1 //===- Module.cpp - Implement the Module class ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Module class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Module.h" 15 #include "SymbolTableListTraitsImpl.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringMap.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/IR/Attributes.h" 24 #include "llvm/IR/Comdat.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GVMaterializer.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/SymbolTableListTraits.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/TypeFinder.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/ValueSymbolTable.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CodeGen.h" 45 #include "llvm/Support/Error.h" 46 #include "llvm/Support/MemoryBuffer.h" 47 #include "llvm/Support/Path.h" 48 #include "llvm/Support/RandomNumberGenerator.h" 49 #include "llvm/Support/VersionTuple.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstdint> 53 #include <memory> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 //===----------------------------------------------------------------------===// 60 // Methods to implement the globals and functions lists. 61 // 62 63 // Explicit instantiations of SymbolTableListTraits since some of the methods 64 // are not in the public header file. 65 template class llvm::SymbolTableListTraits<Function>; 66 template class llvm::SymbolTableListTraits<GlobalVariable>; 67 template class llvm::SymbolTableListTraits<GlobalAlias>; 68 template class llvm::SymbolTableListTraits<GlobalIFunc>; 69 70 //===----------------------------------------------------------------------===// 71 // Primitive Module methods. 72 // 73 74 Module::Module(StringRef MID, LLVMContext &C) 75 : Context(C), Materializer(), ModuleID(MID), SourceFileName(MID), DL("") { 76 ValSymTab = new ValueSymbolTable(); 77 NamedMDSymTab = new StringMap<NamedMDNode *>(); 78 Context.addModule(this); 79 } 80 81 Module::~Module() { 82 Context.removeModule(this); 83 dropAllReferences(); 84 GlobalList.clear(); 85 FunctionList.clear(); 86 AliasList.clear(); 87 IFuncList.clear(); 88 NamedMDList.clear(); 89 delete ValSymTab; 90 delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab); 91 } 92 93 std::unique_ptr<RandomNumberGenerator> Module::createRNG(const Pass* P) const { 94 SmallString<32> Salt(P->getPassName()); 95 96 // This RNG is guaranteed to produce the same random stream only 97 // when the Module ID and thus the input filename is the same. This 98 // might be problematic if the input filename extension changes 99 // (e.g. from .c to .bc or .ll). 100 // 101 // We could store this salt in NamedMetadata, but this would make 102 // the parameter non-const. This would unfortunately make this 103 // interface unusable by any Machine passes, since they only have a 104 // const reference to their IR Module. Alternatively we can always 105 // store salt metadata from the Module constructor. 106 Salt += sys::path::filename(getModuleIdentifier()); 107 108 return std::unique_ptr<RandomNumberGenerator>(new RandomNumberGenerator(Salt)); 109 } 110 111 /// getNamedValue - Return the first global value in the module with 112 /// the specified name, of arbitrary type. This method returns null 113 /// if a global with the specified name is not found. 114 GlobalValue *Module::getNamedValue(StringRef Name) const { 115 return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name)); 116 } 117 118 /// getMDKindID - Return a unique non-zero ID for the specified metadata kind. 119 /// This ID is uniqued across modules in the current LLVMContext. 120 unsigned Module::getMDKindID(StringRef Name) const { 121 return Context.getMDKindID(Name); 122 } 123 124 /// getMDKindNames - Populate client supplied SmallVector with the name for 125 /// custom metadata IDs registered in this LLVMContext. ID #0 is not used, 126 /// so it is filled in as an empty string. 127 void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const { 128 return Context.getMDKindNames(Result); 129 } 130 131 void Module::getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const { 132 return Context.getOperandBundleTags(Result); 133 } 134 135 //===----------------------------------------------------------------------===// 136 // Methods for easy access to the functions in the module. 