xref: /llvm-project/llvm/lib/IR/Function.cpp (revision f9d932e6735afe73117e142a12443449f2197e69)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <string>
71 
72 using namespace llvm;
73 using ProfileCount = Function::ProfileCount;
74 
75 // Explicit instantiations of SymbolTableListTraits since some of the methods
76 // are not in the public header file...
77 template class llvm::SymbolTableListTraits<BasicBlock>;
78 
79 //===----------------------------------------------------------------------===//
80 // Argument Implementation
81 //===----------------------------------------------------------------------===//
82 
83 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
84     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
85   setName(Name);
86 }
87 
88 void Argument::setParent(Function *parent) {
89   Parent = parent;
90 }
91 
92 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
93   if (!getType()->isPointerTy()) return false;
94   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
95       (AllowUndefOrPoison ||
96        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
97     return true;
98   else if (getDereferenceableBytes() > 0 &&
99            !NullPointerIsDefined(getParent(),
100                                  getType()->getPointerAddressSpace()))
101     return true;
102   return false;
103 }
104 
105 bool Argument::hasByValAttr() const {
106   if (!getType()->isPointerTy()) return false;
107   return hasAttribute(Attribute::ByVal);
108 }
109 
110 bool Argument::hasByRefAttr() const {
111   if (!getType()->isPointerTy())
112     return false;
113   return hasAttribute(Attribute::ByRef);
114 }
115 
116 bool Argument::hasSwiftSelfAttr() const {
117   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
118 }
119 
120 bool Argument::hasSwiftErrorAttr() const {
121   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
122 }
123 
124 bool Argument::hasInAllocaAttr() const {
125   if (!getType()->isPointerTy()) return false;
126   return hasAttribute(Attribute::InAlloca);
127 }
128 
129 bool Argument::hasPreallocatedAttr() const {
130   if (!getType()->isPointerTy())
131     return false;
132   return hasAttribute(Attribute::Preallocated);
133 }
134 
135 bool Argument::hasPassPointeeByValueCopyAttr() const {
136   if (!getType()->isPointerTy()) return false;
137   AttributeList Attrs = getParent()->getAttributes();
138   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
139          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
140          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
141 }
142 
143 bool Argument::hasPointeeInMemoryValueAttr() const {
144   if (!getType()->isPointerTy())
145     return false;
146   AttributeList Attrs = getParent()->getAttributes();
147   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
148          Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) ||
149          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
150          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
151          Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
152 }
153 
154 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
155 /// parameter type.
156 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
157   // FIXME: All the type carrying attributes are mutually exclusive, so there
158   // should be a single query to get the stored type that handles any of them.
159   if (Type *ByValTy = ParamAttrs.getByValType())
160     return ByValTy;
161   if (Type *ByRefTy = ParamAttrs.getByRefType())
162     return ByRefTy;
163   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
164     return PreAllocTy;
165   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
166     return InAllocaTy;
167 
168   // FIXME: sret and inalloca always depends on pointee element type. It's also
169   // possible for byval to miss it.
170   if (ParamAttrs.hasAttribute(Attribute::InAlloca) ||
171       ParamAttrs.hasAttribute(Attribute::ByVal) ||
172       ParamAttrs.hasAttribute(Attribute::StructRet) ||
173       ParamAttrs.hasAttribute(Attribute::Preallocated))
174     return cast<PointerType>(ArgTy)->getElementType();
175 
176   return nullptr;
177 }
178 
179 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
180   AttributeSet ParamAttrs =
181       getParent()->getAttributes().getParamAttributes(getArgNo());
182   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
183     return DL.getTypeAllocSize(MemTy);
184   return 0;
185 }
186 
187 Type *Argument::getPointeeInMemoryValueType() const {
188   AttributeSet ParamAttrs =
189       getParent()->getAttributes().getParamAttributes(getArgNo());
190   return getMemoryParamAllocType(ParamAttrs, getType());
191 }
192 
193 unsigned Argument::getParamAlignment() const {
194   assert(getType()->isPointerTy() && "Only pointers have alignments");
195   return getParent()->getParamAlignment(getArgNo());
196 }
197 
198 MaybeAlign Argument::getParamAlign() const {
199   assert(getType()->isPointerTy() && "Only pointers have alignments");
200   return getParent()->getParamAlign(getArgNo());
201 }
202 
203 MaybeAlign Argument::getParamStackAlign() const {
204   return getParent()->getParamStackAlign(getArgNo());
205 }
206 
207 Type *Argument::getParamByValType() const {
208   assert(getType()->isPointerTy() && "Only pointers have byval types");
209   return getParent()->getParamByValType(getArgNo());
210 }
211 
212 Type *Argument::getParamStructRetType() const {
213   assert(getType()->isPointerTy() && "Only pointers have sret types");
214   return getParent()->getParamStructRetType(getArgNo());
215 }
216 
217 Type *Argument::getParamByRefType() const {
218   assert(getType()->isPointerTy() && "Only pointers have byref types");
219   return getParent()->getParamByRefType(getArgNo());
220 }
221 
222 Type *Argument::getParamInAllocaType() const {
223   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
224   return getParent()->getParamInAllocaType(getArgNo());
225 }
226 
227 uint64_t Argument::getDereferenceableBytes() const {
228   assert(getType()->isPointerTy() &&
229          "Only pointers have dereferenceable bytes");
230   return getParent()->getParamDereferenceableBytes(getArgNo());
231 }
232 
233 uint64_t Argument::getDereferenceableOrNullBytes() const {
234   assert(getType()->isPointerTy() &&
235          "Only pointers have dereferenceable bytes");
236   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
237 }
238 
239 bool Argument::hasNestAttr() const {
240   if (!getType()->isPointerTy()) return false;
241   return hasAttribute(Attribute::Nest);
242 }
243 
244 bool Argument::hasNoAliasAttr() const {
245   if (!getType()->isPointerTy()) return false;
246   return hasAttribute(Attribute::NoAlias);
247 }
248 
249 bool Argument::hasNoCaptureAttr() const {
250   if (!getType()->isPointerTy()) return false;
251   return hasAttribute(Attribute::NoCapture);
252 }
253 
254 bool Argument::hasNoFreeAttr() const {
255   if (!getType()->isPointerTy()) return false;
256   return hasAttribute(Attribute::NoFree);
257 }
258 
259 bool Argument::hasStructRetAttr() const {
260   if (!getType()->isPointerTy()) return false;
261   return hasAttribute(Attribute::StructRet);
262 }
263 
264 bool Argument::hasInRegAttr() const {
265   return hasAttribute(Attribute::InReg);
266 }
267 
268 bool Argument::hasReturnedAttr() const {
269   return hasAttribute(Attribute::Returned);
270 }
271 
272 bool Argument::hasZExtAttr() const {
273   return hasAttribute(Attribute::ZExt);
274 }
275 
276 bool Argument::hasSExtAttr() const {
277   return hasAttribute(Attribute::SExt);
278 }
279 
280 bool Argument::onlyReadsMemory() const {
281   AttributeList Attrs = getParent()->getAttributes();
282   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
283          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
284 }
285 
286 void Argument::addAttrs(AttrBuilder &B) {
287   AttributeList AL = getParent()->getAttributes();
288   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
289   getParent()->setAttributes(AL);
290 }
291 
292 void Argument::addAttr(Attribute::AttrKind Kind) {
293   getParent()->addParamAttr(getArgNo(), Kind);
294 }
295 
296 void Argument::addAttr(Attribute Attr) {
297   getParent()->addParamAttr(getArgNo(), Attr);
298 }
299 
300 void Argument::removeAttr(Attribute::AttrKind Kind) {
301   getParent()->removeParamAttr(getArgNo(), Kind);
302 }
303 
304 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
305   return getParent()->hasParamAttribute(getArgNo(), Kind);
306 }
307 
308 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
309   return getParent()->getParamAttribute(getArgNo(), Kind);
310 }
311 
312 //===----------------------------------------------------------------------===//
313 // Helper Methods in Function
314 //===----------------------------------------------------------------------===//
315 
316 LLVMContext &Function::getContext() const {
317   return getType()->getContext();
318 }
319 
320 unsigned Function::getInstructionCount() const {
321   unsigned NumInstrs = 0;
322   for (const BasicBlock &BB : BasicBlocks)
323     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
324                                BB.instructionsWithoutDebug().end());
325   return NumInstrs;
326 }
327 
328 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
329                            const Twine &N, Module &M) {
330   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
331 }
332 
333 void Function::removeFromParent() {
334   getParent()->getFunctionList().remove(getIterator());
335 }
336 
337 void Function::eraseFromParent() {
338   getParent()->getFunctionList().erase(getIterator());
339 }
340 
341 //===----------------------------------------------------------------------===//
342 // Function Implementation
343 //===----------------------------------------------------------------------===//
344 
345 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
346   // If AS == -1 and we are passed a valid module pointer we place the function
347   // in the program address space. Otherwise we default to AS0.
