xref: /llvm-project/llvm/lib/IR/Function.cpp (revision fa26da0582a4d5d922379db1d9fae87416b650d6)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <string>
71 
72 using namespace llvm;
73 using ProfileCount = Function::ProfileCount;
74 
75 // Explicit instantiations of SymbolTableListTraits since some of the methods
76 // are not in the public header file...
77 template class llvm::SymbolTableListTraits<BasicBlock>;
78 
79 //===----------------------------------------------------------------------===//
80 // Argument Implementation
81 //===----------------------------------------------------------------------===//
82 
83 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
84     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
85   setName(Name);
86 }
87 
88 void Argument::setParent(Function *parent) {
89   Parent = parent;
90 }
91 
92 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
93   if (!getType()->isPointerTy()) return false;
94   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
95       (AllowUndefOrPoison ||
96        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
97     return true;
98   else if (getDereferenceableBytes() > 0 &&
99            !NullPointerIsDefined(getParent(),
100                                  getType()->getPointerAddressSpace()))
101     return true;
102   return false;
103 }
104 
105 bool Argument::hasByValAttr() const {
106   if (!getType()->isPointerTy()) return false;
107   return hasAttribute(Attribute::ByVal);
108 }
109 
110 bool Argument::hasByRefAttr() const {
111   if (!getType()->isPointerTy())
112     return false;
113   return hasAttribute(Attribute::ByRef);
114 }
115 
116 bool Argument::hasSwiftSelfAttr() const {
117   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
118 }
119 
120 bool Argument::hasSwiftErrorAttr() const {
121   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
122 }
123 
124 bool Argument::hasInAllocaAttr() const {
125   if (!getType()->isPointerTy()) return false;
126   return hasAttribute(Attribute::InAlloca);
127 }
128 
129 bool Argument::hasPreallocatedAttr() const {
130   if (!getType()->isPointerTy())
131     return false;
132   return hasAttribute(Attribute::Preallocated);
133 }
134 
135 bool Argument::hasPassPointeeByValueCopyAttr() const {
136   if (!getType()->isPointerTy()) return false;
137   AttributeList Attrs = getParent()->getAttributes();
138   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
139          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
140          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
141 }
142 
143 bool Argument::hasPointeeInMemoryValueAttr() const {
144   if (!getType()->isPointerTy())
145     return false;
146   AttributeList Attrs = getParent()->getAttributes();
147   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
148          Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) ||
149          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
150          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
151          Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
152 }
153 
154 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
155 /// parameter type.
156 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
157   // FIXME: All the type carrying attributes are mutually exclusive, so there
158   // should be a single query to get the stored type that handles any of them.
159   if (Type *ByValTy = ParamAttrs.getByValType())
160     return ByValTy;
161   if (Type *ByRefTy = ParamAttrs.getByRefType())
162     return ByRefTy;
163   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
164     return PreAllocTy;
165 
166   // FIXME: sret and inalloca always depends on pointee element type. It's also
167   // possible for byval to miss it.
168   if (ParamAttrs.hasAttribute(Attribute::InAlloca) ||
169       ParamAttrs.hasAttribute(Attribute::ByVal) ||
170       ParamAttrs.hasAttribute(Attribute::StructRet) ||
171       ParamAttrs.hasAttribute(Attribute::Preallocated))
172     return cast<PointerType>(ArgTy)->getElementType();
173 
174   return nullptr;
175 }
176 
177 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
178   AttributeSet ParamAttrs =
179       getParent()->getAttributes().getParamAttributes(getArgNo());
180   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
181     return DL.getTypeAllocSize(MemTy);
182   return 0;
183 }
184 
185 Type *Argument::getPointeeInMemoryValueType() const {
186   AttributeSet ParamAttrs =
187       getParent()->getAttributes().getParamAttributes(getArgNo());
188   return getMemoryParamAllocType(ParamAttrs, getType());
189 }
190 
191 unsigned Argument::getParamAlignment() const {
192   assert(getType()->isPointerTy() && "Only pointers have alignments");
193   return getParent()->getParamAlignment(getArgNo());
194 }
195 
196 MaybeAlign Argument::getParamAlign() const {
197   assert(getType()->isPointerTy() && "Only pointers have alignments");
198   return getParent()->getParamAlign(getArgNo());
199 }
200 
201 Type *Argument::getParamByValType() const {
202   assert(getType()->isPointerTy() && "Only pointers have byval types");
203   return getParent()->getParamByValType(getArgNo());
204 }
205 
206 Type *Argument::getParamStructRetType() const {
207   assert(getType()->isPointerTy() && "Only pointers have sret types");
208   return getParent()->getParamStructRetType(getArgNo());
209 }
210 
211 Type *Argument::getParamByRefType() const {
212   assert(getType()->isPointerTy() && "Only pointers have byref types");
213   return getParent()->getParamByRefType(getArgNo());
214 }
215 
216 uint64_t Argument::getDereferenceableBytes() const {
217   assert(getType()->isPointerTy() &&
218          "Only pointers have dereferenceable bytes");
219   return getParent()->getParamDereferenceableBytes(getArgNo());
220 }
221 
222 uint64_t Argument::getDereferenceableOrNullBytes() const {
223   assert(getType()->isPointerTy() &&
224          "Only pointers have dereferenceable bytes");
225   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
226 }
227 
228 bool Argument::hasNestAttr() const {
229   if (!getType()->isPointerTy()) return false;
230   return hasAttribute(Attribute::Nest);
231 }
232 
233 bool Argument::hasNoAliasAttr() const {
234   if (!getType()->isPointerTy()) return false;
235   return hasAttribute(Attribute::NoAlias);
236 }
237 
238 bool Argument::hasNoCaptureAttr() const {
239   if (!getType()->isPointerTy()) return false;
240   return hasAttribute(Attribute::NoCapture);
241 }
242 
243 bool Argument::hasNoFreeAttr() const {
244   if (!getType()->isPointerTy()) return false;
245   return hasAttribute(Attribute::NoFree);
246 }
247 
248 bool Argument::hasStructRetAttr() const {
249   if (!getType()->isPointerTy()) return false;
250   return hasAttribute(Attribute::StructRet);
251 }
252 
253 bool Argument::hasInRegAttr() const {
254   return hasAttribute(Attribute::InReg);
255 }
256 
257 bool Argument::hasReturnedAttr() const {
258   return hasAttribute(Attribute::Returned);
259 }
260 
261 bool Argument::hasZExtAttr() const {
262   return hasAttribute(Attribute::ZExt);
263 }
264 
265 bool Argument::hasSExtAttr() const {
266   return hasAttribute(Attribute::SExt);
267 }
268 
269 bool Argument::onlyReadsMemory() const {
270   AttributeList Attrs = getParent()->getAttributes();
271   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
272          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
273 }
274 
275 void Argument::addAttrs(AttrBuilder &B) {
276   AttributeList AL = getParent()->getAttributes();
277   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
278   getParent()->setAttributes(AL);
279 }
280 
281 void Argument::addAttr(Attribute::AttrKind Kind) {
282   getParent()->addParamAttr(getArgNo(), Kind);
283 }
284 
285 void Argument::addAttr(Attribute Attr) {
286   getParent()->addParamAttr(getArgNo(), Attr);
287 }
288 
289 void Argument::removeAttr(Attribute::AttrKind Kind) {
290   getParent()->removeParamAttr(getArgNo(), Kind);
291 }
292 
293 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
294   return getParent()->hasParamAttribute(getArgNo(), Kind);
295 }
296 
297 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
298   return getParent()->getParamAttribute(getArgNo(), Kind);
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // Helper Methods in Function
303 //===----------------------------------------------------------------------===//
304 
305 LLVMContext &Function::getContext() const {
306   return getType()->getContext();
307 }
308 
309 unsigned Function::getInstructionCount() const {
310   unsigned NumInstrs = 0;
311   for (const BasicBlock &BB : BasicBlocks)
312     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
313                                BB.instructionsWithoutDebug().end());
314   return NumInstrs;
315 }
316 
317 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
318                            const Twine &N, Module &M) {
319   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
320 }
321 
322 void Function::removeFromParent() {
323   getParent()->getFunctionList().remove(getIterator());
324 }
325 
326 void Function::eraseFromParent() {
327   getParent()->getFunctionList().erase(getIterator());
328 }
329 
330 //===----------------------------------------------------------------------===//
331 // Function Implementation
332 //===----------------------------------------------------------------------===//
333 
334 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
335   // If AS == -1 and we are passed a valid module pointer we place the function
336   // in the program address space. Otherwise we default to AS0.