137 // 138 139 // getOrInsertFunction - Look up the specified function in the module symbol 140 // table. If it does not exist, add a prototype for the function and return 141 // it. This is nice because it allows most passes to get away with not handling 142 // the symbol table directly for this common task. 143 // 144 Constant *Module::getOrInsertFunction(StringRef Name, FunctionType *Ty, 145 AttributeList AttributeList) { 146 // See if we have a definition for the specified function already. 147 GlobalValue *F = getNamedValue(Name); 148 if (!F) { 149 // Nope, add it 150 Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, 151 DL.getProgramAddressSpace(), Name); 152 if (!New->isIntrinsic()) // Intrinsics get attrs set on construction 153 New->setAttributes(AttributeList); 154 FunctionList.push_back(New); 155 return New; // Return the new prototype. 156 } 157 158 // If the function exists but has the wrong type, return a bitcast to the 159 // right type. 160 auto *PTy = PointerType::get(Ty, F->getAddressSpace()); 161 if (F->getType() != PTy) 162 return ConstantExpr::getBitCast(F, PTy); 163 164 // Otherwise, we just found the existing function or a prototype. 165 return F; 166 } 167 168 Constant *Module::getOrInsertFunction(StringRef Name, 169 FunctionType *Ty) { 170 return getOrInsertFunction(Name, Ty, AttributeList()); 171 } 172 173 // getFunction - Look up the specified function in the module symbol table. 174 // If it does not exist, return null. 175 // 176 Function *Module::getFunction(StringRef Name) const { 177 return dyn_cast_or_null<Function>(getNamedValue(Name)); 178 } 179 180 //===----------------------------------------------------------------------===// 181 // Methods for easy access to the global variables in the module. 182 // 183 184 /// getGlobalVariable - Look up the specified global variable in the module 185 /// symbol table. If it does not exist, return null. The type argument 186 /// should be the underlying type of the global, i.e., it should not have 187 /// the top-level PointerType, which represents the address of the global. 188 /// If AllowLocal is set to true, this function will return types that 189 /// have an local. By default, these types are not returned. 190 /// 191 GlobalVariable *Module::getGlobalVariable(StringRef Name, 192 bool AllowLocal) const { 193 if (GlobalVariable *Result = 194 dyn_cast_or_null<GlobalVariable>(getNamedValue(Name))) 195 if (AllowLocal || !Result->hasLocalLinkage()) 196 return Result; 197 return nullptr; 198 } 199 200 /// getOrInsertGlobal - Look up the specified global in the module symbol table. 201 /// 1. If it does not exist, add a declaration of the global and return it. 202 /// 2. Else, the global exists but has the wrong type: return the function 203 /// with a constantexpr cast to the right type. 204 /// 3. Finally, if the existing global is the correct declaration, return the 205 /// existing global. 206 Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) { 207 // See if we have a definition for the specified global already. 208 GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)); 209 if (!GV) { 210 // Nope, add it 211 GlobalVariable *New = 212 new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage, 213 nullptr, Name); 214 return New; // Return the new declaration. 215 } 216 217 // If the variable exists but has the wrong type, return a bitcast to the 218 // right type. 219 Type *GVTy = GV->getType(); 220 PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace()); 221 if (GVTy != PTy) 222 return ConstantExpr::getBitCast(GV, PTy); 223 224 // Otherwise, we just found the existing function or a prototype. 225 return GV; 226 } 227 228 //===----------------------------------------------------------------------===// 229 // Methods for easy access to the global variables in the module. 230 // 231 232 // getNamedAlias - Look up the specified global in the module symbol table. 233 // If it does not exist, return null. 234 // 235 GlobalAlias *Module::getNamedAlias(StringRef Name) const { 236 return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name)); 237 } 238 239 GlobalIFunc *Module::getNamedIFunc(StringRef Name) const { 240 return dyn_cast_or_null<GlobalIFunc>(getNamedValue(Name)); 241 } 242 243 /// getNamedMetadata - Return the first NamedMDNode in the module with the 244 /// specified name. This method returns null if a NamedMDNode with the 245 /// specified name is not found. 