset 110 << ", Sym=" << *Symbol << ", Addend=" << Addend 111 << ", FixupSection=" << FixupSection->getName(); 112 } 113 114 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 115 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 116 #endif 117 }; 118 119 static const uint32_t InvalidIndex = -1; 120 121 struct WasmCustomSection { 122 123 StringRef Name; 124 MCSectionWasm *Section; 125 126 uint32_t OutputContentsOffset = 0; 127 uint32_t OutputIndex = InvalidIndex; 128 129 WasmCustomSection(StringRef Name, MCSectionWasm *Section) 130 : Name(Name), Section(Section) {} 131 }; 132 133 #if !defined(NDEBUG) 134 raw_ostream &operator<<(raw_ostream &OS, const WasmRelocationEntry &Rel) { 135 Rel.print(OS); 136 return OS; 137 } 138 #endif 139 140 // Write Value as an (unsigned) LEB value at offset Offset in Stream, padded 141 // to allow patching. 142 template <typename T, int W> 143 void writePatchableULEB(raw_pwrite_stream &Stream, T Value, uint64_t Offset) { 144 uint8_t Buffer[W]; 145 unsigned SizeLen = encodeULEB128(Value, Buffer, W); 146 assert(SizeLen == W); 147 Stream.pwrite((char *)Buffer, SizeLen, Offset); 148 } 149 150 // Write Value as an signed LEB value at offset Offset in Stream, padded 151 // to allow patching. 152 template <typename T, int W> 153 void writePatchableSLEB(raw_pwrite_stream &Stream, T Value, uint64_t Offset) { 154 uint8_t Buffer[W]; 155 unsigned SizeLen = encodeSLEB128(Value, Buffer, W); 156 assert(SizeLen == W); 157 Stream.pwrite((char *)Buffer, SizeLen, Offset); 158 } 159 160 static void writePatchableU32(raw_pwrite_stream &Stream, uint32_t Value, 161 uint64_t Offset) { 162 writePatchableULEB<uint32_t, 5>(Stream, Value, Offset); 163 } 164 165 static void writePatchableS32(raw_pwrite_stream &Stream, int32_t Value, 166 uint64_t Offset) { 167 writePatchableSLEB<int32_t, 5>(Stream, Value, Offset); 168 } 169 170 static void writePatchableU64(raw_pwrite_stream &Stream, uint64_t Value, 171 uint64_t Offset) { 172 writePatchableSLEB<uint64_t, 10>(Stream, Value, Offset); 173 } 174 175 static void writePatchableS64(raw_pwrite_stream &Stream, int64_t Value, 176 uint64_t Offset) { 177 writePatchableSLEB<int64_t, 10>(Stream, Value, Offset); 178 } 179 180 // Write Value as a plain integer value at offset Offset in Stream. 181 static void patchI32(raw_pwrite_stream &Stream, uint32_t Value, 182 uint64_t Offset) { 183 uint8_t Buffer[4]; 184 support::endian::write32le(Buffer, Value); 185 Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset); 186 } 187 188 static void patchI64(raw_pwrite_stream &Stream, uint64_t Value, 189 uint64_t Offset) { 190 uint8_t Buffer[8]; 191 support::endian::write64le(Buffer, Value); 192 Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset); 193 } 194 195 bool isDwoSection(const MCSection &Sec) { 196 return Sec.getName().ends_with(".dwo"); 197 } 198 199 class WasmObjectWriter : public MCObjectWriter { 200 support::endian::Writer *W = nullptr; 201 202 /// The target specific Wasm writer instance. 203 std::unique_ptr<MCWasmObjectTargetWriter> TargetObjectWriter; 204 205 // Relocations for fixing up references in the code section. 206 std::vector<WasmRelocationEntry> CodeRelocations; 207 // Relocations for fixing up references in the data section. 208 std::vector<WasmRelocationEntry> DataRelocations; 209 210 // Index values to use for fixing up call_indirect type indices. 211 // Maps function symbols to the index of the type of the function 212 DenseMap<const MCSymbolWasm *, uint32_t> TypeIndices; 213 // Maps function symbols to the table element index space. Used 214 // for TABLE_INDEX relocation types (i.e. address taken functions). 215 DenseMap<const MCSymbolWasm *, uint32_t> TableIndices; 216 // Maps function/global/table symbols to the 217 // function/global/table/tag/section index space. 218 DenseMap<const MCSymbolWasm *, uint32_t> WasmIndices; 219 DenseMap<const MCSymbolWasm *, uint32_t> GOTIndices; 220 // Maps data symbols to the Wasm segment and offset/size with the segment. 221 DenseMap<const MCSymbolWasm *, wasm::WasmDataReference> DataLocations; 222 223 // Stores output data (index, relocations, content offset) for custom 224 // section. 225 std::vector<WasmCustomSection> CustomSections; 226 std::unique_ptr<WasmCustomSection> ProducersSection; 227 std::unique_ptr<WasmCustomSection> TargetFeaturesSection; 228 // Relocations for fixing up references in the custom sections. 229 DenseMap<const MCSectionWasm *, std::vector<WasmRelocationEntry>> 230 CustomSectionsRelocations; 231 232 // Map from section to defining function symbol. 233 DenseMap<const MCSection *, const MCSymbol *> SectionFunctions; 234 235 DenseMap<wasm::WasmSignature, uint32_t> SignatureIndices; 236 SmallVector<wasm::WasmSignature, 4> Signatures; 237 SmallVector<WasmDataSegment, 4> DataSegments; 238 unsigned NumFunctionImports = 0; 239 unsigned NumGlobalImports = 0; 240 unsigned NumTableImports = 0; 241 unsigned NumTagImports = 0; 242 uint32_t SectionCount = 0; 243 244 enum class DwoMode { 245 AllSections, 246 NonDwoOnly, 247 DwoOnly, 248 }; 249 bool IsSplitDwarf = false; 250 raw_pwrite_stream *OS = nullptr; 251 raw_pwrite_stream *DwoOS = nullptr; 252 253 // TargetObjectWriter wranppers. 254 bool is64Bit() const { return TargetObjectWriter->is64Bit(); } 255 bool isEmscripten() const { return TargetObjectWriter->isEmscripten(); } 256 257 void startSection(SectionBookkeeping &Section, unsigned SectionId); 258 void startCustomSection(SectionBookkeeping &Section, StringRef Name); 259 void endSection(SectionBookkeeping &Section); 260 261 public: 262 WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 263 raw_pwrite_stream &OS_) 264 : TargetObjectWriter(std::move(MOTW)), OS(&OS_) {} 265 266 WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 267 raw_pwrite_stream &OS_, raw_pwrite_stream &DwoOS_) 268 : TargetObjectWriter(std::move(MOTW)), IsSplitDwarf(true), OS(&OS_), 269 DwoOS(&DwoOS_) {} 270 271 private: 272 void reset() override { 273 CodeRelocations.clear(); 274 DataRelocations.clear(); 275 TypeIndices.clear(); 276 WasmIndices.clear(); 277 GOTIndices.clear(); 278 TableIndices.clear(); 279 DataLocations.clear(); 280 CustomSections.clear(); 281 ProducersSection.reset(); 282 TargetFeaturesSection.reset(); 283 CustomSectionsRelocations.clear(); 284 SignatureIndices.clear(); 285 Signatures.clear(); 286 DataSegments.clear(); 287 SectionFunctions.clear(); 288 NumFunctionImports = 0; 289 NumGlobalImports = 0; 290 NumTableImports = 0; 291 MCObjectWriter::reset(); 292 } 293 294 void writeHeader(const MCAssembler &Asm); 295 296 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, 297 const MCFragment *Fragment, const MCFixup &Fixup, 298 MCValue Target, uint64_t &FixedValue) override; 299 300 void executePostLayoutBinding(MCAssembler &Asm, 301 const MCAsmLayout &Layout) override; 302 void prepareImports(SmallVectorImpl<wasm::WasmImport> &Imports, 303 MCAssembler &Asm, const MCAsmLayout &Layout); 304 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override; 305 306 uint64_t writeOneObject(MCAssembler &Asm, const MCAsmLayout &Layout, 307 DwoMode Mode); 308 309 void writeString(const StringRef Str) { 310 encodeULEB128(Str.size(), W->OS); 311 W->OS << Str; 312 } 313 314 void writeStringWithAlignment(const StringRef Str, unsigned Alignment); 315 316 void writeI32(int32_t val) { 317 char Buffer[4]; 318 support::endian::write32le(Buffer, val); 319 W->OS.write(Buffer, sizeof(Buffer)); 320 } 321 322 void writeI64(int64_t val) { 323 char Buffer[8]; 324 support::endian::write64le(Buffer, val); 325 W->OS.write(Buffer, sizeof(Buffer)); 326 } 327 328 void writeValueType(wasm::ValType Ty) { W->OS << static_cast<char>(Ty); } 329 330 void writeTypeSection(ArrayRef<wasm::WasmSignature> Signatures); 331 void writeImportSection(ArrayRef<wasm::WasmImport> Imports, uint64_t DataSize, 332 uint32_t NumElements); 333 void writeFunctionSection(ArrayRef<WasmFunction> Functions); 334 void writeExportSection(ArrayRef<wasm::WasmExport> Exports); 335 void writeElemSection(const MCSymbolWasm *IndirectFunctionTable, 336 ArrayRef<uint32_t> TableElems); 337 void writeDataCountSection(); 338 uint32_t writeCodeSection(const MCAssembler &Asm, const MCAsmLayout &Layout, 339 ArrayRef<WasmFunction> Functions); 340 uint32_t writeDataSection(const MCAsmLayout &Layout); 341 void writeTagSection(ArrayRef<uint32_t> TagTypes); 342 void writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals); 343 void writeTableSection(ArrayRef<wasm::WasmTable> Tables); 344 void writeRelocSection(uint32_t SectionIndex, StringRef Name, 345 std::vector<WasmRelocationEntry> &Relocations); 346 void writeLinkingMetaDataSection( 347 ArrayRef<wasm::WasmSymbolInfo> SymbolInfos, 348 ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs, 349 const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats); 350 void writeCustomSection(WasmCustomSection &CustomSection, 351 const MCAssembler &Asm, const MCAsmLayout &Layout); 352 void writeCustomRelocSections(); 353 354 uint64_t getProvisionalValue(const WasmRelocationEntry &RelEntry, 355 const MCAsmLayout &Layout); 356 void applyRelocations(ArrayRef<WasmRelocationEntry> Relocations, 357 uint64_t ContentsOffset, const MCAsmLayout &Layout); 358 359 uint32_t getRelocationIndexValue(const WasmRelocationEntry &RelEntry); 360 uint32_t getFunctionType(const MCSymbolWasm &Symbol); 361 uint32_t getTagType(const MCSymbolWasm &Symbol); 362 void registerFunctionType(const MCSymbolWasm &Symbol); 363 void registerTagType(const MCSymbolWasm &Symbol); 364 }; 365 366 } // end anonymous namespace 367 368 // Write out a section header and a patchable section size field. 