xref: /llvm-project/llvm/lib/IR/Instructions.cpp (revision db9e9eabb7835bae4285a3f13c7cc7c985455e27)
1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/SmallBitVector.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/ConstantRange.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/ProfDataUtils.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/AtomicOrdering.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/ModRef.h"
43 #include "llvm/Support/TypeSize.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstdint>
47 #include <optional>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 static cl::opt<bool> DisableI2pP2iOpt(
53     "disable-i2p-p2i-opt", cl::init(false),
54     cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
55 
56 //===----------------------------------------------------------------------===//
57 //                            AllocaInst Class
58 //===----------------------------------------------------------------------===//
59 
60 std::optional<TypeSize>
61 AllocaInst::getAllocationSize(const DataLayout &DL) const {
62   TypeSize Size = DL.getTypeAllocSize(getAllocatedType());
63   if (isArrayAllocation()) {
64     auto *C = dyn_cast<ConstantInt>(getArraySize());
65     if (!C)
66       return std::nullopt;
67     assert(!Size.isScalable() && "Array elements cannot have a scalable size");
68     Size *= C->getZExtValue();
69   }
70   return Size;
71 }
72 
73 std::optional<TypeSize>
74 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
75   std::optional<TypeSize> Size = getAllocationSize(DL);
76   if (Size)
77     return *Size * 8;
78   return std::nullopt;
79 }
80 
81 //===----------------------------------------------------------------------===//
82 //                              SelectInst Class
83 //===----------------------------------------------------------------------===//
84 
85 /// areInvalidOperands - Return a string if the specified operands are invalid
86 /// for a select operation, otherwise return null.
87 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
88   if (Op1->getType() != Op2->getType())
89     return "both values to select must have same type";
90 
91   if (Op1->getType()->isTokenTy())
92     return "select values cannot have token type";
93 
94   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
95     // Vector select.
96     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
97       return "vector select condition element type must be i1";
98     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
99     if (!ET)
100       return "selected values for vector select must be vectors";
101     if (ET->getElementCount() != VT->getElementCount())
102       return "vector select requires selected vectors to have "
103                    "the same vector length as select condition";
104   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
105     return "select condition must be i1 or <n x i1>";
106   }
107   return nullptr;
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //                               PHINode Class
112 //===----------------------------------------------------------------------===//
113 
114 PHINode::PHINode(const PHINode &PN)
115     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
116       ReservedSpace(PN.getNumOperands()) {
117   allocHungoffUses(PN.getNumOperands());
118   std::copy(PN.op_begin(), PN.op_end(), op_begin());
119   copyIncomingBlocks(make_range(PN.block_begin(), PN.block_end()));
120   SubclassOptionalData = PN.SubclassOptionalData;
121 }
122 
123 // removeIncomingValue - Remove an incoming value.  This is useful if a
124 // predecessor basic block is deleted.
125 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
126   Value *Removed = getIncomingValue(Idx);
127 
128   // Move everything after this operand down.
129   //
130   // FIXME: we could just swap with the end of the list, then erase.  However,
131   // clients might not expect this to happen.  The code as it is thrashes the
132   // use/def lists, which is kinda lame.
133   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
134   copyIncomingBlocks(drop_begin(blocks(), Idx + 1), Idx);
135 
136   // Nuke the last value.
137   Op<-1>().set(nullptr);
138   setNumHungOffUseOperands(getNumOperands() - 1);
139 
140   // If the PHI node is dead, because it has zero entries, nuke it now.
141   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
142     // If anyone is using this PHI, make them use a dummy value instead...
143     replaceAllUsesWith(PoisonValue::get(getType()));
144     eraseFromParent();
145   }
146   return Removed;
147 }
148 
149 void PHINode::removeIncomingValueIf(function_ref<bool(unsigned)> Predicate,
150                                     bool DeletePHIIfEmpty) {
151   SmallDenseSet<unsigned> RemoveIndices;
152   for (unsigned Idx = 0; Idx < getNumIncomingValues(); ++Idx)
153     if (Predicate(Idx))
154       RemoveIndices.insert(Idx);
155 
156   if (RemoveIndices.empty())
157     return;
158 
159   // Remove operands.
160   auto NewOpEnd = remove_if(operands(), [&](Use &U) {
161     return RemoveIndices.contains(U.getOperandNo());
162   });
163   for (Use &U : make_range(NewOpEnd, op_end()))
164     U.set(nullptr);
165 
166   // Remove incoming blocks.
167   (void)std::remove_if(const_cast<block_iterator>(block_begin()),
168                  const_cast<block_iterator>(block_end()), [&](BasicBlock *&BB) {
169                    return RemoveIndices.contains(&BB - block_begin());
170                  });
171 
172   setNumHungOffUseOperands(getNumOperands() - RemoveIndices.size());
173 
174   // If the PHI node is dead, because it has zero entries, nuke it now.
175   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
176     // If anyone is using this PHI, make them use a dummy value instead...
177     replaceAllUsesWith(PoisonValue::get(getType()));
178     eraseFromParent();
179   }
180 }
181 
182 /// growOperands - grow operands - This grows the operand list in response
183 /// to a push_back style of operation.  This grows the number of ops by 1.5
184 /// times.
185 ///
186 void PHINode::growOperands() {
187   unsigned e = getNumOperands();
188   unsigned NumOps = e + e / 2;
189   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
190 
191   ReservedSpace = NumOps;
192   growHungoffUses(ReservedSpace, /* IsPhi */ true);
193 }
194 
195 /// hasConstantValue - If the specified PHI node always merges together the same
196 /// value, return the value, otherwise return null.
197 Value *PHINode::hasConstantValue() const {
198   // Exploit the fact that phi nodes always have at least one entry.
199   Value *ConstantValue = getIncomingValue(0);
200   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
201     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
202       if (ConstantValue != this)
203         return nullptr; // Incoming values not all the same.
204        // The case where the first value is this PHI.
205       ConstantValue = getIncomingValue(i);
206     }
207   if (ConstantValue == this)
208     return PoisonValue::get(getType());
209   return ConstantValue;
210 }
211 
212 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
213 /// together the same value, assuming that undefs result in the same value as
214 /// non-undefs.
215 /// Unlike \ref hasConstantValue, this does not return a value because the
216 /// unique non-undef incoming value need not dominate the PHI node.
217 bool PHINode::hasConstantOrUndefValue() const {
218   Value *ConstantValue = nullptr;
219   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
220     Value *Incoming = getIncomingValue(i);
221     if (Incoming != this && !isa<UndefValue>(Incoming)) {
222       if (ConstantValue && ConstantValue != Incoming)
223         return false;
224       ConstantValue = Incoming;
225     }
226   }
227   return true;
228 }
229 
230 //===----------------------------------------------------------------------===//
231 //                       LandingPadInst Implementation
232 //===----------------------------------------------------------------------===//
233 
234 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
235                                const Twine &NameStr,
236                                InsertPosition InsertBefore)
237     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
238   init(NumReservedValues, NameStr);
239 }
240 
241 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
242     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
243                   LP.getNumOperands()),
244       ReservedSpace(LP.getNumOperands()) {
245   allocHungoffUses(LP.getNumOperands());
246   Use *OL = getOperandList();
247   const Use *InOL = LP.getOperandList();
248   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
249     OL[I] = InOL[I];
250 
251   setCleanup(LP.isCleanup());
252 }
253 
254 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
255                                        const Twine &NameStr,
256                                        InsertPosition InsertBefore) {
257   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
258 }
259 
260 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
261   ReservedSpace = NumReservedValues;
262   setNumHungOffUseOperands(0);
263   allocHungoffUses(ReservedSpace);
264   setName(NameStr);
265   setCleanup(false);
266 }
267 
268 /// growOperands - grow operands - This grows the operand list in response to a
269 /// push_back style of operation. This grows the number of ops by 2 times.
270 void LandingPadInst::growOperands(unsigned Size) {
271   unsigned e = getNumOperands();
272   if (ReservedSpace >= e + Size) return;
273   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
274   growHungoffUses(ReservedSpace);
275 }
276 
277 void LandingPadInst::addClause(Constant *Val) {
278   unsigned OpNo = getNumOperands();
279   growOperands(1);
280   assert(OpNo < ReservedSpace && "Growing didn't work!");
281   setNumHungOffUseOperands(getNumOperands() + 1);
282   getOperandList()[OpNo] = Val;
283 }
284 
285 //===----------------------------------------------------------------------===//
286 //                        CallBase Implementation
287 //===----------------------------------------------------------------------===//
288 
289 CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
290                            InsertPosition InsertPt) {
291   switch (CB->getOpcode()) {
292   case Instruction::Call:
293     return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
294   case Instruction::Invoke:
295     return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
296   case Instruction::CallBr:
297     return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
298   default:
299     llvm_unreachable("Unknown CallBase sub-class!");
300   }
301 }
302 
303 CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB,
304                            InsertPosition InsertPt) {
305   SmallVector<OperandBundleDef, 2> OpDefs;
306   for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
307     auto ChildOB = CI->getOperandBundleAt(i);
308     if (ChildOB.getTagName() != OpB.getTag())
309       OpDefs.emplace_back(ChildOB);
310   }
311   OpDefs.emplace_back(OpB);
312   return CallBase::Create(CI, OpDefs, InsertPt);
313 }
314 
315 Function *CallBase::getCaller() { return getParent()->getParent(); }
316 
317 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
318   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
319   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
320 }
321 
322 bool CallBase::isIndirectCall() const {
323   const Value *V = getCalledOperand();
324   if (isa<Function>(V) || isa<Constant>(V))
325     return false;
326   return !isInlineAsm();
327 }
328 
329 /// Tests if this call site must be tail call optimized. Only a CallInst can
330 /// be tail call optimized.
331 bool CallBase::isMustTailCall() const {
332   if (auto *CI = dyn_cast<CallInst>(this))
333     return CI->isMustTailCall();
334   return false;
335 }
336 
337 /// Tests if this call site is marked as a tail call.
338 bool CallBase::isTailCall() const {
339   if (auto *CI = dyn_cast<CallInst>(this))
340     return CI->isTailCall();
341   return false;
342 }
343 
344 Intrinsic::ID CallBase::getIntrinsicID() const {
345   if (auto *F = getCalledFunction())
346     return F->getIntrinsicID();
347   return Intrinsic::not_intrinsic;
348 }
349 
350 FPClassTest CallBase::getRetNoFPClass() const {
351   FPClassTest Mask = Attrs.getRetNoFPClass();
352 
353   if (const Function *F = getCalledFunction())
354     Mask |= F->getAttributes().getRetNoFPClass();
355   return Mask;
356 }
357 
358 FPClassTest CallBase::getParamNoFPClass(unsigned i) const {
359   FPClassTest Mask = Attrs.getParamNoFPClass(i);
360 
361   if (const Function *F = getCalledFunction())
362     Mask |= F->getAttributes().getParamNoFPClass(i);
363   return Mask;
364 }
365 
366 std::optional<ConstantRange> CallBase::getRange() const {
367   const Attribute RangeAttr = getRetAttr(llvm::Attribute::Range);
368   if (RangeAttr.isValid())
369     return RangeAttr.getRange();
370   return std::nullopt;
371 }
372 
373 bool CallBase::isReturnNonNull() const {
374   if (hasRetAttr(Attribute::NonNull))
375     return true;
376 
377   if (getRetDereferenceableBytes() > 0 &&
378       !NullPointerIsDefined(getCaller(), getType()->getPointerAddressSpace()))
379     return true;
380 
381   return false;
382 }
383 
384 Value *CallBase::getArgOperandWithAttribute(Attribute::AttrKind Kind) const {
385   unsigned Index;
386 
387   if (Attrs.hasAttrSomewhere(Kind, &Index))
388     return getArgOperand(Index - AttributeList::FirstArgIndex);
389   if (const Function *F = getCalledFunction())
390     if (F->getAttributes().hasAttrSomewhere(Kind, &Index))
391       return getArgOperand(Index - AttributeList::FirstArgIndex);
392 
393   return nullptr;
394 }
395 
396 /// Determine whether the argument or parameter has the given attribute.
397 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
398   assert(ArgNo < arg_size() && "Param index out of bounds!");
399 
400   if (Attrs.hasParamAttr(ArgNo, Kind))
401     return true;
402 
403   const Function *F = getCalledFunction();
404   if (!F)
405     return false;
406 
407   if (!F->getAttributes().hasParamAttr(ArgNo, Kind))
408     return false;
409 
410   // Take into account mod/ref by operand bundles.
411   switch (Kind) {
412   case Attribute::ReadNone:
413     return !hasReadingOperandBundles() && !hasClobberingOperandBundles();
414   case Attribute::ReadOnly:
415     return !hasClobberingOperandBundles();
416   case Attribute::WriteOnly:
417     return !hasReadingOperandBundles();
418   default:
419     return true;
420   }
421 }
422 
423 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
424   if (auto *F = dyn_cast<Function>(getCalledOperand()))
425     return F->getAttributes().hasFnAttr(Kind);
426 
427   return false;
428 }
429 
430 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
431   if (auto *F = dyn_cast<Function>(getCalledOperand()))
432     return F->getAttributes().hasFnAttr(Kind);
433 
434   return false;
435 }
436 
437 template <typename AK>
438 Attribute CallBase::getFnAttrOnCalledFunction(AK Kind) const {
439   if constexpr (std::is_same_v<AK, Attribute::AttrKind>) {
440     // getMemoryEffects() correctly combines memory effects from the call-site,
441     // operand bundles and function.
442     assert(Kind != Attribute::Memory && "Use getMemoryEffects() instead");
443   }
444 
445   if (auto *F = dyn_cast<Function>(getCalledOperand()))
446     return F->getAttributes().getFnAttr(Kind);
447 
448   return Attribute();
449 }
450 
451 template Attribute
452 CallBase::getFnAttrOnCalledFunction(Attribute::AttrKind Kind) const;
453 template Attribute CallBase::getFnAttrOnCalledFunction(StringRef Kind) const;
454 
455 template <typename AK>
456 Attribute CallBase::getParamAttrOnCalledFunction(unsigned ArgNo,
457                                                  AK Kind) const {
458   Value *V = getCalledOperand();
459 
460   if (auto *F = dyn_cast<Function>(V))
461     return F->getAttributes().getParamAttr(ArgNo, Kind);
462 
463   return Attribute();
464 }
465 template Attribute
466 CallBase::getParamAttrOnCalledFunction(unsigned ArgNo,
467                                        Attribute::AttrKind Kind) const;
468 template Attribute CallBase::getParamAttrOnCalledFunction(unsigned ArgNo,
469                                                           StringRef Kind) const;
470 
471 void CallBase::getOperandBundlesAsDefs(
472     SmallVectorImpl<OperandBundleDef> &Defs) const {
473   for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
474     Defs.emplace_back(getOperandBundleAt(i));
475 }
476 
477 CallBase::op_iterator
478 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
479                                      const unsigned BeginIndex) {
480   auto It = op_begin() + BeginIndex;
481   for (auto &B : Bundles)
482     It = std::copy(B.input_begin(), B.input_end(), It);
483 
484   auto *ContextImpl = getContext().pImpl;
485   auto BI = Bundles.begin();
486   unsigned CurrentIndex = BeginIndex;
487 
488   for (auto &BOI : bundle_op_infos()) {
489     assert(BI != Bundles.end() && "Incorrect allocation?");
490 
491     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
492     BOI.Begin = CurrentIndex;
493     BOI.End = CurrentIndex + BI->input_size();
494     CurrentIndex = BOI.End;
495     BI++;
496   }
497 
498   assert(BI == Bundles.end() && "Incorrect allocation?");
499 
500   return It;
501 }
502 
503 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
504   /// When there isn't many bundles, we do a simple linear search.
505   /// Else fallback to a binary-search that use the fact that bundles usually
506   /// have similar number of argument to get faster convergence.
507   if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
508     for (auto &BOI : bundle_op_infos())
509       if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
510         return BOI;
511 
512     llvm_unreachable("Did not find operand bundle for operand!");
513   }
514 
515   assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
516   assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
517          OpIdx < std::prev(bundle_op_info_end())->End &&
518          "The Idx isn't in the operand bundle");
519 
520   /// We need a decimal number below and to prevent using floating point numbers
521   /// we use an intergal value multiplied by this constant.
522   constexpr unsigned NumberScaling = 1024;
523 
524   bundle_op_iterator Begin = bundle_op_info_begin();
525   bundle_op_iterator End = bundle_op_info_end();
526   bundle_op_iterator Current = Begin;
527 
528   while (Begin != End) {
529     unsigned ScaledOperandPerBundle =
530         NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
531     Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
532                        ScaledOperandPerBundle);
533     if (Current >= End)
534       Current = std::prev(End);
535     assert(Current < End && Current >= Begin &&
536            "the operand bundle doesn't cover every value in the range");
537     if (OpIdx >= Current->Begin && OpIdx < Current->End)
538       break;
539     if (OpIdx >= Current->End)
540       Begin = Current + 1;
541     else
542       End = Current;
543   }
544 
545   assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
546          "the operand bundle doesn't cover every value in the range");
547   return *Current;
548 }
549 
550 CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
551                                      OperandBundleDef OB,
552                                      InsertPosition InsertPt) {
553   if (CB->getOperandBundle(ID))
554     return CB;
555 
556   SmallVector<OperandBundleDef, 1> Bundles;
557   CB->getOperandBundlesAsDefs(Bundles);
558   Bundles.push_back(OB);
559   return Create(CB, Bundles, InsertPt);
560 }
561 
562 CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
563                                         InsertPosition InsertPt) {
564   SmallVector<OperandBundleDef, 1> Bundles;
565   bool CreateNew = false;
566 
567   for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
568     auto Bundle = CB->getOperandBundleAt(I);
569     if (Bundle.getTagID() == ID) {
570       CreateNew = true;
571       continue;
572     }
573     Bundles.emplace_back(Bundle);
574   }
575 
576   return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
577 }
578 
579 bool CallBase::hasReadingOperandBundles() const {
580   // Implementation note: this is a conservative implementation of operand
581   // bundle semantics, where *any* non-assume operand bundle (other than
582   // ptrauth) forces a callsite to be at least readonly.
