1 //===-- Operator.cpp - Implement the LLVM operators -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the non-inline methods for the LLVM Operator classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Operator.h" 14 #include "llvm/IR/DataLayout.h" 15 #include "llvm/IR/GetElementPtrTypeIterator.h" 16 #include "llvm/IR/Instructions.h" 17 18 #include "ConstantsContext.h" 19 20 namespace llvm { 21 bool Operator::hasPoisonGeneratingFlags() const { 22 switch (getOpcode()) { 23 case Instruction::Add: 24 case Instruction::Sub: 25 case Instruction::Mul: 26 case Instruction::Shl: { 27 auto *OBO = cast<OverflowingBinaryOperator>(this); 28 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 29 } 30 case Instruction::UDiv: 31 case Instruction::SDiv: 32 case Instruction::AShr: 33 case Instruction::LShr: 34 return cast<PossiblyExactOperator>(this)->isExact(); 35 case Instruction::GetElementPtr: { 36 auto *GEP = cast<GEPOperator>(this); 37 // Note: inrange exists on constexpr only 38 return GEP->isInBounds() || GEP->getInRangeIndex() != std::nullopt; 39 } 40 case Instruction::ZExt: 41 if (auto *NNI = dyn_cast<PossiblyNonNegInst>(this)) 42 return NNI->hasNonNeg(); 43 return false; 44 default: 45 if (const auto *FP = dyn_cast<FPMathOperator>(this)) 46 return FP->hasNoNaNs() || FP->hasNoInfs(); 47 return false; 48 } 49 } 50 51 bool Operator::hasPoisonGeneratingFlagsOrMetadata() const { 52 if (hasPoisonGeneratingFlags()) 53 return true; 54 auto *I = dyn_cast<Instruction>(this); 55 return I && I->hasPoisonGeneratingMetadata(); 56 } 57 58 Type *GEPOperator::getSourceElementType() const { 59 if (auto *I = dyn_cast<GetElementPtrInst>(this)) 60 return I->getSourceElementType(); 61 return cast<GetElementPtrConstantExpr>(this)->getSourceElementType(); 62 } 63 64 Type *GEPOperator::getResultElementType() const { 65 if (auto *I = dyn_cast<GetElementPtrInst>(this)) 66 return I->getResultElementType(); 67 return cast<GetElementPtrConstantExpr>(this)->getResultElementType(); 68 } 69 70 Align GEPOperator::getMaxPreservedAlignment(const DataLayout &DL) const { 71 /// compute the worse possible offset for every level of the GEP et accumulate 72 /// the minimum alignment into Result. 73 74 Align Result = Align(llvm::Value::MaximumAlignment); 75 for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this); 76 GTI != GTE; ++GTI) { 77 uint64_t Offset; 78 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 79 80 if (StructType *STy = GTI.getStructTypeOrNull()) { 81 const StructLayout *SL = DL.getStructLayout(STy); 82 Offset = SL->getElementOffset(OpC->getZExtValue()); 83 } else { 84 assert(GTI.isSequential() && "should be sequencial"); 85 /// If the index isn't known, we take 1 because it is the index that will 86 /// give the worse alignment of the offset. 87 const uint64_t ElemCount = OpC ? OpC->getZExtValue() : 1; 88 Offset = DL.getTypeAllocSize(GTI.getIndexedType()) * ElemCount; 89 } 90 Result = Align(MinAlign(Offset, Result.value())); 91 } 92 return Result; 93 } 94 95 bool GEPOperator::accumulateConstantOffset( 96 const DataLayout &DL, APInt &Offset, 97 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { 98 assert(Offset.getBitWidth() == 99 DL.getIndexSizeInBits(getPointerAddressSpace()) && 100 "The offset bit width does not match DL specification."); 101 SmallVector<const Value *> Index(llvm::drop_begin(operand_values())); 102 return GEPOperator::accumulateConstantOffset(getSourceElementType(), Index, 103 DL, Offset, ExternalAnalysis); 104 } 105 106 bool GEPOperator::accumulateConstantOffset( 107 Type *SourceType, ArrayRef<const Value *> Index, const DataLayout &DL, 108 APInt &Offset, function_ref<bool(Value &, APInt &)> ExternalAnalysis) { 109 bool UsedExternalAnalysis = false; 110 auto AccumulateOffset = [&](APInt Index, uint64_t Size) -> bool { 111 Index = Index.sextOrTrunc(Offset.getBitWidth()); 112 APInt IndexedSize = APInt(Offset.getBitWidth(), Size); 113 // For array or vector indices, scale the index by the size of the type. 114 if (!UsedExternalAnalysis) { 115 Offset += Index * IndexedSize; 116 } else { 117 // External Analysis can return a result higher/lower than the value 118 // represents. We need to detect overflow/underflow. 