337   if (AddrSpace == static_cast<unsigned>(-1))
338     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
339   return AddrSpace;
340 }
341 
342 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
343                    const Twine &name, Module *ParentModule)
344     : GlobalObject(Ty, Value::FunctionVal,
345                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
346                    computeAddrSpace(AddrSpace, ParentModule)),
347       NumArgs(Ty->getNumParams()) {
348   assert(FunctionType::isValidReturnType(getReturnType()) &&
349          "invalid return type");
350   setGlobalObjectSubClassData(0);
351 
352   // We only need a symbol table for a function if the context keeps value names
353   if (!getContext().shouldDiscardValueNames())
354     SymTab = std::make_unique<ValueSymbolTable>();
355 
356   // If the function has arguments, mark them as lazily built.
357   if (Ty->getNumParams())
358     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
359 
360   if (ParentModule)
361     ParentModule->getFunctionList().push_back(this);
362 
363   HasLLVMReservedName = getName().startswith("llvm.");
364   // Ensure intrinsics have the right parameter attributes.
365   // Note, the IntID field will have been set in Value::setName if this function
366   // name is a valid intrinsic ID.
367   if (IntID)
368     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
369 }
370 
371 Function::~Function() {
372   dropAllReferences();    // After this it is safe to delete instructions.
373 
374   // Delete all of the method arguments and unlink from symbol table...
375   if (Arguments)
376     clearArguments();
377 
378   // Remove the function from the on-the-side GC table.
379   clearGC();
380 }
381 
382 void Function::BuildLazyArguments() const {
383   // Create the arguments vector, all arguments start out unnamed.
384   auto *FT = getFunctionType();
385   if (NumArgs > 0) {
386     Arguments = std::allocator<Argument>().allocate(NumArgs);
387     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
388       Type *ArgTy = FT->getParamType(i);
389       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
390       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
391     }
392   }
393 
394   // Clear the lazy arguments bit.
395   unsigned SDC = getSubclassDataFromValue();
396   SDC &= ~(1 << 0);
397   const_cast<Function*>(this)->setValueSubclassData(SDC);
398   assert(!hasLazyArguments());
399 }
400 
401 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
402   return MutableArrayRef<Argument>(Args, Count);
403 }
404 
405 bool Function::isConstrainedFPIntrinsic() const {
406   switch (getIntrinsicID()) {
407 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
408   case Intrinsic::INTRINSIC:
409 #include "llvm/IR/ConstrainedOps.def"
410     return true;
411 #undef INSTRUCTION
412   default:
413     return false;
414   }
415 }
416 
417 void Function::clearArguments() {
418   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
419     A.setName("");
420     A.~Argument();
421   }
422   std::allocator<Argument>().deallocate(Arguments, NumArgs);
423   Arguments = nullptr;
424 }
425 
426 void Function::stealArgumentListFrom(Function &Src) {
427   assert(isDeclaration() && "Expected no references to current arguments");
428 
429   // Drop the current arguments, if any, and set the lazy argument bit.
430   if (!hasLazyArguments()) {
431     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
432                         [](const Argument &A) { return A.use_empty(); }) &&
433            "Expected arguments to be unused in declaration");
434     clearArguments();
435     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
436   }
437 
438   // Nothing to steal if Src has lazy arguments.
439   if (Src.hasLazyArguments())
440     return;
441 
442   // Steal arguments from Src, and fix the lazy argument bits.
443   assert(arg_size() == Src.arg_size());
444   Arguments = Src.Arguments;
445   Src.Arguments = nullptr;
446   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
447     // FIXME: This does the work of transferNodesFromList inefficiently.
448     SmallString<128> Name;
449     if (A.hasName())
450       Name = A.getName();
451     if (!Name.empty())
452       A.setName("");
453     A.setParent(this);
454     if (!Name.empty())
455       A.setName(Name);
456   }
457 
458   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
459   assert(!hasLazyArguments());
460   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
461 }
462 
463 // dropAllReferences() - This function causes all the subinstructions to "let
464 // go" of all references that they are maintaining.  This allows one to
465 // 'delete' a whole class at a time, even though there may be circular
466 // references... first all references are dropped, and all use counts go to
467 // zero.  Then everything is deleted for real.  Note that no operations are
468 // valid on an object that has "dropped all references", except operator
469 // delete.
470 //
471 void Function::dropAllReferences() {
472   setIsMaterializable(false);
473 
474   for (BasicBlock &BB : *this)
475     BB.dropAllReferences();
476 
477   // Delete all basic blocks. They are now unused, except possibly by
478   // blockaddresses, but BasicBlock's destructor takes care of those.
479   while (!BasicBlocks.empty())
480     BasicBlocks.begin()->eraseFromParent();
481 
482   // Drop uses of any optional data (real or placeholder).
483   if (getNumOperands()) {
484     User::dropAllReferences();
485     setNumHungOffUseOperands(0);
486     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
487   }
488 
489   // Metadata is stored in a side-table.