583   return hasOperandBundlesOtherThan(
584              {LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi}) &&
585          getIntrinsicID() != Intrinsic::assume;
586 }
587 
588 bool CallBase::hasClobberingOperandBundles() const {
589   return hasOperandBundlesOtherThan(
590              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
591               LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi}) &&
592          getIntrinsicID() != Intrinsic::assume;
593 }
594 
595 MemoryEffects CallBase::getMemoryEffects() const {
596   MemoryEffects ME = getAttributes().getMemoryEffects();
597   if (auto *Fn = dyn_cast<Function>(getCalledOperand())) {
598     MemoryEffects FnME = Fn->getMemoryEffects();
599     if (hasOperandBundles()) {
600       // TODO: Add a method to get memory effects for operand bundles instead.
601       if (hasReadingOperandBundles())
602         FnME |= MemoryEffects::readOnly();
603       if (hasClobberingOperandBundles())
604         FnME |= MemoryEffects::writeOnly();
605     }
606     ME &= FnME;
607   }
608   return ME;
609 }
610 void CallBase::setMemoryEffects(MemoryEffects ME) {
611   addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
612 }
613 
614 /// Determine if the function does not access memory.
615 bool CallBase::doesNotAccessMemory() const {
616   return getMemoryEffects().doesNotAccessMemory();
617 }
618 void CallBase::setDoesNotAccessMemory() {
619   setMemoryEffects(MemoryEffects::none());
620 }
621 
622 /// Determine if the function does not access or only reads memory.
623 bool CallBase::onlyReadsMemory() const {
624   return getMemoryEffects().onlyReadsMemory();
625 }
626 void CallBase::setOnlyReadsMemory() {
627   setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
628 }
629 
630 /// Determine if the function does not access or only writes memory.
631 bool CallBase::onlyWritesMemory() const {
632   return getMemoryEffects().onlyWritesMemory();
633 }
634 void CallBase::setOnlyWritesMemory() {
635   setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
636 }
637 
638 /// Determine if the call can access memmory only using pointers based
639 /// on its arguments.
640 bool CallBase::onlyAccessesArgMemory() const {
641   return getMemoryEffects().onlyAccessesArgPointees();
642 }
643 void CallBase::setOnlyAccessesArgMemory() {
644   setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
645 }
646 
647 /// Determine if the function may only access memory that is
648 ///  inaccessible from the IR.
649 bool CallBase::onlyAccessesInaccessibleMemory() const {
650   return getMemoryEffects().onlyAccessesInaccessibleMem();
651 }
652 void CallBase::setOnlyAccessesInaccessibleMemory() {
653   setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
654 }
655 
656 /// Determine if the function may only access memory that is
657 ///  either inaccessible from the IR or pointed to by its arguments.
658 bool CallBase::onlyAccessesInaccessibleMemOrArgMem() const {
659   return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
660 }
661 void CallBase::setOnlyAccessesInaccessibleMemOrArgMem() {
662   setMemoryEffects(getMemoryEffects() &
663                    MemoryEffects::inaccessibleOrArgMemOnly());
664 }
665 
666 //===----------------------------------------------------------------------===//
667 //                        CallInst Implementation
668 //===----------------------------------------------------------------------===//
669 
670 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
671                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
672   this->FTy = FTy;
673   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
674          "NumOperands not set up?");
675 
676 #ifndef NDEBUG
677   assert((Args.size() == FTy->getNumParams() ||
678           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
679          "Calling a function with bad signature!");
680 
681   for (unsigned i = 0; i != Args.size(); ++i)
682     assert((i >= FTy->getNumParams() ||
683             FTy->getParamType(i) == Args[i]->getType()) &&
684            "Calling a function with a bad signature!");
685 #endif
686 
687   // Set operands in order of their index to match use-list-order
688   // prediction.
689   llvm::copy(Args, op_begin());
690   setCalledOperand(Func);
691 
692   auto It = populateBundleOperandInfos(Bundles, Args.size());
693   (void)It;
694   assert(It + 1 == op_end() && "Should add up!");
695 
696   setName(NameStr);
697 }
698 
699 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
700   this->FTy = FTy;
701   assert(getNumOperands() == 1 && "NumOperands not set up?");
702   setCalledOperand(Func);
703 
704   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
705 
706   setName(NameStr);
707 }
708 
709 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
710                    InsertPosition InsertBefore)
711     : CallBase(Ty->getReturnType(), Instruction::Call,
712                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
713   init(Ty, Func, Name);
714 }
715 
716 CallInst::CallInst(const CallInst &CI)
717     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
718                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
719                CI.getNumOperands()) {
720   setTailCallKind(CI.getTailCallKind());
721   setCallingConv(CI.getCallingConv());
722 
723   std::copy(CI.op_begin(), CI.op_end(), op_begin());
724   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
725             bundle_op_info_begin());
726   SubclassOptionalData = CI.SubclassOptionalData;
727 }
728 
729 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
730                            InsertPosition InsertPt) {
731   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
732 
733   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
734                                  Args, OpB, CI->getName(), InsertPt);
735   NewCI->setTailCallKind(CI->getTailCallKind());
736   NewCI->setCallingConv(CI->getCallingConv());
737   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
738   NewCI->setAttributes(CI->getAttributes());
739   NewCI->setDebugLoc(CI->getDebugLoc());
740   return NewCI;
741 }
742 
743 // Update profile weight for call instruction by scaling it using the ratio
744 // of S/T. The meaning of "branch_weights" meta data for call instruction is
745 // transfered to represent call count.
746 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
747   if (T == 0) {
748     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
749                          "div by 0. Ignoring. Likely the function "
750                       << getParent()->getParent()->getName()
751                       << " has 0 entry count, and contains call instructions "
752                          "with non-zero prof info.");
753     return;
754   }
755   scaleProfData(*this, S, T);
756 }
757 
758 //===----------------------------------------------------------------------===//
759 //                        InvokeInst Implementation
760 //===----------------------------------------------------------------------===//
761 
762 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
763                       BasicBlock *IfException, ArrayRef<Value *> Args,
764                       ArrayRef<OperandBundleDef> Bundles,
765                       const Twine &NameStr) {
766   this->FTy = FTy;
767 
768   assert((int)getNumOperands() ==
769              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
770          "NumOperands not set up?");
771 
772 #ifndef NDEBUG
773   assert(((Args.size() == FTy->getNumParams()) ||
774           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
775          "Invoking a function with bad signature");
776 
777   for (unsigned i = 0, e = Args.size(); i != e; i++)
778     assert((i >= FTy->getNumParams() ||
779             FTy->getParamType(i) == Args[i]->getType()) &&
780            "Invoking a function with a bad signature!");
781 #endif
782 
783   // Set operands in order of their index to match use-list-order
784   // prediction.
785   llvm::copy(Args, op_begin());
786   setNormalDest(IfNormal);
787   setUnwindDest(IfException);
788   setCalledOperand(Fn);
789 
790   auto It = populateBundleOperandInfos(Bundles, Args.size());
791   (void)It;
792   assert(It + 3 == op_end() && "Should add up!");
793 
794   setName(NameStr);
795 }
796 
797 InvokeInst::InvokeInst(const InvokeInst &II)
798     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
799                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
800                II.getNumOperands()) {
801   setCallingConv(II.getCallingConv());
802   std::copy(II.op_begin(), II.op_end(), op_begin());
803   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
804             bundle_op_info_begin());
805   SubclassOptionalData = II.SubclassOptionalData;
806 }
807 
808 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
809                                InsertPosition InsertPt) {
810   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
811 
812   auto *NewII = InvokeInst::Create(
813       II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
814       II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
815   NewII->setCallingConv(II->getCallingConv());
816   NewII->SubclassOptionalData = II->SubclassOptionalData;
817   NewII->setAttributes(II->getAttributes());
818   NewII->setDebugLoc(II->getDebugLoc());
819   return NewII;
820 }
821 
822 LandingPadInst *InvokeInst::getLandingPadInst() const {
823   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
824 }
825 
826 void InvokeInst::updateProfWeight(uint64_t S, uint64_t T) {
827   if (T == 0) {
828     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
829                          "div by 0. Ignoring. Likely the function "
830                       << getParent()->getParent()->getName()
831                       << " has 0 entry count, and contains call instructions "
832                          "with non-zero prof info.");
833     return;
834   }
835   scaleProfData(*this, S, T);
836 }
837 
838 //===----------------------------------------------------------------------===//
839 //                        CallBrInst Implementation
840 //===----------------------------------------------------------------------===//
841 
842 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
843                       ArrayRef<BasicBlock *> IndirectDests,
844                       ArrayRef<Value *> Args,
845                       ArrayRef<OperandBundleDef> Bundles,
846                       const Twine &NameStr) {
847   this->FTy = FTy;
848 
849   assert((int)getNumOperands() ==
850              ComputeNumOperands(Args.size(), IndirectDests.size(),
851                                 CountBundleInputs(Bundles)) &&
852          "NumOperands not set up?");
853 
854 #ifndef NDEBUG
855   assert(((Args.size() == FTy->getNumParams()) ||
856           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
857          "Calling a function with bad signature");
858 
859   for (unsigned i = 0, e = Args.size(); i != e; i++)
860     assert((i >= FTy->getNumParams() ||
861             FTy->getParamType(i) == Args[i]->getType()) &&
862            "Calling a function with a bad signature!");
863 #endif
864 
865   // Set operands in order of their index to match use-list-order
866   // prediction.
867   std::copy(Args.begin(), Args.end(), op_begin());
868   NumIndirectDests = IndirectDests.size();
869   setDefaultDest(Fallthrough);
870   for (unsigned i = 0; i != NumIndirectDests; ++i)
871     setIndirectDest(i, IndirectDests[i]);
872   setCalledOperand(Fn);
873 
874   auto It = populateBundleOperandInfos(Bundles, Args.size());
875   (void)It;
876   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
877 
878   setName(NameStr);
879 }
880 
881 CallBrInst::CallBrInst(const CallBrInst &CBI)
882     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
883                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
884                CBI.getNumOperands()) {
885   setCallingConv(CBI.getCallingConv());
886   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
887   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
888             bundle_op_info_begin());
889   SubclassOptionalData = CBI.SubclassOptionalData;
890   NumIndirectDests = CBI.NumIndirectDests;
891 }
892 
893 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
894                                InsertPosition InsertPt) {
895   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
896 
897   auto *NewCBI = CallBrInst::Create(
898       CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
899       CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
900   NewCBI->setCallingConv(CBI->getCallingConv());
901   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
902   NewCBI->setAttributes(CBI->getAttributes());
903   NewCBI->setDebugLoc(CBI->getDebugLoc());
904   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
905   return NewCBI;
906 }
907 
908 //===----------------------------------------------------------------------===//
909 //                        ReturnInst Implementation
910 //===----------------------------------------------------------------------===//
911 
912 ReturnInst::ReturnInst(const ReturnInst &RI)
913     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
914                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
915                   RI.getNumOperands()) {
916   if (RI.getNumOperands())
917     Op<0>() = RI.Op<0>();
918   SubclassOptionalData = RI.SubclassOptionalData;
919 }
920 
921 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal,
922                        InsertPosition InsertBefore)
923     : Instruction(Type::getVoidTy(C), Instruction::Ret,
924                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
925                   InsertBefore) {
926   if (retVal)
927     Op<0>() = retVal;
928 }
929 
930 //===----------------------------------------------------------------------===//
931 //                        ResumeInst Implementation
932 //===----------------------------------------------------------------------===//
933 
934 ResumeInst::ResumeInst(const ResumeInst &RI)
935     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
936                   OperandTraits<ResumeInst>::op_begin(this), 1) {
937   Op<0>() = RI.Op<0>();
938 }
939 
940 ResumeInst::ResumeInst(Value *Exn, InsertPosition InsertBefore)
941     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
942                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
943   Op<0>() = Exn;
944 }
945 
946 //===----------------------------------------------------------------------===//
947 //                        CleanupReturnInst Implementation
948 //===----------------------------------------------------------------------===//
949 
950 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
951     : Instruction(CRI.getType(), Instruction::CleanupRet,
952                   OperandTraits<CleanupReturnInst>::op_end(this) -
953                       CRI.getNumOperands(),
954                   CRI.getNumOperands()) {
955   setSubclassData<Instruction::OpaqueField>(
956       CRI.getSubclassData<Instruction::OpaqueField>());
957   Op<0>() = CRI.Op<0>();
958   if (CRI.hasUnwindDest())
959     Op<1>() = CRI.Op<1>();
960 }
961 
962 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
963   if (UnwindBB)
964     setSubclassData<UnwindDestField>(true);
965 
966   Op<0>() = CleanupPad;
967   if (UnwindBB)
968     Op<1>() = UnwindBB;
969 }
970 
971 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
972                                      unsigned Values,
973                                      InsertPosition InsertBefore)
974     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
975                   Instruction::CleanupRet,
976                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
977                   Values, InsertBefore) {
978   init(CleanupPad, UnwindBB);
979 }
980 
981 //===----------------------------------------------------------------------===//
982 //                        CatchReturnInst Implementation
983 //===----------------------------------------------------------------------===//
984 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
985   Op<0>() = CatchPad;
986   Op<1>() = BB;
987 }
988 
989 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
990     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
991                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
992   Op<0>() = CRI.Op<0>();
993   Op<1>() = CRI.Op<1>();
994 }
995 
996 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
997                                  InsertPosition InsertBefore)
998     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
999                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
1000                   InsertBefore) {
1001   init(CatchPad, BB);
1002 }
1003 
1004 //===----------------------------------------------------------------------===//
1005 //                       CatchSwitchInst Implementation
1006 //===----------------------------------------------------------------------===//
1007 
1008 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1009                                  unsigned NumReservedValues,
1010                                  const Twine &NameStr,
1011                                  InsertPosition InsertBefore)
1012     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1013                   InsertBefore) {
1014   if (UnwindDest)
1015     ++NumReservedValues;
1016   init(ParentPad, UnwindDest, NumReservedValues + 1);
1017   setName(NameStr);
1018 }
1019 
1020 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1021     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1022                   CSI.getNumOperands()) {
1023   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1024   setNumHungOffUseOperands(ReservedSpace);
1025   Use *OL = getOperandList();
1026   const Use *InOL = CSI.getOperandList();
1027   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1028     OL[I] = InOL[I];
1029 }
1030 
1031 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1032                            unsigned NumReservedValues) {
1033   assert(ParentPad && NumReservedValues);
1034 
1035   ReservedSpace = NumReservedValues;
1036   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1037   allocHungoffUses(ReservedSpace);
1038 
1039   Op<0>() = ParentPad;
1040   if (UnwindDest) {
1041     setSubclassData<UnwindDestField>(true);
1042     setUnwindDest(UnwindDest);
1043   }
1044 }
1045 
1046 /// growOperands - grow operands - This grows the operand list in response to a
1047 /// push_back style of operation. This grows the number of ops by 2 times.
1048 void CatchSwitchInst::growOperands(unsigned Size) {
1049   unsigned NumOperands = getNumOperands();
1050   assert(NumOperands >= 1);
1051   if (ReservedSpace >= NumOperands + Size)
1052     return;
1053   ReservedSpace = (NumOperands + Size / 2) * 2;
1054   growHungoffUses(ReservedSpace);
1055 }
1056 
1057 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1058   unsigned OpNo = getNumOperands();
1059   growOperands(1);
1060   assert(OpNo < ReservedSpace && "Growing didn't work!");
1061   setNumHungOffUseOperands(getNumOperands() + 1);
1062   getOperandList()[OpNo] = Handler;
1063 }
1064 
1065 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1066   // Move all subsequent handlers up one.
1067   Use *EndDst = op_end() - 1;
1068   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1069     *CurDst = *(CurDst + 1);
1070   // Null out the last handler use.
1071   *EndDst = nullptr;
1072 
1073   setNumHungOffUseOperands(getNumOperands() - 1);
1074 }
1075 
1076 //===----------------------------------------------------------------------===//
1077 //                        FuncletPadInst Implementation
1078 //===----------------------------------------------------------------------===//
1079 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1080                           const Twine &NameStr) {
1081   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1082   llvm::copy(Args, op_begin());
1083   setParentPad(ParentPad);
1084   setName(NameStr);
1085 }
1086 
1087 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1088     : Instruction(FPI.getType(), FPI.getOpcode(),
1089                   OperandTraits<FuncletPadInst>::op_end(this) -
1090                       FPI.getNumOperands(),
1091                   FPI.getNumOperands()) {
1092   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1093   setParentPad(FPI.getParentPad());
1094 }
1095 
1096 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1097                                ArrayRef<Value *> Args, unsigned Values,
1098                                const Twine &NameStr,
1099                                InsertPosition InsertBefore)
1100     : Instruction(ParentPad->getType(), Op,
1101                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1102                   InsertBefore) {
1103   init(ParentPad, Args, NameStr);
1104 }
1105 
1106 //===----------------------------------------------------------------------===//
1107 //                      UnreachableInst Implementation
1108 //===----------------------------------------------------------------------===//
1109 
1110 UnreachableInst::UnreachableInst(LLVMContext &Context,
1111                                  InsertPosition InsertBefore)
1112     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1113                   0, InsertBefore) {}
1114 
1115 //===----------------------------------------------------------------------===//
1116 //                        BranchInst Implementation
1117 //===----------------------------------------------------------------------===//
1118 
1119 void BranchInst::AssertOK() {
1120   if (isConditional())
1121     assert(getCondition()->getType()->isIntegerTy(1) &&
1122            "May only branch on boolean predicates!");
1123 }
1124 
1125 BranchInst::BranchInst(BasicBlock *IfTrue, InsertPosition InsertBefore)
1126     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1127                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
1128                   InsertBefore) {
1129   assert(IfTrue && "Branch destination may not be null!");
1130   Op<-1>() = IfTrue;
1131 }
1132 
1133 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1134                        InsertPosition InsertBefore)
1135     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1136                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
1137                   InsertBefore) {
1138   // Assign in order of operand index to make use-list order predictable.
1139   Op<-3>() = Cond;
1140   Op<-2>() = IfFalse;
1141   Op<-1>() = IfTrue;
1142 #ifndef NDEBUG
1143   AssertOK();
1144 #endif
1145 }
1146 
1147 BranchInst::BranchInst(const BranchInst &BI)
1148     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1149                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1150                   BI.getNumOperands()) {
1151   // Assign in order of operand index to make use-list order predictable.