348   if (AddrSpace == static_cast<unsigned>(-1))
349     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
350   return AddrSpace;
351 }
352 
353 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
354                    const Twine &name, Module *ParentModule)
355     : GlobalObject(Ty, Value::FunctionVal,
356                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
357                    computeAddrSpace(AddrSpace, ParentModule)),
358       NumArgs(Ty->getNumParams()) {
359   assert(FunctionType::isValidReturnType(getReturnType()) &&
360          "invalid return type");
361   setGlobalObjectSubClassData(0);
362 
363   // We only need a symbol table for a function if the context keeps value names
364   if (!getContext().shouldDiscardValueNames())
365     SymTab = std::make_unique<ValueSymbolTable>();
366 
367   // If the function has arguments, mark them as lazily built.
368   if (Ty->getNumParams())
369     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
370 
371   if (ParentModule)
372     ParentModule->getFunctionList().push_back(this);
373 
374   HasLLVMReservedName = getName().startswith("llvm.");
375   // Ensure intrinsics have the right parameter attributes.
376   // Note, the IntID field will have been set in Value::setName if this function
377   // name is a valid intrinsic ID.
378   if (IntID)
379     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
380 }
381 
382 Function::~Function() {
383   dropAllReferences();    // After this it is safe to delete instructions.
384 
385   // Delete all of the method arguments and unlink from symbol table...
386   if (Arguments)
387     clearArguments();
388 
389   // Remove the function from the on-the-side GC table.
390   clearGC();
391 }
392 
393 void Function::BuildLazyArguments() const {
394   // Create the arguments vector, all arguments start out unnamed.
395   auto *FT = getFunctionType();
396   if (NumArgs > 0) {
397     Arguments = std::allocator<Argument>().allocate(NumArgs);
398     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
399       Type *ArgTy = FT->getParamType(i);
400       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
401       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
402     }
403   }
404 
405   // Clear the lazy arguments bit.
406   unsigned SDC = getSubclassDataFromValue();
407   SDC &= ~(1 << 0);
408   const_cast<Function*>(this)->setValueSubclassData(SDC);
409   assert(!hasLazyArguments());
410 }
411 
412 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
413   return MutableArrayRef<Argument>(Args, Count);
414 }
415 
416 bool Function::isConstrainedFPIntrinsic() const {
417   switch (getIntrinsicID()) {
418 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
419   case Intrinsic::INTRINSIC:
420 #include "llvm/IR/ConstrainedOps.def"
421     return true;
422 #undef INSTRUCTION
423   default:
424     return false;
425   }
426 }
427 
428 void Function::clearArguments() {
429   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
430     A.setName("");
431     A.~Argument();
432   }
433   std::allocator<Argument>().deallocate(Arguments, NumArgs);
434   Arguments = nullptr;
435 }
436 
437 void Function::stealArgumentListFrom(Function &Src) {
438   assert(isDeclaration() && "Expected no references to current arguments");
439 
440   // Drop the current arguments, if any, and set the lazy argument bit.
441   if (!hasLazyArguments()) {
442     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
443                         [](const Argument &A) { return A.use_empty(); }) &&
444            "Expected arguments to be unused in declaration");
445     clearArguments();
446     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
447   }
448 
449   // Nothing to steal if Src has lazy arguments.
450   if (Src.hasLazyArguments())
451     return;
452 
453   // Steal arguments from Src, and fix the lazy argument bits.
454   assert(arg_size() == Src.arg_size());
455   Arguments = Src.Arguments;
456   Src.Arguments = nullptr;
457   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
458     // FIXME: This does the work of transferNodesFromList inefficiently.
459     SmallString<128> Name;
460     if (A.hasName())
461       Name = A.getName();
462     if (!Name.empty())
463       A.setName("");
464     A.setParent(this);
465     if (!Name.empty())
466       A.setName(Name);
467   }
468 
469   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
470   assert(!hasLazyArguments());
471   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
472 }
473 
474 // dropAllReferences() - This function causes all the subinstructions to "let
475 // go" of all references that they are maintaining.  This allows one to
476 // 'delete' a whole class at a time, even though there may be circular
477 // references... first all references are dropped, and all use counts go to
478 // zero.  Then everything is deleted for real.  Note that no operations are
479 // valid on an object that has "dropped all references", except operator
480 // delete.
481 //
482 void Function::dropAllReferences() {
483   setIsMaterializable(false);
484 
485   for (BasicBlock &BB : *this)
486     BB.dropAllReferences();
487 
488   // Delete all basic blocks. They are now unused, except possibly by
489   // blockaddresses, but BasicBlock's destructor takes care of those.
490   while (!BasicBlocks.empty())
491     BasicBlocks.begin()->eraseFromParent();
492 
493   // Drop uses of any optional data (real or placeholder).
494   if (getNumOperands()) {
495     User::dropAllReferences();
496     setNumHungOffUseOperands(0);
497     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
498   }
499 
500   // Metadata is stored in a side-table.
