1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements ELF object file writer information. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/ADT/iterator.h" 21 #include "llvm/BinaryFormat/ELF.h" 22 #include "llvm/MC/MCAsmBackend.h" 23 #include "llvm/MC/MCAsmInfo.h" 24 #include "llvm/MC/MCAsmLayout.h" 25 #include "llvm/MC/MCAssembler.h" 26 #include "llvm/MC/MCContext.h" 27 #include "llvm/MC/MCELFObjectWriter.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCFixup.h" 30 #include "llvm/MC/MCFixupKindInfo.h" 31 #include "llvm/MC/MCFragment.h" 32 #include "llvm/MC/MCObjectWriter.h" 33 #include "llvm/MC/MCSection.h" 34 #include "llvm/MC/MCSectionELF.h" 35 #include "llvm/MC/MCSymbol.h" 36 #include "llvm/MC/MCSymbolELF.h" 37 #include "llvm/MC/MCTargetOptions.h" 38 #include "llvm/MC/MCValue.h" 39 #include "llvm/MC/StringTableBuilder.h" 40 #include "llvm/Support/Alignment.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/Compression.h" 43 #include "llvm/Support/Endian.h" 44 #include "llvm/Support/EndianStream.h" 45 #include "llvm/Support/Error.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/LEB128.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/SMLoc.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/TargetParser/Host.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstddef> 55 #include <cstdint> 56 #include <map> 57 #include <memory> 58 #include <string> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #undef DEBUG_TYPE 65 #define DEBUG_TYPE "reloc-info" 66 67 namespace { 68 69 using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>; 70 71 class ELFObjectWriter; 72 struct ELFWriter; 73 74 bool isDwoSection(const MCSectionELF &Sec) { 75 return Sec.getName().ends_with(".dwo"); 76 } 77 78 class SymbolTableWriter { 79 ELFWriter &EWriter; 80 bool Is64Bit; 81 82 // indexes we are going to write to .symtab_shndx. 83 std::vector<uint32_t> ShndxIndexes; 84 85 // The numbel of symbols written so far. 86 unsigned NumWritten; 87 88 void createSymtabShndx(); 89 90 template <typename T> void write(T Value); 91 92 public: 93 SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit); 94 95 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size, 96 uint8_t other, uint32_t shndx, bool Reserved); 97 98 ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; } 99 }; 100 101 struct ELFWriter { 102 ELFObjectWriter &OWriter; 103 support::endian::Writer W; 104 105 enum DwoMode { 106 AllSections, 107 NonDwoOnly, 108 DwoOnly, 109 } Mode; 110 111 static uint64_t symbolValue(const MCAssembler &Asm, const MCSymbol &Sym); 112 static bool isInSymtab(const MCAssembler &Asm, const MCSymbolELF &Symbol, 113 bool Used, bool Renamed); 114 115 /// Helper struct for containing some precomputed information on symbols. 116 struct ELFSymbolData { 117 const MCSymbolELF *Symbol; 118 StringRef Name; 119 uint32_t SectionIndex; 120 uint32_t Order; 121 }; 122 123 /// @} 124 /// @name Symbol Table Data 125 /// @{ 126 127 StringTableBuilder StrTabBuilder{StringTableBuilder::ELF}; 128 129 /// @} 130 131 // This holds the symbol table index of the last local symbol. 132 unsigned LastLocalSymbolIndex = ~0u; 133 // This holds the .strtab section index. 134 unsigned StringTableIndex = ~0u; 135 // This holds the .symtab section index. 136 unsigned SymbolTableIndex = ~0u; 137 138 // Sections in the order they are to be output in the section table. 139 std::vector<const MCSectionELF *> SectionTable; 140 unsigned addToSectionTable(const MCSectionELF *Sec); 141 142 // TargetObjectWriter wrappers. 143 bool is64Bit() const; 144 145 uint64_t align(Align Alignment); 146 147 bool maybeWriteCompression(uint32_t ChType, uint64_t Size, 148 SmallVectorImpl<uint8_t> &CompressedContents, 149 Align Alignment); 150 151 public: 152 ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS, 153 bool IsLittleEndian, DwoMode Mode) 154 : OWriter(OWriter), W(OS, IsLittleEndian ? llvm::endianness::little 155 : llvm::endianness::big), 156 Mode(Mode) {} 157 158 void WriteWord(uint64_t Word) { 159 if (is64Bit()) 160 W.write<uint64_t>(Word); 161 else 162 W.write<uint32_t>(Word); 163 } 164 165 template <typename T> void write(T Val) { 166 W.write(Val); 167 } 168 169 void writeHeader(const MCAssembler &Asm); 170 171 void writeSymbol(const MCAssembler &Asm, SymbolTableWriter &Writer, 172 uint32_t StringIndex, ELFSymbolData &MSD); 173 174 // Start and end offset of each section 175 using SectionOffsetsTy = 176 std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>; 177 178 // Map from a signature symbol to the group section index 179 using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>; 180 181 /// Compute the symbol table data 182 /// 183 /// \param Asm - The assembler. 184 /// \param SectionIndexMap - Maps a section to its index. 185 /// \param RevGroupMap - Maps a signature symbol to the group section. 186 void computeSymbolTable(MCAssembler &Asm, 187 const SectionIndexMapTy &SectionIndexMap, 188 const RevGroupMapTy &RevGroupMap, 189 SectionOffsetsTy &SectionOffsets); 190 191 void writeAddrsigSection(); 192 193 MCSectionELF *createRelocationSection(MCContext &Ctx, 194 const MCSectionELF &Sec); 195 196 void writeSectionHeader(const MCAssembler &Asm, 197 const SectionIndexMapTy &SectionIndexMap, 198 const SectionOffsetsTy &SectionOffsets); 199 200 void writeSectionData(const MCAssembler &Asm, MCSection &Sec); 201 202 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 203 uint64_t Address, uint64_t Offset, uint64_t Size, 204 uint32_t Link, uint32_t Info, MaybeAlign Alignment, 205 uint64_t EntrySize); 206 207 void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec); 208 209 uint64_t writeObject(MCAssembler &Asm); 210 void writeSection(const SectionIndexMapTy &SectionIndexMap, 211 uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size, 212 const MCSectionELF &Section); 213 }; 214 215 class ELFObjectWriter : public MCObjectWriter { 216 /// The target specific ELF writer instance. 