1152   if (BI.getNumOperands() != 1) {
1153     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1154     Op<-3>() = BI.Op<-3>();
1155     Op<-2>() = BI.Op<-2>();
1156   }
1157   Op<-1>() = BI.Op<-1>();
1158   SubclassOptionalData = BI.SubclassOptionalData;
1159 }
1160 
1161 void BranchInst::swapSuccessors() {
1162   assert(isConditional() &&
1163          "Cannot swap successors of an unconditional branch");
1164   Op<-1>().swap(Op<-2>());
1165 
1166   // Update profile metadata if present and it matches our structural
1167   // expectations.
1168   swapProfMetadata();
1169 }
1170 
1171 //===----------------------------------------------------------------------===//
1172 //                        AllocaInst Implementation
1173 //===----------------------------------------------------------------------===//
1174 
1175 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1176   if (!Amt)
1177     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1178   else {
1179     assert(!isa<BasicBlock>(Amt) &&
1180            "Passed basic block into allocation size parameter! Use other ctor");
1181     assert(Amt->getType()->isIntegerTy() &&
1182            "Allocation array size is not an integer!");
1183   }
1184   return Amt;
1185 }
1186 
1187 static Align computeAllocaDefaultAlign(Type *Ty, InsertPosition Pos) {
1188   assert(Pos.isValid() &&
1189          "Insertion position cannot be null when alignment not provided!");
1190   BasicBlock *BB = Pos.getBasicBlock();
1191   assert(BB->getParent() &&
1192          "BB must be in a Function when alignment not provided!");
1193   const DataLayout &DL = BB->getModule()->getDataLayout();
1194   return DL.getPrefTypeAlign(Ty);
1195 }
1196 
1197 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1198                        InsertPosition InsertBefore)
1199     : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1200 
1201 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1202                        const Twine &Name, InsertPosition InsertBefore)
1203     : AllocaInst(Ty, AddrSpace, ArraySize,
1204                  computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1205                  InsertBefore) {}
1206 
1207 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1208                        Align Align, const Twine &Name,
1209                        InsertPosition InsertBefore)
1210     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1211                        getAISize(Ty->getContext(), ArraySize), InsertBefore),
1212       AllocatedType(Ty) {
1213   setAlignment(Align);
1214   assert(!Ty->isVoidTy() && "Cannot allocate void!");
1215   setName(Name);
1216 }
1217 
1218 bool AllocaInst::isArrayAllocation() const {
1219   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1220     return !CI->isOne();
1221   return true;
1222 }
1223 
1224 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1225 /// function and is a constant size.  If so, the code generator will fold it
1226 /// into the prolog/epilog code, so it is basically free.
1227 bool AllocaInst::isStaticAlloca() const {
1228   // Must be constant size.
1229   if (!isa<ConstantInt>(getArraySize())) return false;
1230 
1231   // Must be in the entry block.
1232   const BasicBlock *Parent = getParent();
1233   return Parent->isEntryBlock() && !isUsedWithInAlloca();
1234 }
1235 
1236 //===----------------------------------------------------------------------===//
1237 //                           LoadInst Implementation
1238 //===----------------------------------------------------------------------===//
1239 
1240 void LoadInst::AssertOK() {
1241   assert(getOperand(0)->getType()->isPointerTy() &&
1242          "Ptr must have pointer type.");
1243 }
1244 
1245 static Align computeLoadStoreDefaultAlign(Type *Ty, InsertPosition Pos) {
1246   assert(Pos.isValid() &&
1247          "Insertion position cannot be null when alignment not provided!");
1248   BasicBlock *BB = Pos.getBasicBlock();
1249   assert(BB->getParent() &&
1250          "BB must be in a Function when alignment not provided!");
1251   const DataLayout &DL = BB->getModule()->getDataLayout();
1252   return DL.getABITypeAlign(Ty);
1253 }
1254 
1255 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1256                    InsertPosition InsertBef)
1257     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1258 
1259 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1260                    InsertPosition InsertBef)
1261     : LoadInst(Ty, Ptr, Name, isVolatile,
1262                computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1263 
1264 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1265                    Align Align, InsertPosition InsertBef)
1266     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1267                SyncScope::System, InsertBef) {}
1268 
1269 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1270                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1271                    InsertPosition InsertBef)
1272     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1273   setVolatile(isVolatile);
1274   setAlignment(Align);
1275   setAtomic(Order, SSID);
1276   AssertOK();
1277   setName(Name);
1278 }
1279 
1280 //===----------------------------------------------------------------------===//
1281 //                           StoreInst Implementation
1282 //===----------------------------------------------------------------------===//
1283 
1284 void StoreInst::AssertOK() {
1285   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1286   assert(getOperand(1)->getType()->isPointerTy() &&
1287          "Ptr must have pointer type!");
1288 }
1289 
1290 StoreInst::StoreInst(Value *val, Value *addr, InsertPosition InsertBefore)
1291     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1292 
1293 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1294                      InsertPosition InsertBefore)
1295     : StoreInst(val, addr, isVolatile,
1296                 computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1297                 InsertBefore) {}
1298 
1299 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1300                      InsertPosition InsertBefore)
1301     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1302                 SyncScope::System, InsertBefore) {}
1303 
1304 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1305                      AtomicOrdering Order, SyncScope::ID SSID,
1306                      InsertPosition InsertBefore)
1307     : Instruction(Type::getVoidTy(val->getContext()), Store,
1308                   OperandTraits<StoreInst>::op_begin(this),
1309                   OperandTraits<StoreInst>::operands(this), InsertBefore) {
1310   Op<0>() = val;
1311   Op<1>() = addr;
1312   setVolatile(isVolatile);
1313   setAlignment(Align);
1314   setAtomic(Order, SSID);
1315   AssertOK();
1316 }
1317 
1318 //===----------------------------------------------------------------------===//
1319 //                       AtomicCmpXchgInst Implementation
1320 //===----------------------------------------------------------------------===//
1321 
1322 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1323                              Align Alignment, AtomicOrdering SuccessOrdering,
1324                              AtomicOrdering FailureOrdering,
1325                              SyncScope::ID SSID) {
1326   Op<0>() = Ptr;
1327   Op<1>() = Cmp;
1328   Op<2>() = NewVal;
1329   setSuccessOrdering(SuccessOrdering);
1330   setFailureOrdering(FailureOrdering);
1331   setSyncScopeID(SSID);
1332   setAlignment(Alignment);
1333 
1334   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1335          "All operands must be non-null!");
1336   assert(getOperand(0)->getType()->isPointerTy() &&
1337          "Ptr must have pointer type!");
1338   assert(getOperand(1)->getType() == getOperand(2)->getType() &&
1339          "Cmp type and NewVal type must be same!");
1340 }
1341 
1342 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1343                                      Align Alignment,
1344                                      AtomicOrdering SuccessOrdering,
1345                                      AtomicOrdering FailureOrdering,
1346                                      SyncScope::ID SSID,
1347                                      InsertPosition InsertBefore)
1348     : Instruction(
1349           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1350           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1351           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1352   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1353 }
1354 
1355 //===----------------------------------------------------------------------===//
1356 //                       AtomicRMWInst Implementation
1357 //===----------------------------------------------------------------------===//
1358 
1359 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1360                          Align Alignment, AtomicOrdering Ordering,
1361                          SyncScope::ID SSID) {
1362   assert(Ordering != AtomicOrdering::NotAtomic &&
1363          "atomicrmw instructions can only be atomic.");
1364   assert(Ordering != AtomicOrdering::Unordered &&
1365          "atomicrmw instructions cannot be unordered.");
1366   Op<0>() = Ptr;
1367   Op<1>() = Val;
1368   setOperation(Operation);
1369   setOrdering(Ordering);
1370   setSyncScopeID(SSID);
1371   setAlignment(Alignment);
1372 
1373   assert(getOperand(0) && getOperand(1) && "All operands must be non-null!");
1374   assert(getOperand(0)->getType()->isPointerTy() &&
1375          "Ptr must have pointer type!");
1376   assert(Ordering != AtomicOrdering::NotAtomic &&
1377          "AtomicRMW instructions must be atomic!");
1378 }
1379 
1380 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1381                              Align Alignment, AtomicOrdering Ordering,
1382                              SyncScope::ID SSID, InsertPosition InsertBefore)
1383     : Instruction(Val->getType(), AtomicRMW,
1384                   OperandTraits<AtomicRMWInst>::op_begin(this),
1385                   OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1386   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1387 }
1388 
1389 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1390   switch (Op) {
1391   case AtomicRMWInst::Xchg:
1392     return "xchg";
1393   case AtomicRMWInst::Add:
1394     return "add";
1395   case AtomicRMWInst::Sub:
1396     return "sub";
1397   case AtomicRMWInst::And:
1398     return "and";
1399   case AtomicRMWInst::Nand:
1400     return "nand";
1401   case AtomicRMWInst::Or:
1402     return "or";
1403   case AtomicRMWInst::Xor:
1404     return "xor";
1405   case AtomicRMWInst::Max:
1406     return "max";
1407   case AtomicRMWInst::Min:
1408     return "min";
1409   case AtomicRMWInst::UMax:
1410     return "umax";
1411   case AtomicRMWInst::UMin:
1412     return "umin";
1413   case AtomicRMWInst::FAdd:
1414     return "fadd";
1415   case AtomicRMWInst::FSub:
1416     return "fsub";
1417   case AtomicRMWInst::FMax:
1418     return "fmax";
1419   case AtomicRMWInst::FMin:
1420     return "fmin";
1421   case AtomicRMWInst::UIncWrap:
1422     return "uinc_wrap";
1423   case AtomicRMWInst::UDecWrap:
1424     return "udec_wrap";
1425   case AtomicRMWInst::BAD_BINOP:
1426     return "<invalid operation>";
1427   }
1428 
1429   llvm_unreachable("invalid atomicrmw operation");
1430 }
1431 
1432 //===----------------------------------------------------------------------===//
1433 //                       FenceInst Implementation
1434 //===----------------------------------------------------------------------===//
1435 
1436 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1437                      SyncScope::ID SSID, InsertPosition InsertBefore)
1438     : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1439   setOrdering(Ordering);
1440   setSyncScopeID(SSID);
1441 }
1442 
1443 //===----------------------------------------------------------------------===//
1444 //                       GetElementPtrInst Implementation
1445 //===----------------------------------------------------------------------===//
1446 
1447 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1448                              const Twine &Name) {
1449   assert(getNumOperands() == 1 + IdxList.size() &&
1450          "NumOperands not initialized?");
1451   Op<0>() = Ptr;
1452   llvm::copy(IdxList, op_begin() + 1);
1453   setName(Name);
1454 }
1455 
1456 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1457     : Instruction(GEPI.getType(), GetElementPtr,
1458                   OperandTraits<GetElementPtrInst>::op_end(this) -
1459                       GEPI.getNumOperands(),
1460                   GEPI.getNumOperands()),
1461       SourceElementType(GEPI.SourceElementType),
1462       ResultElementType(GEPI.ResultElementType) {
1463   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1464   SubclassOptionalData = GEPI.SubclassOptionalData;
1465 }
1466 
1467 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
1468   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1469     if (!Struct->indexValid(Idx))
1470       return nullptr;
1471     return Struct->getTypeAtIndex(Idx);
1472   }
1473   if (!Idx->getType()->isIntOrIntVectorTy())
1474     return nullptr;
1475   if (auto *Array = dyn_cast<ArrayType>(Ty))
1476     return Array->getElementType();
1477   if (auto *Vector = dyn_cast<VectorType>(Ty))
1478     return Vector->getElementType();
1479   return nullptr;
1480 }
1481 
1482 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
1483   if (auto *Struct = dyn_cast<StructType>(Ty)) {
1484     if (Idx >= Struct->getNumElements())
1485       return nullptr;
1486     return Struct->getElementType(Idx);
1487   }
1488   if (auto *Array = dyn_cast<ArrayType>(Ty))
1489     return Array->getElementType();
1490   if (auto *Vector = dyn_cast<VectorType>(Ty))
1491     return Vector->getElementType();
1492   return nullptr;
1493 }
1494 
1495 template <typename IndexTy>
1496 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
1497   if (IdxList.empty())
1498     return Ty;
1499   for (IndexTy V : IdxList.slice(1)) {
1500     Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
1501     if (!Ty)
1502       return Ty;
1503   }
1504   return Ty;
1505 }
1506 
1507 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1508   return getIndexedTypeInternal(Ty, IdxList);
1509 }
1510 
1511 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1512                                         ArrayRef<Constant *> IdxList) {
1513   return getIndexedTypeInternal(Ty, IdxList);
1514 }
1515 
1516 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1517   return getIndexedTypeInternal(Ty, IdxList);
1518 }
1519 
1520 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1521 /// zeros.  If so, the result pointer and the first operand have the same
1522 /// value, just potentially different types.
1523 bool GetElementPtrInst::hasAllZeroIndices() const {
1524   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1525     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1526       if (!CI->isZero()) return false;
1527     } else {
1528       return false;
1529     }
1530   }
1531   return true;
1532 }
1533 
1534 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1535 /// constant integers.  If so, the result pointer and the first operand have
1536 /// a constant offset between them.
1537 bool GetElementPtrInst::hasAllConstantIndices() const {
1538   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1539     if (!isa<ConstantInt>(getOperand(i)))
1540       return false;
1541   }
1542   return true;
1543 }
1544 
1545 void GetElementPtrInst::setNoWrapFlags(GEPNoWrapFlags NW) {
1546   SubclassOptionalData = NW.getRaw();
1547 }
1548 
1549 void GetElementPtrInst::setIsInBounds(bool B) {
1550   GEPNoWrapFlags NW = cast<GEPOperator>(this)->getNoWrapFlags();
1551   if (B)
1552     NW |= GEPNoWrapFlags::inBounds();
1553   else
1554     NW = NW.withoutInBounds();
1555   setNoWrapFlags(NW);
1556 }
1557 
1558 GEPNoWrapFlags GetElementPtrInst::getNoWrapFlags() const {
1559   return cast<GEPOperator>(this)->getNoWrapFlags();
1560 }
1561 
1562 bool GetElementPtrInst::isInBounds() const {
1563   return cast<GEPOperator>(this)->isInBounds();
1564 }
1565 
1566 bool GetElementPtrInst::hasNoUnsignedSignedWrap() const {
1567   return cast<GEPOperator>(this)->hasNoUnsignedSignedWrap();
1568 }
1569 
1570 bool GetElementPtrInst::hasNoUnsignedWrap() const {
1571   return cast<GEPOperator>(this)->hasNoUnsignedWrap();
1572 }
1573 
1574 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1575                                                  APInt &Offset) const {
1576   // Delegate to the generic GEPOperator implementation.
1577   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1578 }
1579 
1580 bool GetElementPtrInst::collectOffset(
1581     const DataLayout &DL, unsigned BitWidth,
1582     MapVector<Value *, APInt> &VariableOffsets,
1583     APInt &ConstantOffset) const {
1584   // Delegate to the generic GEPOperator implementation.
1585   return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets,
1586                                                 ConstantOffset);
1587 }
1588 
1589 //===----------------------------------------------------------------------===//
1590 //                           ExtractElementInst Implementation
1591 //===----------------------------------------------------------------------===//
1592 
1593 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1594                                        const Twine &Name,
1595                                        InsertPosition InsertBef)
1596     : Instruction(
1597           cast<VectorType>(Val->getType())->getElementType(), ExtractElement,
1598           OperandTraits<ExtractElementInst>::op_begin(this), 2, InsertBef) {
1599   assert(isValidOperands(Val, Index) &&
1600          "Invalid extractelement instruction operands!");
1601   Op<0>() = Val;
1602   Op<1>() = Index;
1603   setName(Name);
1604 }
1605 
1606 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1607   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1608     return false;
1609   return true;
1610 }
1611 
1612 //===----------------------------------------------------------------------===//
1613 //                           InsertElementInst Implementation
1614 //===----------------------------------------------------------------------===//
1615 
1616 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1617                                      const Twine &Name,
1618                                      InsertPosition InsertBef)
1619     : Instruction(Vec->getType(), InsertElement,
1620                   OperandTraits<InsertElementInst>::op_begin(this), 3,
1621                   InsertBef) {
1622   assert(isValidOperands(Vec, Elt, Index) &&
1623          "Invalid insertelement instruction operands!");
1624   Op<0>() = Vec;
1625   Op<1>() = Elt;
1626   Op<2>() = Index;
1627   setName(Name);
1628 }
1629 
1630 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1631                                         const Value *Index) {
1632   if (!Vec->getType()->isVectorTy())
1633     return false;   // First operand of insertelement must be vector type.
1634 
1635   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1636     return false;// Second operand of insertelement must be vector element type.
1637 
1638   if (!Index->getType()->isIntegerTy())
1639     return false;  // Third operand of insertelement must be i32.
1640   return true;
1641 }
1642 
1643 //===----------------------------------------------------------------------===//
1644 //                      ShuffleVectorInst Implementation
1645 //===----------------------------------------------------------------------===//
1646 
1647 static Value *createPlaceholderForShuffleVector(Value *V) {
1648   assert(V && "Cannot create placeholder of nullptr V");
1649   return PoisonValue::get(V->getType());
1650 }
1651 
1652 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name,
1653                                      InsertPosition InsertBefore)
1654     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1655                         InsertBefore) {}
1656 
1657 ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask,
1658                                      const Twine &Name,
1659                                      InsertPosition InsertBefore)
1660     : ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1661                         InsertBefore) {}
1662 
1663 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1664                                      const Twine &Name,
1665                                      InsertPosition InsertBefore)
1666     : Instruction(
1667           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1668                           cast<VectorType>(Mask->getType())->getElementCount()),
1669           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1670           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1671   assert(isValidOperands(V1, V2, Mask) &&
1672          "Invalid shuffle vector instruction operands!");
1673 
1674   Op<0>() = V1;
1675   Op<1>() = V2;
1676   SmallVector<int, 16> MaskArr;
1677   getShuffleMask(cast<Constant>(Mask), MaskArr);
1678   setShuffleMask(MaskArr);
1679   setName(Name);
1680 }
1681 
1682 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1683                                      const Twine &Name,
1684                                      InsertPosition InsertBefore)
1685     : Instruction(
1686           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1687                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
1688           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1689           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1690   assert(isValidOperands(V1, V2, Mask) &&
1691          "Invalid shuffle vector instruction operands!");
1692   Op<0>() = V1;
1693   Op<1>() = V2;
1694   setShuffleMask(Mask);
1695   setName(Name);
1696 }
1697 
1698 void ShuffleVectorInst::commute() {
1699   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
1700   int NumMaskElts = ShuffleMask.size();
1701   SmallVector<int, 16> NewMask(NumMaskElts);
1702   for (int i = 0; i != NumMaskElts; ++i) {
1703     int MaskElt = getMaskValue(i);
1704     if (MaskElt == PoisonMaskElem) {
1705       NewMask[i] = PoisonMaskElem;
1706       continue;
1707     }
1708     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1709     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1710     NewMask[i] = MaskElt;
1711   }
1712   setShuffleMask(NewMask);
1713   Op<0>().swap(Op<1>());
1714 }
1715 
1716 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1717                                         ArrayRef<int> Mask) {
1718   // V1 and V2 must be vectors of the same type.