501   clearMetadata();
502 }
503 
504 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
505   AttributeList PAL = getAttributes();
506   PAL = PAL.addAttribute(getContext(), i, Kind);
507   setAttributes(PAL);
508 }
509 
510 void Function::addAttribute(unsigned i, Attribute Attr) {
511   AttributeList PAL = getAttributes();
512   PAL = PAL.addAttribute(getContext(), i, Attr);
513   setAttributes(PAL);
514 }
515 
516 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
517   AttributeList PAL = getAttributes();
518   PAL = PAL.addAttributes(getContext(), i, Attrs);
519   setAttributes(PAL);
520 }
521 
522 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
523   AttributeList PAL = getAttributes();
524   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
525   setAttributes(PAL);
526 }
527 
528 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
529   AttributeList PAL = getAttributes();
530   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
531   setAttributes(PAL);
532 }
533 
534 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
535   AttributeList PAL = getAttributes();
536   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
537   setAttributes(PAL);
538 }
539 
540 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
541   AttributeList PAL = getAttributes();
542   PAL = PAL.removeAttribute(getContext(), i, Kind);
543   setAttributes(PAL);
544 }
545 
546 void Function::removeAttribute(unsigned i, StringRef Kind) {
547   AttributeList PAL = getAttributes();
548   PAL = PAL.removeAttribute(getContext(), i, Kind);
549   setAttributes(PAL);
550 }
551 
552 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
553   AttributeList PAL = getAttributes();
554   PAL = PAL.removeAttributes(getContext(), i, Attrs);
555   setAttributes(PAL);
556 }
557 
558 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
559   AttributeList PAL = getAttributes();
560   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
561   setAttributes(PAL);
562 }
563 
564 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
565   AttributeList PAL = getAttributes();
566   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
567   setAttributes(PAL);
568 }
569 
570 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
571   AttributeList PAL = getAttributes();
572   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
573   setAttributes(PAL);
574 }
575 
576 void Function::removeParamUndefImplyingAttrs(unsigned ArgNo) {
577   AttributeList PAL = getAttributes();
578   PAL = PAL.removeParamUndefImplyingAttributes(getContext(), ArgNo);
579   setAttributes(PAL);
580 }
581 
582 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
583   AttributeList PAL = getAttributes();
584   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
585   setAttributes(PAL);
586 }
587 
588 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
589   AttributeList PAL = getAttributes();
590   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
591   setAttributes(PAL);
592 }
593 
594 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
595   AttributeList PAL = getAttributes();
596   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
597   setAttributes(PAL);
598 }
599 
600 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
601                                                  uint64_t Bytes) {
602   AttributeList PAL = getAttributes();
603   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
604   setAttributes(PAL);
605 }
606 
607 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
608   if (&FPType == &APFloat::IEEEsingle()) {
609     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
610     StringRef Val = Attr.getValueAsString();
611     if (!Val.empty())
612       return parseDenormalFPAttribute(Val);
613 
614     // If the f32 variant of the attribute isn't specified, try to use the
615     // generic one.
616   }
617 
618   Attribute Attr = getFnAttribute("denormal-fp-math");
619   return parseDenormalFPAttribute(Attr.getValueAsString());
620 }
621 
622 const std::string &Function::getGC() const {
623   assert(hasGC() && "Function has no collector");
624   return getContext().getGC(*this);
625 }
626 
627 void Function::setGC(std::string Str) {
628   setValueSubclassDataBit(14, !Str.empty());
629   getContext().setGC(*this, std::move(Str));
630 }
631 
632 void Function::clearGC() {
633   if (!hasGC())
634     return;
635   getContext().deleteGC(*this);
636   setValueSubclassDataBit(14, false);
637 }
638 
639 bool Function::hasStackProtectorFnAttr() const {
640   return hasFnAttribute(Attribute::StackProtect) ||
641          hasFnAttribute(Attribute::StackProtectStrong) ||
642          hasFnAttribute(Attribute::StackProtectReq);
643 }
644 
645 /// Copy all additional attributes (those not needed to create a Function) from
646 /// the Function Src to this one.
647 void Function::copyAttributesFrom(const Function *Src) {
648   GlobalObject::copyAttributesFrom(Src);
649   setCallingConv(Src->getCallingConv());
650   setAttributes(Src->getAttributes());
651   if (Src->hasGC())
652     setGC(Src->getGC());
653   else
654     clearGC();
655   if (Src->hasPersonalityFn())
656     setPersonalityFn(Src->getPersonalityFn());
657   if (Src->hasPrefixData())
658     setPrefixData(Src->getPrefixData());
659   if (Src->hasPrologueData())
660     setPrologueData(Src->getPrologueData());
661 }
662 
663 /// Table of string intrinsic names indexed by enum value.
664 static const char * const IntrinsicNameTable[] = {
665   "not_intrinsic",
666 #define GET_INTRINSIC_NAME_TABLE
667 #include "llvm/IR/IntrinsicImpl.inc"
668 #undef GET_INTRINSIC_NAME_TABLE
669 };
670 
671 /// Table of per-target intrinsic name tables.
672 #define GET_INTRINSIC_TARGET_DATA
673 #include "llvm/IR/IntrinsicImpl.inc"
674 #undef GET_INTRINSIC_TARGET_DATA
675 
676 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
677   return IID > TargetInfos[0].Count;
678 }
679 
680 bool Function::isTargetIntrinsic() const {
681   return isTargetIntrinsic(IntID);
682 }
683 
684 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
685 /// target as \c Name, or the generic table if \c Name is not target specific.
686 ///
687 /// Returns the relevant slice of \c IntrinsicNameTable
688 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
689   assert(Name.startswith("llvm."));
690 
691   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
692   // Drop "llvm." and take the first dotted component. That will be the target
693   // if this is target specific.
694   StringRef Target = Name.drop_front(5).split('.').first;
695   auto It = partition_point(
696       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
697   // We've either found the target or just fall back to the generic set, which
698   // is always first.
699   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
700   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
701 }
702 
703 /// This does the actual lookup of an intrinsic ID which
704 /// matches the given function name.
705 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
706   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
707   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
708   if (Idx == -1)
709     return Intrinsic::not_intrinsic;
710 
711   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
712   // an index into a sub-table.
713   int Adjust = NameTable.data() - IntrinsicNameTable;
714   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
715 
716   // If the intrinsic is not overloaded, require an exact match. If it is
717   // overloaded, require either exact or prefix match.
718   const auto MatchSize = strlen(NameTable[Idx]);
719   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
720   bool IsExactMatch = Name.size() == MatchSize;
721   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
722                                                      : Intrinsic::not_intrinsic;
723 }
724 
725 void Function::recalculateIntrinsicID() {
726   StringRef Name = getName();
727   if (!Name.startswith("llvm.")) {
728     HasLLVMReservedName = false;
729     IntID = Intrinsic::not_intrinsic;
730     return;
731   }
732   HasLLVMReservedName = true;
733   IntID = lookupIntrinsicID(Name);
734 }
735 
736 /// Returns a stable mangling for the type specified for use in the name
737 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
738 /// of named types is simply their name.  Manglings for unnamed types consist
739 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
740 /// combined with the mangling of their component types.  A vararg function
741 /// type will have a suffix of 'vararg'.  Since function types can contain
742 /// other function types, we close a function type mangling with suffix 'f'
743 /// which can't be confused with it's prefix.  This ensures we don't have
744 /// collisions between two unrelated function types. Otherwise, you might
745 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
746 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
747 /// indicating that extra care must be taken to ensure a unique name.