490   clearMetadata();
491 }
492 
493 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
494   AttributeList PAL = getAttributes();
495   PAL = PAL.addAttribute(getContext(), i, Kind);
496   setAttributes(PAL);
497 }
498 
499 void Function::addAttribute(unsigned i, Attribute Attr) {
500   AttributeList PAL = getAttributes();
501   PAL = PAL.addAttribute(getContext(), i, Attr);
502   setAttributes(PAL);
503 }
504 
505 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
506   AttributeList PAL = getAttributes();
507   PAL = PAL.addAttributes(getContext(), i, Attrs);
508   setAttributes(PAL);
509 }
510 
511 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
512   AttributeList PAL = getAttributes();
513   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
514   setAttributes(PAL);
515 }
516 
517 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
518   AttributeList PAL = getAttributes();
519   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
520   setAttributes(PAL);
521 }
522 
523 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
524   AttributeList PAL = getAttributes();
525   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
526   setAttributes(PAL);
527 }
528 
529 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
530   AttributeList PAL = getAttributes();
531   PAL = PAL.removeAttribute(getContext(), i, Kind);
532   setAttributes(PAL);
533 }
534 
535 void Function::removeAttribute(unsigned i, StringRef Kind) {
536   AttributeList PAL = getAttributes();
537   PAL = PAL.removeAttribute(getContext(), i, Kind);
538   setAttributes(PAL);
539 }
540 
541 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
542   AttributeList PAL = getAttributes();
543   PAL = PAL.removeAttributes(getContext(), i, Attrs);
544   setAttributes(PAL);
545 }
546 
547 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
548   AttributeList PAL = getAttributes();
549   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
550   setAttributes(PAL);
551 }
552 
553 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
554   AttributeList PAL = getAttributes();
555   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
556   setAttributes(PAL);
557 }
558 
559 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
560   AttributeList PAL = getAttributes();
561   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
562   setAttributes(PAL);
563 }
564 
565 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
566   AttributeList PAL = getAttributes();
567   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
568   setAttributes(PAL);
569 }
570 
571 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
572   AttributeList PAL = getAttributes();
573   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
574   setAttributes(PAL);
575 }
576 
577 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
578   AttributeList PAL = getAttributes();
579   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
580   setAttributes(PAL);
581 }
582 
583 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
584                                                  uint64_t Bytes) {
585   AttributeList PAL = getAttributes();
586   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
587   setAttributes(PAL);
588 }
589 
590 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
591   if (&FPType == &APFloat::IEEEsingle()) {
592     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
593     StringRef Val = Attr.getValueAsString();
594     if (!Val.empty())
595       return parseDenormalFPAttribute(Val);
596 
597     // If the f32 variant of the attribute isn't specified, try to use the
598     // generic one.
599   }
600 
601   Attribute Attr = getFnAttribute("denormal-fp-math");
602   return parseDenormalFPAttribute(Attr.getValueAsString());
603 }
604 
605 const std::string &Function::getGC() const {
606   assert(hasGC() && "Function has no collector");
607   return getContext().getGC(*this);
608 }
609 
610 void Function::setGC(std::string Str) {
611   setValueSubclassDataBit(14, !Str.empty());
612   getContext().setGC(*this, std::move(Str));
613 }
614 
615 void Function::clearGC() {
616   if (!hasGC())
617     return;
618   getContext().deleteGC(*this);
619   setValueSubclassDataBit(14, false);
620 }
621 
622 bool Function::hasStackProtectorFnAttr() const {
623   return hasFnAttribute(Attribute::StackProtect) ||
624          hasFnAttribute(Attribute::StackProtectStrong) ||
625          hasFnAttribute(Attribute::StackProtectReq);
626 }
627 
628 /// Copy all additional attributes (those not needed to create a Function) from
629 /// the Function Src to this one.
630 void Function::copyAttributesFrom(const Function *Src) {
631   GlobalObject::copyAttributesFrom(Src);
632   setCallingConv(Src->getCallingConv());
633   setAttributes(Src->getAttributes());
634   if (Src->hasGC())
635     setGC(Src->getGC());
636   else
637     clearGC();
638   if (Src->hasPersonalityFn())
639     setPersonalityFn(Src->getPersonalityFn());
640   if (Src->hasPrefixData())
641     setPrefixData(Src->getPrefixData());
642   if (Src->hasPrologueData())
643     setPrologueData(Src->getPrologueData());
644 }
645 
646 /// Table of string intrinsic names indexed by enum value.
647 static const char * const IntrinsicNameTable[] = {
648   "not_intrinsic",
649 #define GET_INTRINSIC_NAME_TABLE
650 #include "llvm/IR/IntrinsicImpl.inc"
651 #undef GET_INTRINSIC_NAME_TABLE
652 };
653 
654 /// Table of per-target intrinsic name tables.
655 #define GET_INTRINSIC_TARGET_DATA
656 #include "llvm/IR/IntrinsicImpl.inc"
657 #undef GET_INTRINSIC_TARGET_DATA
658 
659 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
660   return IID > TargetInfos[0].Count;
661 }
662 
663 bool Function::isTargetIntrinsic() const {
664   return isTargetIntrinsic(IntID);
665 }
666 
667 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
668 /// target as \c Name, or the generic table if \c Name is not target specific.
669 ///
670 /// Returns the relevant slice of \c IntrinsicNameTable
671 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
672   assert(Name.startswith("llvm."));
673 
674   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
675   // Drop "llvm." and take the first dotted component. That will be the target
676   // if this is target specific.
677   StringRef Target = Name.drop_front(5).split('.').first;
678   auto It = partition_point(
679       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
680   // We've either found the target or just fall back to the generic set, which
681   // is always first.
682   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
683   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
684 }
685 
686 /// This does the actual lookup of an intrinsic ID which
687 /// matches the given function name.
688 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
689   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
690   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
691   if (Idx == -1)
692     return Intrinsic::not_intrinsic;
693 
694   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
695   // an index into a sub-table.
696   int Adjust = NameTable.data() - IntrinsicNameTable;
697   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
698 
699   // If the intrinsic is not overloaded, require an exact match. If it is
700   // overloaded, require either exact or prefix match.
701   const auto MatchSize = strlen(NameTable[Idx]);
702   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
703   bool IsExactMatch = Name.size() == MatchSize;
704   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
705                                                      : Intrinsic::not_intrinsic;
706 }
707 
708 void Function::recalculateIntrinsicID() {
709   StringRef Name = getName();
710   if (!Name.startswith("llvm.")) {
711     HasLLVMReservedName = false;
712     IntID = Intrinsic::not_intrinsic;
713     return;
714   }
715   HasLLVMReservedName = true;
716   IntID = lookupIntrinsicID(Name);
717 }
718 
719 /// Returns a stable mangling for the type specified for use in the name
720 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
721 /// of named types is simply their name.  Manglings for unnamed types consist
722 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
723 /// combined with the mangling of their component types.  A vararg function
724 /// type will have a suffix of 'vararg'.  Since function types can contain
725 /// other function types, we close a function type mangling with suffix 'f'
726 /// which can't be confused with it's prefix.  This ensures we don't have
727 /// collisions between two unrelated function types. Otherwise, you might
728 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
729 ///
730 static std::string getMangledTypeStr(Type* Ty) {
731   std::string Result;
732   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
733     Result += "p" + utostr(PTyp->getAddressSpace()) +
734       getMangledTypeStr(PTyp->getElementType());
735   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
736     Result += "a" + utostr(ATyp->getNumElements()) +
737       getMangledTypeStr(ATyp->getElementType());
738   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
739     if (!STyp->isLiteral()) {
740       Result += "s_";
741       Result += STyp->getName();
742     } else {
743       Result += "sl_";
744       for (auto Elem : STyp->elements())
745         Result += getMangledTypeStr(Elem);
746     }
747     // Ensure nested structs are distinguishable.