1719   if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
1720     return false;
1721 
1722   // Make sure the mask elements make sense.
1723   int V1Size =
1724       cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
1725   for (int Elem : Mask)
1726     if (Elem != PoisonMaskElem && Elem >= V1Size * 2)
1727       return false;
1728 
1729   if (isa<ScalableVectorType>(V1->getType()))
1730     if ((Mask[0] != 0 && Mask[0] != PoisonMaskElem) || !all_equal(Mask))
1731       return false;
1732 
1733   return true;
1734 }
1735 
1736 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1737                                         const Value *Mask) {
1738   // V1 and V2 must be vectors of the same type.
1739   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1740     return false;
1741 
1742   // Mask must be vector of i32, and must be the same kind of vector as the
1743   // input vectors
1744   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1745   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
1746       isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
1747     return false;
1748 
1749   // Check to see if Mask is valid.
1750   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1751     return true;
1752 
1753   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1754     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
1755     for (Value *Op : MV->operands()) {
1756       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1757         if (CI->uge(V1Size*2))
1758           return false;
1759       } else if (!isa<UndefValue>(Op)) {
1760         return false;
1761       }
1762     }
1763     return true;
1764   }
1765 
1766   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1767     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
1768     for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
1769          i != e; ++i)
1770       if (CDS->getElementAsInteger(i) >= V1Size*2)
1771         return false;
1772     return true;
1773   }
1774 
1775   return false;
1776 }
1777 
1778 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1779                                        SmallVectorImpl<int> &Result) {
1780   ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
1781 
1782   if (isa<ConstantAggregateZero>(Mask)) {
1783     Result.resize(EC.getKnownMinValue(), 0);
1784     return;
1785   }
1786 
1787   Result.reserve(EC.getKnownMinValue());
1788 
1789   if (EC.isScalable()) {
1790     assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
1791            "Scalable vector shuffle mask must be undef or zeroinitializer");
1792     int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
1793     for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
1794       Result.emplace_back(MaskVal);
1795     return;
1796   }
1797 
1798   unsigned NumElts = EC.getKnownMinValue();
1799 
1800   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1801     for (unsigned i = 0; i != NumElts; ++i)
1802       Result.push_back(CDS->getElementAsInteger(i));
1803     return;
1804   }
1805   for (unsigned i = 0; i != NumElts; ++i) {
1806     Constant *C = Mask->getAggregateElement(i);
1807     Result.push_back(isa<UndefValue>(C) ? -1 :
1808                      cast<ConstantInt>(C)->getZExtValue());
1809   }
1810 }
1811 
1812 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
1813   ShuffleMask.assign(Mask.begin(), Mask.end());
1814   ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
1815 }
1816 
1817 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
1818                                                           Type *ResultTy) {
1819   Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
1820   if (isa<ScalableVectorType>(ResultTy)) {
1821     assert(all_equal(Mask) && "Unexpected shuffle");
1822     Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
1823     if (Mask[0] == 0)
1824       return Constant::getNullValue(VecTy);
1825     return PoisonValue::get(VecTy);
1826   }
1827   SmallVector<Constant *, 16> MaskConst;
1828   for (int Elem : Mask) {
1829     if (Elem == PoisonMaskElem)
1830       MaskConst.push_back(PoisonValue::get(Int32Ty));
1831     else
1832       MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
1833   }
1834   return ConstantVector::get(MaskConst);
1835 }
1836 
1837 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1838   assert(!Mask.empty() && "Shuffle mask must contain elements");
1839   bool UsesLHS = false;
1840   bool UsesRHS = false;
1841   for (int I : Mask) {
1842     if (I == -1)
1843       continue;
1844     assert(I >= 0 && I < (NumOpElts * 2) &&
1845            "Out-of-bounds shuffle mask element");
1846     UsesLHS |= (I < NumOpElts);
1847     UsesRHS |= (I >= NumOpElts);
1848     if (UsesLHS && UsesRHS)
1849       return false;
1850   }
1851   // Allow for degenerate case: completely undef mask means neither source is used.
1852   return UsesLHS || UsesRHS;
1853 }
1854 
1855 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask, int NumSrcElts) {
1856   // We don't have vector operand size information, so assume operands are the
1857   // same size as the mask.
1858   return isSingleSourceMaskImpl(Mask, NumSrcElts);
1859 }
1860 
1861 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1862   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1863     return false;
1864   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1865     if (Mask[i] == -1)
1866       continue;
1867     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1868       return false;
1869   }
1870   return true;
1871 }
1872 
1873 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask, int NumSrcElts) {
1874   if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1875     return false;
1876   // We don't have vector operand size information, so assume operands are the
1877   // same size as the mask.
1878   return isIdentityMaskImpl(Mask, NumSrcElts);
1879 }
1880 
1881 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask, int NumSrcElts) {
1882   if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1883     return false;
1884   if (!isSingleSourceMask(Mask, NumSrcElts))
1885     return false;
1886 
1887   // The number of elements in the mask must be at least 2.
1888   if (NumSrcElts < 2)
1889     return false;
1890 
1891   for (int I = 0, E = Mask.size(); I < E; ++I) {
1892     if (Mask[I] == -1)
1893       continue;
1894     if (Mask[I] != (NumSrcElts - 1 - I) &&
1895         Mask[I] != (NumSrcElts + NumSrcElts - 1 - I))
1896       return false;
1897   }
1898   return true;
1899 }
1900 
1901 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask, int NumSrcElts) {
1902   if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1903     return false;
1904   if (!isSingleSourceMask(Mask, NumSrcElts))
1905     return false;
1906   for (int I = 0, E = Mask.size(); I < E; ++I) {
1907     if (Mask[I] == -1)
1908       continue;
1909     if (Mask[I] != 0 && Mask[I] != NumSrcElts)
1910       return false;
1911   }
1912   return true;
1913 }
1914 
1915 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask, int NumSrcElts) {
1916   if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1917     return false;
1918   // Select is differentiated from identity. It requires using both sources.
1919   if (isSingleSourceMask(Mask, NumSrcElts))
1920     return false;
1921   for (int I = 0, E = Mask.size(); I < E; ++I) {
1922     if (Mask[I] == -1)
1923       continue;
1924     if (Mask[I] != I && Mask[I] != (NumSrcElts + I))
1925       return false;
1926   }
1927   return true;
1928 }
1929 
1930 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask, int NumSrcElts) {
1931   // Example masks that will return true:
1932   // v1 = <a, b, c, d>
1933   // v2 = <e, f, g, h>
1934   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1935   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
1936 
1937   if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1938     return false;
1939   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
1940   int Sz = Mask.size();
1941   if (Sz < 2 || !isPowerOf2_32(Sz))
1942     return false;
1943 
1944   // 2. The first element of the mask must be either a 0 or a 1.
1945   if (Mask[0] != 0 && Mask[0] != 1)
1946     return false;
1947 
1948   // 3. The difference between the first 2 elements must be equal to the
1949   // number of elements in the mask.
1950   if ((Mask[1] - Mask[0]) != NumSrcElts)
1951     return false;
1952 
1953   // 4. The difference between consecutive even-numbered and odd-numbered
1954   // elements must be equal to 2.
1955   for (int I = 2; I < Sz; ++I) {
1956     int MaskEltVal = Mask[I];
1957     if (MaskEltVal == -1)
1958       return false;
1959     int MaskEltPrevVal = Mask[I - 2];
1960     if (MaskEltVal - MaskEltPrevVal != 2)
1961       return false;
1962   }
1963   return true;
1964 }
1965 
1966 bool ShuffleVectorInst::isSpliceMask(ArrayRef<int> Mask, int NumSrcElts,
1967                                      int &Index) {
1968   if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1969     return false;
1970   // Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4>
1971   int StartIndex = -1;
1972   for (int I = 0, E = Mask.size(); I != E; ++I) {
1973     int MaskEltVal = Mask[I];
1974     if (MaskEltVal == -1)
1975       continue;
1976 
1977     if (StartIndex == -1) {
1978       // Don't support a StartIndex that begins in the second input, or if the
1979       // first non-undef index would access below the StartIndex.
1980       if (MaskEltVal < I || NumSrcElts <= (MaskEltVal - I))
1981         return false;
1982 
1983       StartIndex = MaskEltVal - I;
1984       continue;
1985     }
1986 
1987     // Splice is sequential starting from StartIndex.
1988     if (MaskEltVal != (StartIndex + I))
1989       return false;
1990   }
1991 
1992   if (StartIndex == -1)
1993     return false;
1994 
1995   // NOTE: This accepts StartIndex == 0 (COPY).
1996   Index = StartIndex;
1997   return true;
1998 }
1999 
2000 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2001                                                int NumSrcElts, int &Index) {
2002   // Must extract from a single source.
2003   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2004     return false;
2005 
2006   // Must be smaller (else this is an Identity shuffle).
2007   if (NumSrcElts <= (int)Mask.size())
2008     return false;
2009 
2010   // Find start of extraction, accounting that we may start with an UNDEF.
2011   int SubIndex = -1;
2012   for (int i = 0, e = Mask.size(); i != e; ++i) {
2013     int M = Mask[i];
2014     if (M < 0)
2015       continue;
2016     int Offset = (M % NumSrcElts) - i;
2017     if (0 <= SubIndex && SubIndex != Offset)
2018       return false;
2019     SubIndex = Offset;
2020   }
2021 
2022   if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2023     Index = SubIndex;
2024     return true;
2025   }
2026   return false;
2027 }
2028 
2029 bool ShuffleVectorInst::isInsertSubvectorMask(ArrayRef<int> Mask,
2030                                               int NumSrcElts, int &NumSubElts,
2031                                               int &Index) {
2032   int NumMaskElts = Mask.size();
2033 
2034   // Don't try to match if we're shuffling to a smaller size.
2035   if (NumMaskElts < NumSrcElts)
2036     return false;
2037 
2038   // TODO: We don't recognize self-insertion/widening.
2039   if (isSingleSourceMaskImpl(Mask, NumSrcElts))
2040     return false;
2041 
2042   // Determine which mask elements are attributed to which source.
2043   APInt UndefElts = APInt::getZero(NumMaskElts);
2044   APInt Src0Elts = APInt::getZero(NumMaskElts);
2045   APInt Src1Elts = APInt::getZero(NumMaskElts);
2046   bool Src0Identity = true;
2047   bool Src1Identity = true;
2048 
2049   for (int i = 0; i != NumMaskElts; ++i) {
2050     int M = Mask[i];
2051     if (M < 0) {
2052       UndefElts.setBit(i);
2053       continue;
2054     }
2055     if (M < NumSrcElts) {
2056       Src0Elts.setBit(i);
2057       Src0Identity &= (M == i);
2058       continue;
2059     }
2060     Src1Elts.setBit(i);
2061     Src1Identity &= (M == (i + NumSrcElts));
2062   }
2063   assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() &&
2064          "unknown shuffle elements");
2065   assert(!Src0Elts.isZero() && !Src1Elts.isZero() &&
2066          "2-source shuffle not found");
2067 
2068   // Determine lo/hi span ranges.
2069   // TODO: How should we handle undefs at the start of subvector insertions?
2070   int Src0Lo = Src0Elts.countr_zero();
2071   int Src1Lo = Src1Elts.countr_zero();
2072   int Src0Hi = NumMaskElts - Src0Elts.countl_zero();
2073   int Src1Hi = NumMaskElts - Src1Elts.countl_zero();
2074 
2075   // If src0 is in place, see if the src1 elements is inplace within its own
2076   // span.
2077   if (Src0Identity) {
2078     int NumSub1Elts = Src1Hi - Src1Lo;
2079     ArrayRef<int> Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts);
2080     if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) {
2081       NumSubElts = NumSub1Elts;
2082       Index = Src1Lo;
2083       return true;
2084     }
2085   }
2086 
2087   // If src1 is in place, see if the src0 elements is inplace within its own
2088   // span.
2089   if (Src1Identity) {
2090     int NumSub0Elts = Src0Hi - Src0Lo;
2091     ArrayRef<int> Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts);
2092     if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) {
2093       NumSubElts = NumSub0Elts;
2094       Index = Src0Lo;
2095       return true;
2096     }
2097   }
2098 
2099   return false;
2100 }
2101 
2102 bool ShuffleVectorInst::isIdentityWithPadding() const {
2103   // FIXME: Not currently possible to express a shuffle mask for a scalable
2104   // vector for this case.
2105   if (isa<ScalableVectorType>(getType()))
2106     return false;
2107 
2108   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2109   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2110   if (NumMaskElts <= NumOpElts)
2111     return false;
2112 
2113   // The first part of the mask must choose elements from exactly 1 source op.
2114   ArrayRef<int> Mask = getShuffleMask();
2115   if (!isIdentityMaskImpl(Mask, NumOpElts))
2116     return false;
2117 
2118   // All extending must be with undef elements.
2119   for (int i = NumOpElts; i < NumMaskElts; ++i)
2120     if (Mask[i] != -1)
2121       return false;
2122 
2123   return true;
2124 }
2125 
2126 bool ShuffleVectorInst::isIdentityWithExtract() const {
2127   // FIXME: Not currently possible to express a shuffle mask for a scalable
2128   // vector for this case.
2129   if (isa<ScalableVectorType>(getType()))
2130     return false;
2131 
2132   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2133   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2134   if (NumMaskElts >= NumOpElts)
2135     return false;
2136 
2137   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2138 }
2139 
2140 bool ShuffleVectorInst::isConcat() const {
2141   // Vector concatenation is differentiated from identity with padding.
2142   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
2143     return false;
2144 
2145   // FIXME: Not currently possible to express a shuffle mask for a scalable
2146   // vector for this case.
2147   if (isa<ScalableVectorType>(getType()))
2148     return false;
2149 
2150   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2151   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2152   if (NumMaskElts != NumOpElts * 2)
2153     return false;
2154 
2155   // Use the mask length rather than the operands' vector lengths here. We
2156   // already know that the shuffle returns a vector twice as long as the inputs,
2157   // and neither of the inputs are undef vectors. If the mask picks consecutive
2158   // elements from both inputs, then this is a concatenation of the inputs.
2159   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2160 }
2161 
2162 static bool isReplicationMaskWithParams(ArrayRef<int> Mask,
2163                                         int ReplicationFactor, int VF) {
2164   assert(Mask.size() == (unsigned)ReplicationFactor * VF &&
2165          "Unexpected mask size.");
2166 
2167   for (int CurrElt : seq(VF)) {
2168     ArrayRef<int> CurrSubMask = Mask.take_front(ReplicationFactor);
2169     assert(CurrSubMask.size() == (unsigned)ReplicationFactor &&
2170            "Run out of mask?");
2171     Mask = Mask.drop_front(ReplicationFactor);
2172     if (!all_of(CurrSubMask, [CurrElt](int MaskElt) {
2173           return MaskElt == PoisonMaskElem || MaskElt == CurrElt;
2174         }))
2175       return false;
2176   }
2177   assert(Mask.empty() && "Did not consume the whole mask?");
2178 
2179   return true;
2180 }
2181 
2182 bool ShuffleVectorInst::isReplicationMask(ArrayRef<int> Mask,
2183                                           int &ReplicationFactor, int &VF) {
2184   // undef-less case is trivial.
2185   if (!llvm::is_contained(Mask, PoisonMaskElem)) {
2186     ReplicationFactor =
2187         Mask.take_while([](int MaskElt) { return MaskElt == 0; }).size();
2188     if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0)
2189       return false;
2190     VF = Mask.size() / ReplicationFactor;
2191     return isReplicationMaskWithParams(Mask, ReplicationFactor, VF);
2192   }
2193 
2194   // However, if the mask contains undef's, we have to enumerate possible tuples
2195   // and pick one. There are bounds on replication factor: [1, mask size]
2196   // (where RF=1 is an identity shuffle, RF=mask size is a broadcast shuffle)
2197   // Additionally, mask size is a replication factor multiplied by vector size,
2198   // which further significantly reduces the search space.
2199 
2200   // Before doing that, let's perform basic correctness checking first.
2201   int Largest = -1;
2202   for (int MaskElt : Mask) {
2203     if (MaskElt == PoisonMaskElem)
2204       continue;
2205     // Elements must be in non-decreasing order.
2206     if (MaskElt < Largest)
2207       return false;
2208     Largest = std::max(Largest, MaskElt);
2209   }
2210 
2211   // Prefer larger replication factor if all else equal.
2212   for (int PossibleReplicationFactor :
2213        reverse(seq_inclusive<unsigned>(1, Mask.size()))) {
2214     if (Mask.size() % PossibleReplicationFactor != 0)
2215       continue;
2216     int PossibleVF = Mask.size() / PossibleReplicationFactor;
2217     if (!isReplicationMaskWithParams(Mask, PossibleReplicationFactor,
2218                                      PossibleVF))
2219       continue;
2220     ReplicationFactor = PossibleReplicationFactor;
2221     VF = PossibleVF;
2222     return true;
2223   }
2224 
2225   return false;
2226 }
2227 
2228 bool ShuffleVectorInst::isReplicationMask(int &ReplicationFactor,
2229                                           int &VF) const {
2230   // Not possible to express a shuffle mask for a scalable vector for this
2231   // case.