217 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter; 218 219 DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations; 220 221 DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames; 222 223 bool SeenGnuAbi = false; 224 225 std::optional<uint8_t> OverrideABIVersion; 226 227 bool hasRelocationAddend() const; 228 229 bool shouldRelocateWithSymbol(const MCAssembler &Asm, const MCValue &Val, 230 const MCSymbolELF *Sym, uint64_t C, 231 unsigned Type) const; 232 233 public: 234 ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW) 235 : TargetObjectWriter(std::move(MOTW)) {} 236 237 void reset() override { 238 SeenGnuAbi = false; 239 OverrideABIVersion.reset(); 240 Relocations.clear(); 241 Renames.clear(); 242 MCObjectWriter::reset(); 243 } 244 245 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, 246 const MCSymbol &SymA, 247 const MCFragment &FB, bool InSet, 248 bool IsPCRel) const override; 249 250 virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, 251 const MCSectionELF *From, 252 const MCSectionELF *To) { 253 return true; 254 } 255 256 void recordRelocation(MCAssembler &Asm, const MCFragment *Fragment, 257 const MCFixup &Fixup, MCValue Target, 258 uint64_t &FixedValue) override; 259 bool usesRela(const MCSectionELF &Sec) const; 260 261 void executePostLayoutBinding(MCAssembler &Asm, 262 const MCAsmLayout &Layout) override; 263 264 void markGnuAbi() override { SeenGnuAbi = true; } 265 bool seenGnuAbi() const { return SeenGnuAbi; } 266 267 bool seenOverrideABIVersion() const { return OverrideABIVersion.has_value(); } 268 uint8_t getOverrideABIVersion() const { return OverrideABIVersion.value(); } 269 void setOverrideABIVersion(uint8_t V) override { OverrideABIVersion = V; } 270 271 friend struct ELFWriter; 272 }; 273 274 class ELFSingleObjectWriter : public ELFObjectWriter { 275 raw_pwrite_stream &OS; 276 bool IsLittleEndian; 277 278 public: 279 ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 280 raw_pwrite_stream &OS, bool IsLittleEndian) 281 : ELFObjectWriter(std::move(MOTW)), OS(OS), 282 IsLittleEndian(IsLittleEndian) {} 283 284 uint64_t writeObject(MCAssembler &Asm) override { 285 return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections) 286 .writeObject(Asm); 287 } 288 289 friend struct ELFWriter; 290 }; 291 292 class ELFDwoObjectWriter : public ELFObjectWriter { 293 raw_pwrite_stream &OS, &DwoOS; 294 bool IsLittleEndian; 295 296 public: 297 ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 298 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 299 bool IsLittleEndian) 300 : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS), 301 IsLittleEndian(IsLittleEndian) {} 302 303 bool checkRelocation(MCContext &Ctx, SMLoc Loc, const MCSectionELF *From, 304 const MCSectionELF *To) override { 305 if (isDwoSection(*From)) { 306 Ctx.reportError(Loc, "A dwo section may not contain relocations"); 307 return false; 308 } 309 if (To && isDwoSection(*To)) { 310 Ctx.reportError(Loc, "A relocation may not refer to a dwo section"); 311 return false; 312 } 313 return true; 314 } 315 316 uint64_t writeObject(MCAssembler &Asm) override { 317 uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly) 318 .writeObject(Asm); 319 Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly) 320 .writeObject(Asm); 321 return Size; 322 } 323 }; 324 325 } // end anonymous namespace 326 327 uint64_t ELFWriter::align(Align Alignment) { 328 uint64_t Offset = W.OS.tell(); 329 uint64_t NewOffset = alignTo(Offset, Alignment); 330 W.OS.write_zeros(NewOffset - Offset); 331 return NewOffset; 332 } 333 334 unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) { 335 SectionTable.push_back(Sec); 336 StrTabBuilder.add(Sec->getName()); 337 return SectionTable.size(); 338 } 339 340 void SymbolTableWriter::createSymtabShndx() { 341 if (!ShndxIndexes.empty()) 342 return; 343 344 ShndxIndexes.resize(NumWritten); 345 } 346 347 template <typename T> void SymbolTableWriter::write(T Value) { 348 EWriter.write(Value); 349 } 350 351 SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit) 352 : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {} 353 354 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value, 355 uint64_t size, uint8_t other, 356 uint32_t shndx, bool Reserved) { 357 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved; 358 359 if (LargeIndex) 360 createSymtabShndx(); 361 362 if (!ShndxIndexes.empty()) { 363 if (LargeIndex) 364 ShndxIndexes.push_back(shndx); 365 else 366 ShndxIndexes.push_back(0); 367 } 368 369 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx; 370 371 if (Is64Bit) { 372 write(name); // st_name 373 write(info); // st_info 374 write(other); // st_other 375 write(Index); // st_shndx 376 write(value); // st_value 377 write(size); // st_size 378 } else { 379 write(name); // st_name 380 write(uint32_t(value)); // st_value 381 write(uint32_t(size)); // st_size 382 write(info); // st_info 383 write(other); // st_other 384 write(Index); // st_shndx 385 } 386 387 ++NumWritten; 388 } 389 390 bool ELFWriter::is64Bit() const { 391 return OWriter.TargetObjectWriter->is64Bit(); 392 } 393 394 // Emit the ELF header. 395 void ELFWriter::writeHeader(const MCAssembler &Asm) { 396 // ELF Header 397 // ---------- 398 // 399 // Note 400 // ---- 401 // emitWord method behaves differently for ELF32 and ELF64, writing 402 // 4 bytes in the former and 8 in the latter. 403 404 W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3] 405 406 W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS] 407 408 // e_ident[EI_DATA] 409 W.OS << char(W.Endian == llvm::endianness::little ? ELF::ELFDATA2LSB 410 : ELF::ELFDATA2MSB); 411 412 W.OS << char(ELF::EV_CURRENT); // e_ident[EI_VERSION] 413 // e_ident[EI_OSABI] 414 uint8_t OSABI = OWriter.TargetObjectWriter->getOSABI(); 415 W.OS << char(OSABI == ELF::ELFOSABI_NONE && OWriter.seenGnuAbi() 416 ? int(ELF::ELFOSABI_GNU) 417 : OSABI); 418 // e_ident[EI_ABIVERSION] 419 W.OS << char(OWriter.seenOverrideABIVersion() 420 ? OWriter.getOverrideABIVersion() 421 : OWriter.TargetObjectWriter->getABIVersion()); 422 423 W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD); 424 425 W.write<uint16_t>(ELF::ET_REL); // e_type 426 427 W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target 428 429 W.write<uint32_t>(ELF::EV_CURRENT); // e_version 430 WriteWord(0); // e_entry, no entry point in .o file 431 WriteWord(0); // e_phoff, no program header for .o 432 WriteWord(0); // e_shoff = sec hdr table off in bytes 433 434 // e_flags = whatever the target wants 435 W.write<uint32_t>(Asm.getELFHeaderEFlags()); 436 437 // e_ehsize = ELF header size 438 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr) 439 : sizeof(ELF::Elf32_Ehdr)); 440 441 W.write<uint16_t>(0); // e_phentsize = prog header entry size 