748     Result += "s";
749   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
750     Result += "f_" + getMangledTypeStr(FT->getReturnType());
751     for (size_t i = 0; i < FT->getNumParams(); i++)
752       Result += getMangledTypeStr(FT->getParamType(i));
753     if (FT->isVarArg())
754       Result += "vararg";
755     // Ensure nested function types are distinguishable.
756     Result += "f";
757   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
758     ElementCount EC = VTy->getElementCount();
759     if (EC.isScalable())
760       Result += "nx";
761     Result += "v" + utostr(EC.getKnownMinValue()) +
762               getMangledTypeStr(VTy->getElementType());
763   } else if (Ty) {
764     switch (Ty->getTypeID()) {
765     default: llvm_unreachable("Unhandled type");
766     case Type::VoidTyID:      Result += "isVoid";   break;
767     case Type::MetadataTyID:  Result += "Metadata"; break;
768     case Type::HalfTyID:      Result += "f16";      break;
769     case Type::BFloatTyID:    Result += "bf16";     break;
770     case Type::FloatTyID:     Result += "f32";      break;
771     case Type::DoubleTyID:    Result += "f64";      break;
772     case Type::X86_FP80TyID:  Result += "f80";      break;
773     case Type::FP128TyID:     Result += "f128";     break;
774     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
775     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
776     case Type::X86_AMXTyID:   Result += "x86amx";   break;
777     case Type::IntegerTyID:
778       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
779       break;
780     }
781   }
782   return Result;
783 }
784 
785 StringRef Intrinsic::getName(ID id) {
786   assert(id < num_intrinsics && "Invalid intrinsic ID!");
787   assert(!Intrinsic::isOverloaded(id) &&
788          "This version of getName does not support overloading");
789   return IntrinsicNameTable[id];
790 }
791 
792 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
793   assert(id < num_intrinsics && "Invalid intrinsic ID!");
794   assert((Tys.empty() || Intrinsic::isOverloaded(id)) &&
795          "This version of getName is for overloaded intrinsics only");
796   std::string Result(IntrinsicNameTable[id]);
797   for (Type *Ty : Tys) {
798     Result += "." + getMangledTypeStr(Ty);
799   }
800   return Result;
801 }
802 
803 /// IIT_Info - These are enumerators that describe the entries returned by the
804 /// getIntrinsicInfoTableEntries function.
805 ///
806 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
807 enum IIT_Info {
808   // Common values should be encoded with 0-15.
809   IIT_Done = 0,
810   IIT_I1   = 1,
811   IIT_I8   = 2,
812   IIT_I16  = 3,
813   IIT_I32  = 4,
814   IIT_I64  = 5,
815   IIT_F16  = 6,
816   IIT_F32  = 7,
817   IIT_F64  = 8,
818   IIT_V2   = 9,
819   IIT_V4   = 10,
820   IIT_V8   = 11,
821   IIT_V16  = 12,
822   IIT_V32  = 13,
823   IIT_PTR  = 14,
824   IIT_ARG  = 15,
825 
826   // Values from 16+ are only encodable with the inefficient encoding.
827   IIT_V64  = 16,
828   IIT_MMX  = 17,
829   IIT_TOKEN = 18,
830   IIT_METADATA = 19,
831   IIT_EMPTYSTRUCT = 20,
832   IIT_STRUCT2 = 21,
833   IIT_STRUCT3 = 22,
834   IIT_STRUCT4 = 23,
835   IIT_STRUCT5 = 24,
836   IIT_EXTEND_ARG = 25,
837   IIT_TRUNC_ARG = 26,
838   IIT_ANYPTR = 27,
839   IIT_V1   = 28,
840   IIT_VARARG = 29,
841   IIT_HALF_VEC_ARG = 30,
842   IIT_SAME_VEC_WIDTH_ARG = 31,
843   IIT_PTR_TO_ARG = 32,
844   IIT_PTR_TO_ELT = 33,
845   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
846   IIT_I128 = 35,
847   IIT_V512 = 36,
848   IIT_V1024 = 37,
849   IIT_STRUCT6 = 38,
850   IIT_STRUCT7 = 39,
851   IIT_STRUCT8 = 40,
852   IIT_F128 = 41,
853   IIT_VEC_ELEMENT = 42,
854   IIT_SCALABLE_VEC = 43,
855   IIT_SUBDIVIDE2_ARG = 44,
856   IIT_SUBDIVIDE4_ARG = 45,
857   IIT_VEC_OF_BITCASTS_TO_INT = 46,
858   IIT_V128 = 47,
859   IIT_BF16 = 48,
860   IIT_STRUCT9 = 49,
861   IIT_V256 = 50,
862   IIT_AMX  = 51
863 };
864 
865 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
866                       IIT_Info LastInfo,
867                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
868   using namespace Intrinsic;
869 
870   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
871 
872   IIT_Info Info = IIT_Info(Infos[NextElt++]);
873   unsigned StructElts = 2;
874 
875   switch (Info) {
876   case IIT_Done:
877     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
878     return;
879   case IIT_VARARG:
880     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
881     return;
882   case IIT_MMX:
883     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
884     return;
885   case IIT_AMX:
886     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
887     return;
888   case IIT_TOKEN:
889     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
890     return;
891   case IIT_METADATA:
892     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
893     return;
894   case IIT_F16:
895     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
896     return;
897   case IIT_BF16:
898     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
899     return;
900   case IIT_F32:
901     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
902     return;
903   case IIT_F64:
904     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
905     return;
906   case IIT_F128:
907     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
908     return;
909   case IIT_I1:
910     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
911     return;
912   case IIT_I8:
913     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
914     return;
915   case IIT_I16:
916     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
917     return;
918   case IIT_I32:
919     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
920     return;
921   case IIT_I64:
922     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
923     return;
924   case IIT_I128:
925     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
926     return;
927   case IIT_V1:
928     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
929     DecodeIITType(NextElt, Infos, Info, OutputTable);
930     return;
931   case IIT_V2:
932     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
933     DecodeIITType(NextElt, Infos, Info, OutputTable);
934     return;
935   case IIT_V4:
936     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
937     DecodeIITType(NextElt, Infos, Info, OutputTable);
938     return;
939   case IIT_V8:
940     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
941     DecodeIITType(NextElt, Infos, Info, OutputTable);
942     return;
943   case IIT_V16:
944     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
945     DecodeIITType(NextElt, Infos, Info, OutputTable);
946     return;
947   case IIT_V32:
948     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
949     DecodeIITType(NextElt, Infos, Info, OutputTable);
950     return;
951   case IIT_V64:
952     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
953     DecodeIITType(NextElt, Infos, Info, OutputTable);
954     return;
955   case IIT_V128:
956     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
957     DecodeIITType(NextElt, Infos, Info, OutputTable);
958     return;
959   case IIT_V256:
960     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
961     DecodeIITType(NextElt, Infos, Info, OutputTable);
962     return;
963   case IIT_V512:
964     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
965     DecodeIITType(NextElt, Infos, Info, OutputTable);
966     return;
967   case IIT_V1024:
968     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
969     DecodeIITType(NextElt, Infos, Info, OutputTable);
970     return;
971   case IIT_PTR:
972     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
973     DecodeIITType(NextElt, Infos, Info, OutputTable);
974     return;
975   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
976     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
977                                              Infos[NextElt++]));
978     DecodeIITType(NextElt, Infos, Info, OutputTable);
979     return;
980   }
981   case IIT_ARG: {
982     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
983     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
984     return;
985   }
986   case IIT_EXTEND_ARG: {
987     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
988     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
