1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/AbstractCallSite.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/IntrinsicsAArch64.h" 37 #include "llvm/IR/IntrinsicsAMDGPU.h" 38 #include "llvm/IR/IntrinsicsARM.h" 39 #include "llvm/IR/IntrinsicsBPF.h" 40 #include "llvm/IR/IntrinsicsHexagon.h" 41 #include "llvm/IR/IntrinsicsMips.h" 42 #include "llvm/IR/IntrinsicsNVPTX.h" 43 #include "llvm/IR/IntrinsicsPowerPC.h" 44 #include "llvm/IR/IntrinsicsR600.h" 45 #include "llvm/IR/IntrinsicsRISCV.h" 46 #include "llvm/IR/IntrinsicsS390.h" 47 #include "llvm/IR/IntrinsicsVE.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/IntrinsicsXCore.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/SymbolTableListTraits.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstddef> 68 #include <cstdint> 69 #include <cstring> 70 #include <string> 71 72 using namespace llvm; 73 using ProfileCount = Function::ProfileCount; 74 75 // Explicit instantiations of SymbolTableListTraits since some of the methods 76 // are not in the public header file... 77 template class llvm::SymbolTableListTraits<BasicBlock>; 78 79 //===----------------------------------------------------------------------===// 80 // Argument Implementation 81 //===----------------------------------------------------------------------===// 82 83 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 84 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 85 setName(Name); 86 } 87 88 void Argument::setParent(Function *parent) { 89 Parent = parent; 90 } 91 92 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 93 if (!getType()->isPointerTy()) return false; 94 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 95 (AllowUndefOrPoison || 96 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 97 return true; 98 else if (getDereferenceableBytes() > 0 && 99 !NullPointerIsDefined(getParent(), 100 getType()->getPointerAddressSpace())) 101 return true; 102 return false; 103 } 104 105 bool Argument::hasByValAttr() const { 106 if (!getType()->isPointerTy()) return false; 107 return hasAttribute(Attribute::ByVal); 108 } 109 110 bool Argument::hasByRefAttr() const { 111 if (!getType()->isPointerTy()) 112 return false; 113 return hasAttribute(Attribute::ByRef); 114 } 115 116 bool Argument::hasSwiftSelfAttr() const { 117 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 118 } 119 120 bool Argument::hasSwiftErrorAttr() const { 121 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 122 } 123 124 bool Argument::hasInAllocaAttr() const { 125 if (!getType()->isPointerTy()) return false; 126 return hasAttribute(Attribute::InAlloca); 127 } 128 129 bool Argument::hasPreallocatedAttr() const { 130 if (!getType()->isPointerTy()) 131 return false; 132 return hasAttribute(Attribute::Preallocated); 133 } 134 135 bool Argument::hasPassPointeeByValueCopyAttr() const { 136 if (!getType()->isPointerTy()) return false; 137 AttributeList Attrs = getParent()->getAttributes(); 138 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 139 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 140 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated); 141 } 142 143 bool Argument::hasPointeeInMemoryValueAttr() const { 144 if (!getType()->isPointerTy()) 145 return false; 146 AttributeList Attrs = getParent()->getAttributes(); 147 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 148 Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) || 149 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 150 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) || 151 Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef); 152 } 153 154 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 155 /// parameter type. 156 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) { 157 // FIXME: All the type carrying attributes are mutually exclusive, so there 158 // should be a single query to get the stored type that handles any of them. 159 if (Type *ByValTy = ParamAttrs.getByValType()) 160 return ByValTy; 161 if (Type *ByRefTy = ParamAttrs.getByRefType()) 162 return ByRefTy; 163 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 164 return PreAllocTy; 165 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 166 return InAllocaTy; 167 168 // FIXME: sret and inalloca always depends on pointee element type. It's also 169 // possible for byval to miss it. 170 if (ParamAttrs.hasAttribute(Attribute::InAlloca) || 171 ParamAttrs.hasAttribute(Attribute::ByVal) || 172 ParamAttrs.hasAttribute(Attribute::StructRet) || 173 ParamAttrs.hasAttribute(Attribute::Preallocated)) 174 return cast<PointerType>(ArgTy)->getElementType(); 175 176 return nullptr; 177 } 178 179 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 