442 W.write<uint16_t>(0); // e_phnum = # prog header entries = 0 443 444 // e_shentsize = Section header entry size 445 W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr) 446 : sizeof(ELF::Elf32_Shdr)); 447 448 // e_shnum = # of section header ents 449 W.write<uint16_t>(0); 450 451 // e_shstrndx = Section # of '.strtab' 452 assert(StringTableIndex < ELF::SHN_LORESERVE); 453 W.write<uint16_t>(StringTableIndex); 454 } 455 456 uint64_t ELFWriter::symbolValue(const MCAssembler &Asm, const MCSymbol &Sym) { 457 if (Sym.isCommon()) 458 return Sym.getCommonAlignment()->value(); 459 460 uint64_t Res; 461 if (!Asm.getSymbolOffset(Sym, Res)) 462 return 0; 463 464 if (Asm.isThumbFunc(&Sym)) 465 Res |= 1; 466 467 return Res; 468 } 469 470 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) { 471 uint8_t Type = newType; 472 473 // Propagation rules: 474 // IFUNC > FUNC > OBJECT > NOTYPE 475 // TLS_OBJECT > OBJECT > NOTYPE 476 // 477 // dont let the new type degrade the old type 478 switch (origType) { 479 default: 480 break; 481 case ELF::STT_GNU_IFUNC: 482 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT || 483 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS) 484 Type = ELF::STT_GNU_IFUNC; 485 break; 486 case ELF::STT_FUNC: 487 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 488 Type == ELF::STT_TLS) 489 Type = ELF::STT_FUNC; 490 break; 491 case ELF::STT_OBJECT: 492 if (Type == ELF::STT_NOTYPE) 493 Type = ELF::STT_OBJECT; 494 break; 495 case ELF::STT_TLS: 496 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || 497 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC) 498 Type = ELF::STT_TLS; 499 break; 500 } 501 502 return Type; 503 } 504 505 static bool isIFunc(const MCSymbolELF *Symbol) { 506 while (Symbol->getType() != ELF::STT_GNU_IFUNC) { 507 const MCSymbolRefExpr *Value; 508 if (!Symbol->isVariable() || 509 !(Value = dyn_cast<MCSymbolRefExpr>(Symbol->getVariableValue())) || 510 Value->getKind() != MCSymbolRefExpr::VK_None || 511 mergeTypeForSet(Symbol->getType(), ELF::STT_GNU_IFUNC) != ELF::STT_GNU_IFUNC) 512 return false; 513 Symbol = &cast<MCSymbolELF>(Value->getSymbol()); 514 } 515 return true; 516 } 517 518 void ELFWriter::writeSymbol(const MCAssembler &Asm, SymbolTableWriter &Writer, 519 uint32_t StringIndex, ELFSymbolData &MSD) { 520 const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol); 521 const MCSymbolELF *Base = 522 cast_or_null<MCSymbolELF>(Asm.getBaseSymbol(Symbol)); 523 524 // This has to be in sync with when computeSymbolTable uses SHN_ABS or 525 // SHN_COMMON. 526 bool IsReserved = !Base || Symbol.isCommon(); 527 528 // Binding and Type share the same byte as upper and lower nibbles 529 uint8_t Binding = Symbol.getBinding(); 530 uint8_t Type = Symbol.getType(); 531 if (isIFunc(&Symbol)) 532 Type = ELF::STT_GNU_IFUNC; 533 if (Base) { 534 Type = mergeTypeForSet(Type, Base->getType()); 535 } 536 uint8_t Info = (Binding << 4) | Type; 537 538 // Other and Visibility share the same byte with Visibility using the lower 539 // 2 bits 540 uint8_t Visibility = Symbol.getVisibility(); 541 uint8_t Other = Symbol.getOther() | Visibility; 542 543 uint64_t Value = symbolValue(Asm, *MSD.Symbol); 544 uint64_t Size = 0; 545 546 const MCExpr *ESize = MSD.Symbol->getSize(); 547 if (!ESize && Base) { 548 // For expressions like .set y, x+1, if y's size is unset, inherit from x. 549 ESize = Base->getSize(); 550 551 // For `.size x, 2; y = x; .size y, 1; z = y; z1 = z; .symver y, y@v1`, z, 552 // z1, and y@v1's st_size equals y's. However, `Base` is `x` which will give 553 // us 2. Follow the MCSymbolRefExpr assignment chain, which covers most 554 // needs. MCBinaryExpr is not handled. 555 const MCSymbolELF *Sym = &Symbol; 556 while (Sym->isVariable()) { 557 if (auto *Expr = 558 dyn_cast<MCSymbolRefExpr>(Sym->getVariableValue(false))) { 559 Sym = cast<MCSymbolELF>(&Expr->getSymbol()); 560 if (!Sym->getSize()) 561 continue; 562 ESize = Sym->getSize(); 563 } 564 break; 565 } 566 } 567 568 if (ESize) { 569 int64_t Res; 570 if (!ESize->evaluateKnownAbsolute(Res, *Asm.getLayout())) 571 report_fatal_error("Size expression must be absolute."); 572 Size = Res; 573 } 574 575 // Write out the symbol table entry 576 Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex, 577 IsReserved); 578 } 579 580 bool ELFWriter::isInSymtab(const MCAssembler &Asm, const MCSymbolELF &Symbol, 581 bool Used, bool Renamed) { 582 if (Symbol.isVariable()) { 583 const MCExpr *Expr = Symbol.getVariableValue(); 584 // Target Expressions that are always inlined do not appear in the symtab 585 if (const auto *T = dyn_cast<MCTargetExpr>(Expr)) 586 if (T->inlineAssignedExpr()) 587 return false; 588 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) { 589 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF) 590 return false; 591 } 592 } 593 594 if (Used) 595 return true; 596 597 if (Renamed) 598 return false; 599 600 if (Symbol.isVariable() && Symbol.isUndefined()) { 601 // FIXME: this is here just to diagnose the case of a var = commmon_sym. 602 Asm.getBaseSymbol(Symbol); 603 return false; 604 } 605 606 if (Symbol.isTemporary()) 607 return false; 608 609 if (Symbol.getType() == ELF::STT_SECTION) 610 return false; 611 612 return true; 613 } 614 615 void ELFWriter::computeSymbolTable(MCAssembler &Asm, 616 const SectionIndexMapTy &SectionIndexMap, 617 const RevGroupMapTy &RevGroupMap, 618 SectionOffsetsTy &SectionOffsets) { 619 MCContext &Ctx = Asm.getContext(); 620 SymbolTableWriter Writer(*this, is64Bit()); 621 622 // Symbol table 623 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32; 624 MCSectionELF *SymtabSection = 625 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize); 626 SymtabSection->setAlignment(is64Bit() ? Align(8) : Align(4)); 627 SymbolTableIndex = addToSectionTable(SymtabSection); 628 629 uint64_t SecStart = align(SymtabSection->getAlign()); 630 631 // The first entry is the undefined symbol entry. 632 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false); 633 634 std::vector<ELFSymbolData> LocalSymbolData; 635 std::vector<ELFSymbolData> ExternalSymbolData; 636 MutableArrayRef<std::pair<std::string, size_t>> FileNames = 637 Asm.getFileNames(); 638 for (const std::pair<std::string, size_t> &F : FileNames) 639 StrTabBuilder.add(F.first); 640 641 // Add the data for the symbols. 