369 void WasmObjectWriter::startSection(SectionBookkeeping &Section, 370 unsigned SectionId) { 371 LLVM_DEBUG(dbgs() << "startSection " << SectionId << "\n"); 372 W->OS << char(SectionId); 373 374 Section.SizeOffset = W->OS.tell(); 375 376 // The section size. We don't know the size yet, so reserve enough space 377 // for any 32-bit value; we'll patch it later. 378 encodeULEB128(0, W->OS, 5); 379 380 // The position where the section starts, for measuring its size. 381 Section.ContentsOffset = W->OS.tell(); 382 Section.PayloadOffset = W->OS.tell(); 383 Section.Index = SectionCount++; 384 } 385 386 // Write a string with extra paddings for trailing alignment 387 // TODO: support alignment at asm and llvm level? 388 void WasmObjectWriter::writeStringWithAlignment(const StringRef Str, 389 unsigned Alignment) { 390 391 // Calculate the encoded size of str length and add pads based on it and 392 // alignment. 393 raw_null_ostream NullOS; 394 uint64_t StrSizeLength = encodeULEB128(Str.size(), NullOS); 395 uint64_t Offset = W->OS.tell() + StrSizeLength + Str.size(); 396 uint64_t Paddings = offsetToAlignment(Offset, Align(Alignment)); 397 Offset += Paddings; 398 399 // LEB128 greater than 5 bytes is invalid 400 assert((StrSizeLength + Paddings) <= 5 && "too long string to align"); 401 402 encodeSLEB128(Str.size(), W->OS, StrSizeLength + Paddings); 403 W->OS << Str; 404 405 assert(W->OS.tell() == Offset && "invalid padding"); 406 } 407 408 void WasmObjectWriter::startCustomSection(SectionBookkeeping &Section, 409 StringRef Name) { 410 LLVM_DEBUG(dbgs() << "startCustomSection " << Name << "\n"); 411 startSection(Section, wasm::WASM_SEC_CUSTOM); 412 413 // The position where the section header ends, for measuring its size. 414 Section.PayloadOffset = W->OS.tell(); 415 416 // Custom sections in wasm also have a string identifier. 417 if (Name != "__clangast") { 418 writeString(Name); 419 } else { 420 // The on-disk hashtable in clangast needs to be aligned by 4 bytes. 421 writeStringWithAlignment(Name, 4); 422 } 423 424 // The position where the custom section starts. 425 Section.ContentsOffset = W->OS.tell(); 426 } 427 428 // Now that the section is complete and we know how big it is, patch up the 429 // section size field at the start of the section. 430 void WasmObjectWriter::endSection(SectionBookkeeping &Section) { 431 uint64_t Size = W->OS.tell(); 432 // /dev/null doesn't support seek/tell and can report offset of 0. 433 // Simply skip this patching in that case. 434 if (!Size) 435 return; 436 437 Size -= Section.PayloadOffset; 438 if (uint32_t(Size) != Size) 439 report_fatal_error("section size does not fit in a uint32_t"); 440 441 LLVM_DEBUG(dbgs() << "endSection size=" << Size << "\n"); 442 443 // Write the final section size to the payload_len field, which follows 444 // the section id byte. 445 writePatchableU32(static_cast<raw_pwrite_stream &>(W->OS), Size, 446 Section.SizeOffset); 447 } 448 449 // Emit the Wasm header. 450 void WasmObjectWriter::writeHeader(const MCAssembler &Asm) { 451 W->OS.write(wasm::WasmMagic, sizeof(wasm::WasmMagic)); 452 W->write<uint32_t>(wasm::WasmVersion); 453 } 454 455 void WasmObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 456 const MCAsmLayout &Layout) { 457 // Some compilation units require the indirect function table to be present 458 // but don't explicitly reference it. This is the case for call_indirect 459 // without the reference-types feature, and also function bitcasts in all 460 // cases. In those cases the __indirect_function_table has the 461 // WASM_SYMBOL_NO_STRIP attribute. Here we make sure this symbol makes it to 462 // the assembler, if needed. 463 if (auto *Sym = Asm.getContext().lookupSymbol("__indirect_function_table")) { 464 const auto *WasmSym = static_cast<const MCSymbolWasm *>(Sym); 465 if (WasmSym->isNoStrip()) 466 Asm.registerSymbol(*Sym); 467 } 468 469 // Build a map of sections to the function that defines them, for use 470 // in recordRelocation. 471 for (const MCSymbol &S : Asm.symbols()) { 472 const auto &WS = static_cast<const MCSymbolWasm &>(S); 473 if (WS.isDefined() && WS.isFunction() && !WS.isVariable()) { 474 const auto &Sec = static_cast<const MCSectionWasm &>(S.getSection()); 475 auto Pair = SectionFunctions.insert(std::make_pair(&Sec, &S)); 476 if (!Pair.second) 477 report_fatal_error("section already has a defining function: " + 478 Sec.getName()); 479 } 480 } 481 } 482 483 void WasmObjectWriter::recordRelocation(MCAssembler &Asm, 484 const MCAsmLayout &Layout, 485 const MCFragment *Fragment, 486 const MCFixup &Fixup, MCValue Target, 487 uint64_t &FixedValue) { 488 // The WebAssembly backend should never generate FKF_IsPCRel fixups 489 assert(!(Asm.getBackend().getFixupKindInfo(Fixup.getKind()).Flags & 490 MCFixupKindInfo::FKF_IsPCRel)); 491 492 const auto &FixupSection = cast<MCSectionWasm>(*Fragment->getParent()); 493 uint64_t C = Target.getConstant(); 494 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); 495 MCContext &Ctx = Asm.getContext(); 496 bool IsLocRel = false; 497 498 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 499 500 const auto &SymB = cast<MCSymbolWasm>(RefB->getSymbol()); 501 502 if (FixupSection.getKind().isText()) { 503 Ctx.reportError(Fixup.getLoc(), 504 Twine("symbol '") + SymB.getName() + 505 "' unsupported subtraction expression used in " 506 "relocation in code section."); 507 return; 508 } 509 510 if (SymB.isUndefined()) { 511 Ctx.reportError(Fixup.getLoc(), 512 Twine("symbol '") + SymB.getName() + 513 "' can not be undefined in a subtraction expression"); 514 return; 515 } 516 const MCSection &SecB = SymB.getSection(); 517 if (&SecB != &FixupSection) { 518 Ctx.reportError(Fixup.getLoc(), 519 Twine("symbol '") + SymB.getName() + 520 "' can not be placed in a different section"); 521 return; 522 } 523 IsLocRel = true; 524 C += FixupOffset - Layout.getSymbolOffset(SymB); 525 } 526 527 // We either rejected the fixup or folded B into C at this point. 528 const MCSymbolRefExpr *RefA = Target.getSymA(); 529 const auto *SymA = cast<MCSymbolWasm>(&RefA->getSymbol()); 530 531 // The .init_array isn't translated as data, so don't do relocations in it. 532 if (FixupSection.getName().starts_with(".init_array")) { 533 SymA->setUsedInInitArray(); 534 return; 535 } 536 537 if (SymA->isVariable()) { 538 const MCExpr *Expr = SymA->getVariableValue(); 539 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) 540 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) 541 llvm_unreachable("weakref used in reloc not yet implemented"); 542 } 543 544 // Put any constant offset in an addend. Offsets can be negative, and 545 // LLVM expects wrapping, in contrast to wasm's immediates which can't 546 // be negative and don't wrap. 547 FixedValue = 0; 548 549 unsigned Type = 550 TargetObjectWriter->getRelocType(Target, Fixup, FixupSection, IsLocRel); 551 552 // Absolute offset within a section or a function. 553 // Currently only supported for metadata sections. 