748 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
749   std::string Result;
750   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
751     Result += "p" + utostr(PTyp->getAddressSpace()) +
752               getMangledTypeStr(PTyp->getElementType(), HasUnnamedType);
753   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
754     Result += "a" + utostr(ATyp->getNumElements()) +
755               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
756   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
757     if (!STyp->isLiteral()) {
758       Result += "s_";
759       if (STyp->hasName())
760         Result += STyp->getName();
761       else
762         HasUnnamedType = true;
763     } else {
764       Result += "sl_";
765       for (auto Elem : STyp->elements())
766         Result += getMangledTypeStr(Elem, HasUnnamedType);
767     }
768     // Ensure nested structs are distinguishable.
769     Result += "s";
770   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
771     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
772     for (size_t i = 0; i < FT->getNumParams(); i++)
773       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
774     if (FT->isVarArg())
775       Result += "vararg";
776     // Ensure nested function types are distinguishable.
777     Result += "f";
778   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
779     ElementCount EC = VTy->getElementCount();
780     if (EC.isScalable())
781       Result += "nx";
782     Result += "v" + utostr(EC.getKnownMinValue()) +
783               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
784   } else if (Ty) {
785     switch (Ty->getTypeID()) {
786     default: llvm_unreachable("Unhandled type");
787     case Type::VoidTyID:      Result += "isVoid";   break;
788     case Type::MetadataTyID:  Result += "Metadata"; break;
789     case Type::HalfTyID:      Result += "f16";      break;
790     case Type::BFloatTyID:    Result += "bf16";     break;
791     case Type::FloatTyID:     Result += "f32";      break;
792     case Type::DoubleTyID:    Result += "f64";      break;
793     case Type::X86_FP80TyID:  Result += "f80";      break;
794     case Type::FP128TyID:     Result += "f128";     break;
795     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
796     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
797     case Type::X86_AMXTyID:   Result += "x86amx";   break;
798     case Type::IntegerTyID:
799       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
800       break;
801     }
802   }
803   return Result;
804 }
805 
806 StringRef Intrinsic::getName(ID id) {
807   assert(id < num_intrinsics && "Invalid intrinsic ID!");
808   assert(!Intrinsic::isOverloaded(id) &&
809          "This version of getName does not support overloading");
810   return IntrinsicNameTable[id];
811 }
812 
813 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
814                                FunctionType *FT) {
815   assert(Id < num_intrinsics && "Invalid intrinsic ID!");
816   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
817          "This version of getName is for overloaded intrinsics only");
818   bool HasUnnamedType = false;
819   std::string Result(IntrinsicNameTable[Id]);
820   for (Type *Ty : Tys) {
821     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
822   }
823   assert((M || !HasUnnamedType) && "unnamed types need a module");
824   if (M && HasUnnamedType) {
825     if (!FT)
826       FT = getType(M->getContext(), Id, Tys);
827     else
828       assert((FT == getType(M->getContext(), Id, Tys)) &&
829              "Provided FunctionType must match arguments");
830     return M->getUniqueIntrinsicName(Result, Id, FT);
831   }
832   return Result;
833 }
834 
835 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys) {
836   return getName(Id, Tys, nullptr, nullptr);
837 }
838 
839 /// IIT_Info - These are enumerators that describe the entries returned by the
840 /// getIntrinsicInfoTableEntries function.
841 ///
842 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
843 enum IIT_Info {
844   // Common values should be encoded with 0-15.
845   IIT_Done = 0,
846   IIT_I1   = 1,
847   IIT_I8   = 2,
848   IIT_I16  = 3,
849   IIT_I32  = 4,
850   IIT_I64  = 5,
851   IIT_F16  = 6,
852   IIT_F32  = 7,
853   IIT_F64  = 8,
854   IIT_V2   = 9,
855   IIT_V4   = 10,
856   IIT_V8   = 11,
857   IIT_V16  = 12,
858   IIT_V32  = 13,
859   IIT_PTR  = 14,
860   IIT_ARG  = 15,
861 
862   // Values from 16+ are only encodable with the inefficient encoding.
863   IIT_V64  = 16,
864   IIT_MMX  = 17,
865   IIT_TOKEN = 18,
866   IIT_METADATA = 19,
867   IIT_EMPTYSTRUCT = 20,
868   IIT_STRUCT2 = 21,
869   IIT_STRUCT3 = 22,
870   IIT_STRUCT4 = 23,
871   IIT_STRUCT5 = 24,
872   IIT_EXTEND_ARG = 25,
873   IIT_TRUNC_ARG = 26,
874   IIT_ANYPTR = 27,
875   IIT_V1   = 28,
876   IIT_VARARG = 29,
877   IIT_HALF_VEC_ARG = 30,
878   IIT_SAME_VEC_WIDTH_ARG = 31,
879   IIT_PTR_TO_ARG = 32,
880   IIT_PTR_TO_ELT = 33,
881   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
882   IIT_I128 = 35,
883   IIT_V512 = 36,
884   IIT_V1024 = 37,
885   IIT_STRUCT6 = 38,
886   IIT_STRUCT7 = 39,
887   IIT_STRUCT8 = 40,
888   IIT_F128 = 41,
889   IIT_VEC_ELEMENT = 42,
890   IIT_SCALABLE_VEC = 43,
891   IIT_SUBDIVIDE2_ARG = 44,
892   IIT_SUBDIVIDE4_ARG = 45,
893   IIT_VEC_OF_BITCASTS_TO_INT = 46,
894   IIT_V128 = 47,
895   IIT_BF16 = 48,
896   IIT_STRUCT9 = 49,
897   IIT_V256 = 50,
898   IIT_AMX  = 51
899 };
900 
901 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
902                       IIT_Info LastInfo,
903                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
904   using namespace Intrinsic;
905 
906   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
907 
908   IIT_Info Info = IIT_Info(Infos[NextElt++]);
909   unsigned StructElts = 2;
910 
911   switch (Info) {
912   case IIT_Done:
913     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
914     return;
915   case IIT_VARARG:
916     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
917     return;
918   case IIT_MMX:
919     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
920     return;
921   case IIT_AMX:
922     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
923     return;
924   case IIT_TOKEN:
925     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
926     return;
927   case IIT_METADATA:
928     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
929     return;
930   case IIT_F16:
931     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
932     return;
933   case IIT_BF16:
934     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
935     return;
936   case IIT_F32:
937     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
938     return;
939   case IIT_F64:
940     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
941     return;
942   case IIT_F128:
943     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
944     return;
945   case IIT_I1:
946     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
947     return;
948   case IIT_I8:
949     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
950     return;
951   case IIT_I16:
952     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
953     return;
954   case IIT_I32:
955     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
956     return;
957   case IIT_I64:
958     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
959     return;
960   case IIT_I128:
961     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
962     return;
963   case IIT_V1:
964     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
965     DecodeIITType(NextElt, Infos, Info, OutputTable);
966     return;
967   case IIT_V2:
968     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
969     DecodeIITType(NextElt, Infos, Info, OutputTable);
970     return;
971   case IIT_V4:
972     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
973     DecodeIITType(NextElt, Infos, Info, OutputTable);
974     return;
975   case IIT_V8:
976     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
977     DecodeIITType(NextElt, Infos, Info, OutputTable);
978     return;
979   case IIT_V16:
980     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
981     DecodeIITType(NextElt, Infos, Info, OutputTable);
982     return;
983   case IIT_V32:
984     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
985     DecodeIITType(NextElt, Infos, Info, OutputTable);
986     return;
987   case IIT_V64:
988     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
989     DecodeIITType(NextElt, Infos, Info, OutputTable);
990     return;
991   case IIT_V128:
992     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
993     DecodeIITType(NextElt, Infos, Info, OutputTable);
994     return;
995   case IIT_V256:
996     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
997     DecodeIITType(NextElt, Infos, Info, OutputTable);
998     return;
999   case IIT_V512:
1000     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1001     DecodeIITType(NextElt, Infos, Info, OutputTable);
1002     return;
1003   case IIT_V1024:
1004     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1005     DecodeIITType(NextElt, Infos, Info, OutputTable);
1006     return;
1007   case IIT_PTR:
1008     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1009     DecodeIITType(NextElt, Infos, Info, OutputTable);
1010     return;
1011   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1012     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1013                                              Infos[NextElt++]));
1014     DecodeIITType(NextElt, Infos, Info, OutputTable);
1015     return;
1016   }
1017   case IIT_ARG: {
1018     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1019     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1020     return;
1021   }
1022   case IIT_EXTEND_ARG: {
1023     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1024     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1025                                              ArgInfo));
1026     return;
1027   }
1028   case IIT_TRUNC_ARG: {
1029     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1030     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1031                                              ArgInfo));
1032     return;
1033   }
1034   case IIT_HALF_VEC_ARG: {
1035     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1036     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1037                                              ArgInfo));
1038     return;
1039   }
1040   case IIT_SAME_VEC_WIDTH_ARG: {
1041     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1042     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1043                                              ArgInfo));
1044     return;
1045   }
1046   case IIT_PTR_TO_ARG: {
1047     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1048     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1049                                              ArgInfo));
1050     return;
1051   }
1052   case IIT_PTR_TO_ELT: {
1053     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1054     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1055     return;
1056   }
1057   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1058     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1059     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1060     OutputTable.push_back(
1061         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1062     return;
1063   }
1064   case IIT_EMPTYSTRUCT:
1065     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1066     return;
1067   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1068   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1069   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1070   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1071   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1072   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1073   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1074   case IIT_STRUCT2: {
1075     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1076 
1077     for (unsigned i = 0; i != StructElts; ++i)
1078       DecodeIITType(NextElt, Infos, Info, OutputTable);
1079     return;
1080   }
1081   case IIT_SUBDIVIDE2_ARG: {
1082     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1083     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1084                                              ArgInfo));
1085     return;
1086   }
1087   case IIT_SUBDIVIDE4_ARG: {
1088     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1089     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1090                                              ArgInfo));
1091     return;
1092   }
1093   case IIT_VEC_ELEMENT: {
1094     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1095     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1096                                              ArgInfo));
1097     return;
1098   }
1099   case IIT_SCALABLE_VEC: {
1100     DecodeIITType(NextElt, Infos, Info, OutputTable);
1101     return;
1102   }
1103   case IIT_VEC_OF_BITCASTS_TO_INT: {
1104     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1105     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1106                                              ArgInfo));
1107     return;
1108   }
1109   }
1110   llvm_unreachable("unhandled");
1111 }
1112 
1113 #define GET_INTRINSIC_GENERATOR_GLOBAL
1114 #include "llvm/IR/IntrinsicImpl.inc"
1115 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1116 
1117 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1118                                              SmallVectorImpl<IITDescriptor> &T){
1119   // Check to see if the intrinsic's type was expressible by the table.
1120   unsigned TableVal = IIT_Table[id-1];
1121 
1122   // Decode the TableVal into an array of IITValues.
1123   SmallVector<unsigned char, 8> IITValues;
1124   ArrayRef<unsigned char> IITEntries;
1125   unsigned NextElt = 0;
1126   if ((TableVal >> 31) != 0) {
1127     // This is an offset into the IIT_LongEncodingTable.
1128     IITEntries = IIT_LongEncodingTable;
1129 
1130     // Strip sentinel bit.
1131     NextElt = (TableVal << 1) >> 1;
1132   } else {
1133     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1134     // into a single word in the table itself, decode it now.
1135     do {
1136       IITValues.push_back(TableVal & 0xF);
1137       TableVal >>= 4;
1138     } while (TableVal);
1139 
1140     IITEntries = IITValues;
1141     NextElt = 0;
1142   }
1143 
1144   // Okay, decode the table into the output vector of IITDescriptors.
1145   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1146   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1147     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1148 }
1149 
1150 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1151                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1152   using namespace Intrinsic;
1153 
1154   IITDescriptor D = Infos.front();
1155   Infos = Infos.slice(1);
1156 
1157   switch (D.Kind) {
1158   case IITDescriptor::Void: return Type::getVoidTy(Context);
1159   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1160   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1161   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1162   case IITDescriptor::Token: return Type::getTokenTy(Context);
1163   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1164   case IITDescriptor::Half: return Type::getHalfTy(Context);
1165   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1166   case IITDescriptor::Float: return Type::getFloatTy(Context);
1167   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1168   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1169 
1170   case IITDescriptor::Integer:
1171     return IntegerType::get(Context, D.Integer_Width);
1172   case IITDescriptor::Vector:
1173     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1174                            D.Vector_Width);
1175   case IITDescriptor::Pointer:
1176     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1177                             D.Pointer_AddressSpace);
1178   case IITDescriptor::Struct: {
1179     SmallVector<Type *, 8> Elts;
1180     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1181       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1182     return StructType::get(Context, Elts);
1183   }
1184   case IITDescriptor::Argument:
1185     return Tys[D.getArgumentNumber()];
1186   case IITDescriptor::ExtendArgument: {
1187     Type *Ty = Tys[D.getArgumentNumber()];
1188     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1189       return VectorType::getExtendedElementVectorType(VTy);
1190 
1191     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1192   }
1193   case IITDescriptor::TruncArgument: {
1194     Type *Ty = Tys[D.getArgumentNumber()];
1195     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1196       return VectorType::getTruncatedElementVectorType(VTy);
1197 
1198     IntegerType *ITy = cast<IntegerType>(Ty);
1199     assert(ITy->getBitWidth() % 2 == 0);
1200     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1201   }
1202   case IITDescriptor::Subdivide2Argument:
1203   case IITDescriptor::Subdivide4Argument: {
1204     Type *Ty = Tys[D.getArgumentNumber()];
1205     VectorType *VTy = dyn_cast<VectorType>(Ty);
1206     assert(VTy && "Expected an argument of Vector Type");
1207     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1208     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1209   }
