1 //===- Module.cpp - Implement the Module class ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Module class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Module.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/IR/Attributes.h" 23 #include "llvm/IR/Comdat.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GVMaterializer.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalIFunc.h" 32 #include "llvm/IR/GlobalValue.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/SymbolTableListTraits.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/TypeFinder.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueSymbolTable.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/Error.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/Path.h" 47 #include "llvm/Support/RandomNumberGenerator.h" 48 #include "llvm/Support/VersionTuple.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstdint> 52 #include <memory> 53 #include <utility> 54 #include <vector> 55 56 using namespace llvm; 57 58 //===----------------------------------------------------------------------===// 59 // Methods to implement the globals and functions lists. 60 // 61 62 // Explicit instantiations of SymbolTableListTraits since some of the methods 63 // are not in the public header file. 64 template class llvm::SymbolTableListTraits<Function>; 65 template class llvm::SymbolTableListTraits<GlobalVariable>; 66 template class llvm::SymbolTableListTraits<GlobalAlias>; 67 template class llvm::SymbolTableListTraits<GlobalIFunc>; 68 69 //===----------------------------------------------------------------------===// 70 // Primitive Module methods. 71 // 72 73 Module::Module(StringRef MID, LLVMContext &C) 74 : Context(C), Materializer(), ModuleID(MID), SourceFileName(MID), DL("") { 75 ValSymTab = new ValueSymbolTable(); 76 NamedMDSymTab = new StringMap<NamedMDNode *>(); 77 Context.addModule(this); 78 } 79 80 Module::~Module() { 81 Context.removeModule(this); 82 dropAllReferences(); 83 GlobalList.clear(); 84 FunctionList.clear(); 85 AliasList.clear(); 86 IFuncList.clear(); 87 NamedMDList.clear(); 88 delete ValSymTab; 89 delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab); 90 } 91 92 std::unique_ptr<RandomNumberGenerator> Module::createRNG(const Pass* P) const { 93 SmallString<32> Salt(P->getPassName()); 94 95 // This RNG is guaranteed to produce the same random stream only 96 // when the Module ID and thus the input filename is the same. This 97 // might be problematic if the input filename extension changes 98 // (e.g. from .c to .bc or .ll). 99 // 100 // We could store this salt in NamedMetadata, but this would make 101 // the parameter non-const. This would unfortunately make this 102 // interface unusable by any Machine passes, since they only have a 103 // const reference to their IR Module. Alternatively we can always 104 // store salt metadata from the Module constructor. 105 Salt += sys::path::filename(getModuleIdentifier()); 106 107 return std::unique_ptr<RandomNumberGenerator>(new RandomNumberGenerator(Salt)); 108 } 109 110 /// getNamedValue - Return the first global value in the module with 111 /// the specified name, of arbitrary type. This method returns null 112 /// if a global with the specified name is not found. 113 GlobalValue *Module::getNamedValue(StringRef Name) const { 114 return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name)); 115 } 116 117 /// getMDKindID - Return a unique non-zero ID for the specified metadata kind. 118 /// This ID is uniqued across modules in the current LLVMContext. 119 unsigned Module::getMDKindID(StringRef Name) const { 120 return Context.getMDKindID(Name); 121 } 122 123 /// getMDKindNames - Populate client supplied SmallVector with the name for 124 /// custom metadata IDs registered in this LLVMContext. ID #0 is not used, 125 /// so it is filled in as an empty string. 126 void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const { 127 return Context.getMDKindNames(Result); 128 } 129 130 void Module::getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const { 131 return Context.getOperandBundleTags(Result); 132 } 133 134 //===----------------------------------------------------------------------===// 135 // Methods for easy access to the functions in the module. 