554 // See: test/MC/WebAssembly/blockaddress.ll 555 if ((Type == wasm::R_WASM_FUNCTION_OFFSET_I32 || 556 Type == wasm::R_WASM_FUNCTION_OFFSET_I64 || 557 Type == wasm::R_WASM_SECTION_OFFSET_I32) && 558 SymA->isDefined()) { 559 // SymA can be a temp data symbol that represents a function (in which case 560 // it needs to be replaced by the section symbol), [XXX and it apparently 561 // later gets changed again to a func symbol?] or it can be a real 562 // function symbol, in which case it can be left as-is. 563 564 if (!FixupSection.getKind().isMetadata()) 565 report_fatal_error("relocations for function or section offsets are " 566 "only supported in metadata sections"); 567 568 const MCSymbol *SectionSymbol = nullptr; 569 const MCSection &SecA = SymA->getSection(); 570 if (SecA.getKind().isText()) { 571 auto SecSymIt = SectionFunctions.find(&SecA); 572 if (SecSymIt == SectionFunctions.end()) 573 report_fatal_error("section doesn\'t have defining symbol"); 574 SectionSymbol = SecSymIt->second; 575 } else { 576 SectionSymbol = SecA.getBeginSymbol(); 577 } 578 if (!SectionSymbol) 579 report_fatal_error("section symbol is required for relocation"); 580 581 C += Layout.getSymbolOffset(*SymA); 582 SymA = cast<MCSymbolWasm>(SectionSymbol); 583 } 584 585 if (Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB || 586 Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB64 || 587 Type == wasm::R_WASM_TABLE_INDEX_SLEB || 588 Type == wasm::R_WASM_TABLE_INDEX_SLEB64 || 589 Type == wasm::R_WASM_TABLE_INDEX_I32 || 590 Type == wasm::R_WASM_TABLE_INDEX_I64) { 591 // TABLE_INDEX relocs implicitly use the default indirect function table. 592 // We require the function table to have already been defined. 593 auto TableName = "__indirect_function_table"; 594 MCSymbolWasm *Sym = cast_or_null<MCSymbolWasm>(Ctx.lookupSymbol(TableName)); 595 if (!Sym) { 596 report_fatal_error("missing indirect function table symbol"); 597 } else { 598 if (!Sym->isFunctionTable()) 599 report_fatal_error("__indirect_function_table symbol has wrong type"); 600 // Ensure that __indirect_function_table reaches the output. 601 Sym->setNoStrip(); 602 Asm.registerSymbol(*Sym); 603 } 604 } 605 606 // Relocation other than R_WASM_TYPE_INDEX_LEB are required to be 607 // against a named symbol. 608 if (Type != wasm::R_WASM_TYPE_INDEX_LEB) { 609 if (SymA->getName().empty()) 610 report_fatal_error("relocations against un-named temporaries are not yet " 611 "supported by wasm"); 612 613 SymA->setUsedInReloc(); 614 } 615 616 switch (RefA->getKind()) { 617 case MCSymbolRefExpr::VK_GOT: 618 case MCSymbolRefExpr::VK_WASM_GOT_TLS: 619 SymA->setUsedInGOT(); 620 break; 621 default: 622 break; 623 } 624 625 WasmRelocationEntry Rec(FixupOffset, SymA, C, Type, &FixupSection); 626 LLVM_DEBUG(dbgs() << "WasmReloc: " << Rec << "\n"); 627 628 if (FixupSection.isWasmData()) { 629 DataRelocations.push_back(Rec); 630 } else if (FixupSection.getKind().isText()) { 631 CodeRelocations.push_back(Rec); 632 } else if (FixupSection.getKind().isMetadata()) { 633 CustomSectionsRelocations[&FixupSection].push_back(Rec); 634 } else { 635 llvm_unreachable("unexpected section type"); 636 } 637 } 638 639 // Compute a value to write into the code at the location covered 640 // by RelEntry. This value isn't used by the static linker; it just serves 641 // to make the object format more readable and more likely to be directly 642 // useable. 643 uint64_t 644 WasmObjectWriter::getProvisionalValue(const WasmRelocationEntry &RelEntry, 645 const MCAsmLayout &Layout) { 646 if ((RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_LEB || 647 RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_I32) && 648 !RelEntry.Symbol->isGlobal()) { 649 assert(GOTIndices.count(RelEntry.Symbol) > 0 && "symbol not found in GOT index space"); 650 return GOTIndices[RelEntry.Symbol]; 651 } 652 653 switch (RelEntry.Type) { 654 case wasm::R_WASM_TABLE_INDEX_REL_SLEB: 655 case wasm::R_WASM_TABLE_INDEX_REL_SLEB64: 656 case wasm::R_WASM_TABLE_INDEX_SLEB: 657 case wasm::R_WASM_TABLE_INDEX_SLEB64: 658 case wasm::R_WASM_TABLE_INDEX_I32: 659 case wasm::R_WASM_TABLE_INDEX_I64: { 660 // Provisional value is table address of the resolved symbol itself 661 const MCSymbolWasm *Base = 662 cast<MCSymbolWasm>(Layout.getBaseSymbol(*RelEntry.Symbol)); 663 assert(Base->isFunction()); 664 if (RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB || 665 RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB64) 666 return TableIndices[Base] - InitialTableOffset; 667 else 668 return TableIndices[Base]; 669 } 670 case wasm::R_WASM_TYPE_INDEX_LEB: 671 // Provisional value is same as the index 672 return getRelocationIndexValue(RelEntry); 673 case wasm::R_WASM_FUNCTION_INDEX_LEB: 674 case wasm::R_WASM_FUNCTION_INDEX_I32: 675 case wasm::R_WASM_GLOBAL_INDEX_LEB: 676 case wasm::R_WASM_GLOBAL_INDEX_I32: 677 case wasm::R_WASM_TAG_INDEX_LEB: 678 case wasm::R_WASM_TABLE_NUMBER_LEB: 679 // Provisional value is function/global/tag Wasm index 680 assert(WasmIndices.count(RelEntry.Symbol) > 0 && "symbol not found in wasm index space"); 681 return WasmIndices[RelEntry.Symbol]; 682 case wasm::R_WASM_FUNCTION_OFFSET_I32: 683 case wasm::R_WASM_FUNCTION_OFFSET_I64: 684 case wasm::R_WASM_SECTION_OFFSET_I32: { 685 if (!RelEntry.Symbol->isDefined()) 686 return 0; 687 const auto &Section = 688 static_cast<const MCSectionWasm &>(RelEntry.Symbol->getSection()); 689 return Section.getSectionOffset() + RelEntry.Addend; 690 } 691 case wasm::R_WASM_MEMORY_ADDR_LEB: 692 case wasm::R_WASM_MEMORY_ADDR_LEB64: 693 case wasm::R_WASM_MEMORY_ADDR_SLEB: 694 case wasm::R_WASM_MEMORY_ADDR_SLEB64: 695 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB: 696 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64: 697 case wasm::R_WASM_MEMORY_ADDR_I32: 698 case wasm::R_WASM_MEMORY_ADDR_I64: 699 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB: 700 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB64: 701 case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32: { 702 // Provisional value is address of the global plus the offset 703 // For undefined symbols, use zero 704 if (!RelEntry.Symbol->isDefined()) 705 return 0; 706 const wasm::WasmDataReference &SymRef = DataLocations[RelEntry.Symbol]; 707 const WasmDataSegment &Segment = DataSegments[SymRef.Segment]; 708 // Ignore overflow. LLVM allows address arithmetic to silently wrap. 709 return Segment.Offset + SymRef.Offset + RelEntry.Addend; 710 } 711 default: 712 llvm_unreachable("invalid relocation type"); 713 } 714 } 715 716 static void addData(SmallVectorImpl<char> &DataBytes, 717 MCSectionWasm &DataSection) { 718 LLVM_DEBUG(errs() << "addData: " << DataSection.getName() << "\n"); 719 720 DataBytes.resize(alignTo(DataBytes.size(), DataSection.getAlign())); 721 722 for (const MCFragment &Frag : DataSection) { 723 if (Frag.hasInstructions()) 724 report_fatal_error("only data supported in data sections"); 725 726 if (auto *Align = dyn_cast<MCAlignFragment>(&Frag)) { 727 if (Align->getValueSize() != 1) 728 report_fatal_error("only byte values supported for alignment"); 729 // If nops are requested, use zeros, as this is the data section. 730 uint8_t Value = Align->hasEmitNops() ? 0 : Align->getValue(); 731 uint64_t Size = 732 std::min<uint64_t>(alignTo(DataBytes.size(), Align->getAlignment()), 733 DataBytes.size() + Align->getMaxBytesToEmit()); 734 DataBytes.resize(Size, Value); 735 } else if (auto *Fill = dyn_cast<MCFillFragment>(&Frag)) { 736 int64_t NumValues; 737 if (!Fill->getNumValues().evaluateAsAbsolute(NumValues)) 738 llvm_unreachable("The fill should be an assembler constant"); 739 DataBytes.insert(DataBytes.end(), Fill->getValueSize() * NumValues, 740 Fill->getValue()); 741 } else if (auto *LEB = dyn_cast<MCLEBFragment>(&Frag)) { 742 const SmallVectorImpl<char> &Contents = LEB->getContents(); 743 llvm::append_range(DataBytes, Contents); 744 } else { 745 const auto &DataFrag = cast<MCDataFragment>(Frag); 746 const SmallVectorImpl<char> &Contents = DataFrag.getContents(); 747 llvm::append_range(DataBytes, Contents); 748 } 749 } 750 751 LLVM_DEBUG(dbgs() << "addData -> " << DataBytes.size() << "\n"); 752 } 753 754 uint32_t 755 WasmObjectWriter::getRelocationIndexValue(const WasmRelocationEntry &RelEntry) { 756 if (RelEntry.Type == wasm::R_WASM_TYPE_INDEX_LEB) { 757 if (!TypeIndices.count(RelEntry.Symbol)) 758 report_fatal_error("symbol not found in type index space: " + 759 RelEntry.Symbol->getName()); 760 return TypeIndices[RelEntry.Symbol]; 761 } 762 763 return RelEntry.Symbol->getIndex(); 764 } 765 766 // Apply the portions of the relocation records that we can handle ourselves 767 // directly. 