2232   if (isa<ScalableVectorType>(getType()))
2233     return false;
2234 
2235   VF = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2236   if (ShuffleMask.size() % VF != 0)
2237     return false;
2238   ReplicationFactor = ShuffleMask.size() / VF;
2239 
2240   return isReplicationMaskWithParams(ShuffleMask, ReplicationFactor, VF);
2241 }
2242 
2243 bool ShuffleVectorInst::isOneUseSingleSourceMask(ArrayRef<int> Mask, int VF) {
2244   if (VF <= 0 || Mask.size() < static_cast<unsigned>(VF) ||
2245       Mask.size() % VF != 0)
2246     return false;
2247   for (unsigned K = 0, Sz = Mask.size(); K < Sz; K += VF) {
2248     ArrayRef<int> SubMask = Mask.slice(K, VF);
2249     if (all_of(SubMask, [](int Idx) { return Idx == PoisonMaskElem; }))
2250       continue;
2251     SmallBitVector Used(VF, false);
2252     for (int Idx : SubMask) {
2253       if (Idx != PoisonMaskElem && Idx < VF)
2254         Used.set(Idx);
2255     }
2256     if (!Used.all())
2257       return false;
2258   }
2259   return true;
2260 }
2261 
2262 /// Return true if this shuffle mask is a replication mask.
2263 bool ShuffleVectorInst::isOneUseSingleSourceMask(int VF) const {
2264   // Not possible to express a shuffle mask for a scalable vector for this
2265   // case.
2266   if (isa<ScalableVectorType>(getType()))
2267     return false;
2268   if (!isSingleSourceMask(ShuffleMask, VF))
2269     return false;
2270 
2271   return isOneUseSingleSourceMask(ShuffleMask, VF);
2272 }
2273 
2274 bool ShuffleVectorInst::isInterleave(unsigned Factor) {
2275   FixedVectorType *OpTy = dyn_cast<FixedVectorType>(getOperand(0)->getType());
2276   // shuffle_vector can only interleave fixed length vectors - for scalable
2277   // vectors, see the @llvm.vector.interleave2 intrinsic
2278   if (!OpTy)
2279     return false;
2280   unsigned OpNumElts = OpTy->getNumElements();
2281 
2282   return isInterleaveMask(ShuffleMask, Factor, OpNumElts * 2);
2283 }
2284 
2285 bool ShuffleVectorInst::isInterleaveMask(
2286     ArrayRef<int> Mask, unsigned Factor, unsigned NumInputElts,
2287     SmallVectorImpl<unsigned> &StartIndexes) {
2288   unsigned NumElts = Mask.size();
2289   if (NumElts % Factor)
2290     return false;
2291 
2292   unsigned LaneLen = NumElts / Factor;
2293   if (!isPowerOf2_32(LaneLen))
2294     return false;
2295 
2296   StartIndexes.resize(Factor);
2297 
2298   // Check whether each element matches the general interleaved rule.
2299   // Ignore undef elements, as long as the defined elements match the rule.
2300   // Outer loop processes all factors (x, y, z in the above example)
2301   unsigned I = 0, J;
2302   for (; I < Factor; I++) {
2303     unsigned SavedLaneValue;
2304     unsigned SavedNoUndefs = 0;
2305 
2306     // Inner loop processes consecutive accesses (x, x+1... in the example)
2307     for (J = 0; J < LaneLen - 1; J++) {
2308       // Lane computes x's position in the Mask
2309       unsigned Lane = J * Factor + I;
2310       unsigned NextLane = Lane + Factor;
2311       int LaneValue = Mask[Lane];
2312       int NextLaneValue = Mask[NextLane];
2313 
2314       // If both are defined, values must be sequential
2315       if (LaneValue >= 0 && NextLaneValue >= 0 &&
2316           LaneValue + 1 != NextLaneValue)
2317         break;
2318 
2319       // If the next value is undef, save the current one as reference
2320       if (LaneValue >= 0 && NextLaneValue < 0) {
2321         SavedLaneValue = LaneValue;
2322         SavedNoUndefs = 1;
2323       }
2324 
2325       // Undefs are allowed, but defined elements must still be consecutive:
2326       // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
2327       // Verify this by storing the last non-undef followed by an undef
2328       // Check that following non-undef masks are incremented with the
2329       // corresponding distance.
2330       if (SavedNoUndefs > 0 && LaneValue < 0) {
2331         SavedNoUndefs++;
2332         if (NextLaneValue >= 0 &&
2333             SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
2334           break;
2335       }
2336     }
2337 
2338     if (J < LaneLen - 1)
2339       return false;
2340 
2341     int StartMask = 0;
2342     if (Mask[I] >= 0) {
2343       // Check that the start of the I range (J=0) is greater than 0
2344       StartMask = Mask[I];
2345     } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
2346       // StartMask defined by the last value in lane
2347       StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
2348     } else if (SavedNoUndefs > 0) {
2349       // StartMask defined by some non-zero value in the j loop
2350       StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
2351     }
2352     // else StartMask remains set to 0, i.e. all elements are undefs
2353 
2354     if (StartMask < 0)
2355       return false;
2356     // We must stay within the vectors; This case can happen with undefs.
2357     if (StartMask + LaneLen > NumInputElts)
2358       return false;
2359 
2360     StartIndexes[I] = StartMask;
2361   }
2362 
2363   return true;
2364 }
2365 
2366 /// Check if the mask is a DE-interleave mask of the given factor
2367 /// \p Factor like:
2368 ///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
2369 bool ShuffleVectorInst::isDeInterleaveMaskOfFactor(ArrayRef<int> Mask,
2370                                                    unsigned Factor,
2371                                                    unsigned &Index) {
2372   // Check all potential start indices from 0 to (Factor - 1).
2373   for (unsigned Idx = 0; Idx < Factor; Idx++) {
2374     unsigned I = 0;
2375 
2376     // Check that elements are in ascending order by Factor. Ignore undef
2377     // elements.
2378     for (; I < Mask.size(); I++)
2379       if (Mask[I] >= 0 && static_cast<unsigned>(Mask[I]) != Idx + I * Factor)
2380         break;
2381 
2382     if (I == Mask.size()) {
2383       Index = Idx;
2384       return true;
2385     }
2386   }
2387 
2388   return false;
2389 }
2390 
2391 /// Try to lower a vector shuffle as a bit rotation.
2392 ///
2393 /// Look for a repeated rotation pattern in each sub group.
2394 /// Returns an element-wise left bit rotation amount or -1 if failed.
2395 static int matchShuffleAsBitRotate(ArrayRef<int> Mask, int NumSubElts) {
2396   int NumElts = Mask.size();
2397   assert((NumElts % NumSubElts) == 0 && "Illegal shuffle mask");
2398 
2399   int RotateAmt = -1;
2400   for (int i = 0; i != NumElts; i += NumSubElts) {
2401     for (int j = 0; j != NumSubElts; ++j) {
2402       int M = Mask[i + j];
2403       if (M < 0)
2404         continue;
2405       if (M < i || M >= i + NumSubElts)
2406         return -1;
2407       int Offset = (NumSubElts - (M - (i + j))) % NumSubElts;
2408       if (0 <= RotateAmt && Offset != RotateAmt)
2409         return -1;
2410       RotateAmt = Offset;
2411     }
2412   }
2413   return RotateAmt;
2414 }
2415 
2416 bool ShuffleVectorInst::isBitRotateMask(
2417     ArrayRef<int> Mask, unsigned EltSizeInBits, unsigned MinSubElts,
2418     unsigned MaxSubElts, unsigned &NumSubElts, unsigned &RotateAmt) {
2419   for (NumSubElts = MinSubElts; NumSubElts <= MaxSubElts; NumSubElts *= 2) {
2420     int EltRotateAmt = matchShuffleAsBitRotate(Mask, NumSubElts);
2421     if (EltRotateAmt < 0)
2422       continue;
2423     RotateAmt = EltRotateAmt * EltSizeInBits;
2424     return true;
2425   }
2426 
2427   return false;
2428 }
2429 
2430 //===----------------------------------------------------------------------===//
2431 //                             InsertValueInst Class
2432 //===----------------------------------------------------------------------===//
2433 
2434 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2435                            const Twine &Name) {
2436   assert(getNumOperands() == 2 && "NumOperands not initialized?");
2437 
2438   // There's no fundamental reason why we require at least one index
2439   // (other than weirdness with &*IdxBegin being invalid; see
2440   // getelementptr's init routine for example). But there's no
2441   // present need to support it.
2442   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2443 
2444   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2445          Val->getType() && "Inserted value must match indexed type!");
2446   Op<0>() = Agg;
2447   Op<1>() = Val;
2448 
2449   Indices.append(Idxs.begin(), Idxs.end());
2450   setName(Name);
2451 }
2452 
2453 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2454   : Instruction(IVI.getType(), InsertValue,
2455                 OperandTraits<InsertValueInst>::op_begin(this), 2),
2456     Indices(IVI.Indices) {
2457   Op<0>() = IVI.getOperand(0);
2458   Op<1>() = IVI.getOperand(1);
2459   SubclassOptionalData = IVI.SubclassOptionalData;
2460 }
2461 
2462 //===----------------------------------------------------------------------===//
2463 //                             ExtractValueInst Class
2464 //===----------------------------------------------------------------------===//
2465 
2466 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2467   assert(getNumOperands() == 1 && "NumOperands not initialized?");
2468 
2469   // There's no fundamental reason why we require at least one index.
2470   // But there's no present need to support it.
2471   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2472 
2473   Indices.append(Idxs.begin(), Idxs.end());
2474   setName(Name);
2475 }
2476 
2477 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2478   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2479     Indices(EVI.Indices) {
2480   SubclassOptionalData = EVI.SubclassOptionalData;
2481 }
2482 
2483 // getIndexedType - Returns the type of the element that would be extracted
2484 // with an extractvalue instruction with the specified parameters.
2485 //
2486 // A null type is returned if the indices are invalid for the specified
2487 // pointer type.
2488 //
2489 Type *ExtractValueInst::getIndexedType(Type *Agg,
2490                                        ArrayRef<unsigned> Idxs) {
2491   for (unsigned Index : Idxs) {
2492     // We can't use CompositeType::indexValid(Index) here.
2493     // indexValid() always returns true for arrays because getelementptr allows
2494     // out-of-bounds indices. Since we don't allow those for extractvalue and
2495     // insertvalue we need to check array indexing manually.
2496     // Since the only other types we can index into are struct types it's just
2497     // as easy to check those manually as well.
2498     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2499       if (Index >= AT->getNumElements())
2500         return nullptr;
2501       Agg = AT->getElementType();
2502     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2503       if (Index >= ST->getNumElements())
2504         return nullptr;
2505       Agg = ST->getElementType(Index);
2506     } else {
2507       // Not a valid type to index into.
2508       return nullptr;
2509     }
2510   }
2511   return const_cast<Type*>(Agg);
2512 }
2513 
2514 //===----------------------------------------------------------------------===//
2515 //                             UnaryOperator Class
2516 //===----------------------------------------------------------------------===//
2517 
2518 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
2519                              const Twine &Name, InsertPosition InsertBefore)
2520     : UnaryInstruction(Ty, iType, S, InsertBefore) {
2521   Op<0>() = S;
2522   setName(Name);
2523   AssertOK();
2524 }
2525 
2526 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, const Twine &Name,
2527                                      InsertPosition InsertBefore) {
2528   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2529 }
2530 
2531 void UnaryOperator::AssertOK() {
2532   Value *LHS = getOperand(0);
2533   (void)LHS; // Silence warnings.
2534 #ifndef NDEBUG
2535   switch (getOpcode()) {
2536   case FNeg:
2537     assert(getType() == LHS->getType() &&
2538            "Unary operation should return same type as operand!");
2539     assert(getType()->isFPOrFPVectorTy() &&
2540            "Tried to create a floating-point operation on a "
2541            "non-floating-point type!");
2542     break;
2543   default: llvm_unreachable("Invalid opcode provided");
2544   }
2545 #endif
2546 }
2547 
2548 //===----------------------------------------------------------------------===//
2549 //                             BinaryOperator Class
2550 //===----------------------------------------------------------------------===//
2551 
2552 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
2553                                const Twine &Name, InsertPosition InsertBefore)
2554     : Instruction(Ty, iType, OperandTraits<BinaryOperator>::op_begin(this),
2555                   OperandTraits<BinaryOperator>::operands(this), InsertBefore) {
2556   Op<0>() = S1;
2557   Op<1>() = S2;
2558   setName(Name);
2559   AssertOK();
2560 }
2561 
2562 void BinaryOperator::AssertOK() {
2563   Value *LHS = getOperand(0), *RHS = getOperand(1);
2564   (void)LHS; (void)RHS; // Silence warnings.
2565   assert(LHS->getType() == RHS->getType() &&
2566          "Binary operator operand types must match!");
2567 #ifndef NDEBUG
2568   switch (getOpcode()) {
2569   case Add: case Sub:
2570   case Mul:
2571     assert(getType() == LHS->getType() &&
2572            "Arithmetic operation should return same type as operands!");
2573     assert(getType()->isIntOrIntVectorTy() &&
2574            "Tried to create an integer operation on a non-integer type!");
2575     break;
2576   case FAdd: case FSub:
2577   case FMul:
2578     assert(getType() == LHS->getType() &&
2579            "Arithmetic operation should return same type as operands!");
2580     assert(getType()->isFPOrFPVectorTy() &&
2581            "Tried to create a floating-point operation on a "
2582            "non-floating-point type!");
2583     break;
2584   case UDiv:
2585   case SDiv:
2586     assert(getType() == LHS->getType() &&
2587            "Arithmetic operation should return same type as operands!");
2588     assert(getType()->isIntOrIntVectorTy() &&
2589            "Incorrect operand type (not integer) for S/UDIV");
2590     break;
2591   case FDiv:
2592     assert(getType() == LHS->getType() &&
2593            "Arithmetic operation should return same type as operands!");
2594     assert(getType()->isFPOrFPVectorTy() &&
2595            "Incorrect operand type (not floating point) for FDIV");
2596     break;
2597   case URem:
2598   case SRem:
2599     assert(getType() == LHS->getType() &&
2600            "Arithmetic operation should return same type as operands!");
2601     assert(getType()->isIntOrIntVectorTy() &&
2602            "Incorrect operand type (not integer) for S/UREM");
2603     break;
2604   case FRem:
2605     assert(getType() == LHS->getType() &&
2606            "Arithmetic operation should return same type as operands!");
2607     assert(getType()->isFPOrFPVectorTy() &&
2608            "Incorrect operand type (not floating point) for FREM");
2609     break;
2610   case Shl:
2611   case LShr:
2612   case AShr:
2613     assert(getType() == LHS->getType() &&
2614            "Shift operation should return same type as operands!");
2615     assert(getType()->isIntOrIntVectorTy() &&
2616            "Tried to create a shift operation on a non-integral type!");
2617     break;
2618   case And: case Or:
2619   case Xor:
2620     assert(getType() == LHS->getType() &&
2621            "Logical operation should return same type as operands!");
2622     assert(getType()->isIntOrIntVectorTy() &&
2623            "Tried to create a logical operation on a non-integral type!");
2624     break;
2625   default: llvm_unreachable("Invalid opcode provided");
2626   }
2627 #endif
2628 }
2629 
2630 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2631                                        const Twine &Name,
2632                                        InsertPosition InsertBefore) {
2633   assert(S1->getType() == S2->getType() &&
2634          "Cannot create binary operator with two operands of differing type!");
2635   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2636 }
2637 
2638 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2639                                           InsertPosition InsertBefore) {
2640   Value *Zero = ConstantInt::get(Op->getType(), 0);
2641   return new BinaryOperator(Instruction::Sub, Zero, Op, Op->getType(), Name,
2642                             InsertBefore);
2643 }
2644 
2645 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2646                                              InsertPosition InsertBefore) {
2647   Value *Zero = ConstantInt::get(Op->getType(), 0);
2648   return BinaryOperator::CreateNSWSub(Zero, Op, Name, InsertBefore);
2649 }
2650 
2651 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2652                                           InsertPosition InsertBefore) {
2653   Constant *C = Constant::getAllOnesValue(Op->getType());
2654   return new BinaryOperator(Instruction::Xor, Op, C,
2655                             Op->getType(), Name, InsertBefore);
2656 }
2657 
2658 // Exchange the two operands to this instruction. This instruction is safe to
2659 // use on any binary instruction and does not modify the semantics of the
2660 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2661 // is changed.
2662 bool BinaryOperator::swapOperands() {
2663   if (!isCommutative())
2664     return true; // Can't commute operands
2665   Op<0>().swap(Op<1>());
2666   return false;
2667 }
2668 
2669 //===----------------------------------------------------------------------===//
2670 //                             FPMathOperator Class
2671 //===----------------------------------------------------------------------===//
2672 
2673 float FPMathOperator::getFPAccuracy() const {
2674   const MDNode *MD =
2675       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2676   if (!MD)
2677     return 0.0;
2678   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2679   return Accuracy->getValueAPF().convertToFloat();
2680 }
2681 
2682 //===----------------------------------------------------------------------===//
2683 //                                CastInst Class
2684 //===----------------------------------------------------------------------===//
2685 
2686 // Just determine if this cast only deals with integral->integral conversion.
2687 bool CastInst::isIntegerCast() const {
2688   switch (getOpcode()) {
2689     default: return false;
2690     case Instruction::ZExt:
2691     case Instruction::SExt:
2692     case Instruction::Trunc:
2693       return true;
2694     case Instruction::BitCast:
2695       return getOperand(0)->getType()->isIntegerTy() &&
2696         getType()->isIntegerTy();
2697   }
2698 }
2699 
2700 /// This function determines if the CastInst does not require any bits to be
2701 /// changed in order to effect the cast. Essentially, it identifies cases where
2702 /// no code gen is necessary for the cast, hence the name no-op cast.  For
2703 /// example, the following are all no-op casts:
2704 /// # bitcast i32* %x to i8*
2705 /// # bitcast <2 x i32> %x to <4 x i16>
2706 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2707 /// Determine if the described cast is a no-op.
2708 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2709                           Type *SrcTy,
2710                           Type *DestTy,
2711                           const DataLayout &DL) {
2712   assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
2713   switch (Opcode) {
2714     default: llvm_unreachable("Invalid CastOp");
2715     case Instruction::Trunc:
2716     case Instruction::ZExt:
2717     case Instruction::SExt:
2718     case Instruction::FPTrunc:
2719     case Instruction::FPExt:
2720     case Instruction::UIToFP:
2721     case Instruction::SIToFP:
2722     case Instruction::FPToUI:
2723     case Instruction::FPToSI:
2724     case Instruction::AddrSpaceCast:
2725       // TODO: Target informations may give a more accurate answer here.
2726       return false;
2727     case Instruction::BitCast:
2728       return true;  // BitCast never modifies bits.