180 AttributeSet ParamAttrs = 181 getParent()->getAttributes().getParamAttributes(getArgNo()); 182 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType())) 183 return DL.getTypeAllocSize(MemTy); 184 return 0; 185 } 186 187 Type *Argument::getPointeeInMemoryValueType() const { 188 AttributeSet ParamAttrs = 189 getParent()->getAttributes().getParamAttributes(getArgNo()); 190 return getMemoryParamAllocType(ParamAttrs, getType()); 191 } 192 193 unsigned Argument::getParamAlignment() const { 194 assert(getType()->isPointerTy() && "Only pointers have alignments"); 195 return getParent()->getParamAlignment(getArgNo()); 196 } 197 198 MaybeAlign Argument::getParamAlign() const { 199 assert(getType()->isPointerTy() && "Only pointers have alignments"); 200 return getParent()->getParamAlign(getArgNo()); 201 } 202 203 MaybeAlign Argument::getParamStackAlign() const { 204 return getParent()->getParamStackAlign(getArgNo()); 205 } 206 207 Type *Argument::getParamByValType() const { 208 assert(getType()->isPointerTy() && "Only pointers have byval types"); 209 return getParent()->getParamByValType(getArgNo()); 210 } 211 212 Type *Argument::getParamStructRetType() const { 213 assert(getType()->isPointerTy() && "Only pointers have sret types"); 214 return getParent()->getParamStructRetType(getArgNo()); 215 } 216 217 Type *Argument::getParamByRefType() const { 218 assert(getType()->isPointerTy() && "Only pointers have byref types"); 219 return getParent()->getParamByRefType(getArgNo()); 220 } 221 222 Type *Argument::getParamInAllocaType() const { 223 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 224 return getParent()->getParamInAllocaType(getArgNo()); 225 } 226 227 uint64_t Argument::getDereferenceableBytes() const { 228 assert(getType()->isPointerTy() && 229 "Only pointers have dereferenceable bytes"); 230 return getParent()->getParamDereferenceableBytes(getArgNo()); 231 } 232 233 uint64_t Argument::getDereferenceableOrNullBytes() const { 234 assert(getType()->isPointerTy() && 235 "Only pointers have dereferenceable bytes"); 236 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 237 } 238 239 bool Argument::hasNestAttr() const { 240 if (!getType()->isPointerTy()) return false; 241 return hasAttribute(Attribute::Nest); 242 } 243 244 bool Argument::hasNoAliasAttr() const { 245 if (!getType()->isPointerTy()) return false; 246 return hasAttribute(Attribute::NoAlias); 247 } 248 249 bool Argument::hasNoCaptureAttr() const { 250 if (!getType()->isPointerTy()) return false; 251 return hasAttribute(Attribute::NoCapture); 252 } 253 254 bool Argument::hasNoFreeAttr() const { 255 if (!getType()->isPointerTy()) return false; 256 return hasAttribute(Attribute::NoFree); 257 } 258 259 bool Argument::hasStructRetAttr() const { 260 if (!getType()->isPointerTy()) return false; 261 return hasAttribute(Attribute::StructRet); 262 } 263 264 bool Argument::hasInRegAttr() const { 265 return hasAttribute(Attribute::InReg); 266 } 267 268 bool Argument::hasReturnedAttr() const { 269 return hasAttribute(Attribute::Returned); 270 } 271 272 bool Argument::hasZExtAttr() const { 273 return hasAttribute(Attribute::ZExt); 274 } 275 276 bool Argument::hasSExtAttr() const { 277 return hasAttribute(Attribute::SExt); 278 } 279 280 bool Argument::onlyReadsMemory() const { 281 AttributeList Attrs = getParent()->getAttributes(); 282 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 283 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 284 } 285 286 void Argument::addAttrs(AttrBuilder &B) { 287 AttributeList AL = getParent()->getAttributes(); 288 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 289 getParent()->setAttributes(AL); 290 } 291 292 void Argument::addAttr(Attribute::AttrKind Kind) { 293 getParent()->addParamAttr(getArgNo(), Kind); 294 } 295 296 void Argument::addAttr(Attribute Attr) { 297 getParent()->addParamAttr(getArgNo(), Attr); 298 } 299 300 void Argument::removeAttr(Attribute::AttrKind Kind) { 301 getParent()->removeParamAttr(getArgNo(), Kind); 302 } 303 304 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 305 return getParent()->hasParamAttribute(getArgNo(), Kind); 306 } 307 308 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 309 return getParent()->getParamAttribute(getArgNo(), Kind); 310 } 311 312 //===----------------------------------------------------------------------===// 313 // Helper Methods in Function 314 //===----------------------------------------------------------------------===// 315 316 LLVMContext &Function::getContext() const { 317 return getType()->getContext(); 318 } 319 320 unsigned Function::getInstructionCount() const { 321 unsigned NumInstrs = 0; 322 for (const BasicBlock &BB : BasicBlocks) 