989                                              ArgInfo));
990     return;
991   }
992   case IIT_TRUNC_ARG: {
993     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
994     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
995                                              ArgInfo));
996     return;
997   }
998   case IIT_HALF_VEC_ARG: {
999     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1000     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1001                                              ArgInfo));
1002     return;
1003   }
1004   case IIT_SAME_VEC_WIDTH_ARG: {
1005     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1006     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1007                                              ArgInfo));
1008     return;
1009   }
1010   case IIT_PTR_TO_ARG: {
1011     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1012     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1013                                              ArgInfo));
1014     return;
1015   }
1016   case IIT_PTR_TO_ELT: {
1017     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1018     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1019     return;
1020   }
1021   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1022     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1023     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1024     OutputTable.push_back(
1025         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1026     return;
1027   }
1028   case IIT_EMPTYSTRUCT:
1029     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1030     return;
1031   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1032   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1033   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1034   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1035   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1036   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1037   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1038   case IIT_STRUCT2: {
1039     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1040 
1041     for (unsigned i = 0; i != StructElts; ++i)
1042       DecodeIITType(NextElt, Infos, Info, OutputTable);
1043     return;
1044   }
1045   case IIT_SUBDIVIDE2_ARG: {
1046     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1047     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1048                                              ArgInfo));
1049     return;
1050   }
1051   case IIT_SUBDIVIDE4_ARG: {
1052     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1053     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1054                                              ArgInfo));
1055     return;
1056   }
1057   case IIT_VEC_ELEMENT: {
1058     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1059     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1060                                              ArgInfo));
1061     return;
1062   }
1063   case IIT_SCALABLE_VEC: {
1064     DecodeIITType(NextElt, Infos, Info, OutputTable);
1065     return;
1066   }
1067   case IIT_VEC_OF_BITCASTS_TO_INT: {
1068     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1069     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1070                                              ArgInfo));
1071     return;
1072   }
1073   }
1074   llvm_unreachable("unhandled");
1075 }
1076 
1077 #define GET_INTRINSIC_GENERATOR_GLOBAL
1078 #include "llvm/IR/IntrinsicImpl.inc"
1079 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1080 
1081 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1082                                              SmallVectorImpl<IITDescriptor> &T){
1083   // Check to see if the intrinsic's type was expressible by the table.
1084   unsigned TableVal = IIT_Table[id-1];
1085 
1086   // Decode the TableVal into an array of IITValues.
1087   SmallVector<unsigned char, 8> IITValues;
1088   ArrayRef<unsigned char> IITEntries;
1089   unsigned NextElt = 0;
1090   if ((TableVal >> 31) != 0) {
1091     // This is an offset into the IIT_LongEncodingTable.
1092     IITEntries = IIT_LongEncodingTable;
1093 
1094     // Strip sentinel bit.
1095     NextElt = (TableVal << 1) >> 1;
1096   } else {
1097     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1098     // into a single word in the table itself, decode it now.
1099     do {
1100       IITValues.push_back(TableVal & 0xF);
1101       TableVal >>= 4;
1102     } while (TableVal);
1103 
1104     IITEntries = IITValues;
1105     NextElt = 0;
1106   }
1107 
1108   // Okay, decode the table into the output vector of IITDescriptors.
1109   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1110   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1111     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1112 }
1113 
1114 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1115                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1116   using namespace Intrinsic;
1117 
1118   IITDescriptor D = Infos.front();
1119   Infos = Infos.slice(1);
1120 
1121   switch (D.Kind) {
1122   case IITDescriptor::Void: return Type::getVoidTy(Context);
1123   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1124   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1125   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1126   case IITDescriptor::Token: return Type::getTokenTy(Context);
1127   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1128   case IITDescriptor::Half: return Type::getHalfTy(Context);
1129   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1130   case IITDescriptor::Float: return Type::getFloatTy(Context);
1131   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1132   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1133 
1134   case IITDescriptor::Integer:
1135     return IntegerType::get(Context, D.Integer_Width);
1136   case IITDescriptor::Vector:
1137     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1138                            D.Vector_Width);
1139   case IITDescriptor::Pointer:
1140     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1141                             D.Pointer_AddressSpace);
1142   case IITDescriptor::Struct: {
1143     SmallVector<Type *, 8> Elts;
1144     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1145       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1146     return StructType::get(Context, Elts);
1147   }
1148   case IITDescriptor::Argument:
1149     return Tys[D.getArgumentNumber()];
1150   case IITDescriptor::ExtendArgument: {
1151     Type *Ty = Tys[D.getArgumentNumber()];
1152     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1153       return VectorType::getExtendedElementVectorType(VTy);
1154 
1155     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1156   }
1157   case IITDescriptor::TruncArgument: {
1158     Type *Ty = Tys[D.getArgumentNumber()];
1159     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1160       return VectorType::getTruncatedElementVectorType(VTy);
1161 
1162     IntegerType *ITy = cast<IntegerType>(Ty);
1163     assert(ITy->getBitWidth() % 2 == 0);
1164     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1165   }
1166   case IITDescriptor::Subdivide2Argument:
1167   case IITDescriptor::Subdivide4Argument: {
1168     Type *Ty = Tys[D.getArgumentNumber()];
1169     VectorType *VTy = dyn_cast<VectorType>(Ty);
1170     assert(VTy && "Expected an argument of Vector Type");
1171     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1172     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1173   }
1174   case IITDescriptor::HalfVecArgument:
1175     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1176                                                   Tys[D.getArgumentNumber()]));
1177   case IITDescriptor::SameVecWidthArgument: {
1178     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1179     Type *Ty = Tys[D.getArgumentNumber()];
1180     if (auto *VTy = dyn_cast<VectorType>(Ty))
1181       return VectorType::get(EltTy, VTy->getElementCount());
1182     return EltTy;
1183   }
1184   case IITDescriptor::PtrToArgument: {
1185     Type *Ty = Tys[D.getArgumentNumber()];
1186     return PointerType::getUnqual(Ty);
1187   }
1188   case IITDescriptor::PtrToElt: {
1189     Type *Ty = Tys[D.getArgumentNumber()];
1190     VectorType *VTy = dyn_cast<VectorType>(Ty);
1191     if (!VTy)