246 NamedMDNode *Module::getNamedMetadata(const Twine &Name) const { 247 SmallString<256> NameData; 248 StringRef NameRef = Name.toStringRef(NameData); 249 return static_cast<StringMap<NamedMDNode*> *>(NamedMDSymTab)->lookup(NameRef); 250 } 251 252 /// getOrInsertNamedMetadata - Return the first named MDNode in the module 253 /// with the specified name. This method returns a new NamedMDNode if a 254 /// NamedMDNode with the specified name is not found. 255 NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) { 256 NamedMDNode *&NMD = 257 (*static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab))[Name]; 258 if (!NMD) { 259 NMD = new NamedMDNode(Name); 260 NMD->setParent(this); 261 NamedMDList.push_back(NMD); 262 } 263 return NMD; 264 } 265 266 /// eraseNamedMetadata - Remove the given NamedMDNode from this module and 267 /// delete it. 268 void Module::eraseNamedMetadata(NamedMDNode *NMD) { 269 static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab)->erase(NMD->getName()); 270 NamedMDList.erase(NMD->getIterator()); 271 } 272 273 bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) { 274 if (ConstantInt *Behavior = mdconst::dyn_extract_or_null<ConstantInt>(MD)) { 275 uint64_t Val = Behavior->getLimitedValue(); 276 if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) { 277 MFB = static_cast<ModFlagBehavior>(Val); 278 return true; 279 } 280 } 281 return false; 282 } 283 284 /// getModuleFlagsMetadata - Returns the module flags in the provided vector. 285 void Module:: 286 getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const { 287 const NamedMDNode *ModFlags = getModuleFlagsMetadata(); 288 if (!ModFlags) return; 289 290 for (const MDNode *Flag : ModFlags->operands()) { 291 ModFlagBehavior MFB; 292 if (Flag->getNumOperands() >= 3 && 293 isValidModFlagBehavior(Flag->getOperand(0), MFB) && 294 dyn_cast_or_null<MDString>(Flag->getOperand(1))) { 295 // Check the operands of the MDNode before accessing the operands. 296 // The verifier will actually catch these failures. 297 MDString *Key = cast<MDString>(Flag->getOperand(1)); 298 Metadata *Val = Flag->getOperand(2); 299 Flags.push_back(ModuleFlagEntry(MFB, Key, Val)); 300 } 301 } 302 } 303 304 /// Return the corresponding value if Key appears in module flags, otherwise 305 /// return null. 306 Metadata *Module::getModuleFlag(StringRef Key) const { 307 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 308 getModuleFlagsMetadata(ModuleFlags); 309 for (const ModuleFlagEntry &MFE : ModuleFlags) { 310 if (Key == MFE.Key->getString()) 311 return MFE.Val; 312 } 313 return nullptr; 314 } 315 316 /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that 317 /// represents module-level flags. This method returns null if there are no 318 /// module-level flags. 319 NamedMDNode *Module::getModuleFlagsMetadata() const { 320 return getNamedMetadata("llvm.module.flags"); 321 } 322 323 /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that 324 /// represents module-level flags. If module-level flags aren't found, it 325 /// creates the named metadata that contains them. 326 NamedMDNode *Module::getOrInsertModuleFlagsMetadata() { 327 return getOrInsertNamedMetadata("llvm.module.flags"); 328 } 329 330 /// addModuleFlag - Add a module-level flag to the module-level flags 331 /// metadata. It will create the module-level flags named metadata if it doesn't 332 /// already exist. 333 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 334 Metadata *Val) { 335 Type *Int32Ty = Type::getInt32Ty(Context); 336 Metadata *Ops[3] = { 337 ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)), 338 MDString::get(Context, Key), Val}; 339 getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops)); 340 } 341 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 342 Constant *Val) { 343 addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val)); 344 } 345 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, 346 uint32_t Val) { 347 Type *Int32Ty = Type::getInt32Ty(Context); 348 addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val)); 