1210   case IITDescriptor::HalfVecArgument:
1211     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1212                                                   Tys[D.getArgumentNumber()]));
1213   case IITDescriptor::SameVecWidthArgument: {
1214     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1215     Type *Ty = Tys[D.getArgumentNumber()];
1216     if (auto *VTy = dyn_cast<VectorType>(Ty))
1217       return VectorType::get(EltTy, VTy->getElementCount());
1218     return EltTy;
1219   }
1220   case IITDescriptor::PtrToArgument: {
1221     Type *Ty = Tys[D.getArgumentNumber()];
1222     return PointerType::getUnqual(Ty);
1223   }
1224   case IITDescriptor::PtrToElt: {
1225     Type *Ty = Tys[D.getArgumentNumber()];
1226     VectorType *VTy = dyn_cast<VectorType>(Ty);
1227     if (!VTy)
1228       llvm_unreachable("Expected an argument of Vector Type");
1229     Type *EltTy = VTy->getElementType();
1230     return PointerType::getUnqual(EltTy);
1231   }
1232   case IITDescriptor::VecElementArgument: {
1233     Type *Ty = Tys[D.getArgumentNumber()];
1234     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1235       return VTy->getElementType();
1236     llvm_unreachable("Expected an argument of Vector Type");
1237   }
1238   case IITDescriptor::VecOfBitcastsToInt: {
1239     Type *Ty = Tys[D.getArgumentNumber()];
1240     VectorType *VTy = dyn_cast<VectorType>(Ty);
1241     assert(VTy && "Expected an argument of Vector Type");
1242     return VectorType::getInteger(VTy);
1243   }
1244   case IITDescriptor::VecOfAnyPtrsToElt:
1245     // Return the overloaded type (which determines the pointers address space)
1246     return Tys[D.getOverloadArgNumber()];
1247   }
1248   llvm_unreachable("unhandled");
1249 }
1250 
1251 FunctionType *Intrinsic::getType(LLVMContext &Context,
1252                                  ID id, ArrayRef<Type*> Tys) {
1253   SmallVector<IITDescriptor, 8> Table;
1254   getIntrinsicInfoTableEntries(id, Table);
1255 
1256   ArrayRef<IITDescriptor> TableRef = Table;
1257   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1258 
1259   SmallVector<Type*, 8> ArgTys;
1260   while (!TableRef.empty())
1261     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1262 
1263   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1264   // If we see void type as the type of the last argument, it is vararg intrinsic
1265   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1266     ArgTys.pop_back();
1267     return FunctionType::get(ResultTy, ArgTys, true);
1268   }
1269   return FunctionType::get(ResultTy, ArgTys, false);
1270 }
1271 
1272 bool Intrinsic::isOverloaded(ID id) {
1273 #define GET_INTRINSIC_OVERLOAD_TABLE
1274 #include "llvm/IR/IntrinsicImpl.inc"
1275 #undef GET_INTRINSIC_OVERLOAD_TABLE
1276 }
1277 
1278 bool Intrinsic::isLeaf(ID id) {
1279   switch (id) {
1280   default:
1281     return true;
1282 
1283   case Intrinsic::experimental_gc_statepoint:
1284   case Intrinsic::experimental_patchpoint_void:
1285   case Intrinsic::experimental_patchpoint_i64:
1286     return false;
1287   }
1288 }
1289 
1290 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1291 #define GET_INTRINSIC_ATTRIBUTES
1292 #include "llvm/IR/IntrinsicImpl.inc"
1293 #undef GET_INTRINSIC_ATTRIBUTES
1294 
1295 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1296   // There can never be multiple globals with the same name of different types,
1297   // because intrinsics must be a specific type.
1298   auto *FT = getType(M->getContext(), id, Tys);
1299   return cast<Function>(
1300       M->getOrInsertFunction(Tys.empty() ? getName(id)
1301                                          : getName(id, Tys, M, FT),
1302                              getType(M->getContext(), id, Tys))
1303           .getCallee());
1304 }
1305 
1306 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1307 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1308 #include "llvm/IR/IntrinsicImpl.inc"
1309 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1310 
1311 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1312 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1313 #include "llvm/IR/IntrinsicImpl.inc"
1314 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1315 
1316 using DeferredIntrinsicMatchPair =
1317     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1318 
1319 static bool matchIntrinsicType(
1320     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1321     SmallVectorImpl<Type *> &ArgTys,
1322     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1323     bool IsDeferredCheck) {
1324   using namespace Intrinsic;
1325 
1326   // If we ran out of descriptors, there are too many arguments.
1327   if (Infos.empty()) return true;
1328 
1329   // Do this before slicing off the 'front' part
1330   auto InfosRef = Infos;
1331   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1332     DeferredChecks.emplace_back(T, InfosRef);
1333     return false;
1334   };
1335 
1336   IITDescriptor D = Infos.front();
1337   Infos = Infos.slice(1);
1338 
1339   switch (D.Kind) {
1340     case IITDescriptor::Void: return !Ty->isVoidTy();
1341     case IITDescriptor::VarArg: return true;
1342     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1343     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1344     case IITDescriptor::Token: return !Ty->isTokenTy();
1345     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1346     case IITDescriptor::Half: return !Ty->isHalfTy();
1347     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1348     case IITDescriptor::Float: return !Ty->isFloatTy();
1349     case IITDescriptor::Double: return !Ty->isDoubleTy();
1350     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1351     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1352     case IITDescriptor::Vector: {
1353       VectorType *VT = dyn_cast<VectorType>(Ty);
1354       return !VT || VT->getElementCount() != D.Vector_Width ||
1355              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1356                                 DeferredChecks, IsDeferredCheck);
1357     }
1358     case IITDescriptor::Pointer: {
1359       PointerType *PT = dyn_cast<PointerType>(Ty);
1360       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1361              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1362                                 DeferredChecks, IsDeferredCheck);
1363     }
1364 
1365     case IITDescriptor::Struct: {
1366       StructType *ST = dyn_cast<StructType>(Ty);
1367       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1368         return true;
1369 
1370       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1371         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1372                                DeferredChecks, IsDeferredCheck))
1373           return true;
1374       return false;
1375     }
1376 
1377     case IITDescriptor::Argument:
1378       // If this is the second occurrence of an argument,
1379       // verify that the later instance matches the previous instance.
1380       if (D.getArgumentNumber() < ArgTys.size())
1381         return Ty != ArgTys[D.getArgumentNumber()];
1382 
1383       if (D.getArgumentNumber() > ArgTys.size() ||
1384           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1385         return IsDeferredCheck || DeferCheck(Ty);
1386 
1387       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1388              "Table consistency error");
1389       ArgTys.push_back(Ty);
1390 
1391       switch (D.getArgumentKind()) {
1392         case IITDescriptor::AK_Any:        return false; // Success
1393         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1394         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1395         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1396         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1397         default:                           break;
1398       }
1399       llvm_unreachable("all argument kinds not covered");
1400 
1401     case IITDescriptor::ExtendArgument: {
1402       // If this is a forward reference, defer the check for later.
1403       if (D.getArgumentNumber() >= ArgTys.size())
1404         return IsDeferredCheck || DeferCheck(Ty);
1405 
1406       Type *NewTy = ArgTys[D.getArgumentNumber()];
1407       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1408         NewTy = VectorType::getExtendedElementVectorType(VTy);
1409       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1410         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1411       else
1412         return true;
1413 
1414       return Ty != NewTy;
1415     }
1416     case IITDescriptor::TruncArgument: {
1417       // If this is a forward reference, defer the check for later.