119 bool Overflow = false; 120 APInt OffsetPlus = Index.smul_ov(IndexedSize, Overflow); 121 if (Overflow) 122 return false; 123 Offset = Offset.sadd_ov(OffsetPlus, Overflow); 124 if (Overflow) 125 return false; 126 } 127 return true; 128 }; 129 auto begin = generic_gep_type_iterator<decltype(Index.begin())>::begin( 130 SourceType, Index.begin()); 131 auto end = generic_gep_type_iterator<decltype(Index.end())>::end(Index.end()); 132 for (auto GTI = begin, GTE = end; GTI != GTE; ++GTI) { 133 // Scalable vectors are multiplied by a runtime constant. 134 bool ScalableType = GTI.getIndexedType()->isScalableTy(); 135 136 Value *V = GTI.getOperand(); 137 StructType *STy = GTI.getStructTypeOrNull(); 138 // Handle ConstantInt if possible. 139 if (auto ConstOffset = dyn_cast<ConstantInt>(V)) { 140 if (ConstOffset->isZero()) 141 continue; 142 // if the type is scalable and the constant is not zero (vscale * n * 0 = 143 // 0) bailout. 144 if (ScalableType) 145 return false; 146 // Handle a struct index, which adds its field offset to the pointer. 147 if (STy) { 148 unsigned ElementIdx = ConstOffset->getZExtValue(); 149 const StructLayout *SL = DL.getStructLayout(STy); 150 // Element offset is in bytes. 151 if (!AccumulateOffset( 152 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)), 153 1)) 154 return false; 155 continue; 156 } 157 if (!AccumulateOffset(ConstOffset->getValue(), 158 DL.getTypeAllocSize(GTI.getIndexedType()))) 159 return false; 160 continue; 161 } 162 163 // The operand is not constant, check if an external analysis was provided. 164 // External analsis is not applicable to a struct type. 165 if (!ExternalAnalysis || STy || ScalableType) 166 return false; 167 APInt AnalysisIndex; 168 if (!ExternalAnalysis(*V, AnalysisIndex)) 169 return false; 170 UsedExternalAnalysis = true; 171 if (!AccumulateOffset(AnalysisIndex, 172 DL.getTypeAllocSize(GTI.getIndexedType()))) 173 return false; 174 } 175 return true; 176 } 177 178 bool GEPOperator::collectOffset( 179 const DataLayout &DL, unsigned BitWidth, 180 MapVector<Value *, APInt> &VariableOffsets, 181 APInt &ConstantOffset) const { 182 assert(BitWidth == DL.getIndexSizeInBits(getPointerAddressSpace()) && 183 "The offset bit width does not match DL specification."); 184 185 auto CollectConstantOffset = [&](APInt Index, uint64_t Size) { 186 Index = Index.sextOrTrunc(BitWidth); 187 APInt IndexedSize = APInt(BitWidth, Size); 188 ConstantOffset += Index * IndexedSize; 189 }; 190 191 for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this); 192 GTI != GTE; ++GTI) { 193 // Scalable vectors are multiplied by a runtime constant. 194 bool ScalableType = GTI.getIndexedType()->isScalableTy(); 195 196 Value *V = GTI.getOperand(); 197 StructType *STy = GTI.getStructTypeOrNull(); 198 // Handle ConstantInt if possible. 199 if (auto ConstOffset = dyn_cast<ConstantInt>(V)) { 200 if (ConstOffset->isZero()) 201 continue; 202 // If the type is scalable and the constant is not zero (vscale * n * 0 = 203 // 0) bailout. 204 // TODO: If the runtime value is accessible at any point before DWARF 205 // emission, then we could potentially keep a forward reference to it 206 // in the debug value to be filled in later. 207 if (ScalableType) 208 return false; 209 // Handle a struct index, which adds its field offset to the pointer. 210 if (STy) { 211 unsigned ElementIdx = ConstOffset->getZExtValue(); 212 const StructLayout *SL = DL.getStructLayout(STy); 213 // Element offset is in bytes. 214 CollectConstantOffset(APInt(BitWidth, SL->getElementOffset(ElementIdx)), 215 1); 216 continue; 217 } 218 CollectConstantOffset(ConstOffset->getValue(), 219 DL.getTypeAllocSize(GTI.getIndexedType())); 220 continue; 221 } 222 223 if (STy || ScalableType) 224 return false; 225 APInt IndexedSize = 226 APInt(BitWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 227 // Insert an initial offset of 0 for V iff none exists already, then 228 // increment the offset by IndexedSize. 229 if (!IndexedSize.isZero()) { 230 VariableOffsets.insert({V, APInt(BitWidth, 0)}); 231 VariableOffsets[V] += IndexedSize; 232 } 233 } 234 return true; 235 } 236 237 void FastMathFlags::print(raw_ostream &O) const { 238 if (all()) 239 O << " fast"; 240 else { 241 if (allowReassoc()) 242 O << " reassoc"; 243 if (noNaNs()) 244 O << " nnan"; 245 if (noInfs()) 246 O << " ninf"; 247 if (noSignedZeros()) 248 O << " nsz"; 249 if (allowReciprocal()) 250 O << " arcp"; 251 if (allowContract()) 252 O << " contract"; 253 if (approxFunc()) 254 O << " afn"; 255 } 256 } 257 } // namespace llvm 258