323 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 324 BB.instructionsWithoutDebug().end()); 325 return NumInstrs; 326 } 327 328 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 329 const Twine &N, Module &M) { 330 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 331 } 332 333 void Function::removeFromParent() { 334 getParent()->getFunctionList().remove(getIterator()); 335 } 336 337 void Function::eraseFromParent() { 338 getParent()->getFunctionList().erase(getIterator()); 339 } 340 341 //===----------------------------------------------------------------------===// 342 // Function Implementation 343 //===----------------------------------------------------------------------===// 344 345 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 346 // If AS == -1 and we are passed a valid module pointer we place the function 347 // in the program address space. Otherwise we default to AS0. 348 if (AddrSpace == static_cast<unsigned>(-1)) 349 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 350 return AddrSpace; 351 } 352 353 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 354 const Twine &name, Module *ParentModule) 355 : GlobalObject(Ty, Value::FunctionVal, 356 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 357 computeAddrSpace(AddrSpace, ParentModule)), 358 NumArgs(Ty->getNumParams()) { 359 assert(FunctionType::isValidReturnType(getReturnType()) && 360 "invalid return type"); 361 setGlobalObjectSubClassData(0); 362 363 // We only need a symbol table for a function if the context keeps value names 364 if (!getContext().shouldDiscardValueNames()) 365 SymTab = std::make_unique<ValueSymbolTable>(); 366 367 // If the function has arguments, mark them as lazily built. 368 if (Ty->getNumParams()) 369 setValueSubclassData(1); // Set the "has lazy arguments" bit. 370 371 if (ParentModule) 372 ParentModule->getFunctionList().push_back(this); 373 374 HasLLVMReservedName = getName().startswith("llvm."); 375 // Ensure intrinsics have the right parameter attributes. 376 // Note, the IntID field will have been set in Value::setName if this function 377 // name is a valid intrinsic ID. 378 if (IntID) 379 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 380 } 381 382 Function::~Function() { 383 dropAllReferences(); // After this it is safe to delete instructions. 384 385 // Delete all of the method arguments and unlink from symbol table... 386 if (Arguments) 387 clearArguments(); 388 389 // Remove the function from the on-the-side GC table. 390 clearGC(); 391 } 392 393 void Function::BuildLazyArguments() const { 394 // Create the arguments vector, all arguments start out unnamed. 395 auto *FT = getFunctionType(); 396 if (NumArgs > 0) { 397 Arguments = std::allocator<Argument>().allocate(NumArgs); 398 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 399 Type *ArgTy = FT->getParamType(i); 400 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 401 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 402 } 403 } 404 405 // Clear the lazy arguments bit. 406 unsigned SDC = getSubclassDataFromValue(); 407 SDC &= ~(1 << 0); 408 const_cast<Function*>(this)->setValueSubclassData(SDC); 409 assert(!hasLazyArguments()); 410 } 411 412 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 413 return MutableArrayRef<Argument>(Args, Count); 414 } 415 416 bool Function::isConstrainedFPIntrinsic() const { 417 switch (getIntrinsicID()) { 418 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 419 case Intrinsic::INTRINSIC: 420 #include "llvm/IR/ConstrainedOps.def" 421 return true; 422 #undef INSTRUCTION 423 default: 424 return false; 425 } 426 } 427 428 void Function::clearArguments() { 429 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 430 A.setName(""); 431 A.~Argument(); 432 } 433 std::allocator<Argument>().deallocate(Arguments, NumArgs); 434 Arguments = nullptr; 435 } 436 437 void Function::stealArgumentListFrom(Function &Src) { 438 assert(isDeclaration() && "Expected no references to current arguments"); 439 440 // Drop the current arguments, if any, and set the lazy argument bit. 441 if (!hasLazyArguments()) { 442 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 443 [](const Argument &A) { return A.use_empty(); }) && 444 "Expected arguments to be unused in declaration"); 445 clearArguments(); 446 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 447 } 448 449 // Nothing to steal if Src has lazy arguments. 450 if (Src.hasLazyArguments()) 451 return; 452 453 // Steal arguments from Src, and fix the lazy argument bits. 454 assert(arg_size() == Src.arg_size()); 455 Arguments = Src.Arguments; 456 Src.Arguments = nullptr; 457 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 458 // FIXME: This does the work of transferNodesFromList inefficiently. 