642 bool HasLargeSectionIndex = false; 643 for (auto It : llvm::enumerate(Asm.symbols())) { 644 const auto &Symbol = cast<MCSymbolELF>(It.value()); 645 bool Used = Symbol.isUsedInReloc(); 646 bool WeakrefUsed = Symbol.isWeakrefUsedInReloc(); 647 bool isSignature = Symbol.isSignature(); 648 649 if (!isInSymtab(Asm, Symbol, Used || WeakrefUsed || isSignature, 650 OWriter.Renames.count(&Symbol))) 651 continue; 652 653 if (Symbol.isTemporary() && Symbol.isUndefined()) { 654 Ctx.reportError(SMLoc(), "Undefined temporary symbol " + Symbol.getName()); 655 continue; 656 } 657 658 ELFSymbolData MSD; 659 MSD.Symbol = cast<MCSymbolELF>(&Symbol); 660 MSD.Order = It.index(); 661 662 bool Local = Symbol.getBinding() == ELF::STB_LOCAL; 663 assert(Local || !Symbol.isTemporary()); 664 665 if (Symbol.isAbsolute()) { 666 MSD.SectionIndex = ELF::SHN_ABS; 667 } else if (Symbol.isCommon()) { 668 if (Symbol.isTargetCommon()) { 669 MSD.SectionIndex = Symbol.getIndex(); 670 } else { 671 assert(!Local); 672 MSD.SectionIndex = ELF::SHN_COMMON; 673 } 674 } else if (Symbol.isUndefined()) { 675 if (isSignature && !Used) { 676 MSD.SectionIndex = RevGroupMap.lookup(&Symbol); 677 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 678 HasLargeSectionIndex = true; 679 } else { 680 MSD.SectionIndex = ELF::SHN_UNDEF; 681 } 682 } else { 683 const MCSectionELF &Section = 684 static_cast<const MCSectionELF &>(Symbol.getSection()); 685 686 // We may end up with a situation when section symbol is technically 687 // defined, but should not be. That happens because we explicitly 688 // pre-create few .debug_* sections to have accessors. 689 // And if these sections were not really defined in the code, but were 690 // referenced, we simply error out. 691 if (!Section.isRegistered()) { 692 assert(static_cast<const MCSymbolELF &>(Symbol).getType() == 693 ELF::STT_SECTION); 694 Ctx.reportError(SMLoc(), 695 "Undefined section reference: " + Symbol.getName()); 696 continue; 697 } 698 699 if (Mode == NonDwoOnly && isDwoSection(Section)) 700 continue; 701 MSD.SectionIndex = SectionIndexMap.lookup(&Section); 702 assert(MSD.SectionIndex && "Invalid section index!"); 703 if (MSD.SectionIndex >= ELF::SHN_LORESERVE) 704 HasLargeSectionIndex = true; 705 } 706 707 // Temporary symbols generated for certain assembler features (.eh_frame, 708 // .debug_line) of an empty name may be referenced by relocations due to 709 // linker relaxation. Rename them to ".L0 " to match the gas fake label name 710 // and allow ld/objcopy --discard-locals to discard such symbols. 711 StringRef Name = Symbol.getName(); 712 if (Name.empty()) 713 Name = ".L0 "; 714 715 // Sections have their own string table 716 if (Symbol.getType() != ELF::STT_SECTION) { 717 MSD.Name = Name; 718 StrTabBuilder.add(Name); 719 } 720 721 if (Local) 722 LocalSymbolData.push_back(MSD); 723 else 724 ExternalSymbolData.push_back(MSD); 725 } 726 727 // This holds the .symtab_shndx section index. 728 unsigned SymtabShndxSectionIndex = 0; 729 730 if (HasLargeSectionIndex) { 731 MCSectionELF *SymtabShndxSection = 732 Ctx.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX, 0, 4); 733 SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection); 734 SymtabShndxSection->setAlignment(Align(4)); 735 } 736 737 StrTabBuilder.finalize(); 738 739 // Make the first STT_FILE precede previous local symbols. 740 unsigned Index = 1; 741 auto FileNameIt = FileNames.begin(); 742 if (!FileNames.empty()) 743 FileNames[0].second = 0; 744 745 for (ELFSymbolData &MSD : LocalSymbolData) { 746 // Emit STT_FILE symbols before their associated local symbols. 747 for (; FileNameIt != FileNames.end() && FileNameIt->second <= MSD.Order; 748 ++FileNameIt) { 749 Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first), 750 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 751 ELF::SHN_ABS, true); 752 ++Index; 753 } 754 755 unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION 756 ? 0 757 : StrTabBuilder.getOffset(MSD.Name); 758 MSD.Symbol->setIndex(Index++); 759 writeSymbol(Asm, Writer, StringIndex, MSD); 760 } 761 for (; FileNameIt != FileNames.end(); ++FileNameIt) { 762 Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first), 763 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, 764 ELF::SHN_ABS, true); 765 ++Index; 766 } 767 768 // Write the symbol table entries. 769 LastLocalSymbolIndex = Index; 770 771 for (ELFSymbolData &MSD : ExternalSymbolData) { 772 unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name); 773 MSD.Symbol->setIndex(Index++); 774 writeSymbol(Asm, Writer, StringIndex, MSD); 775 assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL); 776 } 777 778 uint64_t SecEnd = W.OS.tell(); 779 SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd); 780 781 ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes(); 782 if (ShndxIndexes.empty()) { 783 assert(SymtabShndxSectionIndex == 0); 784 return; 785 } 786 assert(SymtabShndxSectionIndex != 0); 787 788 SecStart = W.OS.tell(); 789 const MCSectionELF *SymtabShndxSection = 790 SectionTable[SymtabShndxSectionIndex - 1]; 791 for (uint32_t Index : ShndxIndexes) 792 write(Index); 793 SecEnd = W.OS.tell(); 794 SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd); 795 } 796 797 void ELFWriter::writeAddrsigSection() { 798 for (const MCSymbol *Sym : OWriter.AddrsigSyms) 799 if (Sym->getIndex() != 0) 800 encodeULEB128(Sym->getIndex(), W.OS); 801 } 802 803 MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx, 804 const MCSectionELF &Sec) { 805 if (OWriter.Relocations[&Sec].empty()) 806 return nullptr; 807 808 unsigned Flags = ELF::SHF_INFO_LINK; 809 if (Sec.getFlags() & ELF::SHF_GROUP) 810 Flags = ELF::SHF_GROUP; 811 812 const StringRef SectionName = Sec.getName(); 813 const bool Rela = OWriter.usesRela(Sec); 814 unsigned EntrySize; 815 if (Rela) 816 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela); 817 else 818 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel); 819 820 MCSectionELF *RelaSection = 821 Ctx.createELFRelSection(((Rela ? ".rela" : ".rel") + SectionName), 822 Rela ? ELF::SHT_RELA : ELF::SHT_REL, Flags, 823 EntrySize, Sec.getGroup(), &Sec); 824 RelaSection->setAlignment(is64Bit() ? Align(8) : Align(4)); 825 return RelaSection; 826 } 827 828 // Include the debug info compression header. 