1192       llvm_unreachable("Expected an argument of Vector Type");
1193     Type *EltTy = VTy->getElementType();
1194     return PointerType::getUnqual(EltTy);
1195   }
1196   case IITDescriptor::VecElementArgument: {
1197     Type *Ty = Tys[D.getArgumentNumber()];
1198     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1199       return VTy->getElementType();
1200     llvm_unreachable("Expected an argument of Vector Type");
1201   }
1202   case IITDescriptor::VecOfBitcastsToInt: {
1203     Type *Ty = Tys[D.getArgumentNumber()];
1204     VectorType *VTy = dyn_cast<VectorType>(Ty);
1205     assert(VTy && "Expected an argument of Vector Type");
1206     return VectorType::getInteger(VTy);
1207   }
1208   case IITDescriptor::VecOfAnyPtrsToElt:
1209     // Return the overloaded type (which determines the pointers address space)
1210     return Tys[D.getOverloadArgNumber()];
1211   }
1212   llvm_unreachable("unhandled");
1213 }
1214 
1215 FunctionType *Intrinsic::getType(LLVMContext &Context,
1216                                  ID id, ArrayRef<Type*> Tys) {
1217   SmallVector<IITDescriptor, 8> Table;
1218   getIntrinsicInfoTableEntries(id, Table);
1219 
1220   ArrayRef<IITDescriptor> TableRef = Table;
1221   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1222 
1223   SmallVector<Type*, 8> ArgTys;
1224   while (!TableRef.empty())
1225     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1226 
1227   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1228   // If we see void type as the type of the last argument, it is vararg intrinsic
1229   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1230     ArgTys.pop_back();
1231     return FunctionType::get(ResultTy, ArgTys, true);
1232   }
1233   return FunctionType::get(ResultTy, ArgTys, false);
1234 }
1235 
1236 bool Intrinsic::isOverloaded(ID id) {
1237 #define GET_INTRINSIC_OVERLOAD_TABLE
1238 #include "llvm/IR/IntrinsicImpl.inc"
1239 #undef GET_INTRINSIC_OVERLOAD_TABLE
1240 }
1241 
1242 bool Intrinsic::isLeaf(ID id) {
1243   switch (id) {
1244   default:
1245     return true;
1246 
1247   case Intrinsic::experimental_gc_statepoint:
1248   case Intrinsic::experimental_patchpoint_void:
1249   case Intrinsic::experimental_patchpoint_i64:
1250     return false;
1251   }
1252 }
1253 
1254 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1255 #define GET_INTRINSIC_ATTRIBUTES
1256 #include "llvm/IR/IntrinsicImpl.inc"
1257 #undef GET_INTRINSIC_ATTRIBUTES
1258 
1259 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1260   // There can never be multiple globals with the same name of different types,
1261   // because intrinsics must be a specific type.
1262   return cast<Function>(
1263       M->getOrInsertFunction(Tys.empty() ? getName(id) : getName(id, Tys),
1264                              getType(M->getContext(), id, Tys))
1265           .getCallee());
1266 }
1267 
1268 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1269 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1270 #include "llvm/IR/IntrinsicImpl.inc"
1271 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1272 
1273 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1274 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1275 #include "llvm/IR/IntrinsicImpl.inc"
1276 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1277 
1278 using DeferredIntrinsicMatchPair =
1279     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1280 
1281 static bool matchIntrinsicType(
1282     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1283     SmallVectorImpl<Type *> &ArgTys,
1284     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1285     bool IsDeferredCheck) {
1286   using namespace Intrinsic;
1287 
1288   // If we ran out of descriptors, there are too many arguments.
1289   if (Infos.empty()) return true;
1290 
1291   // Do this before slicing off the 'front' part
1292   auto InfosRef = Infos;
1293   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1294     DeferredChecks.emplace_back(T, InfosRef);
1295     return false;
1296   };
1297 
1298   IITDescriptor D = Infos.front();
1299   Infos = Infos.slice(1);
1300 
1301   switch (D.Kind) {
1302     case IITDescriptor::Void: return !Ty->isVoidTy();
1303     case IITDescriptor::VarArg: return true;
1304     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1305     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1306     case IITDescriptor::Token: return !Ty->isTokenTy();
1307     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1308     case IITDescriptor::Half: return !Ty->isHalfTy();
1309     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1310     case IITDescriptor::Float: return !Ty->isFloatTy();
1311     case IITDescriptor::Double: return !Ty->isDoubleTy();
1312     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1313     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1314     case IITDescriptor::Vector: {
1315       VectorType *VT = dyn_cast<VectorType>(Ty);
1316       return !VT || VT->getElementCount() != D.Vector_Width ||
1317              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1318                                 DeferredChecks, IsDeferredCheck);
1319     }
1320     case IITDescriptor::Pointer: {
1321       PointerType *PT = dyn_cast<PointerType>(Ty);
1322       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1323              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1324                                 DeferredChecks, IsDeferredCheck);
1325     }
1326 
1327     case IITDescriptor::Struct: {
1328       StructType *ST = dyn_cast<StructType>(Ty);
1329       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1330         return true;
1331 
1332       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1333         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1334                                DeferredChecks, IsDeferredCheck))
1335           return true;
1336       return false;
1337     }
1338 
1339     case IITDescriptor::Argument:
1340       // If this is the second occurrence of an argument,
1341       // verify that the later instance matches the previous instance.
1342       if (D.getArgumentNumber() < ArgTys.size())
1343         return Ty != ArgTys[D.getArgumentNumber()];
1344 
1345       if (D.getArgumentNumber() > ArgTys.size() ||
1346           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1347         return IsDeferredCheck || DeferCheck(Ty);
1348 
1349       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1350              "Table consistency error");
1351       ArgTys.push_back(Ty);
1352 
1353       switch (D.getArgumentKind()) {
1354         case IITDescriptor::AK_Any:        return false; // Success
1355         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1356         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1357         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1358         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1359         default:                           break;
1360       }
1361       llvm_unreachable("all argument kinds not covered");
1362 
1363     case IITDescriptor::ExtendArgument: {
1364       // If this is a forward reference, defer the check for later.
1365       if (D.getArgumentNumber() >= ArgTys.size())
1366         return IsDeferredCheck || DeferCheck(Ty);
1367 
1368       Type *NewTy = ArgTys[D.getArgumentNumber()];
1369       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1370         NewTy = VectorType::getExtendedElementVectorType(VTy);
1371       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1372         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1373       else
1374         return true;
1375 
1376       return Ty != NewTy;
1377     }
1378     case IITDescriptor::TruncArgument: {
1379       // If this is a forward reference, defer the check for later.
1380       if (D.getArgumentNumber() >= ArgTys.size())
1381         return IsDeferredCheck || DeferCheck(Ty);
1382 
1383       Type *NewTy = ArgTys[D.getArgumentNumber()];
1384       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1385         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1386       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1387         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1388       else
1389         return true;
1390 
1391       return Ty != NewTy;
1392     }
1393     case IITDescriptor::HalfVecArgument:
1394       // If this is a forward reference, defer the check for later.