459 SmallString<128> Name; 460 if (A.hasName()) 461 Name = A.getName(); 462 if (!Name.empty()) 463 A.setName(""); 464 A.setParent(this); 465 if (!Name.empty()) 466 A.setName(Name); 467 } 468 469 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 470 assert(!hasLazyArguments()); 471 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 472 } 473 474 // dropAllReferences() - This function causes all the subinstructions to "let 475 // go" of all references that they are maintaining. This allows one to 476 // 'delete' a whole class at a time, even though there may be circular 477 // references... first all references are dropped, and all use counts go to 478 // zero. Then everything is deleted for real. Note that no operations are 479 // valid on an object that has "dropped all references", except operator 480 // delete. 481 // 482 void Function::dropAllReferences() { 483 setIsMaterializable(false); 484 485 for (BasicBlock &BB : *this) 486 BB.dropAllReferences(); 487 488 // Delete all basic blocks. They are now unused, except possibly by 489 // blockaddresses, but BasicBlock's destructor takes care of those. 490 while (!BasicBlocks.empty()) 491 BasicBlocks.begin()->eraseFromParent(); 492 493 // Drop uses of any optional data (real or placeholder). 494 if (getNumOperands()) { 495 User::dropAllReferences(); 496 setNumHungOffUseOperands(0); 497 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 498 } 499 500 // Metadata is stored in a side-table. 501 clearMetadata(); 502 } 503 504 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 505 AttributeList PAL = getAttributes(); 506 PAL = PAL.addAttribute(getContext(), i, Kind); 507 setAttributes(PAL); 508 } 509 510 void Function::addAttribute(unsigned i, Attribute Attr) { 511 AttributeList PAL = getAttributes(); 512 PAL = PAL.addAttribute(getContext(), i, Attr); 513 setAttributes(PAL); 514 } 515 516 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 517 AttributeList PAL = getAttributes(); 518 PAL = PAL.addAttributes(getContext(), i, Attrs); 519 setAttributes(PAL); 520 } 521 522 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 523 AttributeList PAL = getAttributes(); 524 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 525 setAttributes(PAL); 526 } 527 528 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 529 AttributeList PAL = getAttributes(); 530 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 531 setAttributes(PAL); 532 } 533 534 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 535 AttributeList PAL = getAttributes(); 536 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 537 setAttributes(PAL); 538 } 539 540 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 541 AttributeList PAL = getAttributes(); 542 PAL = PAL.removeAttribute(getContext(), i, Kind); 543 setAttributes(PAL); 544 } 545 546 void Function::removeAttribute(unsigned i, StringRef Kind) { 547 AttributeList PAL = getAttributes(); 548 PAL = PAL.removeAttribute(getContext(), i, Kind); 549 setAttributes(PAL); 550 } 551 552 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 553 AttributeList PAL = getAttributes(); 554 PAL = PAL.removeAttributes(getContext(), i, Attrs); 555 setAttributes(PAL); 556 } 557 558 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 559 AttributeList PAL = getAttributes(); 560 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 561 setAttributes(PAL); 562 } 563 564 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 565 AttributeList PAL = getAttributes(); 566 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 567 setAttributes(PAL); 568 } 569 570 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 571 AttributeList PAL = getAttributes(); 572 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 573 setAttributes(PAL); 574 } 575 576 void Function::removeParamUndefImplyingAttrs(unsigned ArgNo) { 577 AttributeList PAL = getAttributes(); 578 PAL = PAL.removeParamUndefImplyingAttributes(getContext(), ArgNo); 579 setAttributes(PAL); 580 } 581 582 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 583 AttributeList PAL = getAttributes(); 584 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 585 setAttributes(PAL); 586 } 587 588 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 589 AttributeList PAL = getAttributes(); 590 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 591 setAttributes(PAL); 592 } 593 594 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 595 AttributeList PAL = getAttributes(); 596 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 597 setAttributes(PAL); 598 } 599 600 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 601 uint64_t Bytes) { 602 