829 bool ELFWriter::maybeWriteCompression( 830 uint32_t ChType, uint64_t Size, 831 SmallVectorImpl<uint8_t> &CompressedContents, Align Alignment) { 832 uint64_t HdrSize = 833 is64Bit() ? sizeof(ELF::Elf64_Chdr) : sizeof(ELF::Elf32_Chdr); 834 if (Size <= HdrSize + CompressedContents.size()) 835 return false; 836 // Platform specific header is followed by compressed data. 837 if (is64Bit()) { 838 // Write Elf64_Chdr header. 839 write(static_cast<ELF::Elf64_Word>(ChType)); 840 write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field. 841 write(static_cast<ELF::Elf64_Xword>(Size)); 842 write(static_cast<ELF::Elf64_Xword>(Alignment.value())); 843 } else { 844 // Write Elf32_Chdr header otherwise. 845 write(static_cast<ELF::Elf32_Word>(ChType)); 846 write(static_cast<ELF::Elf32_Word>(Size)); 847 write(static_cast<ELF::Elf32_Word>(Alignment.value())); 848 } 849 return true; 850 } 851 852 void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec) { 853 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 854 StringRef SectionName = Section.getName(); 855 auto &Ctx = Asm.getContext(); 856 const DebugCompressionType CompressionType = 857 Ctx.getTargetOptions() ? Ctx.getTargetOptions()->CompressDebugSections 858 : DebugCompressionType::None; 859 if (CompressionType == DebugCompressionType::None || 860 !SectionName.starts_with(".debug_")) { 861 Asm.writeSectionData(W.OS, &Section); 862 return; 863 } 864 865 SmallVector<char, 128> UncompressedData; 866 raw_svector_ostream VecOS(UncompressedData); 867 Asm.writeSectionData(VecOS, &Section); 868 ArrayRef<uint8_t> Uncompressed = 869 ArrayRef(reinterpret_cast<uint8_t *>(UncompressedData.data()), 870 UncompressedData.size()); 871 872 SmallVector<uint8_t, 128> Compressed; 873 uint32_t ChType; 874 switch (CompressionType) { 875 case DebugCompressionType::None: 876 llvm_unreachable("has been handled"); 877 case DebugCompressionType::Zlib: 878 ChType = ELF::ELFCOMPRESS_ZLIB; 879 break; 880 case DebugCompressionType::Zstd: 881 ChType = ELF::ELFCOMPRESS_ZSTD; 882 break; 883 } 884 compression::compress(compression::Params(CompressionType), Uncompressed, 885 Compressed); 886 if (!maybeWriteCompression(ChType, UncompressedData.size(), Compressed, 887 Sec.getAlign())) { 888 W.OS << UncompressedData; 889 return; 890 } 891 892 Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED); 893 // Alignment field should reflect the requirements of 894 // the compressed section header. 895 Section.setAlignment(is64Bit() ? Align(8) : Align(4)); 896 W.OS << toStringRef(Compressed); 897 } 898 899 void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, 900 uint64_t Address, uint64_t Offset, 901 uint64_t Size, uint32_t Link, uint32_t Info, 902 MaybeAlign Alignment, uint64_t EntrySize) { 903 W.write<uint32_t>(Name); // sh_name: index into string table 904 W.write<uint32_t>(Type); // sh_type 905 WriteWord(Flags); // sh_flags 906 WriteWord(Address); // sh_addr 907 WriteWord(Offset); // sh_offset 908 WriteWord(Size); // sh_size 909 W.write<uint32_t>(Link); // sh_link 910 W.write<uint32_t>(Info); // sh_info 911 WriteWord(Alignment ? Alignment->value() : 0); // sh_addralign 912 WriteWord(EntrySize); // sh_entsize 913 } 914 915 void ELFWriter::writeRelocations(const MCAssembler &Asm, 916 const MCSectionELF &Sec) { 917 std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec]; 918 const bool Rela = OWriter.usesRela(Sec); 919 920 // Sort the relocation entries. MIPS needs this. 921 OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs); 922 923 if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { 924 for (const ELFRelocationEntry &Entry : Relocs) { 925 uint32_t Symidx = Entry.Symbol ? Entry.Symbol->getIndex() : 0; 926 if (is64Bit()) { 927 write(Entry.Offset); 928 write(uint32_t(Symidx)); 929 write(OWriter.TargetObjectWriter->getRSsym(Entry.Type)); 930 write(OWriter.TargetObjectWriter->getRType3(Entry.Type)); 931 write(OWriter.TargetObjectWriter->getRType2(Entry.Type)); 932 write(OWriter.TargetObjectWriter->getRType(Entry.Type)); 933 if (Rela) 934 write(Entry.Addend); 935 } else { 936 write(uint32_t(Entry.Offset)); 937 ELF::Elf32_Rela ERE32; 938 ERE32.setSymbolAndType(Symidx, Entry.Type); 939 write(ERE32.r_info); 940 if (Rela) 941 write(uint32_t(Entry.Addend)); 942 if (uint32_t RType = 943 OWriter.TargetObjectWriter->getRType2(Entry.Type)) { 944 write(uint32_t(Entry.Offset)); 945 ERE32.setSymbolAndType(0, RType); 946 write(ERE32.r_info); 947 write(uint32_t(0)); 948 } 949 if (uint32_t RType = 950 OWriter.TargetObjectWriter->getRType3(Entry.Type)) { 951 write(uint32_t(Entry.Offset)); 952 ERE32.setSymbolAndType(0, RType); 953 write(ERE32.r_info); 954 write(uint32_t(0)); 955 } 956 } 957 } 958 return; 959 } 960 for (const ELFRelocationEntry &Entry : Relocs) { 961 uint32_t Symidx = Entry.Symbol ? Entry.Symbol->getIndex() : 0; 962 if (is64Bit()) { 963 write(Entry.Offset); 964 ELF::Elf64_Rela ERE; 965 ERE.setSymbolAndType(Symidx, Entry.Type); 966 write(ERE.r_info); 967 if (Rela) 968 write(Entry.Addend); 969 } else { 970 write(uint32_t(Entry.Offset)); 971 ELF::Elf32_Rela ERE; 972 ERE.setSymbolAndType(Symidx, Entry.Type); 973 write(ERE.r_info); 974 if (Rela) 975 write(uint32_t(Entry.Addend)); 976 } 977 } 978 } 979 980 void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap, 981 uint32_t GroupSymbolIndex, uint64_t Offset, 982 uint64_t Size, const MCSectionELF &Section) { 983 uint64_t sh_link = 0; 984 uint64_t sh_info = 0; 985 986 switch(Section.getType()) { 987 default: 988 // Nothing to do. 989 break; 990 991 case ELF::SHT_DYNAMIC: 992 llvm_unreachable("SHT_DYNAMIC in a relocatable object"); 993 994 case ELF::SHT_REL: 995 case ELF::SHT_RELA: { 996 sh_link = SymbolTableIndex; 997 assert(sh_link && ".symtab not found"); 998 const MCSection *InfoSection = Section.getLinkedToSection(); 999 sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection)); 1000 break; 1001 } 1002 1003 case ELF::SHT_SYMTAB: 1004 sh_link = StringTableIndex; 1005 sh_info = LastLocalSymbolIndex; 1006 break; 1007 1008 case ELF::SHT_SYMTAB_SHNDX: 1009 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: 1010 case ELF::SHT_LLVM_ADDRSIG: 1011 sh_link = SymbolTableIndex; 1012 break; 1013 1014 case ELF::SHT_GROUP: 1015 sh_link = SymbolTableIndex; 1016 sh_info = GroupSymbolIndex; 1017 break; 1018 } 1019 1020 if (Section.getFlags() & ELF::SHF_LINK_ORDER) { 1021 // If the value in the associated metadata is not a definition, Sym will be 1022 // undefined. Represent this with sh_link=0. 