136 // 137 138 // getOrInsertFunction - Look up the specified function in the module symbol 139 // table. If it does not exist, add a prototype for the function and return 140 // it. This is nice because it allows most passes to get away with not handling 141 // the symbol table directly for this common task. 142 // 143 Constant *Module::getOrInsertFunction(StringRef Name, FunctionType *Ty, 144 AttributeList AttributeList) { 145 // See if we have a definition for the specified function already. 146 GlobalValue *F = getNamedValue(Name); 147 if (!F) { 148 // Nope, add it 149 Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, 150 DL.getProgramAddressSpace(), Name); 151 if (!New->isIntrinsic()) // Intrinsics get attrs set on construction 152 New->setAttributes(AttributeList); 153 FunctionList.push_back(New); 154 return New; // Return the new prototype. 155 } 156 157 // If the function exists but has the wrong type, return a bitcast to the 158 // right type. 159 auto *PTy = PointerType::get(Ty, F->getAddressSpace()); 160 if (F->getType() != PTy) 161 return ConstantExpr::getBitCast(F, PTy); 162 163 // Otherwise, we just found the existing function or a prototype. 164 return F; 165 } 166 167 Constant *Module::getOrInsertFunction(StringRef Name, 168 FunctionType *Ty) { 169 return getOrInsertFunction(Name, Ty, AttributeList()); 170 } 171 172 // getFunction - Look up the specified function in the module symbol table. 173 // If it does not exist, return null. 174 // 175 Function *Module::getFunction(StringRef Name) const { 176 return dyn_cast_or_null<Function>(getNamedValue(Name)); 177 } 178 179 //===----------------------------------------------------------------------===// 180 // Methods for easy access to the global variables in the module. 181 // 182 183 /// getGlobalVariable - Look up the specified global variable in the module 184 /// symbol table. If it does not exist, return null. The type argument 185 /// should be the underlying type of the global, i.e., it should not have 186 /// the top-level PointerType, which represents the address of the global. 187 /// If AllowLocal is set to true, this function will return types that 188 /// have an local. By default, these types are not returned. 189 /// 190 GlobalVariable *Module::getGlobalVariable(StringRef Name, 191 bool AllowLocal) const { 192 if (GlobalVariable *Result = 193 dyn_cast_or_null<GlobalVariable>(getNamedValue(Name))) 194 if (AllowLocal || !Result->hasLocalLinkage()) 195 return Result; 196 return nullptr; 197 } 198 199 /// getOrInsertGlobal - Look up the specified global in the module symbol table. 200 /// 1. If it does not exist, add a declaration of the global and return it. 201 /// 2. Else, the global exists but has the wrong type: return the function 202 /// with a constantexpr cast to the right type. 203 /// 3. Finally, if the existing global is the correct declaration, return the 204 /// existing global. 205 Constant *Module::getOrInsertGlobal( 206 StringRef Name, Type *Ty, 207 function_ref<GlobalVariable *()> CreateGlobalCallback) { 208 // See if we have a definition for the specified global already. 209 GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)); 210 if (!GV) 211 GV = CreateGlobalCallback(); 212 assert(GV && "The CreateGlobalCallback is expected to create a global"); 213 214 // If the variable exists but has the wrong type, return a bitcast to the 215 // right type. 216 Type *GVTy = GV->getType(); 217 PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace()); 218 if (GVTy != PTy) 219 return ConstantExpr::getBitCast(GV, PTy); 220 221 // Otherwise, we just found the existing function or a prototype. 222 return GV; 223 } 224 225 // Overload to construct a global variable using its constructor's defaults. 226 Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) { 227 return getOrInsertGlobal(Name, Ty, [&] { 228 return new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage, 229 nullptr, Name); 230 }); 231 } 232 233 //===----------------------------------------------------------------------===// 234 // Methods for easy access to the global variables in the module. 235 // 236 237 // getNamedAlias - Look up the specified global in the module symbol table. 