AttributeList PAL = getAttributes(); 603 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 604 setAttributes(PAL); 605 } 606 607 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 608 if (&FPType == &APFloat::IEEEsingle()) { 609 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 610 StringRef Val = Attr.getValueAsString(); 611 if (!Val.empty()) 612 return parseDenormalFPAttribute(Val); 613 614 // If the f32 variant of the attribute isn't specified, try to use the 615 // generic one. 616 } 617 618 Attribute Attr = getFnAttribute("denormal-fp-math"); 619 return parseDenormalFPAttribute(Attr.getValueAsString()); 620 } 621 622 const std::string &Function::getGC() const { 623 assert(hasGC() && "Function has no collector"); 624 return getContext().getGC(*this); 625 } 626 627 void Function::setGC(std::string Str) { 628 setValueSubclassDataBit(14, !Str.empty()); 629 getContext().setGC(*this, std::move(Str)); 630 } 631 632 void Function::clearGC() { 633 if (!hasGC()) 634 return; 635 getContext().deleteGC(*this); 636 setValueSubclassDataBit(14, false); 637 } 638 639 bool Function::hasStackProtectorFnAttr() const { 640 return hasFnAttribute(Attribute::StackProtect) || 641 hasFnAttribute(Attribute::StackProtectStrong) || 642 hasFnAttribute(Attribute::StackProtectReq); 643 } 644 645 /// Copy all additional attributes (those not needed to create a Function) from 646 /// the Function Src to this one. 647 void Function::copyAttributesFrom(const Function *Src) { 648 GlobalObject::copyAttributesFrom(Src); 649 setCallingConv(Src->getCallingConv()); 650 setAttributes(Src->getAttributes()); 651 if (Src->hasGC()) 652 setGC(Src->getGC()); 653 else 654 clearGC(); 655 if (Src->hasPersonalityFn()) 656 setPersonalityFn(Src->getPersonalityFn()); 657 if (Src->hasPrefixData()) 658 setPrefixData(Src->getPrefixData()); 659 if (Src->hasPrologueData()) 660 setPrologueData(Src->getPrologueData()); 661 } 662 663 /// Table of string intrinsic names indexed by enum value. 664 static const char * const IntrinsicNameTable[] = { 665 "not_intrinsic", 666 #define GET_INTRINSIC_NAME_TABLE 667 #include "llvm/IR/IntrinsicImpl.inc" 668 #undef GET_INTRINSIC_NAME_TABLE 669 }; 670 671 /// Table of per-target intrinsic name tables. 672 #define GET_INTRINSIC_TARGET_DATA 673 #include "llvm/IR/IntrinsicImpl.inc" 674 #undef GET_INTRINSIC_TARGET_DATA 675 676 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 677 return IID > TargetInfos[0].Count; 678 } 679 680 bool Function::isTargetIntrinsic() const { 681 return isTargetIntrinsic(IntID); 682 } 683 684 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 685 /// target as \c Name, or the generic table if \c Name is not target specific. 686 /// 687 /// Returns the relevant slice of \c IntrinsicNameTable 688 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 689 assert(Name.startswith("llvm.")); 690 691 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 692 // Drop "llvm." and take the first dotted component. That will be the target 693 // if this is target specific. 694 StringRef Target = Name.drop_front(5).split('.').first; 695 auto It = partition_point( 696 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 697 // We've either found the target or just fall back to the generic set, which 698 // is always first. 699 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 700 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 701 } 702 703 /// This does the actual lookup of an intrinsic ID which 704 /// matches the given function name. 705 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 706 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 707 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 708 if (Idx == -1) 709 return Intrinsic::not_intrinsic; 710 711 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 712 // an index into a sub-table. 713 int Adjust = NameTable.data() - IntrinsicNameTable; 714 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 715 716 // If the intrinsic is not overloaded, require an exact match. If it is 717 // overloaded, require either exact or prefix match. 