768 void WasmObjectWriter::applyRelocations( 769 ArrayRef<WasmRelocationEntry> Relocations, uint64_t ContentsOffset, 770 const MCAsmLayout &Layout) { 771 auto &Stream = static_cast<raw_pwrite_stream &>(W->OS); 772 for (const WasmRelocationEntry &RelEntry : Relocations) { 773 uint64_t Offset = ContentsOffset + 774 RelEntry.FixupSection->getSectionOffset() + 775 RelEntry.Offset; 776 777 LLVM_DEBUG(dbgs() << "applyRelocation: " << RelEntry << "\n"); 778 uint64_t Value = getProvisionalValue(RelEntry, Layout); 779 780 switch (RelEntry.Type) { 781 case wasm::R_WASM_FUNCTION_INDEX_LEB: 782 case wasm::R_WASM_TYPE_INDEX_LEB: 783 case wasm::R_WASM_GLOBAL_INDEX_LEB: 784 case wasm::R_WASM_MEMORY_ADDR_LEB: 785 case wasm::R_WASM_TAG_INDEX_LEB: 786 case wasm::R_WASM_TABLE_NUMBER_LEB: 787 writePatchableU32(Stream, Value, Offset); 788 break; 789 case wasm::R_WASM_MEMORY_ADDR_LEB64: 790 writePatchableU64(Stream, Value, Offset); 791 break; 792 case wasm::R_WASM_TABLE_INDEX_I32: 793 case wasm::R_WASM_MEMORY_ADDR_I32: 794 case wasm::R_WASM_FUNCTION_OFFSET_I32: 795 case wasm::R_WASM_FUNCTION_INDEX_I32: 796 case wasm::R_WASM_SECTION_OFFSET_I32: 797 case wasm::R_WASM_GLOBAL_INDEX_I32: 798 case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32: 799 patchI32(Stream, Value, Offset); 800 break; 801 case wasm::R_WASM_TABLE_INDEX_I64: 802 case wasm::R_WASM_MEMORY_ADDR_I64: 803 case wasm::R_WASM_FUNCTION_OFFSET_I64: 804 patchI64(Stream, Value, Offset); 805 break; 806 case wasm::R_WASM_TABLE_INDEX_SLEB: 807 case wasm::R_WASM_TABLE_INDEX_REL_SLEB: 808 case wasm::R_WASM_MEMORY_ADDR_SLEB: 809 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB: 810 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB: 811 writePatchableS32(Stream, Value, Offset); 812 break; 813 case wasm::R_WASM_TABLE_INDEX_SLEB64: 814 case wasm::R_WASM_TABLE_INDEX_REL_SLEB64: 815 case wasm::R_WASM_MEMORY_ADDR_SLEB64: 816 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64: 817 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB64: 818 writePatchableS64(Stream, Value, Offset); 819 break; 820 default: 821 llvm_unreachable("invalid relocation type"); 822 } 823 } 824 } 825 826 void WasmObjectWriter::writeTypeSection( 827 ArrayRef<wasm::WasmSignature> Signatures) { 828 if (Signatures.empty()) 829 return; 830 831 SectionBookkeeping Section; 832 startSection(Section, wasm::WASM_SEC_TYPE); 833 834 encodeULEB128(Signatures.size(), W->OS); 835 836 for (const wasm::WasmSignature &Sig : Signatures) { 837 W->OS << char(wasm::WASM_TYPE_FUNC); 838 encodeULEB128(Sig.Params.size(), W->OS); 839 for (wasm::ValType Ty : Sig.Params) 840 writeValueType(Ty); 841 encodeULEB128(Sig.Returns.size(), W->OS); 842 for (wasm::ValType Ty : Sig.Returns) 843 writeValueType(Ty); 844 } 845 846 endSection(Section); 847 } 848 849 void WasmObjectWriter::writeImportSection(ArrayRef<wasm::WasmImport> Imports, 850 uint64_t DataSize, 851 uint32_t NumElements) { 852 if (Imports.empty()) 853 return; 854 855 uint64_t NumPages = (DataSize + wasm::WasmPageSize - 1) / wasm::WasmPageSize; 856 857 SectionBookkeeping Section; 858 startSection(Section, wasm::WASM_SEC_IMPORT); 859 860 encodeULEB128(Imports.size(), W->OS); 861 for (const wasm::WasmImport &Import : Imports) { 862 writeString(Import.Module); 863 writeString(Import.Field); 864 W->OS << char(Import.Kind); 865 866 switch (Import.Kind) { 867 case wasm::WASM_EXTERNAL_FUNCTION: 868 encodeULEB128(Import.SigIndex, W->OS); 869 break; 870 case wasm::WASM_EXTERNAL_GLOBAL: 871 W->OS << char(Import.Global.Type); 872 W->OS << char(Import.Global.Mutable ? 1 : 0); 873 break; 874 case wasm::WASM_EXTERNAL_MEMORY: 875 encodeULEB128(Import.Memory.Flags, W->OS); 876 encodeULEB128(NumPages, W->OS); // initial 877 break; 878 case wasm::WASM_EXTERNAL_TABLE: 879 W->OS << char(Import.Table.ElemType); 880 encodeULEB128(Import.Table.Limits.Flags, W->OS); 881 encodeULEB128(NumElements, W->OS); // initial 882 break; 883 case wasm::WASM_EXTERNAL_TAG: 884 W->OS << char(0); // Reserved 'attribute' field 885 encodeULEB128(Import.SigIndex, W->OS); 886 break; 887 default: 888 llvm_unreachable("unsupported import kind"); 889 } 890 } 891 892 endSection(Section); 893 } 894 895 void WasmObjectWriter::writeFunctionSection(ArrayRef<WasmFunction> Functions) { 896 if (Functions.empty()) 897 return; 898 899 SectionBookkeeping Section; 900 startSection(Section, wasm::WASM_SEC_FUNCTION); 901 902 encodeULEB128(Functions.size(), W->OS); 903 for (const WasmFunction &Func : Functions) 904 encodeULEB128(Func.SigIndex, W->OS); 905 906 endSection(Section); 907 } 908 909 void WasmObjectWriter::writeTagSection(ArrayRef<uint32_t> TagTypes) { 910 if (TagTypes.empty()) 911 return; 912 913 SectionBookkeeping Section; 914 startSection(Section, wasm::WASM_SEC_TAG); 915 916 encodeULEB128(TagTypes.size(), W->OS); 917 for (uint32_t Index : TagTypes) { 918 W->OS << char(0); // Reserved 'attribute' field 919 encodeULEB128(Index, W->OS); 920 } 921 922 endSection(Section); 923 } 924 925 void WasmObjectWriter::writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals) { 926 if (Globals.empty()) 927 return; 928 929 SectionBookkeeping Section; 930 startSection(Section, wasm::WASM_SEC_GLOBAL); 931 932 encodeULEB128(Globals.size(), W->OS); 933 for (const wasm::WasmGlobal &Global : Globals) { 934 encodeULEB128(Global.Type.Type, W->OS); 935 W->OS << char(Global.Type.Mutable); 936 if (Global.InitExpr.Extended) { 937 llvm_unreachable("extected init expressions not supported"); 938 } else { 939 W->OS << char(Global.InitExpr.Inst.Opcode); 940 switch (Global.Type.Type) { 941 case wasm::WASM_TYPE_I32: 942 encodeSLEB128(0, W->OS); 943 break; 944 case wasm::WASM_TYPE_I64: 945 encodeSLEB128(0, W->OS); 946 break; 947 case wasm::WASM_TYPE_F32: 948 writeI32(0); 949 break; 950 case wasm::WASM_TYPE_F64: 951 writeI64(0); 952 break; 953 case wasm::WASM_TYPE_EXTERNREF: 954 writeValueType(wasm::ValType::EXTERNREF); 955 break; 956 default: 957 llvm_unreachable("unexpected type"); 958 } 959 } 960 W->OS << char(wasm::WASM_OPCODE_END); 961 } 962 963 endSection(Section); 964 } 965 966 void WasmObjectWriter::writeTableSection(ArrayRef<wasm::WasmTable> Tables) { 967 if (Tables.empty()) 968 return; 969 970 SectionBookkeeping Section; 971 startSection(Section, wasm::WASM_SEC_TABLE); 972 973 encodeULEB128(Tables.size(), W->OS); 974 for (const wasm::WasmTable &Table : Tables) { 975 assert(Table.Type.ElemType != wasm::ValType::OTHERREF && 976 "Cannot encode general ref-typed tables"); 977 encodeULEB128((uint32_t)Table.Type.ElemType, W->OS); 978 encodeULEB128(Table.Type.Limits.Flags, W->OS); 979 encodeULEB128(Table.Type.Limits.Minimum, W->OS); 980 if (Table.Type.Limits.Flags & wasm::WASM_LIMITS_FLAG_HAS_MAX) 981 encodeULEB128(Table.Type.Limits.Maximum, W->OS); 982 } 983 endSection(Section); 984 } 985 986 void WasmObjectWriter::writeExportSection(ArrayRef<wasm::WasmExport> Exports) { 987 if (Exports.empty()) 988 return; 989 990 SectionBookkeeping Section; 991 startSection(Section, wasm::WASM_SEC_EXPORT); 992 993 encodeULEB128(Exports.size(), W->OS); 994 for (const wasm::WasmExport &Export : Exports) { 995 writeString(Export.Name); 996 W->OS << char(Export.Kind); 997 encodeULEB128(Export.Index, W->OS); 998 } 999 1000 endSection(Section); 1001 } 1002 1003 void WasmObjectWriter::writeElemSection( 1004 const MCSymbolWasm *IndirectFunctionTable, ArrayRef<uint32_t> TableElems) { 1005 if (TableElems.empty()) 1006 return; 1007 1008 assert(IndirectFunctionTable); 1009 1010 SectionBookkeeping Section; 1011 startSection(Section, wasm::WASM_SEC_ELEM); 1012 1013 encodeULEB128(1, W->OS); // number of "segments" 1014 1015 assert(WasmIndices.count(IndirectFunctionTable)); 1016 uint32_t TableNumber = WasmIndices.find(IndirectFunctionTable)->second; 1017 uint32_t Flags = 0; 1018 if (TableNumber) 1019 Flags |= wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER; 1020 encodeULEB128(Flags, W->OS); 1021 if (Flags & wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER) 1022 encodeULEB128(TableNumber, W->OS); // the table number 1023 1024 // init expr for starting offset 1025 W->OS << char(is64Bit() ? wasm::WASM_OPCODE_I64_CONST 1026 : wasm::WASM_OPCODE_I32_CONST); 1027 encodeSLEB128(InitialTableOffset, W->OS); 1028 W->OS << char(wasm::WASM_OPCODE_END); 1029 1030 if (Flags & wasm::WASM_ELEM_SEGMENT_MASK_HAS_ELEM_KIND) { 1031 // We only write active function table initializers, for which the elem kind 1032 // is specified to be written as 0x00 and interpreted to mean "funcref". 