2729     case Instruction::PtrToInt:
2730       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2731              DestTy->getScalarSizeInBits();
2732     case Instruction::IntToPtr:
2733       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2734              SrcTy->getScalarSizeInBits();
2735   }
2736 }
2737 
2738 bool CastInst::isNoopCast(const DataLayout &DL) const {
2739   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2740 }
2741 
2742 /// This function determines if a pair of casts can be eliminated and what
2743 /// opcode should be used in the elimination. This assumes that there are two
2744 /// instructions like this:
2745 /// *  %F = firstOpcode SrcTy %x to MidTy
2746 /// *  %S = secondOpcode MidTy %F to DstTy
2747 /// The function returns a resultOpcode so these two casts can be replaced with:
2748 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2749 /// If no such cast is permitted, the function returns 0.
2750 unsigned CastInst::isEliminableCastPair(
2751   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2752   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2753   Type *DstIntPtrTy) {
2754   // Define the 144 possibilities for these two cast instructions. The values
2755   // in this matrix determine what to do in a given situation and select the
2756   // case in the switch below.  The rows correspond to firstOp, the columns
2757   // correspond to secondOp.  In looking at the table below, keep in mind
2758   // the following cast properties:
2759   //
2760   //          Size Compare       Source               Destination
2761   // Operator  Src ? Size   Type       Sign         Type       Sign
2762   // -------- ------------ -------------------   ---------------------
2763   // TRUNC         >       Integer      Any        Integral     Any
2764   // ZEXT          <       Integral   Unsigned     Integer      Any
2765   // SEXT          <       Integral    Signed      Integer      Any
2766   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2767   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2768   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2769   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2770   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2771   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2772   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2773   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2774   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2775   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
2776   //
2777   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2778   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2779   // into "fptoui double to i64", but this loses information about the range
2780   // of the produced value (we no longer know the top-part is all zeros).
2781   // Further this conversion is often much more expensive for typical hardware,
2782   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2783   // same reason.
2784   const unsigned numCastOps =
2785     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2786   static const uint8_t CastResults[numCastOps][numCastOps] = {
2787     // T        F  F  U  S  F  F  P  I  B  A  -+
2788     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
2789     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
2790     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
2791     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
2792     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
2793     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
2794     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
2795     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
2796     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
2797     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
2798     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
2799     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
2800     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
2801     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
2802     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
2803     {  5, 5, 5, 0, 0, 5, 5, 0, 0,16, 5, 1,14}, // BitCast        |
2804     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2805   };
2806 
2807   // TODO: This logic could be encoded into the table above and handled in the
2808   // switch below.
2809   // If either of the casts are a bitcast from scalar to vector, disallow the
2810   // merging. However, any pair of bitcasts are allowed.
2811   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
2812   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2813   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2814 
2815   // Check if any of the casts convert scalars <-> vectors.
2816   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2817       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2818     if (!AreBothBitcasts)
2819       return 0;
2820 
2821   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2822                             [secondOp-Instruction::CastOpsBegin];
2823   switch (ElimCase) {
2824     case 0:
2825       // Categorically disallowed.
2826       return 0;
2827     case 1:
2828       // Allowed, use first cast's opcode.
2829       return firstOp;
2830     case 2:
2831       // Allowed, use second cast's opcode.
2832       return secondOp;
2833     case 3:
2834       // No-op cast in second op implies firstOp as long as the DestTy
2835       // is integer and we are not converting between a vector and a
2836       // non-vector type.
2837       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2838         return firstOp;
2839       return 0;
2840     case 4:
2841       // No-op cast in second op implies firstOp as long as the DestTy
2842       // matches MidTy.
2843       if (DstTy == MidTy)
2844         return firstOp;
2845       return 0;
2846     case 5:
2847       // No-op cast in first op implies secondOp as long as the SrcTy
2848       // is an integer.
2849       if (SrcTy->isIntegerTy())
2850         return secondOp;
2851       return 0;
2852     case 7: {
2853       // Disable inttoptr/ptrtoint optimization if enabled.
2854       if (DisableI2pP2iOpt)
2855         return 0;
2856 
2857       // Cannot simplify if address spaces are different!
2858       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2859         return 0;
2860 
2861       unsigned MidSize = MidTy->getScalarSizeInBits();
2862       // We can still fold this without knowing the actual sizes as long we
2863       // know that the intermediate pointer is the largest possible
2864       // pointer size.
2865       // FIXME: Is this always true?
2866       if (MidSize == 64)
2867         return Instruction::BitCast;
2868 
2869       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2870       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2871         return 0;
2872       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2873       if (MidSize >= PtrSize)
2874         return Instruction::BitCast;
2875       return 0;
2876     }
2877     case 8: {
2878       // ext, trunc -> bitcast,    if the SrcTy and DstTy are the same
2879       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2880       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2881       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2882       unsigned DstSize = DstTy->getScalarSizeInBits();
2883       if (SrcTy == DstTy)
2884         return Instruction::BitCast;
2885       if (SrcSize < DstSize)
2886         return firstOp;
2887       if (SrcSize > DstSize)
2888         return secondOp;
2889       return 0;
2890     }
2891     case 9:
2892       // zext, sext -> zext, because sext can't sign extend after zext
2893       return Instruction::ZExt;
2894     case 11: {
2895       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2896       if (!MidIntPtrTy)
2897         return 0;
2898       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2899       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2900       unsigned DstSize = DstTy->getScalarSizeInBits();
2901       if (SrcSize <= PtrSize && SrcSize == DstSize)
2902         return Instruction::BitCast;
2903       return 0;
2904     }
2905     case 12:
2906       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
2907       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2908       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2909         return Instruction::AddrSpaceCast;
2910       return Instruction::BitCast;
2911     case 13:
2912       // FIXME: this state can be merged with (1), but the following assert
2913       // is useful to check the correcteness of the sequence due to semantic
2914       // change of bitcast.
2915       assert(
2916         SrcTy->isPtrOrPtrVectorTy() &&
2917         MidTy->isPtrOrPtrVectorTy() &&
2918         DstTy->isPtrOrPtrVectorTy() &&
2919         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2920         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2921         "Illegal addrspacecast, bitcast sequence!");
2922       // Allowed, use first cast's opcode
2923       return firstOp;
2924     case 14:
2925       // bitcast, addrspacecast -> addrspacecast
2926       return Instruction::AddrSpaceCast;
2927     case 15:
2928       // FIXME: this state can be merged with (1), but the following assert
2929       // is useful to check the correcteness of the sequence due to semantic
2930       // change of bitcast.
2931       assert(
2932         SrcTy->isIntOrIntVectorTy() &&
2933         MidTy->isPtrOrPtrVectorTy() &&
2934         DstTy->isPtrOrPtrVectorTy() &&
2935         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2936         "Illegal inttoptr, bitcast sequence!");
2937       // Allowed, use first cast's opcode
2938       return firstOp;
2939     case 16:
2940       // FIXME: this state can be merged with (2), but the following assert
2941       // is useful to check the correcteness of the sequence due to semantic
2942       // change of bitcast.
2943       assert(
2944         SrcTy->isPtrOrPtrVectorTy() &&
2945         MidTy->isPtrOrPtrVectorTy() &&
2946         DstTy->isIntOrIntVectorTy() &&
2947         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2948         "Illegal bitcast, ptrtoint sequence!");
2949       // Allowed, use second cast's opcode
2950       return secondOp;
2951     case 17:
2952       // (sitofp (zext x)) -> (uitofp x)
2953       return Instruction::UIToFP;
2954     case 99:
2955       // Cast combination can't happen (error in input). This is for all cases
2956       // where the MidTy is not the same for the two cast instructions.
2957       llvm_unreachable("Invalid Cast Combination");
2958     default:
2959       llvm_unreachable("Error in CastResults table!!!");
2960   }
2961 }
2962 
2963 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2964                            const Twine &Name, InsertPosition InsertBefore) {
2965   assert(castIsValid(op, S, Ty) && "Invalid cast!");
2966   // Construct and return the appropriate CastInst subclass
2967   switch (op) {
2968   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
2969   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
2970   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
2971   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
2972   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
2973   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
2974   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
2975   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
2976   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
2977   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
2978   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
2979   case BitCast:
2980     return new BitCastInst(S, Ty, Name, InsertBefore);
2981   case AddrSpaceCast:
2982     return new AddrSpaceCastInst(S, Ty, Name, InsertBefore);
2983   default:
2984     llvm_unreachable("Invalid opcode provided");
2985   }
2986 }
2987 
2988 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name,
2989                                         InsertPosition InsertBefore) {
2990   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2991     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2992   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2993 }
2994 
2995 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, const Twine &Name,
2996                                         InsertPosition InsertBefore) {
2997   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2998     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2999   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3000 }
3001 
3002 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name,
3003                                          InsertPosition InsertBefore) {
3004   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3005     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3006   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3007 }
3008 
3009 /// Create a BitCast or a PtrToInt cast instruction
3010 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, const Twine &Name,
3011                                       InsertPosition InsertBefore) {
3012   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3013   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3014          "Invalid cast");
3015   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3016   assert((!Ty->isVectorTy() ||
3017           cast<VectorType>(Ty)->getElementCount() ==
3018               cast<VectorType>(S->getType())->getElementCount()) &&
3019          "Invalid cast");
3020 
3021   if (Ty->isIntOrIntVectorTy())
3022     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3023 
3024   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3025 }
3026 
3027 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3028     Value *S, Type *Ty, const Twine &Name, InsertPosition InsertBefore) {
3029   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3030   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3031 
3032   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3033     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3034 
3035   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3036 }
3037 
3038 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
3039                                            const Twine &Name,
3040                                            InsertPosition InsertBefore) {
3041   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3042     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3043   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3044     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3045 
3046   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3047 }
3048 
3049 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, bool isSigned,
3050                                       const Twine &Name,
3051                                       InsertPosition InsertBefore) {
3052   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3053          "Invalid integer cast");
3054   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3055   unsigned DstBits = Ty->getScalarSizeInBits();
3056   Instruction::CastOps opcode =
3057     (SrcBits == DstBits ? Instruction::BitCast :
3058      (SrcBits > DstBits ? Instruction::Trunc :
3059       (isSigned ? Instruction::SExt : Instruction::ZExt)));
3060   return Create(opcode, C, Ty, Name, InsertBefore);
3061 }
3062 
3063 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, const Twine &Name,
3064                                  InsertPosition InsertBefore) {
3065   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3066          "Invalid cast");
3067   unsigned SrcBits = C->getType()->getScalarSizeInBits();
3068   unsigned DstBits = Ty->getScalarSizeInBits();
3069   assert((C->getType() == Ty || SrcBits != DstBits) && "Invalid cast");
3070   Instruction::CastOps opcode =
3071     (SrcBits == DstBits ? Instruction::BitCast :
3072      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3073   return Create(opcode, C, Ty, Name, InsertBefore);
3074 }
3075 
3076 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3077   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3078     return false;
3079 
3080   if (SrcTy == DestTy)
3081     return true;
3082 
3083   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3084     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3085       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3086         // An element by element cast. Valid if casting the elements is valid.
3087         SrcTy = SrcVecTy->getElementType();
3088         DestTy = DestVecTy->getElementType();
3089       }
3090     }
3091   }
3092 
3093   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3094     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3095       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3096     }
3097   }
3098 
3099   TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3100   TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3101 
3102   // Could still have vectors of pointers if the number of elements doesn't
3103   // match
3104   if (SrcBits.getKnownMinValue() == 0 || DestBits.getKnownMinValue() == 0)
3105     return false;
3106 
3107   if (SrcBits != DestBits)
3108     return false;
3109 
3110   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3111     return false;
3112 
3113   return true;
3114 }
3115 
3116 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3117                                           const DataLayout &DL) {
3118   // ptrtoint and inttoptr are not allowed on non-integral pointers
3119   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3120     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3121       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3122               !DL.isNonIntegralPointerType(PtrTy));
3123   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3124     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3125       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3126               !DL.isNonIntegralPointerType(PtrTy));
3127 
3128   return isBitCastable(SrcTy, DestTy);
3129 }
3130 
3131 // Provide a way to get a "cast" where the cast opcode is inferred from the
3132 // types and size of the operand. This, basically, is a parallel of the
3133 // logic in the castIsValid function below.  This axiom should hold:
3134 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3135 // should not assert in castIsValid. In other words, this produces a "correct"
3136 // casting opcode for the arguments passed to it.
3137 Instruction::CastOps
3138 CastInst::getCastOpcode(
3139   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3140   Type *SrcTy = Src->getType();
3141 
3142   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3143          "Only first class types are castable!");
3144 
3145   if (SrcTy == DestTy)
3146     return BitCast;
3147 
3148   // FIXME: Check address space sizes here
3149   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3150     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3151       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3152         // An element by element cast.  Find the appropriate opcode based on the
3153         // element types.
3154         SrcTy = SrcVecTy->getElementType();
3155         DestTy = DestVecTy->getElementType();
3156       }
3157 
3158   // Get the bit sizes, we'll need these
3159   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
3160   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3161 
3162   // Run through the possibilities ...
3163   if (DestTy->isIntegerTy()) {                      // Casting to integral
3164     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3165       if (DestBits < SrcBits)
3166         return Trunc;                               // int -> smaller int
3167       else if (DestBits > SrcBits) {                // its an extension
3168         if (SrcIsSigned)
3169           return SExt;                              // signed -> SEXT
3170         else
3171           return ZExt;                              // unsigned -> ZEXT
3172       } else {
3173         return BitCast;                             // Same size, No-op cast
3174       }
3175     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3176       if (DestIsSigned)
3177         return FPToSI;                              // FP -> sint
3178       else
3179         return FPToUI;                              // FP -> uint
3180     } else if (SrcTy->isVectorTy()) {
3181       assert(DestBits == SrcBits &&
3182              "Casting vector to integer of different width");
3183       return BitCast;                             // Same size, no-op cast
3184     } else {
3185       assert(SrcTy->isPointerTy() &&
3186              "Casting from a value that is not first-class type");
3187       return PtrToInt;                              // ptr -> int
3188     }
3189   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
3190     if (SrcTy->isIntegerTy()) {                     // Casting from integral
3191       if (SrcIsSigned)
3192         return SIToFP;                              // sint -> FP
3193       else
3194         return UIToFP;                              // uint -> FP
3195     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
3196       if (DestBits < SrcBits) {
3197         return FPTrunc;                             // FP -> smaller FP
3198       } else if (DestBits > SrcBits) {
3199         return FPExt;                               // FP -> larger FP
3200       } else  {
3201         return BitCast;                             // same size, no-op cast
3202       }
3203     } else if (SrcTy->isVectorTy()) {
3204       assert(DestBits == SrcBits &&
3205              "Casting vector to floating point of different width");
3206       return BitCast;                             // same size, no-op cast
3207     }
3208     llvm_unreachable("Casting pointer or non-first class to float");
3209   } else if (DestTy->isVectorTy()) {
3210     assert(DestBits == SrcBits &&
3211            "Illegal cast to vector (wrong type or size)");
3212     return BitCast;
3213   } else if (DestTy->isPointerTy()) {
3214     if (SrcTy->isPointerTy()) {
3215       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3216         return AddrSpaceCast;
3217       return BitCast;                               // ptr -> ptr
3218     } else if (SrcTy->isIntegerTy()) {
3219       return IntToPtr;                              // int -> ptr
3220     }
3221     llvm_unreachable("Casting pointer to other than pointer or int");
3222   } else if (DestTy->isX86_MMXTy()) {
3223     if (SrcTy->isVectorTy()) {
3224       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3225       return BitCast;                               // 64-bit vector to MMX
3226     }
3227     llvm_unreachable("Illegal cast to X86_MMX");
3228   }
3229   llvm_unreachable("Casting to type that is not first-class");
3230 }
3231 
3232 //===----------------------------------------------------------------------===//
3233 //                    CastInst SubClass Constructors
3234 //===----------------------------------------------------------------------===//
3235 
3236 /// Check that the construction parameters for a CastInst are correct. This
3237 /// could be broken out into the separate constructors but it is useful to have
3238 /// it in one place and to eliminate the redundant code for getting the sizes
3239 /// of the types involved.
3240 bool
3241 CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
3242   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3243       SrcTy->isAggregateType() || DstTy->isAggregateType())
3244     return false;
3245 
3246   // Get the size of the types in bits, and whether we are dealing
3247   // with vector types, we'll need this later.
3248   bool SrcIsVec = isa<VectorType>(SrcTy);
3249   bool DstIsVec = isa<VectorType>(DstTy);
3250   unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3251   unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3252 
3253   // If these are vector types, get the lengths of the vectors (using zero for
3254   // scalar types means that checking that vector lengths match also checks that
3255   // scalars are not being converted to vectors or vectors to scalars).
3256   ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3257                                 : ElementCount::getFixed(0);
3258   ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3259                                 : ElementCount::getFixed(0);
3260 
3261   // Switch on the opcode provided
3262   switch (op) {
3263   default: return false; // This is an input error
3264   case Instruction::Trunc:
3265     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3266            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3267   case Instruction::ZExt:
3268     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3269            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3270   case Instruction::SExt:
3271     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3272            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3273   case Instruction::FPTrunc:
3274     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3275            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3276   case Instruction::FPExt:
3277     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3278            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3279   case Instruction::UIToFP:
3280   case Instruction::SIToFP:
3281     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3282            SrcEC == DstEC;
3283   case Instruction::FPToUI:
3284   case Instruction::FPToSI:
3285     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3286            SrcEC == DstEC;
3287   case Instruction::PtrToInt:
3288     if (SrcEC != DstEC)
3289       return false;
3290     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3291   case Instruction::IntToPtr:
3292     if (SrcEC != DstEC)
3293       return false;
3294     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3295   case Instruction::BitCast: {
3296     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3297     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3298 
3299     // BitCast implies a no-op cast of type only. No bits change.
3300     // However, you can't cast pointers to anything but pointers.
3301     if (!SrcPtrTy != !DstPtrTy)
3302       return false;
3303 
3304     // For non-pointer cases, the cast is okay if the source and destination bit
3305     // widths are identical.
3306     if (!SrcPtrTy)
3307       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3308 
3309     // If both are pointers then the address spaces must match.
3310     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3311       return false;
3312 
3313     // A vector of pointers must have the same number of elements.