238 // If it does not exist, return null. 239 // 240 GlobalAlias *Module::getNamedAlias(StringRef Name) const { 241 return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name)); 242 } 243 244 GlobalIFunc *Module::getNamedIFunc(StringRef Name) const { 245 return dyn_cast_or_null<GlobalIFunc>(getNamedValue(Name)); 246 } 247 248 /// getNamedMetadata - Return the first NamedMDNode in the module with the 249 /// specified name. This method returns null if a NamedMDNode with the 250 /// specified name is not found. 251 NamedMDNode *Module::getNamedMetadata(const Twine &Name) const { 252 SmallString<256> NameData; 253 StringRef NameRef = Name.toStringRef(NameData); 254 return static_cast<StringMap<NamedMDNode*> *>(NamedMDSymTab)->lookup(NameRef); 255 } 256 257 /// getOrInsertNamedMetadata - Return the first named MDNode in the module 258 /// with the specified name. This method returns a new NamedMDNode if a 259 /// NamedMDNode with the specified name is not found. 260 NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) { 261 NamedMDNode *&NMD = 262 (*static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab))[Name]; 263 if (!NMD) { 264 NMD = new NamedMDNode(Name); 265 NMD->setParent(this); 266 NamedMDList.push_back(NMD); 267 } 268 return NMD; 269 } 270 271 /// eraseNamedMetadata - Remove the given NamedMDNode from this module and 272 /// delete it. 273 void Module::eraseNamedMetadata(NamedMDNode *NMD) { 274 static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab)->erase(NMD->getName()); 275 NamedMDList.erase(NMD->getIterator()); 276 } 277 278 bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) { 279 if (ConstantInt *Behavior = mdconst::dyn_extract_or_null<ConstantInt>(MD)) { 280 uint64_t Val = Behavior->getLimitedValue(); 281 if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) { 282 MFB = static_cast<ModFlagBehavior>(Val); 283 return true; 284 } 285 } 286 return false; 287 } 288 289 /// getModuleFlagsMetadata - Returns the module flags in the provided vector. 290 void Module:: 291 getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const { 292 const NamedMDNode *ModFlags = getModuleFlagsMetadata(); 293 if (!ModFlags) return; 294 295 for (const MDNode *Flag : ModFlags->operands()) { 296 ModFlagBehavior MFB; 297 if (Flag->getNumOperands() >= 3 && 298 isValidModFlagBehavior(Flag->getOperand(0), MFB) && 299 dyn_cast_or_null<MDString>(Flag->getOperand(1))) { 300 // Check the operands of the MDNode before accessing the operands. 301 // The verifier will actually catch these failures. 302 MDString *Key = cast<MDString>(Flag->getOperand(1)); 303 Metadata *Val = Flag->getOperand(2); 304 Flags.push_back(ModuleFlagEntry(MFB, Key, Val)); 305 } 306 } 307 } 308 309 /// Return the corresponding value if Key appears in module flags, otherwise 310 /// return null. 311 Metadata *Module::getModuleFlag(StringRef Key) const { 312 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 313 getModuleFlagsMetadata(ModuleFlags); 314 for (const ModuleFlagEntry &MFE : ModuleFlags) { 315 if (Key == MFE.Key->getString()) 316 return MFE.Val; 317 } 318 return nullptr; 319 } 320 321 /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that 322 /// represents module-level flags. This method returns null if there are no 323 /// module-level flags. 324 NamedMDNode *Module::getModuleFlagsMetadata() const { 325 return getNamedMetadata("llvm.module.flags"); 326 } 327 328 /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that 329 /// represents module-level flags. If module-level flags aren't found, it 330 /// creates the named metadata that contains them. 331 NamedMDNode *Module::getOrInsertModuleFlagsMetadata() { 332 return getOrInsertNamedMetadata("llvm.module.flags"); 333 } 334 335 /// addModuleFlag - Add a module-level flag to the module-level flags 336 /// metadata. It will create the module-level flags named metadata if it doesn't 337 /// already exist. 