1033 const uint8_t ElemKind = 0; 1034 W->OS << ElemKind; 1035 } 1036 1037 encodeULEB128(TableElems.size(), W->OS); 1038 for (uint32_t Elem : TableElems) 1039 encodeULEB128(Elem, W->OS); 1040 1041 endSection(Section); 1042 } 1043 1044 void WasmObjectWriter::writeDataCountSection() { 1045 if (DataSegments.empty()) 1046 return; 1047 1048 SectionBookkeeping Section; 1049 startSection(Section, wasm::WASM_SEC_DATACOUNT); 1050 encodeULEB128(DataSegments.size(), W->OS); 1051 endSection(Section); 1052 } 1053 1054 uint32_t WasmObjectWriter::writeCodeSection(const MCAssembler &Asm, 1055 const MCAsmLayout &Layout, 1056 ArrayRef<WasmFunction> Functions) { 1057 if (Functions.empty()) 1058 return 0; 1059 1060 SectionBookkeeping Section; 1061 startSection(Section, wasm::WASM_SEC_CODE); 1062 1063 encodeULEB128(Functions.size(), W->OS); 1064 1065 for (const WasmFunction &Func : Functions) { 1066 auto *FuncSection = static_cast<MCSectionWasm *>(Func.Section); 1067 1068 int64_t Size = Layout.getSectionAddressSize(FuncSection); 1069 encodeULEB128(Size, W->OS); 1070 FuncSection->setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1071 Asm.writeSectionData(W->OS, FuncSection, Layout); 1072 } 1073 1074 // Apply fixups. 1075 applyRelocations(CodeRelocations, Section.ContentsOffset, Layout); 1076 1077 endSection(Section); 1078 return Section.Index; 1079 } 1080 1081 uint32_t WasmObjectWriter::writeDataSection(const MCAsmLayout &Layout) { 1082 if (DataSegments.empty()) 1083 return 0; 1084 1085 SectionBookkeeping Section; 1086 startSection(Section, wasm::WASM_SEC_DATA); 1087 1088 encodeULEB128(DataSegments.size(), W->OS); // count 1089 1090 for (const WasmDataSegment &Segment : DataSegments) { 1091 encodeULEB128(Segment.InitFlags, W->OS); // flags 1092 if (Segment.InitFlags & wasm::WASM_DATA_SEGMENT_HAS_MEMINDEX) 1093 encodeULEB128(0, W->OS); // memory index 1094 if ((Segment.InitFlags & wasm::WASM_DATA_SEGMENT_IS_PASSIVE) == 0) { 1095 W->OS << char(is64Bit() ? wasm::WASM_OPCODE_I64_CONST 1096 : wasm::WASM_OPCODE_I32_CONST); 1097 encodeSLEB128(Segment.Offset, W->OS); // offset 1098 W->OS << char(wasm::WASM_OPCODE_END); 1099 } 1100 encodeULEB128(Segment.Data.size(), W->OS); // size 1101 Segment.Section->setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1102 W->OS << Segment.Data; // data 1103 } 1104 1105 // Apply fixups. 1106 applyRelocations(DataRelocations, Section.ContentsOffset, Layout); 1107 1108 endSection(Section); 1109 return Section.Index; 1110 } 1111 1112 void WasmObjectWriter::writeRelocSection( 1113 uint32_t SectionIndex, StringRef Name, 1114 std::vector<WasmRelocationEntry> &Relocs) { 1115 // See: https://github.com/WebAssembly/tool-conventions/blob/main/Linking.md 1116 // for descriptions of the reloc sections. 1117 1118 if (Relocs.empty()) 1119 return; 1120 1121 // First, ensure the relocations are sorted in offset order. In general they 1122 // should already be sorted since `recordRelocation` is called in offset 1123 // order, but for the code section we combine many MC sections into single 1124 // wasm section, and this order is determined by the order of Asm.Symbols() 1125 // not the sections order. 1126 llvm::stable_sort( 1127 Relocs, [](const WasmRelocationEntry &A, const WasmRelocationEntry &B) { 1128 return (A.Offset + A.FixupSection->getSectionOffset()) < 1129 (B.Offset + B.FixupSection->getSectionOffset()); 1130 }); 1131 1132 SectionBookkeeping Section; 1133 startCustomSection(Section, std::string("reloc.") + Name.str()); 1134 1135 encodeULEB128(SectionIndex, W->OS); 1136 encodeULEB128(Relocs.size(), W->OS); 1137 for (const WasmRelocationEntry &RelEntry : Relocs) { 1138 uint64_t Offset = 1139 RelEntry.Offset + RelEntry.FixupSection->getSectionOffset(); 1140 uint32_t Index = getRelocationIndexValue(RelEntry); 1141 1142 W->OS << char(RelEntry.Type); 1143 encodeULEB128(Offset, W->OS); 1144 encodeULEB128(Index, W->OS); 1145 if (RelEntry.hasAddend()) 1146 encodeSLEB128(RelEntry.Addend, W->OS); 1147 } 1148 1149 endSection(Section); 1150 } 1151 1152 void WasmObjectWriter::writeCustomRelocSections() { 1153 for (const auto &Sec : CustomSections) { 1154 auto &Relocations = CustomSectionsRelocations[Sec.Section]; 1155 writeRelocSection(Sec.OutputIndex, Sec.Name, Relocations); 1156 } 1157 } 1158 1159 void WasmObjectWriter::writeLinkingMetaDataSection( 1160 ArrayRef<wasm::WasmSymbolInfo> SymbolInfos, 1161 ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs, 1162 const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats) { 1163 SectionBookkeeping Section; 1164 startCustomSection(Section, "linking"); 1165 encodeULEB128(wasm::WasmMetadataVersion, W->OS); 1166 1167 SectionBookkeeping SubSection; 1168 if (SymbolInfos.size() != 0) { 1169 startSection(SubSection, wasm::WASM_SYMBOL_TABLE); 1170 encodeULEB128(SymbolInfos.size(), W->OS); 1171 for (const wasm::WasmSymbolInfo &Sym : SymbolInfos) { 1172 encodeULEB128(Sym.Kind, W->OS); 1173 encodeULEB128(Sym.Flags, W->OS); 1174 switch (Sym.Kind) { 1175 case wasm::WASM_SYMBOL_TYPE_FUNCTION: 1176 case wasm::WASM_SYMBOL_TYPE_GLOBAL: 1177 case wasm::WASM_SYMBOL_TYPE_TAG: 1178 case wasm::WASM_SYMBOL_TYPE_TABLE: 1179 encodeULEB128(Sym.ElementIndex, W->OS); 1180 if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0 || 1181 (Sym.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) 1182 writeString(Sym.Name); 1183 break; 1184 case wasm::WASM_SYMBOL_TYPE_DATA: 1185 writeString(Sym.Name); 1186 if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0) { 1187 encodeULEB128(Sym.DataRef.Segment, W->OS); 1188 encodeULEB128(Sym.DataRef.Offset, W->OS); 1189 encodeULEB128(Sym.DataRef.Size, W->OS); 1190 } 1191 break; 1192 case wasm::WASM_SYMBOL_TYPE_SECTION: { 1193 const uint32_t SectionIndex = 1194 CustomSections[Sym.ElementIndex].OutputIndex; 1195 encodeULEB128(SectionIndex, W->OS); 1196 break; 1197 } 1198 default: 1199 llvm_unreachable("unexpected kind"); 1200 } 1201 } 1202 endSection(SubSection); 1203 } 1204 1205 if (DataSegments.size()) { 1206 startSection(SubSection, wasm::WASM_SEGMENT_INFO); 1207 encodeULEB128(DataSegments.size(), W->OS); 1208 for (const WasmDataSegment &Segment : DataSegments) { 1209 writeString(Segment.Name); 1210 encodeULEB128(Segment.Alignment, W->OS); 1211 encodeULEB128(Segment.LinkingFlags, W->OS); 1212 } 1213 endSection(SubSection); 1214 } 1215 1216 if (!InitFuncs.empty()) { 1217 startSection(SubSection, wasm::WASM_INIT_FUNCS); 1218 encodeULEB128(InitFuncs.size(), W->OS); 1219 for (auto &StartFunc : InitFuncs) { 1220 encodeULEB128(StartFunc.first, W->OS); // priority 1221 encodeULEB128(StartFunc.second, W->OS); // function index 1222 } 1223 endSection(SubSection); 1224 } 1225 1226 if (Comdats.size()) { 1227 startSection(SubSection, wasm::WASM_COMDAT_INFO); 1228 encodeULEB128(Comdats.size(), W->OS); 1229 for (const auto &C : Comdats) { 1230 writeString(C.first); 1231 encodeULEB128(0, W->OS); // flags for future use 1232 encodeULEB128(C.second.size(), W->OS); 1233 for (const WasmComdatEntry &Entry : C.second) { 1234 encodeULEB128(Entry.Kind, W->OS); 1235 encodeULEB128(Entry.Index, W->OS); 1236 } 1237 } 1238 endSection(SubSection); 1239 } 1240 1241 endSection(Section); 1242 } 1243 1244 void WasmObjectWriter::writeCustomSection(WasmCustomSection &CustomSection, 1245 const MCAssembler &Asm, 1246 const MCAsmLayout &Layout) { 1247 SectionBookkeeping Section; 1248 auto *Sec = CustomSection.Section; 1249 startCustomSection(Section, CustomSection.Name); 1250 1251 Sec->setSectionOffset(W->OS.tell() - Section.ContentsOffset); 1252 Asm.writeSectionData(W->OS, Sec, Layout); 1253 1254 CustomSection.OutputContentsOffset = Section.ContentsOffset; 1255 CustomSection.OutputIndex = Section.Index; 1256 1257 endSection(Section); 1258 1259 // Apply fixups. 1260 auto &Relocations = CustomSectionsRelocations[CustomSection.Section]; 1261 applyRelocations(Relocations, CustomSection.OutputContentsOffset, Layout); 1262 } 1263 1264 uint32_t WasmObjectWriter::getFunctionType(const MCSymbolWasm &Symbol) { 1265 assert(Symbol.isFunction()); 1266 assert(TypeIndices.count(&Symbol)); 1267 return TypeIndices[&Symbol]; 1268 } 1269 1270 uint32_t WasmObjectWriter::getTagType(const MCSymbolWasm &Symbol) { 1271 assert(Symbol.isTag()); 1272 assert(TypeIndices.count(&Symbol)); 1273 return TypeIndices[&Symbol]; 1274 } 1275 1276 void WasmObjectWriter::registerFunctionType(const MCSymbolWasm &Symbol) { 1277 assert(Symbol.isFunction()); 1278 1279 wasm::WasmSignature S; 1280 1281 if (auto *Sig = Symbol.getSignature()) { 1282 S.Returns = Sig->Returns; 1283 S.Params = Sig->Params; 1284 } 1285 1286 auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size())); 1287 if (Pair.second) 1288 Signatures.push_back(S); 1289 TypeIndices[&Symbol] = Pair.first->second; 1290 1291 LLVM_DEBUG(dbgs() << "registerFunctionType: " << Symbol 1292 << " new:" << Pair.second << "\n"); 1293 LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n"); 1294 } 1295 1296 void WasmObjectWriter::registerTagType(const MCSymbolWasm &Symbol) { 1297 assert(Symbol.isTag()); 1298 1299 // TODO Currently we don't generate imported exceptions, but if we do, we 1300 // should have a way of infering types of imported exceptions. 