349 } 350 void Module::addModuleFlag(MDNode *Node) { 351 assert(Node->getNumOperands() == 3 && 352 "Invalid number of operands for module flag!"); 353 assert(mdconst::hasa<ConstantInt>(Node->getOperand(0)) && 354 isa<MDString>(Node->getOperand(1)) && 355 "Invalid operand types for module flag!"); 356 getOrInsertModuleFlagsMetadata()->addOperand(Node); 357 } 358 359 void Module::setDataLayout(StringRef Desc) { 360 DL.reset(Desc); 361 } 362 363 void Module::setDataLayout(const DataLayout &Other) { DL = Other; } 364 365 const DataLayout &Module::getDataLayout() const { return DL; } 366 367 DICompileUnit *Module::debug_compile_units_iterator::operator*() const { 368 return cast<DICompileUnit>(CUs->getOperand(Idx)); 369 } 370 DICompileUnit *Module::debug_compile_units_iterator::operator->() const { 371 return cast<DICompileUnit>(CUs->getOperand(Idx)); 372 } 373 374 void Module::debug_compile_units_iterator::SkipNoDebugCUs() { 375 while (CUs && (Idx < CUs->getNumOperands()) && 376 ((*this)->getEmissionKind() == DICompileUnit::NoDebug)) 377 ++Idx; 378 } 379 380 //===----------------------------------------------------------------------===// 381 // Methods to control the materialization of GlobalValues in the Module. 382 // 383 void Module::setMaterializer(GVMaterializer *GVM) { 384 assert(!Materializer && 385 "Module already has a GVMaterializer. Call materializeAll" 386 " to clear it out before setting another one."); 387 Materializer.reset(GVM); 388 } 389 390 Error Module::materialize(GlobalValue *GV) { 391 if (!Materializer) 392 return Error::success(); 393 394 return Materializer->materialize(GV); 395 } 396 397 Error Module::materializeAll() { 398 if (!Materializer) 399 return Error::success(); 400 std::unique_ptr<GVMaterializer> M = std::move(Materializer); 401 return M->materializeModule(); 402 } 403 404 Error Module::materializeMetadata() { 405 if (!Materializer) 406 return Error::success(); 407 return Materializer->materializeMetadata(); 408 } 409 410 //===----------------------------------------------------------------------===// 411 // Other module related stuff. 412 // 413 414 std::vector<StructType *> Module::getIdentifiedStructTypes() const { 415 // If we have a materializer, it is possible that some unread function 416 // uses a type that is currently not visible to a TypeFinder, so ask 417 // the materializer which types it created. 418 if (Materializer) 419 return Materializer->getIdentifiedStructTypes(); 420 421 std::vector<StructType *> Ret; 422 TypeFinder SrcStructTypes; 423 SrcStructTypes.run(*this, true); 424 Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end()); 425 return Ret; 426 } 427 428 // dropAllReferences() - This function causes all the subelements to "let go" 429 // of all references that they are maintaining. This allows one to 'delete' a 430 // whole module at a time, even though there may be circular references... first 431 // all references are dropped, and all use counts go to zero. Then everything 432 // is deleted for real. Note that no operations are valid on an object that 433 // has "dropped all references", except operator delete. 434 // 435 void Module::dropAllReferences() { 436 for (Function &F : *this) 437 F.dropAllReferences(); 438 439 for (GlobalVariable &GV : globals()) 440 GV.dropAllReferences(); 441 442 for (GlobalAlias &GA : aliases()) 443 GA.dropAllReferences(); 444 445 for (GlobalIFunc &GIF : ifuncs()) 446 GIF.dropAllReferences(); 447 } 448 449 unsigned Module::getNumberRegisterParameters() const { 450 auto *Val = 451 cast_or_null<ConstantAsMetadata>(getModuleFlag("NumRegisterParameters")); 452 if (!Val) 453 return 0; 454 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 455 } 456 457 unsigned Module::getDwarfVersion() const { 458 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Dwarf Version")); 459 if (!Val) 460 return 0; 461 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 462 } 463 464 unsigned Module::getCodeViewFlag() const { 465 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("CodeView")); 466 if (!Val) 467 return 0; 468 return cast<ConstantInt>(Val->getValue())->getZExtValue(); 469 } 470 471 unsigned Module::getInstructionCount() { 472 unsigned NumInstrs = 0; 473 for (Function &F : FunctionList) 