1418       if (D.getArgumentNumber() >= ArgTys.size())
1419         return IsDeferredCheck || DeferCheck(Ty);
1420 
1421       Type *NewTy = ArgTys[D.getArgumentNumber()];
1422       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1423         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1424       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1425         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1426       else
1427         return true;
1428 
1429       return Ty != NewTy;
1430     }
1431     case IITDescriptor::HalfVecArgument:
1432       // If this is a forward reference, defer the check for later.
1433       if (D.getArgumentNumber() >= ArgTys.size())
1434         return IsDeferredCheck || DeferCheck(Ty);
1435       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1436              VectorType::getHalfElementsVectorType(
1437                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1438     case IITDescriptor::SameVecWidthArgument: {
1439       if (D.getArgumentNumber() >= ArgTys.size()) {
1440         // Defer check and subsequent check for the vector element type.
1441         Infos = Infos.slice(1);
1442         return IsDeferredCheck || DeferCheck(Ty);
1443       }
1444       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1445       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1446       // Both must be vectors of the same number of elements or neither.
1447       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1448         return true;
1449       Type *EltTy = Ty;
1450       if (ThisArgType) {
1451         if (ReferenceType->getElementCount() !=
1452             ThisArgType->getElementCount())
1453           return true;
1454         EltTy = ThisArgType->getElementType();
1455       }
1456       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1457                                 IsDeferredCheck);
1458     }
1459     case IITDescriptor::PtrToArgument: {
1460       if (D.getArgumentNumber() >= ArgTys.size())
1461         return IsDeferredCheck || DeferCheck(Ty);
1462       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1463       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1464       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1465     }
1466     case IITDescriptor::PtrToElt: {
1467       if (D.getArgumentNumber() >= ArgTys.size())
1468         return IsDeferredCheck || DeferCheck(Ty);
1469       VectorType * ReferenceType =
1470         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1471       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1472 
1473       return (!ThisArgType || !ReferenceType ||
1474               ThisArgType->getElementType() != ReferenceType->getElementType());
1475     }
1476     case IITDescriptor::VecOfAnyPtrsToElt: {
1477       unsigned RefArgNumber = D.getRefArgNumber();
1478       if (RefArgNumber >= ArgTys.size()) {
1479         if (IsDeferredCheck)
1480           return true;
1481         // If forward referencing, already add the pointer-vector type and
1482         // defer the checks for later.
1483         ArgTys.push_back(Ty);
1484         return DeferCheck(Ty);
1485       }
1486 
1487       if (!IsDeferredCheck){
1488         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1489                "Table consistency error");
1490         ArgTys.push_back(Ty);
1491       }
1492 
1493       // Verify the overloaded type "matches" the Ref type.
1494       // i.e. Ty is a vector with the same width as Ref.
1495       // Composed of pointers to the same element type as Ref.
1496       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1497       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1498       if (!ThisArgVecTy || !ReferenceType ||
1499           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1500         return true;
1501       PointerType *ThisArgEltTy =
1502           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1503       if (!ThisArgEltTy)
1504         return true;
1505       return ThisArgEltTy->getElementType() != ReferenceType->getElementType();
1506     }
1507     case IITDescriptor::VecElementArgument: {
1508       if (D.getArgumentNumber() >= ArgTys.size())
1509         return IsDeferredCheck ? true : DeferCheck(Ty);
1510       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1511       return !ReferenceType || Ty != ReferenceType->getElementType();
1512     }
1513     case IITDescriptor::Subdivide2Argument:
1514     case IITDescriptor::Subdivide4Argument: {
1515       // If this is a forward reference, defer the check for later.
1516       if (D.getArgumentNumber() >= ArgTys.size())
1517         return IsDeferredCheck || DeferCheck(Ty);
1518 
1519       Type *NewTy = ArgTys[D.getArgumentNumber()];
1520       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1521         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1522         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1523         return Ty != NewTy;
1524       }
1525       return true;
1526     }
1527     case IITDescriptor::VecOfBitcastsToInt: {
1528       if (D.getArgumentNumber() >= ArgTys.size())
1529         return IsDeferredCheck || DeferCheck(Ty);
1530       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1531       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1532       if (!ThisArgVecTy || !ReferenceType)
1533         return true;
1534       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1535     }
1536   }
1537   llvm_unreachable("unhandled");
1538 }
1539 
1540 Intrinsic::MatchIntrinsicTypesResult
1541 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1542                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1543                                    SmallVectorImpl<Type *> &ArgTys) {
1544   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1545   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1546                          false))
1547     return MatchIntrinsicTypes_NoMatchRet;
1548 
1549   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1550 
1551   for (auto Ty : FTy->params())
1552     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1553       return MatchIntrinsicTypes_NoMatchArg;
1554 
1555   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1556     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1557     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1558                            true))
1559       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1560                                          : MatchIntrinsicTypes_NoMatchArg;
1561   }
1562 
1563   return MatchIntrinsicTypes_Match;
1564 }
1565 
1566 bool
1567 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1568                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1569   // If there are no descriptors left, then it can't be a vararg.
1570   if (Infos.empty())
1571     return isVarArg;
1572 
1573   // There should be only one descriptor remaining at this point.
1574   if (Infos.size() != 1)
1575     return true;
1576 
1577   // Check and verify the descriptor.
1578   IITDescriptor D = Infos.front();
1579   Infos = Infos.slice(1);
1580   if (D.Kind == IITDescriptor::VarArg)
1581     return !isVarArg;
1582 
1583   return true;
1584 }
1585 
1586 bool Intrinsic::getIntrinsicSignature(Function *F,
1587                                       SmallVectorImpl<Type *> &ArgTys) {
1588   Intrinsic::ID ID = F->getIntrinsicID();
1589   if (!ID)
1590     return false;
1591 
1592   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1593   getIntrinsicInfoTableEntries(ID, Table);
1594   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1595 
1596   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1597                                          ArgTys) !=
1598       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1599     return false;
1600   }
1601   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1602                                       TableRef))
1603     return false;
1604   return true;
1605 }
1606 
1607 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1608   SmallVector<Type *, 4> ArgTys;
1609   if (!getIntrinsicSignature(F, ArgTys))
1610     return None;
1611 
1612   Intrinsic::ID ID = F->getIntrinsicID();
1613   StringRef Name = F->getName();
1614   if (Name ==
1615       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()))
1616     return None;
1617 
1618   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1619   NewDecl->setCallingConv(F->getCallingConv());
1620   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1621          "Shouldn't change the signature");
1622   return NewDecl;
1623 }
1624 
1625 /// hasAddressTaken - returns true if there are any uses of this function
1626 /// other than direct calls or invokes to it. Optionally ignores callback
1627 /// uses, assume like pointer annotation calls, and references in llvm.used
1628 /// and llvm.compiler.used variables.