1301 wasm::WasmSignature S; 1302 if (auto *Sig = Symbol.getSignature()) { 1303 S.Returns = Sig->Returns; 1304 S.Params = Sig->Params; 1305 } 1306 1307 auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size())); 1308 if (Pair.second) 1309 Signatures.push_back(S); 1310 TypeIndices[&Symbol] = Pair.first->second; 1311 1312 LLVM_DEBUG(dbgs() << "registerTagType: " << Symbol << " new:" << Pair.second 1313 << "\n"); 1314 LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n"); 1315 } 1316 1317 static bool isInSymtab(const MCSymbolWasm &Sym) { 1318 if (Sym.isUsedInReloc() || Sym.isUsedInInitArray()) 1319 return true; 1320 1321 if (Sym.isComdat() && !Sym.isDefined()) 1322 return false; 1323 1324 if (Sym.isTemporary()) 1325 return false; 1326 1327 if (Sym.isSection()) 1328 return false; 1329 1330 if (Sym.omitFromLinkingSection()) 1331 return false; 1332 1333 return true; 1334 } 1335 1336 void WasmObjectWriter::prepareImports( 1337 SmallVectorImpl<wasm::WasmImport> &Imports, MCAssembler &Asm, 1338 const MCAsmLayout &Layout) { 1339 // For now, always emit the memory import, since loads and stores are not 1340 // valid without it. In the future, we could perhaps be more clever and omit 1341 // it if there are no loads or stores. 1342 wasm::WasmImport MemImport; 1343 MemImport.Module = "env"; 1344 MemImport.Field = "__linear_memory"; 1345 MemImport.Kind = wasm::WASM_EXTERNAL_MEMORY; 1346 MemImport.Memory.Flags = is64Bit() ? wasm::WASM_LIMITS_FLAG_IS_64 1347 : wasm::WASM_LIMITS_FLAG_NONE; 1348 Imports.push_back(MemImport); 1349 1350 // Populate SignatureIndices, and Imports and WasmIndices for undefined 1351 // symbols. This must be done before populating WasmIndices for defined 1352 // symbols. 1353 for (const MCSymbol &S : Asm.symbols()) { 1354 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1355 1356 // Register types for all functions, including those with private linkage 1357 // (because wasm always needs a type signature). 1358 if (WS.isFunction()) { 1359 const auto *BS = Layout.getBaseSymbol(S); 1360 if (!BS) 1361 report_fatal_error(Twine(S.getName()) + 1362 ": absolute addressing not supported!"); 1363 registerFunctionType(*cast<MCSymbolWasm>(BS)); 1364 } 1365 1366 if (WS.isTag()) 1367 registerTagType(WS); 1368 1369 if (WS.isTemporary()) 1370 continue; 1371 1372 // If the symbol is not defined in this translation unit, import it. 1373 if (!WS.isDefined() && !WS.isComdat()) { 1374 if (WS.isFunction()) { 1375 wasm::WasmImport Import; 1376 Import.Module = WS.getImportModule(); 1377 Import.Field = WS.getImportName(); 1378 Import.Kind = wasm::WASM_EXTERNAL_FUNCTION; 1379 Import.SigIndex = getFunctionType(WS); 1380 Imports.push_back(Import); 1381 assert(WasmIndices.count(&WS) == 0); 1382 WasmIndices[&WS] = NumFunctionImports++; 1383 } else if (WS.isGlobal()) { 1384 if (WS.isWeak()) 1385 report_fatal_error("undefined global symbol cannot be weak"); 1386 1387 wasm::WasmImport Import; 1388 Import.Field = WS.getImportName(); 1389 Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; 1390 Import.Module = WS.getImportModule(); 1391 Import.Global = WS.getGlobalType(); 1392 Imports.push_back(Import); 1393 assert(WasmIndices.count(&WS) == 0); 1394 WasmIndices[&WS] = NumGlobalImports++; 1395 } else if (WS.isTag()) { 1396 if (WS.isWeak()) 1397 report_fatal_error("undefined tag symbol cannot be weak"); 1398 1399 wasm::WasmImport Import; 1400 Import.Module = WS.getImportModule(); 1401 Import.Field = WS.getImportName(); 1402 Import.Kind = wasm::WASM_EXTERNAL_TAG; 1403 Import.SigIndex = getTagType(WS); 1404 Imports.push_back(Import); 1405 assert(WasmIndices.count(&WS) == 0); 1406 WasmIndices[&WS] = NumTagImports++; 1407 } else if (WS.isTable()) { 1408 if (WS.isWeak()) 1409 report_fatal_error("undefined table symbol cannot be weak"); 1410 1411 wasm::WasmImport Import; 1412 Import.Module = WS.getImportModule(); 1413 Import.Field = WS.getImportName(); 1414 Import.Kind = wasm::WASM_EXTERNAL_TABLE; 1415 Import.Table = WS.getTableType(); 1416 Imports.push_back(Import); 1417 assert(WasmIndices.count(&WS) == 0); 1418 WasmIndices[&WS] = NumTableImports++; 1419 } 1420 } 1421 } 1422 1423 // Add imports for GOT globals 1424 for (const MCSymbol &S : Asm.symbols()) { 1425 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1426 if (WS.isUsedInGOT()) { 1427 wasm::WasmImport Import; 1428 if (WS.isFunction()) 1429 Import.Module = "GOT.func"; 1430 else 1431 Import.Module = "GOT.mem"; 1432 Import.Field = WS.getName(); 1433 Import.Kind = wasm::WASM_EXTERNAL_GLOBAL; 1434 Import.Global = {wasm::WASM_TYPE_I32, true}; 1435 Imports.push_back(Import); 1436 assert(GOTIndices.count(&WS) == 0); 1437 GOTIndices[&WS] = NumGlobalImports++; 1438 } 1439 } 1440 } 1441 1442 uint64_t WasmObjectWriter::writeObject(MCAssembler &Asm, 1443 const MCAsmLayout &Layout) { 1444 support::endian::Writer MainWriter(*OS, llvm::endianness::little); 1445 W = &MainWriter; 1446 if (IsSplitDwarf) { 1447 uint64_t TotalSize = writeOneObject(Asm, Layout, DwoMode::NonDwoOnly); 1448 assert(DwoOS); 1449 support::endian::Writer DwoWriter(*DwoOS, llvm::endianness::little); 1450 W = &DwoWriter; 1451 return TotalSize + writeOneObject(Asm, Layout, DwoMode::DwoOnly); 1452 } else { 1453 return writeOneObject(Asm, Layout, DwoMode::AllSections); 1454 } 1455 } 1456 1457 uint64_t WasmObjectWriter::writeOneObject(MCAssembler &Asm, 1458 const MCAsmLayout &Layout, 1459 DwoMode Mode) { 1460 uint64_t StartOffset = W->OS.tell(); 1461 SectionCount = 0; 1462 CustomSections.clear(); 1463 1464 LLVM_DEBUG(dbgs() << "WasmObjectWriter::writeObject\n"); 1465 1466 // Collect information from the available symbols. 1467 SmallVector<WasmFunction, 4> Functions; 1468 SmallVector<uint32_t, 4> TableElems; 1469 SmallVector<wasm::WasmImport, 4> Imports; 1470 SmallVector<wasm::WasmExport, 4> Exports; 1471 SmallVector<uint32_t, 2> TagTypes; 1472 SmallVector<wasm::WasmGlobal, 1> Globals; 1473 SmallVector<wasm::WasmTable, 1> Tables; 1474 SmallVector<wasm::WasmSymbolInfo, 4> SymbolInfos; 1475 SmallVector<std::pair<uint16_t, uint32_t>, 2> InitFuncs; 1476 std::map<StringRef, std::vector<WasmComdatEntry>> Comdats; 1477 uint64_t DataSize = 0; 1478 if (Mode != DwoMode::DwoOnly) { 1479 prepareImports(Imports, Asm, Layout); 1480 } 1481 1482 // Populate DataSegments and CustomSections, which must be done before 1483 // populating DataLocations. 1484 for (MCSection &Sec : Asm) { 1485 auto &Section = static_cast<MCSectionWasm &>(Sec); 1486 StringRef SectionName = Section.getName(); 1487 1488 if (Mode == DwoMode::NonDwoOnly && isDwoSection(Sec)) 1489 continue; 1490 if (Mode == DwoMode::DwoOnly && !isDwoSection(Sec)) 1491 continue; 1492 1493 LLVM_DEBUG(dbgs() << "Processing Section " << SectionName << " group " 1494 << Section.getGroup() << "\n";); 1495 1496 // .init_array sections are handled specially elsewhere. 