3314     if (SrcIsVec && DstIsVec)
3315       return SrcEC == DstEC;
3316     if (SrcIsVec)
3317       return SrcEC == ElementCount::getFixed(1);
3318     if (DstIsVec)
3319       return DstEC == ElementCount::getFixed(1);
3320 
3321     return true;
3322   }
3323   case Instruction::AddrSpaceCast: {
3324     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3325     if (!SrcPtrTy)
3326       return false;
3327 
3328     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3329     if (!DstPtrTy)
3330       return false;
3331 
3332     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3333       return false;
3334 
3335     return SrcEC == DstEC;
3336   }
3337   }
3338 }
3339 
3340 TruncInst::TruncInst(Value *S, Type *Ty, const Twine &Name,
3341                      InsertPosition InsertBefore)
3342     : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3343   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3344 }
3345 
3346 ZExtInst::ZExtInst(Value *S, Type *Ty, const Twine &Name,
3347                    InsertPosition InsertBefore)
3348     : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3349   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3350 }
3351 
3352 SExtInst::SExtInst(Value *S, Type *Ty, const Twine &Name,
3353                    InsertPosition InsertBefore)
3354     : CastInst(Ty, SExt, S, Name, InsertBefore) {
3355   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3356 }
3357 
3358 FPTruncInst::FPTruncInst(Value *S, Type *Ty, const Twine &Name,
3359                          InsertPosition InsertBefore)
3360     : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3361   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3362 }
3363 
3364 FPExtInst::FPExtInst(Value *S, Type *Ty, const Twine &Name,
3365                      InsertPosition InsertBefore)
3366     : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3367   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3368 }
3369 
3370 UIToFPInst::UIToFPInst(Value *S, Type *Ty, const Twine &Name,
3371                        InsertPosition InsertBefore)
3372     : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3373   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3374 }
3375 
3376 SIToFPInst::SIToFPInst(Value *S, Type *Ty, const Twine &Name,
3377                        InsertPosition InsertBefore)
3378     : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3379   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3380 }
3381 
3382 FPToUIInst::FPToUIInst(Value *S, Type *Ty, const Twine &Name,
3383                        InsertPosition InsertBefore)
3384     : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3385   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3386 }
3387 
3388 FPToSIInst::FPToSIInst(Value *S, Type *Ty, const Twine &Name,
3389                        InsertPosition InsertBefore)
3390     : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3391   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3392 }
3393 
3394 PtrToIntInst::PtrToIntInst(Value *S, Type *Ty, const Twine &Name,
3395                            InsertPosition InsertBefore)
3396     : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3397   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3398 }
3399 
3400 IntToPtrInst::IntToPtrInst(Value *S, Type *Ty, const Twine &Name,
3401                            InsertPosition InsertBefore)
3402     : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3403   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3404 }
3405 
3406 BitCastInst::BitCastInst(Value *S, Type *Ty, const Twine &Name,
3407                          InsertPosition InsertBefore)
3408     : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3409   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3410 }
3411 
3412 AddrSpaceCastInst::AddrSpaceCastInst(Value *S, Type *Ty, const Twine &Name,
3413                                      InsertPosition InsertBefore)
3414     : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3415   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3416 }
3417 
3418 //===----------------------------------------------------------------------===//
3419 //                               CmpInst Classes
3420 //===----------------------------------------------------------------------===//
3421 
3422 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3423                  Value *RHS, const Twine &Name, InsertPosition InsertBefore,
3424                  Instruction *FlagsSource)
3425     : Instruction(ty, op, OperandTraits<CmpInst>::op_begin(this),
3426                   OperandTraits<CmpInst>::operands(this), InsertBefore) {
3427   Op<0>() = LHS;
3428   Op<1>() = RHS;
3429   setPredicate((Predicate)predicate);
3430   setName(Name);
3431   if (FlagsSource)
3432     copyIRFlags(FlagsSource);
3433 }
3434 
3435 CmpInst *CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3436                          const Twine &Name, InsertPosition InsertBefore) {
3437   if (Op == Instruction::ICmp) {
3438     if (InsertBefore.isValid())
3439       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3440                           S1, S2, Name);
3441     else
3442       return new ICmpInst(CmpInst::Predicate(predicate),
3443                           S1, S2, Name);
3444   }
3445 
3446   if (InsertBefore.isValid())
3447     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3448                         S1, S2, Name);
3449   else
3450     return new FCmpInst(CmpInst::Predicate(predicate),
3451                         S1, S2, Name);
3452 }
3453 
3454 CmpInst *CmpInst::CreateWithCopiedFlags(OtherOps Op, Predicate Pred, Value *S1,
3455                                         Value *S2,
3456                                         const Instruction *FlagsSource,
3457                                         const Twine &Name,
3458                                         InsertPosition InsertBefore) {
3459   CmpInst *Inst = Create(Op, Pred, S1, S2, Name, InsertBefore);
3460   Inst->copyIRFlags(FlagsSource);
3461   return Inst;
3462 }
3463 
3464 void CmpInst::swapOperands() {
3465   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3466     IC->swapOperands();
3467   else
3468     cast<FCmpInst>(this)->swapOperands();
3469 }
3470 
3471 bool CmpInst::isCommutative() const {
3472   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3473     return IC->isCommutative();
3474   return cast<FCmpInst>(this)->isCommutative();
3475 }
3476 
3477 bool CmpInst::isEquality(Predicate P) {
3478   if (ICmpInst::isIntPredicate(P))
3479     return ICmpInst::isEquality(P);
3480   if (FCmpInst::isFPPredicate(P))
3481     return FCmpInst::isEquality(P);
3482   llvm_unreachable("Unsupported predicate kind");
3483 }
3484 
3485 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3486   switch (pred) {
3487     default: llvm_unreachable("Unknown cmp predicate!");
3488     case ICMP_EQ: return ICMP_NE;
3489     case ICMP_NE: return ICMP_EQ;
3490     case ICMP_UGT: return ICMP_ULE;
3491     case ICMP_ULT: return ICMP_UGE;
3492     case ICMP_UGE: return ICMP_ULT;
3493     case ICMP_ULE: return ICMP_UGT;
3494     case ICMP_SGT: return ICMP_SLE;
3495     case ICMP_SLT: return ICMP_SGE;
3496     case ICMP_SGE: return ICMP_SLT;
3497     case ICMP_SLE: return ICMP_SGT;
3498 
3499     case FCMP_OEQ: return FCMP_UNE;
3500     case FCMP_ONE: return FCMP_UEQ;
3501     case FCMP_OGT: return FCMP_ULE;
3502     case FCMP_OLT: return FCMP_UGE;
3503     case FCMP_OGE: return FCMP_ULT;
3504     case FCMP_OLE: return FCMP_UGT;
3505     case FCMP_UEQ: return FCMP_ONE;
3506     case FCMP_UNE: return FCMP_OEQ;
3507     case FCMP_UGT: return FCMP_OLE;
3508     case FCMP_ULT: return FCMP_OGE;
3509     case FCMP_UGE: return FCMP_OLT;
3510     case FCMP_ULE: return FCMP_OGT;
3511     case FCMP_ORD: return FCMP_UNO;
3512     case FCMP_UNO: return FCMP_ORD;
3513     case FCMP_TRUE: return FCMP_FALSE;
3514     case FCMP_FALSE: return FCMP_TRUE;
3515   }
3516 }
3517 
3518 StringRef CmpInst::getPredicateName(Predicate Pred) {
3519   switch (Pred) {
3520   default:                   return "unknown";
3521   case FCmpInst::FCMP_FALSE: return "false";
3522   case FCmpInst::FCMP_OEQ:   return "oeq";
3523   case FCmpInst::FCMP_OGT:   return "ogt";
3524   case FCmpInst::FCMP_OGE:   return "oge";
3525   case FCmpInst::FCMP_OLT:   return "olt";
3526   case FCmpInst::FCMP_OLE:   return "ole";
3527   case FCmpInst::FCMP_ONE:   return "one";
3528   case FCmpInst::FCMP_ORD:   return "ord";
3529   case FCmpInst::FCMP_UNO:   return "uno";
3530   case FCmpInst::FCMP_UEQ:   return "ueq";
3531   case FCmpInst::FCMP_UGT:   return "ugt";
3532   case FCmpInst::FCMP_UGE:   return "uge";
3533   case FCmpInst::FCMP_ULT:   return "ult";
3534   case FCmpInst::FCMP_ULE:   return "ule";
3535   case FCmpInst::FCMP_UNE:   return "une";
3536   case FCmpInst::FCMP_TRUE:  return "true";
3537   case ICmpInst::ICMP_EQ:    return "eq";
3538   case ICmpInst::ICMP_NE:    return "ne";
3539   case ICmpInst::ICMP_SGT:   return "sgt";
3540   case ICmpInst::ICMP_SGE:   return "sge";
3541   case ICmpInst::ICMP_SLT:   return "slt";
3542   case ICmpInst::ICMP_SLE:   return "sle";
3543   case ICmpInst::ICMP_UGT:   return "ugt";
3544   case ICmpInst::ICMP_UGE:   return "uge";
3545   case ICmpInst::ICMP_ULT:   return "ult";
3546   case ICmpInst::ICMP_ULE:   return "ule";
3547   }
3548 }
3549 
3550 raw_ostream &llvm::operator<<(raw_ostream &OS, CmpInst::Predicate Pred) {
3551   OS << CmpInst::getPredicateName(Pred);
3552   return OS;
3553 }
3554 
3555 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3556   switch (pred) {
3557     default: llvm_unreachable("Unknown icmp predicate!");
3558     case ICMP_EQ: case ICMP_NE:
3559     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3560        return pred;
3561     case ICMP_UGT: return ICMP_SGT;
3562     case ICMP_ULT: return ICMP_SLT;
3563     case ICMP_UGE: return ICMP_SGE;
3564     case ICMP_ULE: return ICMP_SLE;
3565   }
3566 }
3567 
3568 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3569   switch (pred) {
3570     default: llvm_unreachable("Unknown icmp predicate!");
3571     case ICMP_EQ: case ICMP_NE:
3572     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3573        return pred;
3574     case ICMP_SGT: return ICMP_UGT;
3575     case ICMP_SLT: return ICMP_ULT;
3576     case ICMP_SGE: return ICMP_UGE;
3577     case ICMP_SLE: return ICMP_ULE;
3578   }
3579 }
3580 
3581 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3582   switch (pred) {
3583     default: llvm_unreachable("Unknown cmp predicate!");
3584     case ICMP_EQ: case ICMP_NE:
3585       return pred;
3586     case ICMP_SGT: return ICMP_SLT;
3587     case ICMP_SLT: return ICMP_SGT;
3588     case ICMP_SGE: return ICMP_SLE;
3589     case ICMP_SLE: return ICMP_SGE;
3590     case ICMP_UGT: return ICMP_ULT;
3591     case ICMP_ULT: return ICMP_UGT;
3592     case ICMP_UGE: return ICMP_ULE;
3593     case ICMP_ULE: return ICMP_UGE;
3594 
3595     case FCMP_FALSE: case FCMP_TRUE:
3596     case FCMP_OEQ: case FCMP_ONE:
3597     case FCMP_UEQ: case FCMP_UNE:
3598     case FCMP_ORD: case FCMP_UNO:
3599       return pred;
3600     case FCMP_OGT: return FCMP_OLT;
3601     case FCMP_OLT: return FCMP_OGT;
3602     case FCMP_OGE: return FCMP_OLE;
3603     case FCMP_OLE: return FCMP_OGE;
3604     case FCMP_UGT: return FCMP_ULT;
3605     case FCMP_ULT: return FCMP_UGT;
3606     case FCMP_UGE: return FCMP_ULE;
3607     case FCMP_ULE: return FCMP_UGE;
3608   }
3609 }
3610 
3611 bool CmpInst::isNonStrictPredicate(Predicate pred) {
3612   switch (pred) {
3613   case ICMP_SGE:
3614   case ICMP_SLE:
3615   case ICMP_UGE:
3616   case ICMP_ULE:
3617   case FCMP_OGE:
3618   case FCMP_OLE:
3619   case FCMP_UGE:
3620   case FCMP_ULE:
3621     return true;
3622   default:
3623     return false;
3624   }
3625 }
3626 
3627 bool CmpInst::isStrictPredicate(Predicate pred) {
3628   switch (pred) {
3629   case ICMP_SGT:
3630   case ICMP_SLT:
3631   case ICMP_UGT:
3632   case ICMP_ULT:
3633   case FCMP_OGT:
3634   case FCMP_OLT:
3635   case FCMP_UGT:
3636   case FCMP_ULT:
3637     return true;
3638   default:
3639     return false;
3640   }
3641 }
3642 
3643 CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
3644   switch (pred) {
3645   case ICMP_SGE:
3646     return ICMP_SGT;
3647   case ICMP_SLE:
3648     return ICMP_SLT;
3649   case ICMP_UGE:
3650     return ICMP_UGT;
3651   case ICMP_ULE:
3652     return ICMP_ULT;
3653   case FCMP_OGE:
3654     return FCMP_OGT;
3655   case FCMP_OLE:
3656     return FCMP_OLT;
3657   case FCMP_UGE:
3658     return FCMP_UGT;
3659   case FCMP_ULE:
3660     return FCMP_ULT;
3661   default:
3662     return pred;
3663   }
3664 }
3665 
3666 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3667   switch (pred) {
3668   case ICMP_SGT:
3669     return ICMP_SGE;
3670   case ICMP_SLT:
3671     return ICMP_SLE;
3672   case ICMP_UGT:
3673     return ICMP_UGE;
3674   case ICMP_ULT:
3675     return ICMP_ULE;
3676   case FCMP_OGT:
3677     return FCMP_OGE;
3678   case FCMP_OLT:
3679     return FCMP_OLE;
3680   case FCMP_UGT:
3681     return FCMP_UGE;
3682   case FCMP_ULT:
3683     return FCMP_ULE;
3684   default:
3685     return pred;
3686   }
3687 }
3688 
3689 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3690   assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
3691 
3692   if (isStrictPredicate(pred))
3693     return getNonStrictPredicate(pred);
3694   if (isNonStrictPredicate(pred))
3695     return getStrictPredicate(pred);
3696 
3697   llvm_unreachable("Unknown predicate!");
3698 }
3699 
3700 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3701   assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
3702 
3703   switch (pred) {
3704   default:
3705     llvm_unreachable("Unknown predicate!");
3706   case CmpInst::ICMP_ULT:
3707     return CmpInst::ICMP_SLT;
3708   case CmpInst::ICMP_ULE:
3709     return CmpInst::ICMP_SLE;
3710   case CmpInst::ICMP_UGT:
3711     return CmpInst::ICMP_SGT;
3712   case CmpInst::ICMP_UGE:
3713     return CmpInst::ICMP_SGE;
3714   }
3715 }
3716 
3717 CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
3718   assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
3719 
3720   switch (pred) {
3721   default:
3722     llvm_unreachable("Unknown predicate!");
3723   case CmpInst::ICMP_SLT:
3724     return CmpInst::ICMP_ULT;
3725   case CmpInst::ICMP_SLE:
3726     return CmpInst::ICMP_ULE;
3727   case CmpInst::ICMP_SGT:
3728     return CmpInst::ICMP_UGT;
3729   case CmpInst::ICMP_SGE:
3730     return CmpInst::ICMP_UGE;
3731   }
3732 }
3733 
3734 bool CmpInst::isUnsigned(Predicate predicate) {
3735   switch (predicate) {
3736     default: return false;
3737     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3738     case ICmpInst::ICMP_UGE: return true;
3739   }
3740 }
3741 
3742 bool CmpInst::isSigned(Predicate predicate) {
3743   switch (predicate) {
3744     default: return false;
3745     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3746     case ICmpInst::ICMP_SGE: return true;
3747   }
3748 }
3749 
3750 bool ICmpInst::compare(const APInt &LHS, const APInt &RHS,
3751                        ICmpInst::Predicate Pred) {
3752   assert(ICmpInst::isIntPredicate(Pred) && "Only for integer predicates!");
3753   switch (Pred) {
3754   case ICmpInst::Predicate::ICMP_EQ:
3755     return LHS.eq(RHS);
3756   case ICmpInst::Predicate::ICMP_NE:
3757     return LHS.ne(RHS);
3758   case ICmpInst::Predicate::ICMP_UGT:
3759     return LHS.ugt(RHS);
3760   case ICmpInst::Predicate::ICMP_UGE:
3761     return LHS.uge(RHS);
3762   case ICmpInst::Predicate::ICMP_ULT:
3763     return LHS.ult(RHS);
3764   case ICmpInst::Predicate::ICMP_ULE:
3765     return LHS.ule(RHS);
3766   case ICmpInst::Predicate::ICMP_SGT:
3767     return LHS.sgt(RHS);
3768   case ICmpInst::Predicate::ICMP_SGE:
3769     return LHS.sge(RHS);
3770   case ICmpInst::Predicate::ICMP_SLT:
3771     return LHS.slt(RHS);
3772   case ICmpInst::Predicate::ICMP_SLE:
3773     return LHS.sle(RHS);
3774   default:
3775     llvm_unreachable("Unexpected non-integer predicate.");
3776   };
3777 }
3778 
3779 bool FCmpInst::compare(const APFloat &LHS, const APFloat &RHS,
3780                        FCmpInst::Predicate Pred) {
3781   APFloat::cmpResult R = LHS.compare(RHS);
3782   switch (Pred) {
3783   default:
3784     llvm_unreachable("Invalid FCmp Predicate");
3785   case FCmpInst::FCMP_FALSE:
3786     return false;
3787   case FCmpInst::FCMP_TRUE:
3788     return true;
3789   case FCmpInst::FCMP_UNO:
3790     return R == APFloat::cmpUnordered;
3791   case FCmpInst::FCMP_ORD:
3792     return R != APFloat::cmpUnordered;
3793   case FCmpInst::FCMP_UEQ:
3794     return R == APFloat::cmpUnordered || R == APFloat::cmpEqual;
3795   case FCmpInst::FCMP_OEQ:
3796     return R == APFloat::cmpEqual;
3797   case FCmpInst::FCMP_UNE:
3798     return R != APFloat::cmpEqual;
3799   case FCmpInst::FCMP_ONE:
3800     return R == APFloat::cmpLessThan || R == APFloat::cmpGreaterThan;
3801   case FCmpInst::FCMP_ULT:
3802     return R == APFloat::cmpUnordered || R == APFloat::cmpLessThan;
3803   case FCmpInst::FCMP_OLT:
3804     return R == APFloat::cmpLessThan;
3805   case FCmpInst::FCMP_UGT:
3806     return R == APFloat::cmpUnordered || R == APFloat::cmpGreaterThan;
3807   case FCmpInst::FCMP_OGT:
3808     return R == APFloat::cmpGreaterThan;
3809   case FCmpInst::FCMP_ULE:
3810     return R != APFloat::cmpGreaterThan;
3811   case FCmpInst::FCMP_OLE:
3812     return R == APFloat::cmpLessThan || R == APFloat::cmpEqual;
3813   case FCmpInst::FCMP_UGE:
3814     return R != APFloat::cmpLessThan;
3815   case FCmpInst::FCMP_OGE:
3816     return R == APFloat::cmpGreaterThan || R == APFloat::cmpEqual;
3817   }
3818 }
3819 
3820 CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
3821   assert(CmpInst::isRelational(pred) &&
3822          "Call only with non-equality predicates!");
3823 
3824   if (isSigned(pred))
3825     return getUnsignedPredicate(pred);
3826   if (isUnsigned(pred))
3827     return getSignedPredicate(pred);
3828 
3829   llvm_unreachable("Unknown predicate!");
3830 }
3831 
3832 bool CmpInst::isOrdered(Predicate predicate) {
3833   switch (predicate) {
3834     default: return false;
3835     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3836     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3837     case FCmpInst::FCMP_ORD: return true;
3838   }
3839 }
3840 
3841 bool CmpInst::isUnordered(Predicate predicate) {
3842   switch (predicate) {
3843     default: return false;
3844     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3845     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3846     case FCmpInst::FCMP_UNO: return true;
3847   }
3848 }
3849 
3850 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3851   switch(predicate) {
3852     default: return false;
3853     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3854     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3855   }
3856 }
3857 
3858 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3859   switch(predicate) {
3860   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3861   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3862   default: return false;
3863   }
3864 }
3865 
3866 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3867   // If the predicates match, then we know the first condition implies the
3868   // second is true.