1629 bool Function::hasAddressTaken(const User **PutOffender,
1630                                bool IgnoreCallbackUses,
1631                                bool IgnoreAssumeLikeCalls,
1632                                bool IgnoreLLVMUsed) const {
1633   for (const Use &U : uses()) {
1634     const User *FU = U.getUser();
1635     if (isa<BlockAddress>(FU))
1636       continue;
1637 
1638     if (IgnoreCallbackUses) {
1639       AbstractCallSite ACS(&U);
1640       if (ACS && ACS.isCallbackCall())
1641         continue;
1642     }
1643 
1644     const auto *Call = dyn_cast<CallBase>(FU);
1645     if (!Call) {
1646       if (IgnoreAssumeLikeCalls) {
1647         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1648           if (FI->isCast() && !FI->user_empty() &&
1649               llvm::all_of(FU->users(), [](const User *U) {
1650                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1651                   return I->isAssumeLikeIntrinsic();
1652                 return false;
1653               }))
1654             continue;
1655         }
1656       }
1657       if (IgnoreLLVMUsed && !FU->user_empty()) {
1658         const User *FUU = FU;
1659         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1660             !FU->user_begin()->user_empty())
1661           FUU = *FU->user_begin();
1662         if (llvm::all_of(FUU->users(), [](const User *U) {
1663               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1664                 return GV->hasName() &&
1665                        (GV->getName().equals("llvm.compiler.used") ||
1666                         GV->getName().equals("llvm.used"));
1667               return false;
1668             }))
1669           continue;
1670       }
1671       if (PutOffender)
1672         *PutOffender = FU;
1673       return true;
1674     }
1675     if (!Call->isCallee(&U)) {
1676       if (PutOffender)
1677         *PutOffender = FU;
1678       return true;
1679     }
1680   }
1681   return false;
1682 }
1683 
1684 bool Function::isDefTriviallyDead() const {
1685   // Check the linkage
1686   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1687       !hasAvailableExternallyLinkage())
1688     return false;
1689 
1690   // Check if the function is used by anything other than a blockaddress.
1691   for (const User *U : users())
1692     if (!isa<BlockAddress>(U))
1693       return false;
1694 
1695   return true;
1696 }
1697 
1698 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1699 /// setjmp or other function that gcc recognizes as "returning twice".
1700 bool Function::callsFunctionThatReturnsTwice() const {
1701   for (const Instruction &I : instructions(this))
1702     if (const auto *Call = dyn_cast<CallBase>(&I))
1703       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1704         return true;
1705 
1706   return false;
1707 }
1708 
1709 Constant *Function::getPersonalityFn() const {
1710   assert(hasPersonalityFn() && getNumOperands());
1711   return cast<Constant>(Op<0>());
1712 }
1713 
1714 void Function::setPersonalityFn(Constant *Fn) {
1715   setHungoffOperand<0>(Fn);
1716   setValueSubclassDataBit(3, Fn != nullptr);
1717 }
1718 
1719 Constant *Function::getPrefixData() const {
1720   assert(hasPrefixData() && getNumOperands());
1721   return cast<Constant>(Op<1>());
1722 }
1723 
1724 void Function::setPrefixData(Constant *PrefixData) {
1725   setHungoffOperand<1>(PrefixData);
1726   setValueSubclassDataBit(1, PrefixData != nullptr);
1727 }
1728 
1729 Constant *Function::getPrologueData() const {
1730   assert(hasPrologueData() && getNumOperands());
1731   return cast<Constant>(Op<2>());
1732 }
1733 
1734 void Function::setPrologueData(Constant *PrologueData) {
1735   setHungoffOperand<2>(PrologueData);
1736   setValueSubclassDataBit(2, PrologueData != nullptr);
1737 }
1738 
1739 void Function::allocHungoffUselist() {
1740   // If we've already allocated a uselist, stop here.
1741   if (getNumOperands())
1742     return;
1743 
1744   allocHungoffUses(3, /*IsPhi=*/ false);
1745   setNumHungOffUseOperands(3);
1746 
1747   // Initialize the uselist with placeholder operands to allow traversal.
1748   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1749   Op<0>().set(CPN);
1750   Op<1>().set(CPN);
1751   Op<2>().set(CPN);
1752 }
1753 
1754 template <int Idx>
1755 void Function::setHungoffOperand(Constant *C) {
1756   if (C) {
1757     allocHungoffUselist();
1758     Op<Idx>().set(C);
1759   } else if (getNumOperands()) {
1760     Op<Idx>().set(
1761         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1762   }
1763 }
1764 
1765 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1766   assert(Bit < 16 && "SubclassData contains only 16 bits");
1767   if (On)
1768     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1769   else
1770     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1771 }
1772 
1773 void Function::setEntryCount(ProfileCount Count,
1774                              const DenseSet<GlobalValue::GUID> *S) {
1775   assert(Count.hasValue());
1776 #if !defined(NDEBUG)
1777   auto PrevCount = getEntryCount();
1778   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1779 #endif
1780 
1781   auto ImportGUIDs = getImportGUIDs();
1782   if (S == nullptr && ImportGUIDs.size())
1783     S = &ImportGUIDs;
1784 
1785   MDBuilder MDB(getContext());
1786   setMetadata(
1787       LLVMContext::MD_prof,
1788       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1789 }
1790 
1791 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1792                              const DenseSet<GlobalValue::GUID> *Imports) {
1793   setEntryCount(ProfileCount(Count, Type), Imports);
1794 }
1795 
1796 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1797   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1798   if (MD && MD->getOperand(0))
1799     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1800       if (MDS->getString().equals("function_entry_count")) {
1801         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1802         uint64_t Count = CI->getValue().getZExtValue();
1803         // A value of -1 is used for SamplePGO when there were no samples.
1804         // Treat this the same as unknown.
1805         if (Count == (uint64_t)-1)
1806           return ProfileCount::getInvalid();
1807         return ProfileCount(Count, PCT_Real);
1808       } else if (AllowSynthetic &&
1809                  MDS->getString().equals("synthetic_function_entry_count")) {
1810         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1811         uint64_t Count = CI->getValue().getZExtValue();
1812         return ProfileCount(Count, PCT_Synthetic);
1813       }
1814     }
1815   return ProfileCount::getInvalid();
1816 }
1817 
1818 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1819   DenseSet<GlobalValue::GUID> R;
1820   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1821     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1822       if (MDS->getString().equals("function_entry_count"))
1823         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1824           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1825                        ->getValue()
1826                        .getZExtValue());
1827   return R;
1828 }
1829 
1830 void Function::setSectionPrefix(StringRef Prefix) {
1831   MDBuilder MDB(getContext());
1832   setMetadata(LLVMContext::MD_section_prefix,
1833               MDB.createFunctionSectionPrefix(Prefix));
1834 }
1835 
1836 Optional<StringRef> Function::getSectionPrefix() const {
1837   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1838     assert(cast<MDString>(MD->getOperand(0))
1839                ->getString()
1840                .equals("function_section_prefix") &&
1841            "Metadata not match");
1842     return cast<MDString>(MD->getOperand(1))->getString();
1843   }
1844   return None;
1845 }
1846 
1847 bool Function::nullPointerIsDefined() const {
1848   return hasFnAttribute(Attribute::NullPointerIsValid);
1849 }
1850 
1851 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1852   if (F && F->nullPointerIsDefined())
1853     return true;
1854 
1855   if (AS != 0)
1856     return true;
1857 
1858   return false;
1859 }
1860