1023 const MCSymbol *Sym = Section.getLinkedToSymbol(); 1024 if (Sym && Sym->isInSection()) { 1025 const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection()); 1026 sh_link = SectionIndexMap.lookup(Sec); 1027 } 1028 } 1029 1030 WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getName()), 1031 Section.getType(), Section.getFlags(), 0, Offset, Size, 1032 sh_link, sh_info, Section.getAlign(), 1033 Section.getEntrySize()); 1034 } 1035 1036 void ELFWriter::writeSectionHeader(const MCAssembler &Asm, 1037 const SectionIndexMapTy &SectionIndexMap, 1038 const SectionOffsetsTy &SectionOffsets) { 1039 const unsigned NumSections = SectionTable.size(); 1040 1041 // Null section first. 1042 uint64_t FirstSectionSize = 1043 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0; 1044 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, std::nullopt, 0); 1045 1046 for (const MCSectionELF *Section : SectionTable) { 1047 uint32_t GroupSymbolIndex; 1048 unsigned Type = Section->getType(); 1049 if (Type != ELF::SHT_GROUP) 1050 GroupSymbolIndex = 0; 1051 else 1052 GroupSymbolIndex = Section->getGroup()->getIndex(); 1053 1054 const std::pair<uint64_t, uint64_t> &Offsets = 1055 SectionOffsets.find(Section)->second; 1056 uint64_t Size; 1057 if (Type == ELF::SHT_NOBITS) 1058 Size = Asm.getSectionAddressSize(*Section); 1059 else 1060 Size = Offsets.second - Offsets.first; 1061 1062 writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size, 1063 *Section); 1064 } 1065 } 1066 1067 uint64_t ELFWriter::writeObject(MCAssembler &Asm) { 1068 uint64_t StartOffset = W.OS.tell(); 1069 1070 MCContext &Ctx = Asm.getContext(); 1071 MCSectionELF *StrtabSection = 1072 Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0); 1073 StringTableIndex = addToSectionTable(StrtabSection); 1074 1075 RevGroupMapTy RevGroupMap; 1076 SectionIndexMapTy SectionIndexMap; 1077 1078 DenseMap<const MCSymbol *, SmallVector<const MCSectionELF *, 0>> GroupMembers; 1079 1080 // Write out the ELF header ... 1081 writeHeader(Asm); 1082 1083 // ... then the sections ... 1084 SectionOffsetsTy SectionOffsets; 1085 std::vector<MCSectionELF *> Groups; 1086 std::vector<MCSectionELF *> Relocations; 1087 for (MCSection &Sec : Asm) { 1088 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); 1089 if (Mode == NonDwoOnly && isDwoSection(Section)) 1090 continue; 1091 if (Mode == DwoOnly && !isDwoSection(Section)) 1092 continue; 1093 1094 // Remember the offset into the file for this section. 1095 const uint64_t SecStart = align(Section.getAlign()); 1096 1097 const MCSymbolELF *SignatureSymbol = Section.getGroup(); 1098 writeSectionData(Asm, Section); 1099 1100 uint64_t SecEnd = W.OS.tell(); 1101 SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd); 1102 1103 MCSectionELF *RelSection = createRelocationSection(Ctx, Section); 1104 1105 if (SignatureSymbol) { 1106 unsigned &GroupIdx = RevGroupMap[SignatureSymbol]; 1107 if (!GroupIdx) { 1108 MCSectionELF *Group = 1109 Ctx.createELFGroupSection(SignatureSymbol, Section.isComdat()); 1110 GroupIdx = addToSectionTable(Group); 1111 Group->setAlignment(Align(4)); 1112 Groups.push_back(Group); 1113 } 1114 SmallVector<const MCSectionELF *, 0> &Members = 1115 GroupMembers[SignatureSymbol]; 1116 Members.push_back(&Section); 1117 if (RelSection) 1118 Members.push_back(RelSection); 1119 } 1120 1121 SectionIndexMap[&Section] = addToSectionTable(&Section); 1122 if (RelSection) { 1123 SectionIndexMap[RelSection] = addToSectionTable(RelSection); 1124 Relocations.push_back(RelSection); 1125 } 1126 1127 OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section); 1128 } 1129 1130 for (MCSectionELF *Group : Groups) { 1131 // Remember the offset into the file for this section. 1132 const uint64_t SecStart = align(Group->getAlign()); 1133 1134 const MCSymbol *SignatureSymbol = Group->getGroup(); 1135 assert(SignatureSymbol); 1136 write(uint32_t(Group->isComdat() ? unsigned(ELF::GRP_COMDAT) : 0)); 1137 for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) { 1138 uint32_t SecIndex = SectionIndexMap.lookup(Member); 1139 write(SecIndex); 1140 } 1141 1142 uint64_t SecEnd = W.OS.tell(); 1143 SectionOffsets[Group] = std::make_pair(SecStart, SecEnd); 1144 } 1145 1146 if (Mode == DwoOnly) { 1147 // dwo files don't have symbol tables or relocations, but they do have 1148 // string tables. 1149 StrTabBuilder.finalize(); 1150 } else { 1151 MCSectionELF *AddrsigSection; 1152 if (OWriter.EmitAddrsigSection) { 1153 AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG, 1154 ELF::SHF_EXCLUDE); 1155 addToSectionTable(AddrsigSection); 1156 } 1157 1158 // Compute symbol table information. 1159 computeSymbolTable(Asm, SectionIndexMap, RevGroupMap, SectionOffsets); 1160 1161 for (MCSectionELF *RelSection : Relocations) { 1162 // Remember the offset into the file for this section. 1163 const uint64_t SecStart = align(RelSection->getAlign()); 1164 1165 writeRelocations(Asm, 1166 cast<MCSectionELF>(*RelSection->getLinkedToSection())); 1167 1168 uint64_t SecEnd = W.OS.tell(); 1169 SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd); 1170 } 1171 1172 if (OWriter.EmitAddrsigSection) { 1173 uint64_t SecStart = W.OS.tell(); 1174 writeAddrsigSection(); 1175 uint64_t SecEnd = W.OS.tell(); 1176 SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd); 1177 } 1178 } 1179 1180 { 1181 uint64_t SecStart = W.OS.tell(); 1182 StrTabBuilder.write(W.OS); 1183 SectionOffsets[StrtabSection] = std::make_pair(SecStart, W.OS.tell()); 1184 } 1185 1186 const uint64_t SectionHeaderOffset = align(is64Bit() ? Align(8) : Align(4)); 1187 1188 // ... then the section header table ... 1189 writeSectionHeader(Asm, SectionIndexMap, SectionOffsets); 1190 1191 uint16_t NumSections = support::endian::byte_swap<uint16_t>( 1192 (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF 1193 : SectionTable.size() + 1, 1194 W.Endian); 1195 unsigned NumSectionsOffset; 1196 1197 auto &Stream = static_cast<raw_pwrite_stream &>(W.OS); 1198 if (is64Bit()) { 1199 uint64_t Val = 1200 support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian); 1201 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1202 offsetof(ELF::Elf64_Ehdr, e_shoff)); 1203 NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum); 1204 } else { 1205 uint32_t Val = 1206 support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian); 1207 Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), 1208 offsetof(ELF::Elf32_Ehdr, e_shoff)); 1209 NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum); 1210 } 1211 Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections), 1212 NumSectionsOffset); 1213 1214 return W.OS.tell() - StartOffset; 1215 } 1216 1217 bool ELFObjectWriter::hasRelocationAddend() const { 1218 return TargetObjectWriter->hasRelocationAddend(); 1219 } 1220 1221 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, 1222 const MCAsmLayout &Layout) { 1223 // The presence of symbol versions causes undefined symbols and 1224 // versions declared with @@@ to be renamed. 