3869   if (Pred1 == Pred2)
3870     return true;
3871 
3872   switch (Pred1) {
3873   default:
3874     break;
3875   case ICMP_EQ:
3876     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3877     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3878            Pred2 == ICMP_SLE;
3879   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3880     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3881   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3882     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3883   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3884     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3885   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3886     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3887   }
3888   return false;
3889 }
3890 
3891 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3892   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3893 }
3894 
3895 //===----------------------------------------------------------------------===//
3896 //                        SwitchInst Implementation
3897 //===----------------------------------------------------------------------===//
3898 
3899 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3900   assert(Value && Default && NumReserved);
3901   ReservedSpace = NumReserved;
3902   setNumHungOffUseOperands(2);
3903   allocHungoffUses(ReservedSpace);
3904 
3905   Op<0>() = Value;
3906   Op<1>() = Default;
3907 }
3908 
3909 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3910 /// switch on and a default destination.  The number of additional cases can
3911 /// be specified here to make memory allocation more efficient.  This
3912 /// constructor can also autoinsert before another instruction.
3913 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3914                        InsertPosition InsertBefore)
3915     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3916                   nullptr, 0, InsertBefore) {
3917   init(Value, Default, 2+NumCases*2);
3918 }
3919 
3920 SwitchInst::SwitchInst(const SwitchInst &SI)
3921     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3922   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3923   setNumHungOffUseOperands(SI.getNumOperands());
3924   Use *OL = getOperandList();
3925   const Use *InOL = SI.getOperandList();
3926   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3927     OL[i] = InOL[i];
3928     OL[i+1] = InOL[i+1];
3929   }
3930   SubclassOptionalData = SI.SubclassOptionalData;
3931 }
3932 
3933 /// addCase - Add an entry to the switch instruction...
3934 ///
3935 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3936   unsigned NewCaseIdx = getNumCases();
3937   unsigned OpNo = getNumOperands();
3938   if (OpNo+2 > ReservedSpace)
3939     growOperands();  // Get more space!
3940   // Initialize some new operands.
3941   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3942   setNumHungOffUseOperands(OpNo+2);
3943   CaseHandle Case(this, NewCaseIdx);
3944   Case.setValue(OnVal);
3945   Case.setSuccessor(Dest);
3946 }
3947 
3948 /// removeCase - This method removes the specified case and its successor
3949 /// from the switch instruction.
3950 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3951   unsigned idx = I->getCaseIndex();
3952 
3953   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3954 
3955   unsigned NumOps = getNumOperands();
3956   Use *OL = getOperandList();
3957 
3958   // Overwrite this case with the end of the list.
3959   if (2 + (idx + 1) * 2 != NumOps) {
3960     OL[2 + idx * 2] = OL[NumOps - 2];
3961     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3962   }
3963 
3964   // Nuke the last value.
3965   OL[NumOps-2].set(nullptr);
3966   OL[NumOps-2+1].set(nullptr);
3967   setNumHungOffUseOperands(NumOps-2);
3968 
3969   return CaseIt(this, idx);
3970 }
3971 
3972 /// growOperands - grow operands - This grows the operand list in response
3973 /// to a push_back style of operation.  This grows the number of ops by 3 times.
3974 ///
3975 void SwitchInst::growOperands() {
3976   unsigned e = getNumOperands();
3977   unsigned NumOps = e*3;
3978 
3979   ReservedSpace = NumOps;
3980   growHungoffUses(ReservedSpace);
3981 }
3982 
3983 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
3984   assert(Changed && "called only if metadata has changed");
3985 
3986   if (!Weights)
3987     return nullptr;
3988 
3989   assert(SI.getNumSuccessors() == Weights->size() &&
3990          "num of prof branch_weights must accord with num of successors");
3991 
3992   bool AllZeroes = all_of(*Weights, [](uint32_t W) { return W == 0; });
3993 
3994   if (AllZeroes || Weights->size() < 2)
3995     return nullptr;
3996 
3997   return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
3998 }
3999 
4000 void SwitchInstProfUpdateWrapper::init() {
4001   MDNode *ProfileData = getBranchWeightMDNode(SI);
4002   if (!ProfileData)
4003     return;
4004 
4005   // FIXME: This check belongs in ProfDataUtils. Its almost equivalent to
4006   // getValidBranchWeightMDNode(), but the need to use llvm_unreachable
4007   // makes them slightly different.
4008   if (ProfileData->getNumOperands() !=
4009       SI.getNumSuccessors() + getBranchWeightOffset(ProfileData)) {
4010     llvm_unreachable("number of prof branch_weights metadata operands does "
4011                      "not correspond to number of succesors");
4012   }
4013 
4014   SmallVector<uint32_t, 8> Weights;
4015   if (!extractBranchWeights(ProfileData, Weights))
4016     return;
4017   this->Weights = std::move(Weights);
4018 }
4019 
4020 SwitchInst::CaseIt
4021 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
4022   if (Weights) {
4023     assert(SI.getNumSuccessors() == Weights->size() &&
4024            "num of prof branch_weights must accord with num of successors");
4025     Changed = true;
4026     // Copy the last case to the place of the removed one and shrink.
4027     // This is tightly coupled with the way SwitchInst::removeCase() removes
4028     // the cases in SwitchInst::removeCase(CaseIt).
4029     (*Weights)[I->getCaseIndex() + 1] = Weights->back();
4030     Weights->pop_back();
4031   }
4032   return SI.removeCase(I);
4033 }
4034 
4035 void SwitchInstProfUpdateWrapper::addCase(
4036     ConstantInt *OnVal, BasicBlock *Dest,
4037     SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4038   SI.addCase(OnVal, Dest);
4039 
4040   if (!Weights && W && *W) {
4041     Changed = true;
4042     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4043     (*Weights)[SI.getNumSuccessors() - 1] = *W;
4044   } else if (Weights) {
4045     Changed = true;
4046     Weights->push_back(W.value_or(0));
4047   }
4048   if (Weights)
4049     assert(SI.getNumSuccessors() == Weights->size() &&
4050            "num of prof branch_weights must accord with num of successors");
4051 }
4052 
4053 Instruction::InstListType::iterator
4054 SwitchInstProfUpdateWrapper::eraseFromParent() {
4055   // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4056   Changed = false;
4057   if (Weights)
4058     Weights->resize(0);
4059   return SI.eraseFromParent();
4060 }
4061 
4062 SwitchInstProfUpdateWrapper::CaseWeightOpt
4063 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
4064   if (!Weights)
4065     return std::nullopt;
4066   return (*Weights)[idx];
4067 }
4068 
4069 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4070     unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4071   if (!W)
4072     return;
4073 
4074   if (!Weights && *W)
4075     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4076 
4077   if (Weights) {
4078     auto &OldW = (*Weights)[idx];
4079     if (*W != OldW) {
4080       Changed = true;
4081       OldW = *W;
4082     }
4083   }
4084 }
4085 
4086 SwitchInstProfUpdateWrapper::CaseWeightOpt
4087 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4088                                                 unsigned idx) {
4089   if (MDNode *ProfileData = getBranchWeightMDNode(SI))
4090     if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4091       return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4092           ->getValue()
4093           .getZExtValue();
4094 
4095   return std::nullopt;
4096 }
4097 
4098 //===----------------------------------------------------------------------===//
4099 //                        IndirectBrInst Implementation
4100 //===----------------------------------------------------------------------===//
4101 
4102 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4103   assert(Address && Address->getType()->isPointerTy() &&
4104          "Address of indirectbr must be a pointer");
4105   ReservedSpace = 1+NumDests;
4106   setNumHungOffUseOperands(1);
4107   allocHungoffUses(ReservedSpace);
4108 
4109   Op<0>() = Address;
4110 }
4111 
4112 
4113 /// growOperands - grow operands - This grows the operand list in response
4114 /// to a push_back style of operation.  This grows the number of ops by 2 times.
4115 ///
4116 void IndirectBrInst::growOperands() {
4117   unsigned e = getNumOperands();
4118   unsigned NumOps = e*2;
4119 
4120   ReservedSpace = NumOps;
4121   growHungoffUses(ReservedSpace);
4122 }
4123 
4124 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4125                                InsertPosition InsertBefore)
4126     : Instruction(Type::getVoidTy(Address->getContext()),
4127                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4128   init(Address, NumCases);
4129 }
4130 
4131 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4132     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4133                   nullptr, IBI.getNumOperands()) {
4134   allocHungoffUses(IBI.getNumOperands());
4135   Use *OL = getOperandList();
4136   const Use *InOL = IBI.getOperandList();
4137   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4138     OL[i] = InOL[i];
4139   SubclassOptionalData = IBI.SubclassOptionalData;
4140 }
4141 
4142 /// addDestination - Add a destination.
4143 ///
4144 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4145   unsigned OpNo = getNumOperands();
4146   if (OpNo+1 > ReservedSpace)
4147     growOperands();  // Get more space!
4148   // Initialize some new operands.
4149   assert(OpNo < ReservedSpace && "Growing didn't work!");
4150   setNumHungOffUseOperands(OpNo+1);
4151   getOperandList()[OpNo] = DestBB;
4152 }
4153 
4154 /// removeDestination - This method removes the specified successor from the
4155 /// indirectbr instruction.
4156 void IndirectBrInst::removeDestination(unsigned idx) {
4157   assert(idx < getNumOperands()-1 && "Successor index out of range!");
4158 
4159   unsigned NumOps = getNumOperands();
4160   Use *OL = getOperandList();
4161 
4162   // Replace this value with the last one.
4163   OL[idx+1] = OL[NumOps-1];
4164 
4165   // Nuke the last value.
4166   OL[NumOps-1].set(nullptr);
4167   setNumHungOffUseOperands(NumOps-1);
4168 }
4169 
4170 //===----------------------------------------------------------------------===//
4171 //                            FreezeInst Implementation
4172 //===----------------------------------------------------------------------===//
4173 
4174 FreezeInst::FreezeInst(Value *S, const Twine &Name, InsertPosition InsertBefore)
4175     : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4176   setName(Name);
4177 }
4178 
4179 //===----------------------------------------------------------------------===//
4180 //                           cloneImpl() implementations
4181 //===----------------------------------------------------------------------===//
4182 
4183 // Define these methods here so vtables don't get emitted into every translation
4184 // unit that uses these classes.
4185 
4186 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4187   return new (getNumOperands()) GetElementPtrInst(*this);
4188 }
4189 
4190 UnaryOperator *UnaryOperator::cloneImpl() const {
4191   return Create(getOpcode(), Op<0>());
4192 }
4193 
4194 BinaryOperator *BinaryOperator::cloneImpl() const {
4195   return Create(getOpcode(), Op<0>(), Op<1>());
4196 }
4197 
4198 FCmpInst *FCmpInst::cloneImpl() const {
4199   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4200 }
4201 
4202 ICmpInst *ICmpInst::cloneImpl() const {
4203   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4204 }
4205 
4206 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4207   return new ExtractValueInst(*this);
4208 }
4209 
4210 InsertValueInst *InsertValueInst::cloneImpl() const {
4211   return new InsertValueInst(*this);
4212 }
4213 
4214 AllocaInst *AllocaInst::cloneImpl() const {
4215   AllocaInst *Result = new AllocaInst(getAllocatedType(), getAddressSpace(),
4216                                       getOperand(0), getAlign());
4217   Result->setUsedWithInAlloca(isUsedWithInAlloca());
4218   Result->setSwiftError(isSwiftError());
4219   return Result;
4220 }
4221 
4222 LoadInst *LoadInst::cloneImpl() const {
4223   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4224                       getAlign(), getOrdering(), getSyncScopeID());
4225 }
4226 
4227 StoreInst *StoreInst::cloneImpl() const {
4228   return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4229                        getOrdering(), getSyncScopeID());
4230 }
4231 
4232 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4233   AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
4234       getOperand(0), getOperand(1), getOperand(2), getAlign(),
4235       getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
4236   Result->setVolatile(isVolatile());
4237   Result->setWeak(isWeak());
4238   return Result;
4239 }
4240 
4241 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4242   AtomicRMWInst *Result =
4243       new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4244                         getAlign(), getOrdering(), getSyncScopeID());
4245   Result->setVolatile(isVolatile());
4246   return Result;
4247 }
4248 
4249 FenceInst *FenceInst::cloneImpl() const {
4250   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4251 }
4252 
4253 TruncInst *TruncInst::cloneImpl() const {
4254   return new TruncInst(getOperand(0), getType());
4255 }
4256 
4257 ZExtInst *ZExtInst::cloneImpl() const {
4258   return new ZExtInst(getOperand(0), getType());
4259 }
4260 
4261 SExtInst *SExtInst::cloneImpl() const {
4262   return new SExtInst(getOperand(0), getType());
4263 }
4264 
4265 FPTruncInst *FPTruncInst::cloneImpl() const {
4266   return new FPTruncInst(getOperand(0), getType());
4267 }
4268 
4269 FPExtInst *FPExtInst::cloneImpl() const {
4270   return new FPExtInst(getOperand(0), getType());
4271 }
4272 
4273 UIToFPInst *UIToFPInst::cloneImpl() const {
4274   return new UIToFPInst(getOperand(0), getType());
4275 }
4276 
4277 SIToFPInst *SIToFPInst::cloneImpl() const {
4278   return new SIToFPInst(getOperand(0), getType());
4279 }
4280 
4281 FPToUIInst *FPToUIInst::cloneImpl() const {
4282   return new FPToUIInst(getOperand(0), getType());
4283 }
4284 
4285 FPToSIInst *FPToSIInst::cloneImpl() const {
4286   return new FPToSIInst(getOperand(0), getType());
4287 }
4288 
4289 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4290   return new PtrToIntInst(getOperand(0), getType());
4291 }
4292 
4293 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4294   return new IntToPtrInst(getOperand(0), getType());
4295 }
4296 
4297 BitCastInst *BitCastInst::cloneImpl() const {
4298   return new BitCastInst(getOperand(0), getType());
4299 }
4300 
4301 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4302   return new AddrSpaceCastInst(getOperand(0), getType());
4303 }
4304 
4305 CallInst *CallInst::cloneImpl() const {
4306   if (hasOperandBundles()) {
4307     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4308     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4309   }
4310   return  new(getNumOperands()) CallInst(*this);
4311 }
4312 
4313 SelectInst *SelectInst::cloneImpl() const {
4314   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4315 }
4316 
4317 VAArgInst *VAArgInst::cloneImpl() const {
4318   return new VAArgInst(getOperand(0), getType());
4319 }
4320 
4321 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4322   return ExtractElementInst::Create(getOperand(0), getOperand(1));
4323 }
4324 
4325 InsertElementInst *InsertElementInst::cloneImpl() const {
4326   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4327 }
4328 
4329 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4330   return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4331 }
4332 
4333 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4334 
4335 LandingPadInst *LandingPadInst::cloneImpl() const {
4336   return new LandingPadInst(*this);
4337 }
4338 
4339 ReturnInst *ReturnInst::cloneImpl() const {
4340   return new(getNumOperands()) ReturnInst(*this);
4341 }
4342 
4343 BranchInst *BranchInst::cloneImpl() const {
4344   return new(getNumOperands()) BranchInst(*this);
4345 }
4346 
4347 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4348 
4349 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4350   return new IndirectBrInst(*this);
4351 }
4352 
4353 InvokeInst *InvokeInst::cloneImpl() const {
4354   if (hasOperandBundles()) {
4355     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4356     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4357   }
4358   return new(getNumOperands()) InvokeInst(*this);
4359 }
4360 
4361 CallBrInst *CallBrInst::cloneImpl() const {
4362   if (hasOperandBundles()) {
4363     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4364     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4365   }
4366   return new (getNumOperands()) CallBrInst(*this);
4367 }
4368 
4369 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4370 
4371 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4372   return new (getNumOperands()) CleanupReturnInst(*this);
4373 }
4374 
4375 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4376   return new (getNumOperands()) CatchReturnInst(*this);
4377 }
4378 
4379 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4380   return new CatchSwitchInst(*this);
4381 }
4382 
4383 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4384   return new (getNumOperands()) FuncletPadInst(*this);
4385 }
4386 
4387 UnreachableInst *UnreachableInst::cloneImpl() const {
4388   LLVMContext &Context = getContext();
4389   return new UnreachableInst(Context);
4390 }
4391 
4392 FreezeInst *FreezeInst::cloneImpl() const {
4393   return new FreezeInst(getOperand(0));
4394 }
4395