338 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 339 Metadata *Val) { 340 Type *Int32Ty = Type::getInt32Ty(Context); 341 Metadata *Ops[3] = { 342 ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)), 343 MDString::get(Context, Key), Val}; 344 getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops)); 345 } 346 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 347 Constant *Val) { 348 addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val)); 349 } 350 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 351 uint32_t Val) { 352 Type *Int32Ty = Type::getInt32Ty(Context); 353 addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val)); 354 } 355 void Module::addModuleFlag(MDNode *Node) { 356 assert(Node->getNumOperands() == 3 && 357 "Invalid number of operands for module flag!"); 358 assert(mdconst::hasa<ConstantInt>(Node->getOperand(0)) && 359 isa<MDString>(Node->getOperand(1)) && 360 "Invalid operand types for module flag!"); 361 getOrInsertModuleFlagsMetadata()->addOperand(Node); 362 } 363 364 void Module::setDataLayout(StringRef Desc) { 365 DL.reset(Desc); 366 } 367 368 void Module::setDataLayout(const DataLayout &Other) { DL = Other; } 369 370 const DataLayout &Module::getDataLayout() const { return DL; } 371 372 DICompileUnit *Module::debug_compile_units_iterator::operator*() const { 373 return cast<DICompileUnit>(CUs->getOperand(Idx)); 374 } 375 DICompileUnit *Module::debug_compile_units_iterator::operator->() const { 376 return cast<DICompileUnit>(CUs->getOperand(Idx)); 377 } 378 379 void Module::debug_compile_units_iterator::SkipNoDebugCUs() { 380 while (CUs && (Idx < CUs->getNumOperands()) && 381 ((*this)->getEmissionKind() == DICompileUnit::NoDebug)) 382 ++Idx; 383 } 384 385 //===----------------------------------------------------------------------===// 386 // Methods to control the materialization of GlobalValues in the Module. 387 // 388 void Module::setMaterializer(GVMaterializer *GVM) { 389 assert(!Materializer && 390 "Module already has a GVMaterializer. Call materializeAll" 391 " to clear it out before setting another one."); 392 Materializer.reset(GVM); 393 } 394 395 Error Module::materialize(GlobalValue *GV) { 396 if (!Materializer) 397 return Error::success(); 398 399 return Materializer->materialize(GV); 400 } 401 402 Error Module::materializeAll() { 403 if (!Materializer) 404 return Error::success(); 405 std::unique_ptr<GVMaterializer> M = std::move(Materializer); 406 return M->materializeModule(); 407 } 408 409 Error Module::materializeMetadata() { 410 if (!Materializer) 411 return Error::success(); 412 return Materializer->materializeMetadata(); 413 } 414 415 //===----------------------------------------------------------------------===// 416 // Other module related stuff. 417 // 418 419 std::vector<StructType *> Module::getIdentifiedStructTypes() const { 420 // If we have a materializer, it is possible that some unread function 421 // uses a type that is currently not visible to a TypeFinder, so ask 422 // the materializer which types it created. 423 if (Materializer) 424 return Materializer->getIdentifiedStructTypes(); 425 426 std::vector<StructType *> Ret; 427 TypeFinder SrcStructTypes; 428 SrcStructTypes.run(*this, true); 429 Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end()); 430 return Ret; 431 } 432 433 // dropAllReferences() - This function causes all the subelements to "let go" 434 // of all references that they are maintaining. This allows one to 'delete' a 435 // whole module at a time, even though there may be circular references... first 436 // all references are dropped, and all use counts go to zero. Then everything 437 // is deleted for real. Note that no operations are valid on an object that 438 // has "dropped all references", except operator delete. 439 // 440 void Module::dropAllReferences() { 441 for (Function &F : *this) 442 F.dropAllReferences(); 443 444 for (GlobalVariable &GV : globals()) 445 GV.dropAllReferences(); 446 447 for (GlobalAlias &GA : aliases()) 448 GA.dropAllReferences(); 449 450 for (GlobalIFunc &GIF : ifuncs()) 451 GIF.dropAllReferences(); 452 } 453 454 unsigned Module::getNumberRegisterParameters() const { 455 auto *Val = 456 cast_or_null<ConstantAsMetadata>(getModuleFlag("NumRegisterParameters")); 457 if (!Val) 458 return 0; 459 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 460 } 461 462 unsigned Module::getDwarfVersion() const { 463 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Dwarf Version")); 464 if (!Val) 465 return 0; 466 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 467 } 468 469 unsigned Module::getCodeViewFlag() const { 470 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("CodeView")); 471 if (!Val) 472 return 0; 473 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 474 } 475 476 unsigned Module::getInstructionCount() { 477 unsigned