1395       if (D.getArgumentNumber() >= ArgTys.size())
1396         return IsDeferredCheck || DeferCheck(Ty);
1397       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1398              VectorType::getHalfElementsVectorType(
1399                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1400     case IITDescriptor::SameVecWidthArgument: {
1401       if (D.getArgumentNumber() >= ArgTys.size()) {
1402         // Defer check and subsequent check for the vector element type.
1403         Infos = Infos.slice(1);
1404         return IsDeferredCheck || DeferCheck(Ty);
1405       }
1406       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1407       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1408       // Both must be vectors of the same number of elements or neither.
1409       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1410         return true;
1411       Type *EltTy = Ty;
1412       if (ThisArgType) {
1413         if (ReferenceType->getElementCount() !=
1414             ThisArgType->getElementCount())
1415           return true;
1416         EltTy = ThisArgType->getElementType();
1417       }
1418       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1419                                 IsDeferredCheck);
1420     }
1421     case IITDescriptor::PtrToArgument: {
1422       if (D.getArgumentNumber() >= ArgTys.size())
1423         return IsDeferredCheck || DeferCheck(Ty);
1424       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1425       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1426       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1427     }
1428     case IITDescriptor::PtrToElt: {
1429       if (D.getArgumentNumber() >= ArgTys.size())
1430         return IsDeferredCheck || DeferCheck(Ty);
1431       VectorType * ReferenceType =
1432         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1433       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1434 
1435       return (!ThisArgType || !ReferenceType ||
1436               ThisArgType->getElementType() != ReferenceType->getElementType());
1437     }
1438     case IITDescriptor::VecOfAnyPtrsToElt: {
1439       unsigned RefArgNumber = D.getRefArgNumber();
1440       if (RefArgNumber >= ArgTys.size()) {
1441         if (IsDeferredCheck)
1442           return true;
1443         // If forward referencing, already add the pointer-vector type and
1444         // defer the checks for later.
1445         ArgTys.push_back(Ty);
1446         return DeferCheck(Ty);
1447       }
1448 
1449       if (!IsDeferredCheck){
1450         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1451                "Table consistency error");
1452         ArgTys.push_back(Ty);
1453       }
1454 
1455       // Verify the overloaded type "matches" the Ref type.
1456       // i.e. Ty is a vector with the same width as Ref.
1457       // Composed of pointers to the same element type as Ref.
1458       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1459       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1460       if (!ThisArgVecTy || !ReferenceType ||
1461           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1462         return true;
1463       PointerType *ThisArgEltTy =
1464           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1465       if (!ThisArgEltTy)
1466         return true;
1467       return ThisArgEltTy->getElementType() != ReferenceType->getElementType();
1468     }
1469     case IITDescriptor::VecElementArgument: {
1470       if (D.getArgumentNumber() >= ArgTys.size())
1471         return IsDeferredCheck ? true : DeferCheck(Ty);
1472       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1473       return !ReferenceType || Ty != ReferenceType->getElementType();
1474     }
1475     case IITDescriptor::Subdivide2Argument:
1476     case IITDescriptor::Subdivide4Argument: {
1477       // If this is a forward reference, defer the check for later.
1478       if (D.getArgumentNumber() >= ArgTys.size())
1479         return IsDeferredCheck || DeferCheck(Ty);
1480 
1481       Type *NewTy = ArgTys[D.getArgumentNumber()];
1482       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1483         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1484         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1485         return Ty != NewTy;
1486       }
1487       return true;
1488     }
1489     case IITDescriptor::VecOfBitcastsToInt: {
1490       if (D.getArgumentNumber() >= ArgTys.size())
1491         return IsDeferredCheck || DeferCheck(Ty);
1492       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1493       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1494       if (!ThisArgVecTy || !ReferenceType)
1495         return true;
1496       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1497     }
1498   }
1499   llvm_unreachable("unhandled");
1500 }
1501 
1502 Intrinsic::MatchIntrinsicTypesResult
1503 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1504                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1505                                    SmallVectorImpl<Type *> &ArgTys) {
1506   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1507   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1508                          false))
1509     return MatchIntrinsicTypes_NoMatchRet;
1510 
1511   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1512 
1513   for (auto Ty : FTy->params())
1514     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1515       return MatchIntrinsicTypes_NoMatchArg;
1516 
1517   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1518     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1519     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1520                            true))
1521       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1522                                          : MatchIntrinsicTypes_NoMatchArg;
1523   }
1524 
1525   return MatchIntrinsicTypes_Match;
1526 }
1527 
1528 bool
1529 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1530                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1531   // If there are no descriptors left, then it can't be a vararg.
1532   if (Infos.empty())
1533     return isVarArg;
1534 
1535   // There should be only one descriptor remaining at this point.
1536   if (Infos.size() != 1)
1537     return true;
1538 
1539   // Check and verify the descriptor.
1540   IITDescriptor D = Infos.front();
1541   Infos = Infos.slice(1);
1542   if (D.Kind == IITDescriptor::VarArg)
1543     return !isVarArg;
1544 
1545   return true;
1546 }
1547 
1548 bool Intrinsic::getIntrinsicSignature(Function *F,
1549                                       SmallVectorImpl<Type *> &ArgTys) {
1550   Intrinsic::ID ID = F->getIntrinsicID();
1551   if (!ID)
1552     return false;
1553 
1554   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1555   getIntrinsicInfoTableEntries(ID, Table);
1556   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1557 
1558   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1559                                          ArgTys) !=
1560       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1561     return false;
1562   }
1563   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1564                                       TableRef))
1565     return false;
1566   return true;
1567 }
1568 
1569 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1570   SmallVector<Type *, 4> ArgTys;
1571   if (!getIntrinsicSignature(F, ArgTys))
1572     return None;
1573 
1574   Intrinsic::ID ID = F->getIntrinsicID();
1575   StringRef Name = F->getName();
1576   if (Name == Intrinsic::getName(ID, ArgTys))
1577     return None;
1578 
1579   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1580   NewDecl->setCallingConv(F->getCallingConv());
1581   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1582          "Shouldn't change the signature");
1583   return NewDecl;
1584 }
1585 
1586 /// hasAddressTaken - returns true if there are any uses of this function
1587 /// other than direct calls or invokes to it. Optionally ignores callback
1588 /// uses, assume like pointer annotation calls, and references in llvm.used
1589 /// and llvm.compiler.used variables.