718 const auto MatchSize = strlen(NameTable[Idx]); 719 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 720 bool IsExactMatch = Name.size() == MatchSize; 721 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 722 : Intrinsic::not_intrinsic; 723 } 724 725 void Function::recalculateIntrinsicID() { 726 StringRef Name = getName(); 727 if (!Name.startswith("llvm.")) { 728 HasLLVMReservedName = false; 729 IntID = Intrinsic::not_intrinsic; 730 return; 731 } 732 HasLLVMReservedName = true; 733 IntID = lookupIntrinsicID(Name); 734 } 735 736 /// Returns a stable mangling for the type specified for use in the name 737 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 738 /// of named types is simply their name. Manglings for unnamed types consist 739 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 740 /// combined with the mangling of their component types. A vararg function 741 /// type will have a suffix of 'vararg'. Since function types can contain 742 /// other function types, we close a function type mangling with suffix 'f' 743 /// which can't be confused with it's prefix. This ensures we don't have 744 /// collisions between two unrelated function types. Otherwise, you might 745 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 746 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 747 /// indicating that extra care must be taken to ensure a unique name. 748 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 749 std::string Result; 750 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 751 Result += "p" + utostr(PTyp->getAddressSpace()) + 752 getMangledTypeStr(PTyp->getElementType(), HasUnnamedType); 753 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 754 Result += "a" + utostr(ATyp->getNumElements()) + 755 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 756 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 757 if (!STyp->isLiteral()) { 758 Result += "s_"; 759 if (STyp->hasName()) 760 Result += STyp->getName(); 761 else 762 HasUnnamedType = true; 763 } else { 764 Result += "sl_"; 765 for (auto Elem : STyp->elements()) 766 Result += getMangledTypeStr(Elem, HasUnnamedType); 767 } 768 // Ensure nested structs are distinguishable. 769 Result += "s"; 770 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 771 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 772 for (size_t i = 0; i < FT->getNumParams(); i++) 773 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 774 if (FT->isVarArg()) 775 Result += "vararg"; 776 // Ensure nested function types are distinguishable. 777 Result += "f"; 778 } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) { 779 ElementCount EC = VTy->getElementCount(); 780 if (EC.isScalable()) 781 Result += "nx"; 782 Result += "v" + utostr(EC.getKnownMinValue()) + 783 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 784 } else if (Ty) { 785 switch (Ty->getTypeID()) { 786 default: llvm_unreachable("Unhandled type"); 787 case Type::VoidTyID: Result += "isVoid"; break; 788 case Type::MetadataTyID: Result += "Metadata"; break; 789 case Type::HalfTyID: Result += "f16"; break; 790 case Type::BFloatTyID: Result += "bf16"; break; 791 case Type::FloatTyID: Result += "f32"; break; 792 case Type::DoubleTyID: Result += "f64"; break; 793 case Type::X86_FP80TyID: Result += "f80"; break; 794 case Type::FP128TyID: Result += "f128"; break; 795 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 796 case Type::X86_MMXTyID: Result += "x86mmx"; break; 797 case Type::X86_AMXTyID: Result += "x86amx"; break; 798 case Type::IntegerTyID: 799 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 800 break; 801 } 802 } 803 return Result; 804 } 805 806 StringRef Intrinsic::getName(ID id) { 807 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 808 assert(!Intrinsic::isOverloaded(id) && 809 "This version of getName does not support overloading"); 810 return IntrinsicNameTable[id]; 811 } 812 813 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 814 FunctionType *FT) { 815 assert(Id < num_intrinsics && "Invalid intrinsic ID!"); 816 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 817 "This version of getName is for overloaded intrinsics only"); 818 bool HasUnnamedType = false; 819 std::string Result(IntrinsicNameTable[Id]); 820 for (Type *Ty : Tys) { 821 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 822 } 823 assert((M || !HasUnnamedType) && "unnamed types need a module"); 824 if (M && HasUnnamedType) { 825 if (!FT) 826 FT = getType(M->getContext(), Id, Tys); 827 else 828 assert((FT == getType(M->getContext(), Id, Tys)) && 829 "Provided FunctionType must match arguments"); 830 return M->getUniqueIntrinsicName(Result, Id, FT); 831 } 832 return Result; 833 } 834 835 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys) { 836 return getName(Id, Tys, nullptr, nullptr); 837 } 838 839 /// IIT_Info - These are enumerators that describe the entries returned by the 840 /// getIntrinsicInfoTableEntries function. 841 /// 842 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 843 enum IIT_Info { 844 // Common values should be encoded with 0-15. 845 IIT_Done = 0, 846 IIT_I1 = 1, 847 IIT_I8 = 2, 848 IIT_I16 = 3, 849 IIT_I32 = 4, 850 IIT_I64 = 5, 851 IIT_F16 = 6, 852 IIT_F32 = 7, 853 IIT_F64 = 8, 854 IIT_V2 = 9, 855 IIT_V4 = 10, 856 IIT_V8 = 11, 857 IIT_V16 = 12, 858 IIT_V32 = 13, 859 IIT_PTR = 14, 860 IIT_ARG = 15, 861 862 // Values from 16+ are only encodable with the inefficient encoding. 