474 NumInstrs += F.getInstructionCount(); 475 return NumInstrs; 476 } 477 478 Comdat *Module::getOrInsertComdat(StringRef Name) { 479 auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first; 480 Entry.second.Name = &Entry; 481 return &Entry.second; 482 } 483 484 PICLevel::Level Module::getPICLevel() const { 485 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIC Level")); 486 487 if (!Val) 488 return PICLevel::NotPIC; 489 490 return static_cast<PICLevel::Level>( 491 cast<ConstantInt>(Val->getValue())->getZExtValue()); 492 } 493 494 void Module::setPICLevel(PICLevel::Level PL) { 495 addModuleFlag(ModFlagBehavior::Max, "PIC Level", PL); 496 } 497 498 PIELevel::Level Module::getPIELevel() const { 499 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIE Level")); 500 501 if (!Val) 502 return PIELevel::Default; 503 504 return static_cast<PIELevel::Level>( 505 cast<ConstantInt>(Val->getValue())->getZExtValue()); 506 } 507 508 void Module::setPIELevel(PIELevel::Level PL) { 509 addModuleFlag(ModFlagBehavior::Max, "PIE Level", PL); 510 } 511 512 Optional<CodeModel::Model> Module::getCodeModel() const { 513 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Code Model")); 514 515 if (!Val) 516 return None; 517 518 return static_cast<CodeModel::Model>( 519 cast<ConstantInt>(Val->getValue())->getZExtValue()); 520 } 521 522 void Module::setCodeModel(CodeModel::Model CL) { 523 // Linking object files with different code models is undefined behavior 524 // because the compiler would have to generate additional code (to span 525 // longer jumps) if a larger code model is used with a smaller one. 526 // Therefore we will treat attempts to mix code models as an error. 527 addModuleFlag(ModFlagBehavior::Error, "Code Model", CL); 528 } 529 530 void Module::setProfileSummary(Metadata *M) { 531 addModuleFlag(ModFlagBehavior::Error, "ProfileSummary", M); 532 } 533 534 Metadata *Module::getProfileSummary() { 535 return getModuleFlag("ProfileSummary"); 536 } 537 538 void Module::setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB) { 539 OwnedMemoryBuffer = std::move(MB); 540 } 541 542 bool Module::getRtLibUseGOT() const { 543 auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("RtLibUseGOT")); 544 return Val && (cast<ConstantInt>(Val->getValue())->getZExtValue() > 0); 545 } 546 547 void Module::setRtLibUseGOT() { 548 addModuleFlag(ModFlagBehavior::Max, "RtLibUseGOT", 1); 549 } 550 551 void Module::setSDKVersion(const VersionTuple &V) { 552 SmallVector<unsigned, 3> Entries; 553 Entries.push_back(V.getMajor()); 554 if (auto Minor = V.getMinor()) { 555 Entries.push_back(*Minor); 556 if (auto Subminor = V.getSubminor()) 557 Entries.push_back(*Subminor); 558 // Ignore the 'build' component as it can't be represented in the object 559 // file. 560 } 561 addModuleFlag(ModFlagBehavior::Warning, "SDK Version", 562 ConstantDataArray::get(Context, Entries)); 563 } 564 565 VersionTuple Module::getSDKVersion() const { 566 auto *CM = dyn_cast_or_null<ConstantAsMetadata>(getModuleFlag("SDK Version")); 567 if (!CM) 568 return {}; 569 auto *Arr = dyn_cast_or_null<ConstantDataArray>(CM->getValue()); 570 if (!Arr) 571 return {}; 572 auto getVersionComponent = [&](unsigned Index) -> Optional<unsigned> { 573 if (Index >= Arr->getNumElements()) 574 return None; 575 return (unsigned)Arr->getElementAsInteger(Index); 576 }; 577 auto Major = getVersionComponent(0); 578 if (!Major) 579 return {}; 580 VersionTuple Result = VersionTuple(*Major); 581 if (auto Minor = getVersionComponent(1)) { 582 Result = VersionTuple(*Major, *Minor); 583 if (auto Subminor = getVersionComponent(2)) { 584 Result = VersionTuple(*Major, *Minor, *Subminor); 585 } 586 } 587 return Result; 588 } 589 590 GlobalVariable *llvm::collectUsedGlobalVariables( 591 const Module &M, SmallPtrSetImpl<GlobalValue *> &Set, bool CompilerUsed) { 592 const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used"; 593 GlobalVariable *GV = M.getGlobalVariable(Name); 594 if (!GV || !GV->hasInitializer()) 595 return GV; 596 597 const ConstantArray *Init = cast<ConstantArray>(GV->getInitializer()); 598 for (Value *Op : Init->operands()) { 599 GlobalValue *G = cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 600 Set.insert(G); 601 } 602 return GV; 603 } 604