1590 bool Function::hasAddressTaken(const User **PutOffender,
1591                                bool IgnoreCallbackUses,
1592                                bool IgnoreAssumeLikeCalls,
1593                                bool IgnoreLLVMUsed) const {
1594   for (const Use &U : uses()) {
1595     const User *FU = U.getUser();
1596     if (isa<BlockAddress>(FU))
1597       continue;
1598 
1599     if (IgnoreCallbackUses) {
1600       AbstractCallSite ACS(&U);
1601       if (ACS && ACS.isCallbackCall())
1602         continue;
1603     }
1604 
1605     const auto *Call = dyn_cast<CallBase>(FU);
1606     if (!Call) {
1607       if (IgnoreAssumeLikeCalls) {
1608         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1609           if (FI->isCast() && !FI->user_empty() &&
1610               llvm::all_of(FU->users(), [](const User *U) {
1611                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1612                   return I->isAssumeLikeIntrinsic();
1613                 return false;
1614               }))
1615             continue;
1616         }
1617       }
1618       if (IgnoreLLVMUsed && !FU->user_empty()) {
1619         const User *FUU = FU;
1620         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1621             !FU->user_begin()->user_empty())
1622           FUU = *FU->user_begin();
1623         if (llvm::all_of(FUU->users(), [](const User *U) {
1624               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1625                 return GV->hasName() &&
1626                        (GV->getName().equals("llvm.compiler.used") ||
1627                         GV->getName().equals("llvm.used"));
1628               return false;
1629             }))
1630           continue;
1631       }
1632       if (PutOffender)
1633         *PutOffender = FU;
1634       return true;
1635     }
1636     if (!Call->isCallee(&U)) {
1637       if (PutOffender)
1638         *PutOffender = FU;
1639       return true;
1640     }
1641   }
1642   return false;
1643 }
1644 
1645 bool Function::isDefTriviallyDead() const {
1646   // Check the linkage
1647   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1648       !hasAvailableExternallyLinkage())
1649     return false;
1650 
1651   // Check if the function is used by anything other than a blockaddress.
1652   for (const User *U : users())
1653     if (!isa<BlockAddress>(U))
1654       return false;
1655 
1656   return true;
1657 }
1658 
1659 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1660 /// setjmp or other function that gcc recognizes as "returning twice".
1661 bool Function::callsFunctionThatReturnsTwice() const {
1662   for (const Instruction &I : instructions(this))
1663     if (const auto *Call = dyn_cast<CallBase>(&I))
1664       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1665         return true;
1666 
1667   return false;
1668 }
1669 
1670 Constant *Function::getPersonalityFn() const {
1671   assert(hasPersonalityFn() && getNumOperands());
1672   return cast<Constant>(Op<0>());
1673 }
1674 
1675 void Function::setPersonalityFn(Constant *Fn) {
1676   setHungoffOperand<0>(Fn);
1677   setValueSubclassDataBit(3, Fn != nullptr);
1678 }
1679 
1680 Constant *Function::getPrefixData() const {
1681   assert(hasPrefixData() && getNumOperands());
1682   return cast<Constant>(Op<1>());
1683 }
1684 
1685 void Function::setPrefixData(Constant *PrefixData) {
1686   setHungoffOperand<1>(PrefixData);
1687   setValueSubclassDataBit(1, PrefixData != nullptr);
1688 }
1689 
1690 Constant *Function::getPrologueData() const {
1691   assert(hasPrologueData() && getNumOperands());
1692   return cast<Constant>(Op<2>());
1693 }
1694 
1695 void Function::setPrologueData(Constant *PrologueData) {
1696   setHungoffOperand<2>(PrologueData);
1697   setValueSubclassDataBit(2, PrologueData != nullptr);
1698 }
1699 
1700 void Function::allocHungoffUselist() {
1701   // If we've already allocated a uselist, stop here.
1702   if (getNumOperands())
1703     return;
1704 
1705   allocHungoffUses(3, /*IsPhi=*/ false);
1706   setNumHungOffUseOperands(3);
1707 
1708   // Initialize the uselist with placeholder operands to allow traversal.
1709   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1710   Op<0>().set(CPN);
1711   Op<1>().set(CPN);
1712   Op<2>().set(CPN);
1713 }
1714 
1715 template <int Idx>
1716 void Function::setHungoffOperand(Constant *C) {
1717   if (C) {
1718     allocHungoffUselist();
1719     Op<Idx>().set(C);
1720   } else if (getNumOperands()) {
1721     Op<Idx>().set(
1722         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1723   }
1724 }
1725 
1726 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1727   assert(Bit < 16 && "SubclassData contains only 16 bits");
1728   if (On)
1729     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1730   else
1731     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1732 }
1733 
1734 void Function::setEntryCount(ProfileCount Count,
1735                              const DenseSet<GlobalValue::GUID> *S) {
1736   assert(Count.hasValue());
1737 #if !defined(NDEBUG)
1738   auto PrevCount = getEntryCount();
1739   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1740 #endif
1741 
1742   auto ImportGUIDs = getImportGUIDs();
1743   if (S == nullptr && ImportGUIDs.size())
1744     S = &ImportGUIDs;
1745 
1746   MDBuilder MDB(getContext());
1747   setMetadata(
1748       LLVMContext::MD_prof,
1749       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1750 }
1751 
1752 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1753                              const DenseSet<GlobalValue::GUID> *Imports) {
1754   setEntryCount(ProfileCount(Count, Type), Imports);
1755 }
1756 
1757 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1758   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1759   if (MD && MD->getOperand(0))
1760     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1761       if (MDS->getString().equals("function_entry_count")) {
1762         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1763         uint64_t Count = CI->getValue().getZExtValue();
1764         // A value of -1 is used for SamplePGO when there were no samples.
1765         // Treat this the same as unknown.
1766         if (Count == (uint64_t)-1)
1767           return ProfileCount::getInvalid();
1768         return ProfileCount(Count, PCT_Real);
1769       } else if (AllowSynthetic &&
1770                  MDS->getString().equals("synthetic_function_entry_count")) {
1771         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1772         uint64_t Count = CI->getValue().getZExtValue();
1773         return ProfileCount(Count, PCT_Synthetic);
1774       }
1775     }
1776   return ProfileCount::getInvalid();
1777 }
1778 
1779 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1780   DenseSet<GlobalValue::GUID> R;
1781   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1782     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1783       if (MDS->getString().equals("function_entry_count"))
1784         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1785           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1786                        ->getValue()
1787                        .getZExtValue());
1788   return R;
1789 }
1790 
1791 void Function::setSectionPrefix(StringRef Prefix) {
1792   MDBuilder MDB(getContext());
1793   setMetadata(LLVMContext::MD_section_prefix,
1794               MDB.createFunctionSectionPrefix(Prefix));
1795 }
1796 
1797 Optional<StringRef> Function::getSectionPrefix() const {
1798   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1799     assert(cast<MDString>(MD->getOperand(0))
1800                ->getString()
1801                .equals("function_section_prefix") &&
1802            "Metadata not match");
1803     return cast<MDString>(MD->getOperand(1))->getString();
1804   }
1805   return None;
1806 }
1807 
1808 bool Function::nullPointerIsDefined() const {
1809   return hasFnAttribute(Attribute::NullPointerIsValid);
1810 }
1811 
1812 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1813   if (F && F->nullPointerIsDefined())
1814     return true;
1815 
1816   if (AS != 0)
1817     return true;
1818 
1819   return false;
1820 }
1821