1225 for (const MCAssembler::Symver &S : Asm.Symvers) { 1226 StringRef AliasName = S.Name; 1227 const auto &Symbol = cast<MCSymbolELF>(*S.Sym); 1228 size_t Pos = AliasName.find('@'); 1229 assert(Pos != StringRef::npos); 1230 1231 StringRef Prefix = AliasName.substr(0, Pos); 1232 StringRef Rest = AliasName.substr(Pos); 1233 StringRef Tail = Rest; 1234 if (Rest.starts_with("@@@")) 1235 Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1); 1236 1237 auto *Alias = 1238 cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail)); 1239 Asm.registerSymbol(*Alias); 1240 const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext()); 1241 Alias->setVariableValue(Value); 1242 1243 // Aliases defined with .symvar copy the binding from the symbol they alias. 1244 // This is the first place we are able to copy this information. 1245 Alias->setBinding(Symbol.getBinding()); 1246 Alias->setVisibility(Symbol.getVisibility()); 1247 Alias->setOther(Symbol.getOther()); 1248 1249 if (!Symbol.isUndefined() && S.KeepOriginalSym) 1250 continue; 1251 1252 if (Symbol.isUndefined() && Rest.starts_with("@@") && 1253 !Rest.starts_with("@@@")) { 1254 Asm.getContext().reportError(S.Loc, "default version symbol " + 1255 AliasName + " must be defined"); 1256 continue; 1257 } 1258 1259 if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) { 1260 Asm.getContext().reportError(S.Loc, Twine("multiple versions for ") + 1261 Symbol.getName()); 1262 continue; 1263 } 1264 1265 Renames.insert(std::make_pair(&Symbol, Alias)); 1266 } 1267 1268 for (const MCSymbol *&Sym : AddrsigSyms) { 1269 if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym))) 1270 Sym = R; 1271 if (Sym->isInSection() && Sym->getName().starts_with(".L")) 1272 Sym = Sym->getSection().getBeginSymbol(); 1273 Sym->setUsedInReloc(); 1274 } 1275 } 1276 1277 // It is always valid to create a relocation with a symbol. It is preferable 1278 // to use a relocation with a section if that is possible. Using the section 1279 // allows us to omit some local symbols from the symbol table. 1280 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm, 1281 const MCValue &Val, 1282 const MCSymbolELF *Sym, 1283 uint64_t C, 1284 unsigned Type) const { 1285 const MCSymbolRefExpr *RefA = Val.getSymA(); 1286 // A PCRel relocation to an absolute value has no symbol (or section). We 1287 // represent that with a relocation to a null section. 1288 if (!RefA) 1289 return false; 1290 1291 MCSymbolRefExpr::VariantKind Kind = RefA->getKind(); 1292 switch (Kind) { 1293 default: 1294 break; 1295 // The .odp creation emits a relocation against the symbol ".TOC." which 1296 // create a R_PPC64_TOC relocation. However the relocation symbol name 1297 // in final object creation should be NULL, since the symbol does not 1298 // really exist, it is just the reference to TOC base for the current 1299 // object file. Since the symbol is undefined, returning false results 1300 // in a relocation with a null section which is the desired result. 1301 case MCSymbolRefExpr::VK_PPC_TOCBASE: 1302 return false; 1303 1304 // These VariantKind cause the relocation to refer to something other than 1305 // the symbol itself, like a linker generated table. Since the address of 1306 // symbol is not relevant, we cannot replace the symbol with the 1307 // section and patch the difference in the addend. 1308 case MCSymbolRefExpr::VK_GOT: 1309 case MCSymbolRefExpr::VK_PLT: 1310 case MCSymbolRefExpr::VK_GOTPCREL: 1311 case MCSymbolRefExpr::VK_GOTPCREL_NORELAX: 1312 case MCSymbolRefExpr::VK_PPC_GOT_LO: 1313 case MCSymbolRefExpr::VK_PPC_GOT_HI: 1314 case MCSymbolRefExpr::VK_PPC_GOT_HA: 1315 return true; 1316 } 1317 1318 // An undefined symbol is not in any section, so the relocation has to point 1319 // to the symbol itself. 1320 assert(Sym && "Expected a symbol"); 1321 if (Sym->isUndefined()) 1322 return true; 1323 1324 // For memory-tagged symbols, ensure that the relocation uses the symbol. For 1325 // tagged symbols, we emit an empty relocation (R_AARCH64_NONE) in a special 1326 // section (SHT_AARCH64_MEMTAG_GLOBALS_STATIC) to indicate to the linker that 1327 // this global needs to be tagged. In addition, the linker needs to know 1328 // whether to emit a special addend when relocating `end` symbols, and this 1329 // can only be determined by the attributes of the symbol itself. 1330 if (Sym->isMemtag()) 1331 return true; 1332 1333 unsigned Binding = Sym->getBinding(); 1334 switch(Binding) { 1335 default: 1336 llvm_unreachable("Invalid Binding"); 1337 case ELF::STB_LOCAL: 1338 break; 1339 case ELF::STB_WEAK: 1340 // If the symbol is weak, it might be overridden by a symbol in another 1341 // file. The relocation has to point to the symbol so that the linker 1342 // can update it. 1343 return true; 1344 case ELF::STB_GLOBAL: 1345 case ELF::STB_GNU_UNIQUE: 1346 // Global ELF symbols can be preempted by the dynamic linker. The relocation 1347 // has to point to the symbol for a reason analogous to the STB_WEAK case. 1348 return true; 1349 } 1350 1351 // Keep symbol type for a local ifunc because it may result in an IRELATIVE 1352 // reloc that the dynamic loader will use to resolve the address at startup 1353 // time. 1354 if (Sym->getType() == ELF::STT_GNU_IFUNC) 1355 return true; 1356 1357 // If a relocation points to a mergeable section, we have to be careful. 1358 // If the offset is zero, a relocation with the section will encode the 1359 // same information. With a non-zero offset, the situation is different. 1360 // For example, a relocation can point 42 bytes past the end of a string. 1361 // If we change such a relocation to use the section, the linker would think 1362 // that it pointed to another string and subtracting 42 at runtime will 1363 // produce the wrong value. 