1497 if (SectionName.starts_with(".init_array")) 1498 continue; 1499 1500 // Code is handled separately 1501 if (Section.getKind().isText()) 1502 continue; 1503 1504 if (Section.isWasmData()) { 1505 uint32_t SegmentIndex = DataSegments.size(); 1506 DataSize = alignTo(DataSize, Section.getAlign()); 1507 DataSegments.emplace_back(); 1508 WasmDataSegment &Segment = DataSegments.back(); 1509 Segment.Name = SectionName; 1510 Segment.InitFlags = Section.getPassive() 1511 ? (uint32_t)wasm::WASM_DATA_SEGMENT_IS_PASSIVE 1512 : 0; 1513 Segment.Offset = DataSize; 1514 Segment.Section = &Section; 1515 addData(Segment.Data, Section); 1516 Segment.Alignment = Log2(Section.getAlign()); 1517 Segment.LinkingFlags = Section.getSegmentFlags(); 1518 DataSize += Segment.Data.size(); 1519 Section.setSegmentIndex(SegmentIndex); 1520 1521 if (const MCSymbolWasm *C = Section.getGroup()) { 1522 Comdats[C->getName()].emplace_back( 1523 WasmComdatEntry{wasm::WASM_COMDAT_DATA, SegmentIndex}); 1524 } 1525 } else { 1526 // Create custom sections 1527 assert(Sec.getKind().isMetadata()); 1528 1529 StringRef Name = SectionName; 1530 1531 // For user-defined custom sections, strip the prefix 1532 Name.consume_front(".custom_section."); 1533 1534 MCSymbol *Begin = Sec.getBeginSymbol(); 1535 if (Begin) { 1536 assert(WasmIndices.count(cast<MCSymbolWasm>(Begin)) == 0); 1537 WasmIndices[cast<MCSymbolWasm>(Begin)] = CustomSections.size(); 1538 } 1539 1540 // Separate out the producers and target features sections 1541 if (Name == "producers") { 1542 ProducersSection = std::make_unique<WasmCustomSection>(Name, &Section); 1543 continue; 1544 } 1545 if (Name == "target_features") { 1546 TargetFeaturesSection = 1547 std::make_unique<WasmCustomSection>(Name, &Section); 1548 continue; 1549 } 1550 1551 // Custom sections can also belong to COMDAT groups. In this case the 1552 // decriptor's "index" field is the section index (in the final object 1553 // file), but that is not known until after layout, so it must be fixed up 1554 // later 1555 if (const MCSymbolWasm *C = Section.getGroup()) { 1556 Comdats[C->getName()].emplace_back( 1557 WasmComdatEntry{wasm::WASM_COMDAT_SECTION, 1558 static_cast<uint32_t>(CustomSections.size())}); 1559 } 1560 1561 CustomSections.emplace_back(Name, &Section); 1562 } 1563 } 1564 1565 if (Mode != DwoMode::DwoOnly) { 1566 // Populate WasmIndices and DataLocations for defined symbols. 1567 for (const MCSymbol &S : Asm.symbols()) { 1568 // Ignore unnamed temporary symbols, which aren't ever exported, imported, 1569 // or used in relocations. 1570 if (S.isTemporary() && S.getName().empty()) 1571 continue; 1572 1573 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1574 LLVM_DEBUG( 1575 dbgs() << "MCSymbol: " 1576 << toString(WS.getType().value_or(wasm::WASM_SYMBOL_TYPE_DATA)) 1577 << " '" << S << "'" 1578 << " isDefined=" << S.isDefined() << " isExternal=" 1579 << S.isExternal() << " isTemporary=" << S.isTemporary() 1580 << " isWeak=" << WS.isWeak() << " isHidden=" << WS.isHidden() 1581 << " isVariable=" << WS.isVariable() << "\n"); 1582 1583 if (WS.isVariable()) 1584 continue; 1585 if (WS.isComdat() && !WS.isDefined()) 1586 continue; 1587 1588 if (WS.isFunction()) { 1589 unsigned Index; 1590 if (WS.isDefined()) { 1591 if (WS.getOffset() != 0) 1592 report_fatal_error( 1593 "function sections must contain one function each"); 1594 1595 // A definition. Write out the function body. 1596 Index = NumFunctionImports + Functions.size(); 1597 WasmFunction Func; 1598 Func.SigIndex = getFunctionType(WS); 1599 Func.Section = &WS.getSection(); 1600 assert(WasmIndices.count(&WS) == 0); 1601 WasmIndices[&WS] = Index; 1602 Functions.push_back(Func); 1603 1604 auto &Section = static_cast<MCSectionWasm &>(WS.getSection()); 1605 if (const MCSymbolWasm *C = Section.getGroup()) { 1606 Comdats[C->getName()].emplace_back( 1607 WasmComdatEntry{wasm::WASM_COMDAT_FUNCTION, Index}); 1608 } 1609 1610 if (WS.hasExportName()) { 1611 wasm::WasmExport Export; 1612 Export.Name = WS.getExportName(); 1613 Export.Kind = wasm::WASM_EXTERNAL_FUNCTION; 1614 Export.Index = Index; 1615 Exports.push_back(Export); 1616 } 1617 } else { 1618 // An import; the index was assigned above. 1619 Index = WasmIndices.find(&WS)->second; 1620 } 1621 1622 LLVM_DEBUG(dbgs() << " -> function index: " << Index << "\n"); 1623 1624 } else if (WS.isData()) { 1625 if (!isInSymtab(WS)) 1626 continue; 1627 1628 if (!WS.isDefined()) { 1629 LLVM_DEBUG(dbgs() << " -> segment index: -1" 1630 << "\n"); 1631 continue; 1632 } 1633 1634 if (!WS.getSize()) 1635 report_fatal_error("data symbols must have a size set with .size: " + 1636 WS.getName()); 1637 1638 int64_t Size = 0; 1639 if (!WS.getSize()->evaluateAsAbsolute(Size, Layout)) 1640 report_fatal_error(".size expression must be evaluatable"); 1641 1642 auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection()); 1643 if (!DataSection.isWasmData()) 1644 report_fatal_error("data symbols must live in a data section: " + 1645 WS.getName()); 1646 1647 // For each data symbol, export it in the symtab as a reference to the 1648 // corresponding Wasm data segment. 1649 wasm::WasmDataReference Ref = wasm::WasmDataReference{ 1650 DataSection.getSegmentIndex(), Layout.getSymbolOffset(WS), 1651 static_cast<uint64_t>(Size)}; 1652 assert(DataLocations.count(&WS) == 0); 1653 DataLocations[&WS] = Ref; 1654 LLVM_DEBUG(dbgs() << " -> segment index: " << Ref.Segment << "\n"); 1655 1656 } else if (WS.isGlobal()) { 1657 // A "true" Wasm global (currently just __stack_pointer) 1658 if (WS.isDefined()) { 1659 wasm::WasmGlobal Global; 1660 Global.Type = WS.getGlobalType(); 1661 Global.Index = NumGlobalImports + Globals.size(); 1662 Global.InitExpr.Extended = false; 1663 switch (Global.Type.Type) { 1664 case wasm::WASM_TYPE_I32: 1665 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_I32_CONST; 1666 break; 1667 case wasm::WASM_TYPE_I64: 1668 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_I64_CONST; 1669 break; 1670 case wasm::WASM_TYPE_F32: 1671 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_F32_CONST; 1672 break; 1673 case wasm::WASM_TYPE_F64: 1674 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_F64_CONST; 1675 break; 1676 case wasm::WASM_TYPE_EXTERNREF: 1677 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_REF_NULL; 1678 break; 1679 default: 1680 llvm_unreachable("unexpected type"); 1681 } 1682 assert(WasmIndices.count(&WS) == 0); 1683 WasmIndices[&WS] = Global.Index; 1684 Globals.push_back(Global); 1685 } else { 1686 // An import; the index was assigned above 1687 LLVM_DEBUG(dbgs() << " -> global index: " 1688 << WasmIndices.find(&WS)->second << "\n"); 1689 } 1690 } else if (WS.isTable()) { 1691 if (WS.isDefined()) { 1692 wasm::WasmTable Table; 1693 Table.Index = NumTableImports + Tables.size(); 1694 Table.Type = WS.getTableType(); 1695 assert(WasmIndices.count(&WS) == 0); 1696 WasmIndices[&WS] = Table.Index; 1697 Tables.push_back(Table); 1698 } 1699 LLVM_DEBUG(dbgs() << " -> table index: " 1700 << WasmIndices.find(&WS)->second << "\n"); 1701 } else if (WS.isTag()) { 1702 // C++ exception symbol (__cpp_exception) or longjmp symbol 1703 // (__c_longjmp) 1704 unsigned Index; 1705 if (WS.isDefined()) { 1706 Index = NumTagImports + TagTypes.size(); 1707 uint32_t SigIndex = getTagType(WS); 1708 assert(WasmIndices.count(&WS) == 0); 1709 WasmIndices[&WS] = Index; 1710 TagTypes.push_back(SigIndex); 1711 } else { 1712 // An import; the index was assigned above. 1713 assert(WasmIndices.count(&WS) > 0); 1714 } 1715 LLVM_DEBUG(dbgs() << " -> tag index: " << WasmIndices.find(&WS)->second 1716 << "\n"); 1717 1718 } else { 1719 assert(WS.isSection()); 1720 } 1721 } 1722 1723 // Populate WasmIndices and DataLocations for aliased symbols. We need to 1724 // process these in a separate pass because we need to have processed the 1725 // target of the alias before the alias itself and the symbols are not 1726 // necessarily ordered in this way. 1727 for (const MCSymbol &S : Asm.symbols()) { 1728 if (!S.isVariable()) 1729 continue; 1730 1731 assert(S.isDefined()); 1732 1733 const auto *BS = Layout.getBaseSymbol(S); 1734 if (!BS) 1735 report_fatal_error(Twine(S.getName()) + 1736 ": absolute addressing not supported!"); 1737 const MCSymbolWasm *Base = cast<MCSymbolWasm>(BS); 1738 1739 // Find the target symbol of this weak alias and export that index 1740 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1741 LLVM_DEBUG(dbgs() << WS.getName() << ": weak alias of '" << *Base 1742 << "'\n"); 1743 1744 if (Base->isFunction()) { 1745 assert(WasmIndices.count(Base) > 0); 1746 uint32_t WasmIndex = WasmIndices.find(Base)->second; 1747 assert(WasmIndices.count(&WS) == 0); 1748 WasmIndices[&WS] = WasmIndex; 1749 LLVM_DEBUG(dbgs() << " -> index:" << WasmIndex << "\n"); 1750 } else if (Base->isData()) { 1751 auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection()); 1752 uint64_t Offset = Layout.getSymbolOffset(S); 1753 int64_t Size = 0; 1754 // For data symbol alias we use the size of the base symbol as the 1755 // size of the alias. When an offset from the base is involved this 1756 // can result in a offset + size goes past the end of the data section 1757 // which out object format doesn't support. So we must clamp it. 1758 if (!Base->getSize()->evaluateAsAbsolute(Size, Layout)) 1759 report_fatal_error(".size expression must be evaluatable"); 1760 const WasmDataSegment &Segment = 1761 DataSegments[DataSection.getSegmentIndex()]; 1762 Size = 1763 std::min(static_cast<uint64_t>(Size), Segment.Data.size() - Offset); 1764 wasm::WasmDataReference Ref = wasm::WasmDataReference{ 1765 DataSection.getSegmentIndex(), 1766 static_cast<uint32_t>(Layout.getSymbolOffset(S)), 1767 static_cast<uint32_t>(Size)}; 1768 DataLocations[&WS] = Ref; 1769 LLVM_DEBUG(dbgs() << " -> index:" << Ref.Segment << "\n"); 1770 } else { 1771 report_fatal_error("don't yet support global/tag aliases"); 1772 } 1773 } 1774 } 1775 1776 // Finally, populate the symbol table itself, in its "natural" order. 