NumInstrs = 0; 478 for (Function &F : FunctionList) 479 NumInstrs += F.getInstructionCount(); 480 return NumInstrs; 481 } 482 483 Comdat *Module::getOrInsertComdat(StringRef Name) { 484 auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first; 485 Entry.second.Name = &Entry; 486 return &Entry.second; 487 } 488 489 PICLevel::Level Module::getPICLevel() const { 490 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIC Level")); 491 492 if (!Val) 493 return PICLevel::NotPIC; 494 495 return static_cast<PICLevel::Level>( 496 cast<ConstantInt>(Val->getValue())->getZExtValue()); 497 } 498 499 void Module::setPICLevel(PICLevel::Level PL) { 500 addModuleFlag(ModFlagBehavior::Max, "PIC Level", PL); 501 } 502 503 PIELevel::Level Module::getPIELevel() const { 504 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIE Level")); 505 506 if (!Val) 507 return PIELevel::Default; 508 509 return static_cast<PIELevel::Level>( 510 cast<ConstantInt>(Val->getValue())->getZExtValue()); 511 } 512 513 void Module::setPIELevel(PIELevel::Level PL) { 514 addModuleFlag(ModFlagBehavior::Max, "PIE Level", PL); 515 } 516 517 Optional<CodeModel::Model> Module::getCodeModel() const { 518 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Code Model")); 519 520 if (!Val) 521 return None; 522 523 return static_cast<CodeModel::Model>( 524 cast<ConstantInt>(Val->getValue())->getZExtValue()); 525 } 526 527 void Module::setCodeModel(CodeModel::Model CL) { 528 // Linking object files with different code models is undefined behavior 529 // because the compiler would have to generate additional code (to span 530 // longer jumps) if a larger code model is used with a smaller one. 531 // Therefore we will treat attempts to mix code models as an error. 532 addModuleFlag(ModFlagBehavior::Error, "Code Model", CL); 533 } 534 535 void Module::setProfileSummary(Metadata *M) { 536 addModuleFlag(ModFlagBehavior::Error, "ProfileSummary", M); 537 } 538 539 Metadata *Module::getProfileSummary() { 540 return getModuleFlag("ProfileSummary"); 541 } 542 543 void Module::setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB) { 544 OwnedMemoryBuffer = std::move(MB); 545 } 546 547 bool Module::getRtLibUseGOT() const { 548 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("RtLibUseGOT")); 549 return Val && (cast<ConstantInt>(Val->getValue())->getZExtValue() > 0); 550 } 551 552 void Module::setRtLibUseGOT() { 553 addModuleFlag(ModFlagBehavior::Max, "RtLibUseGOT", 1); 554 } 555 556 void Module::setSDKVersion(const VersionTuple &V) { 557 SmallVector<unsigned, 3> Entries; 558 Entries.push_back(V.getMajor()); 559 if (auto Minor = V.getMinor()) { 560 Entries.push_back(*Minor); 561 if (auto Subminor = V.getSubminor()) 562 Entries.push_back(*Subminor); 563 // Ignore the 'build' component as it can't be represented in the object 564 // file. 565 } 566 addModuleFlag(ModFlagBehavior::Warning, "SDK Version", 567 ConstantDataArray::get(Context, Entries)); 568 } 569 570 VersionTuple Module::getSDKVersion() const { 571 auto *CM = dyn_cast_or_null<ConstantAsMetadata>(getModuleFlag("SDK Version")); 572 if (!CM) 573 return {}; 574 auto *Arr = dyn_cast_or_null<ConstantDataArray>(CM->getValue()); 575 if (!Arr) 576 return {}; 577 auto getVersionComponent = [&](unsigned Index) -> Optional<unsigned> { 578 if (Index >= Arr->getNumElements()) 579 return None; 580 return (unsigned)Arr->getElementAsInteger(Index); 581 }; 582 auto Major = getVersionComponent(0); 583 if (!Major) 584 return {}; 585 VersionTuple Result = VersionTuple(*Major); 586 if (auto Minor = getVersionComponent(1)) { 587 Result = VersionTuple(*Major, *Minor); 588 if (auto Subminor = getVersionComponent(2)) { 589 Result = VersionTuple(*Major, *Minor, *Subminor); 590 } 591 } 592 return Result; 593 } 594 595 GlobalVariable *llvm::collectUsedGlobalVariables( 596 const Module &M, SmallPtrSetImpl<GlobalValue *> &Set, bool CompilerUsed) { 597 const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used"; 598 GlobalVariable *GV = M.getGlobalVariable(Name); 599 if (!GV || !GV->hasInitializer()) 600 return GV; 601 602 const ConstantArray *Init = cast<ConstantArray>(GV->getInitializer()); 603 for (Value *Op : Init->operands()) { 604 GlobalValue *G = cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 605 Set.insert(G); 606 } 607 return GV; 608 } 609