1364 if (Sym->isInSection()) { 1365 auto &Sec = cast<MCSectionELF>(Sym->getSection()); 1366 unsigned Flags = Sec.getFlags(); 1367 if (Flags & ELF::SHF_MERGE) { 1368 if (C != 0) 1369 return true; 1370 1371 // gold<2.34 incorrectly ignored the addend for R_386_GOTOFF (9) 1372 // (http://sourceware.org/PR16794). 1373 if (TargetObjectWriter->getEMachine() == ELF::EM_386 && 1374 Type == ELF::R_386_GOTOFF) 1375 return true; 1376 1377 // ld.lld handles R_MIPS_HI16/R_MIPS_LO16 separately, not as a whole, so 1378 // it doesn't know that an R_MIPS_HI16 with implicit addend 1 and an 1379 // R_MIPS_LO16 with implicit addend -32768 represents 32768, which is in 1380 // range of a MergeInputSection. We could introduce a new RelExpr member 1381 // (like R_RISCV_PC_INDIRECT for R_RISCV_PCREL_HI20 / R_RISCV_PCREL_LO12) 1382 // but the complexity is unnecessary given that GNU as keeps the original 1383 // symbol for this case as well. 1384 if (TargetObjectWriter->getEMachine() == ELF::EM_MIPS && 1385 !hasRelocationAddend()) 1386 return true; 1387 } 1388 1389 // Most TLS relocations use a got, so they need the symbol. Even those that 1390 // are just an offset (@tpoff), require a symbol in gold versions before 1391 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed 1392 // http://sourceware.org/PR16773. 1393 if (Flags & ELF::SHF_TLS) 1394 return true; 1395 } 1396 1397 // If the symbol is a thumb function the final relocation must set the lowest 1398 // bit. With a symbol that is done by just having the symbol have that bit 1399 // set, so we would lose the bit if we relocated with the section. 1400 // FIXME: We could use the section but add the bit to the relocation value. 1401 if (Asm.isThumbFunc(Sym)) 1402 return true; 1403 1404 if (TargetObjectWriter->needsRelocateWithSymbol(Val, *Sym, Type)) 1405 return true; 1406 return false; 1407 } 1408 1409 void ELFObjectWriter::recordRelocation(MCAssembler &Asm, 1410 const MCFragment *Fragment, 1411 const MCFixup &Fixup, MCValue Target, 1412 uint64_t &FixedValue) { 1413 MCAsmBackend &Backend = Asm.getBackend(); 1414 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & 1415 MCFixupKindInfo::FKF_IsPCRel; 1416 const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent()); 1417 uint64_t C = Target.getConstant(); 1418 uint64_t FixupOffset = Asm.getFragmentOffset(*Fragment) + Fixup.getOffset(); 1419 MCContext &Ctx = Asm.getContext(); 1420 1421 if (const MCSymbolRefExpr *RefB = Target.getSymB()) { 1422 const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol()); 1423 if (SymB.isUndefined()) { 1424 Ctx.reportError(Fixup.getLoc(), 1425 Twine("symbol '") + SymB.getName() + 1426 "' can not be undefined in a subtraction expression"); 1427 return; 1428 } 1429 1430 assert(!SymB.isAbsolute() && "Should have been folded"); 1431 const MCSection &SecB = SymB.getSection(); 1432 if (&SecB != &FixupSection) { 1433 Ctx.reportError(Fixup.getLoc(), 1434 "Cannot represent a difference across sections"); 1435 return; 1436 } 1437 1438 assert(!IsPCRel && "should have been folded"); 1439 IsPCRel = true; 1440 C += FixupOffset - Asm.getSymbolOffset(SymB); 1441 } 1442 1443 // We either rejected the fixup or folded B into C at this point. 1444 const MCSymbolRefExpr *RefA = Target.getSymA(); 1445 const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr; 1446 1447 bool ViaWeakRef = false; 1448 if (SymA && SymA->isVariable()) { 1449 const MCExpr *Expr = SymA->getVariableValue(); 1450 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) { 1451 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) { 1452 SymA = cast<MCSymbolELF>(&Inner->getSymbol()); 1453 ViaWeakRef = true; 1454 } 1455 } 1456 } 1457 1458 const MCSectionELF *SecA = (SymA && SymA->isInSection()) 1459 ? cast<MCSectionELF>(&SymA->getSection()) 1460 : nullptr; 1461 if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA)) 1462 return; 1463 1464 unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel); 1465 const auto *Parent = cast<MCSectionELF>(Fragment->getParent()); 1466 // Emiting relocation with sybmol for CG Profile to help with --cg-profile. 1467 bool RelocateWithSymbol = 1468 shouldRelocateWithSymbol(Asm, Target, SymA, C, Type) || 1469 (Parent->getType() == ELF::SHT_LLVM_CALL_GRAPH_PROFILE); 1470 uint64_t Addend = 0; 1471 1472 FixedValue = !RelocateWithSymbol && SymA && !SymA->isUndefined() 1473 ? C + Asm.getSymbolOffset(*SymA) 1474 : C; 1475 if (usesRela(FixupSection)) { 1476 Addend = FixedValue; 1477 FixedValue = 0; 1478 } 1479 1480 if (!RelocateWithSymbol) { 1481 const auto *SectionSymbol = 1482 SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr; 1483 if (SectionSymbol) 1484 SectionSymbol->setUsedInReloc(); 1485 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, C); 1486 Relocations[&FixupSection].push_back(Rec); 1487 return; 1488 } 1489 1490 const MCSymbolELF *RenamedSymA = SymA; 1491 if (SymA) { 1492 if (const MCSymbolELF *R = Renames.lookup(SymA)) 1493 RenamedSymA = R; 1494 1495 if (ViaWeakRef) 1496 RenamedSymA->setIsWeakrefUsedInReloc(); 1497 else 1498 RenamedSymA->setUsedInReloc(); 1499 } 1500 ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, C); 1501 Relocations[&FixupSection].push_back(Rec); 1502 } 1503 1504 bool ELFObjectWriter::usesRela(const MCSectionELF &Sec) const { 1505 return hasRelocationAddend() && 1506 Sec.getType() != ELF::SHT_LLVM_CALL_GRAPH_PROFILE; 1507 } 1508 1509 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( 1510 const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB, 1511 bool InSet, bool IsPCRel) const { 1512 const auto &SymA = cast<MCSymbolELF>(SA); 1513 if (IsPCRel) { 1514 assert(!InSet); 1515 if (SymA.getBinding() != ELF::STB_LOCAL || 1516 SymA.getType() == ELF::STT_GNU_IFUNC) 1517 return false; 1518 } 1519 return &SymA.getSection() == FB.getParent(); 1520 } 1521 1522 std::unique_ptr<MCObjectWriter> 1523 llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1524 raw_pwrite_stream &OS, bool IsLittleEndian) { 1525 return std::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS, 1526 IsLittleEndian); 1527 } 1528 1529 std::unique_ptr<MCObjectWriter> 1530 llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, 1531 raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, 1532 bool IsLittleEndian) { 1533 return std::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS, 1534 IsLittleEndian); 1535 } 1536