1777 for (const MCSymbol &S : Asm.symbols()) { 1778 const auto &WS = static_cast<const MCSymbolWasm &>(S); 1779 if (!isInSymtab(WS)) { 1780 WS.setIndex(InvalidIndex); 1781 continue; 1782 } 1783 LLVM_DEBUG(dbgs() << "adding to symtab: " << WS << "\n"); 1784 1785 uint32_t Flags = 0; 1786 if (WS.isWeak()) 1787 Flags |= wasm::WASM_SYMBOL_BINDING_WEAK; 1788 if (WS.isHidden()) 1789 Flags |= wasm::WASM_SYMBOL_VISIBILITY_HIDDEN; 1790 if (!WS.isExternal() && WS.isDefined()) 1791 Flags |= wasm::WASM_SYMBOL_BINDING_LOCAL; 1792 if (WS.isUndefined()) 1793 Flags |= wasm::WASM_SYMBOL_UNDEFINED; 1794 if (WS.isNoStrip()) { 1795 Flags |= wasm::WASM_SYMBOL_NO_STRIP; 1796 if (isEmscripten()) { 1797 Flags |= wasm::WASM_SYMBOL_EXPORTED; 1798 } 1799 } 1800 if (WS.hasImportName()) 1801 Flags |= wasm::WASM_SYMBOL_EXPLICIT_NAME; 1802 if (WS.hasExportName()) 1803 Flags |= wasm::WASM_SYMBOL_EXPORTED; 1804 if (WS.isTLS()) 1805 Flags |= wasm::WASM_SYMBOL_TLS; 1806 1807 wasm::WasmSymbolInfo Info; 1808 Info.Name = WS.getName(); 1809 Info.Kind = WS.getType().value_or(wasm::WASM_SYMBOL_TYPE_DATA); 1810 Info.Flags = Flags; 1811 if (!WS.isData()) { 1812 assert(WasmIndices.count(&WS) > 0); 1813 Info.ElementIndex = WasmIndices.find(&WS)->second; 1814 } else if (WS.isDefined()) { 1815 assert(DataLocations.count(&WS) > 0); 1816 Info.DataRef = DataLocations.find(&WS)->second; 1817 } 1818 WS.setIndex(SymbolInfos.size()); 1819 SymbolInfos.emplace_back(Info); 1820 } 1821 1822 { 1823 auto HandleReloc = [&](const WasmRelocationEntry &Rel) { 1824 // Functions referenced by a relocation need to put in the table. This is 1825 // purely to make the object file's provisional values readable, and is 1826 // ignored by the linker, which re-calculates the relocations itself. 1827 if (Rel.Type != wasm::R_WASM_TABLE_INDEX_I32 && 1828 Rel.Type != wasm::R_WASM_TABLE_INDEX_I64 && 1829 Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB && 1830 Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB64 && 1831 Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB && 1832 Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB64) 1833 return; 1834 assert(Rel.Symbol->isFunction()); 1835 const MCSymbolWasm *Base = 1836 cast<MCSymbolWasm>(Layout.getBaseSymbol(*Rel.Symbol)); 1837 uint32_t FunctionIndex = WasmIndices.find(Base)->second; 1838 uint32_t TableIndex = TableElems.size() + InitialTableOffset; 1839 if (TableIndices.try_emplace(Base, TableIndex).second) { 1840 LLVM_DEBUG(dbgs() << " -> adding " << Base->getName() 1841 << " to table: " << TableIndex << "\n"); 1842 TableElems.push_back(FunctionIndex); 1843 registerFunctionType(*Base); 1844 } 1845 }; 1846 1847 for (const WasmRelocationEntry &RelEntry : CodeRelocations) 1848 HandleReloc(RelEntry); 1849 for (const WasmRelocationEntry &RelEntry : DataRelocations) 1850 HandleReloc(RelEntry); 1851 } 1852 1853 // Translate .init_array section contents into start functions. 1854 for (const MCSection &S : Asm) { 1855 const auto &WS = static_cast<const MCSectionWasm &>(S); 1856 if (WS.getName().starts_with(".fini_array")) 1857 report_fatal_error(".fini_array sections are unsupported"); 1858 if (!WS.getName().starts_with(".init_array")) 1859 continue; 1860 auto IT = WS.begin(); 1861 if (IT == WS.end()) 1862 continue; 1863 const MCFragment &EmptyFrag = *IT; 1864 if (EmptyFrag.getKind() != MCFragment::FT_Data) 1865 report_fatal_error(".init_array section should be aligned"); 1866 1867 const MCFragment &AlignFrag = *EmptyFrag.getNext(); 1868 if (AlignFrag.getKind() != MCFragment::FT_Align) 1869 report_fatal_error(".init_array section should be aligned"); 1870 if (cast<MCAlignFragment>(AlignFrag).getAlignment() != 1871 Align(is64Bit() ? 8 : 4)) 1872 report_fatal_error(".init_array section should be aligned for pointers"); 1873 1874 const MCFragment &Frag = *AlignFrag.getNext(); 1875 if (Frag.hasInstructions() || Frag.getKind() != MCFragment::FT_Data) 1876 report_fatal_error("only data supported in .init_array section"); 1877 1878 uint16_t Priority = UINT16_MAX; 1879 unsigned PrefixLength = strlen(".init_array"); 1880 if (WS.getName().size() > PrefixLength) { 1881 if (WS.getName()[PrefixLength] != '.') 1882 report_fatal_error( 1883 ".init_array section priority should start with '.'"); 1884 if (WS.getName().substr(PrefixLength + 1).getAsInteger(10, Priority)) 1885 report_fatal_error("invalid .init_array section priority"); 1886 } 1887 const auto &DataFrag = cast<MCDataFragment>(Frag); 1888 const SmallVectorImpl<char> &Contents = DataFrag.getContents(); 1889 for (const uint8_t * 1890 P = (const uint8_t *)Contents.data(), 1891 *End = (const uint8_t *)Contents.data() + Contents.size(); 1892 P != End; ++P) { 1893 if (*P != 0) 1894 report_fatal_error("non-symbolic data in .init_array section"); 1895 } 1896 for (const MCFixup &Fixup : DataFrag.getFixups()) { 1897 assert(Fixup.getKind() == 1898 MCFixup::getKindForSize(is64Bit() ? 8 : 4, false)); 1899 const MCExpr *Expr = Fixup.getValue(); 1900 auto *SymRef = dyn_cast<MCSymbolRefExpr>(Expr); 1901 if (!SymRef) 1902 report_fatal_error("fixups in .init_array should be symbol references"); 1903 const auto &TargetSym = cast<const MCSymbolWasm>(SymRef->getSymbol()); 1904 if (TargetSym.getIndex() == InvalidIndex) 1905 report_fatal_error("symbols in .init_array should exist in symtab"); 1906 if (!TargetSym.isFunction()) 1907 report_fatal_error("symbols in .init_array should be for functions"); 1908 InitFuncs.push_back( 1909 std::make_pair(Priority, TargetSym.getIndex())); 1910 } 1911 } 1912 1913 // Write out the Wasm header. 1914 writeHeader(Asm); 1915 1916 uint32_t CodeSectionIndex, DataSectionIndex; 1917 if (Mode != DwoMode::DwoOnly) { 1918 writeTypeSection(Signatures); 1919 writeImportSection(Imports, DataSize, TableElems.size()); 1920 writeFunctionSection(Functions); 1921 writeTableSection(Tables); 1922 // Skip the "memory" section; we import the memory instead. 1923 writeTagSection(TagTypes); 1924 writeGlobalSection(Globals); 1925 writeExportSection(Exports); 1926 const MCSymbol *IndirectFunctionTable = 1927 Asm.getContext().lookupSymbol("__indirect_function_table"); 1928 writeElemSection(cast_or_null<const MCSymbolWasm>(IndirectFunctionTable), 1929 TableElems); 1930 writeDataCountSection(); 1931 1932 CodeSectionIndex = writeCodeSection(Asm, Layout, Functions); 1933 DataSectionIndex = writeDataSection(Layout); 1934 } 1935 1936 // The Sections in the COMDAT list have placeholder indices (their index among 1937 // custom sections, rather than among all sections). Fix them up here. 1938 for (auto &Group : Comdats) { 1939 for (auto &Entry : Group.second) { 1940 if (Entry.Kind == wasm::WASM_COMDAT_SECTION) { 1941 Entry.Index += SectionCount; 1942 } 1943 } 1944 } 1945 for (auto &CustomSection : CustomSections) 1946 writeCustomSection(CustomSection, Asm, Layout); 1947 1948 if (Mode != DwoMode::DwoOnly) { 1949 writeLinkingMetaDataSection(SymbolInfos, InitFuncs, Comdats); 1950 1951 writeRelocSection(CodeSectionIndex, "CODE", CodeRelocations); 1952 writeRelocSection(DataSectionIndex, "DATA", DataRelocations); 1953 } 1954 writeCustomRelocSections(); 1955 if (ProducersSection) 1956 writeCustomSection(*ProducersSection, Asm, Layout); 1957 if (TargetFeaturesSection) 1958 writeCustomSection(*TargetFeaturesSection, Asm, Layout); 1959 1960 // TODO: Translate the .comment section to the output. 1961 return W->OS.tell() - StartOffset; 1962 } 1963 1964 std::unique_ptr<MCObjectWriter> 1965 llvm::createWasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 1966 raw_pwrite_stream &OS) { 1967 return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS); 1968 } 1969 1970 std::unique_ptr<MCObjectWriter> 1971 llvm::createWasmDwoObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW, 1972 raw_pwrite_stream &OS, 1973 raw_pwrite_stream &DwoOS) { 1974 return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS, DwoOS); 1975 } 1976