863 IIT_V64 = 16, 864 IIT_MMX = 17, 865 IIT_TOKEN = 18, 866 IIT_METADATA = 19, 867 IIT_EMPTYSTRUCT = 20, 868 IIT_STRUCT2 = 21, 869 IIT_STRUCT3 = 22, 870 IIT_STRUCT4 = 23, 871 IIT_STRUCT5 = 24, 872 IIT_EXTEND_ARG = 25, 873 IIT_TRUNC_ARG = 26, 874 IIT_ANYPTR = 27, 875 IIT_V1 = 28, 876 IIT_VARARG = 29, 877 IIT_HALF_VEC_ARG = 30, 878 IIT_SAME_VEC_WIDTH_ARG = 31, 879 IIT_PTR_TO_ARG = 32, 880 IIT_PTR_TO_ELT = 33, 881 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 882 IIT_I128 = 35, 883 IIT_V512 = 36, 884 IIT_V1024 = 37, 885 IIT_STRUCT6 = 38, 886 IIT_STRUCT7 = 39, 887 IIT_STRUCT8 = 40, 888 IIT_F128 = 41, 889 IIT_VEC_ELEMENT = 42, 890 IIT_SCALABLE_VEC = 43, 891 IIT_SUBDIVIDE2_ARG = 44, 892 IIT_SUBDIVIDE4_ARG = 45, 893 IIT_VEC_OF_BITCASTS_TO_INT = 46, 894 IIT_V128 = 47, 895 IIT_BF16 = 48, 896 IIT_STRUCT9 = 49, 897 IIT_V256 = 50, 898 IIT_AMX = 51 899 }; 900 901 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 902 IIT_Info LastInfo, 903 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 904 using namespace Intrinsic; 905 906 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 907 908 IIT_Info Info = IIT_Info(Infos[NextElt++]); 909 unsigned StructElts = 2; 910 911 switch (Info) { 912 case IIT_Done: 913 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 914 return; 915 case IIT_VARARG: 916 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 917 return; 918 case IIT_MMX: 919 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 920 return; 921 case IIT_AMX: 922 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 923 return; 924 case IIT_TOKEN: 925 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 926 return; 927 case IIT_METADATA: 928 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 929 return; 930 case IIT_F16: 931 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 932 return; 933 case IIT_BF16: 934 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 935 return; 936 case IIT_F32: 937 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 938 return; 939 case IIT_F64: 940 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 941 return; 942 case IIT_F128: 943 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 944 return; 945 case IIT_I1: 946 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 947 return; 948 case IIT_I8: 949 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 950 return; 951 case IIT_I16: 952 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 953 return; 954 case IIT_I32: 955 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 956 return; 957 case IIT_I64: 958 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 959 return; 960 case IIT_I128: 961 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 962 return; 963 case IIT_V1: 964 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 965 DecodeIITType(NextElt, Infos, Info, OutputTable); 966 return; 967 case IIT_V2: 968 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 969 DecodeIITType(NextElt, Infos, Info, OutputTable); 970 return; 971 case IIT_V4: 972 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 973 DecodeIITType(NextElt, Infos, Info, OutputTable); 974 return; 975 case IIT_V8: 976 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 977 DecodeIITType(NextElt, Infos, Info, OutputTable); 978 return; 979 case IIT_V16: 980 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 981 DecodeIITType(NextElt, Infos, Info, OutputTable); 982 return; 983 case IIT_V32: 984 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 985 DecodeIITType(NextElt, Infos, Info, OutputTable); 986 return; 987 case IIT_V64: 988 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 989 DecodeIITType(NextElt, Infos, Info, OutputTable); 990 return; 991 case IIT_V128: 992 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 993 DecodeIITType(NextElt, Infos, Info, OutputTable); 994 return; 995 case IIT_V256: 996 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 997 DecodeIITType(NextElt, Infos, Info, OutputTable); 998 return; 999 case IIT_V512: 1000 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1001 DecodeIITType(NextElt, Infos, Info, OutputTable); 1002 return; 1003 case IIT_V1024: 1004 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1005 DecodeIITType(NextElt, Infos, Info, OutputTable); 1006 return; 1007 case IIT_PTR: 1008 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1009 DecodeIITType(NextElt, Infos, Info, OutputTable); 1010 return; 1011 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 1012 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1013 Infos[NextElt++])); 1014 DecodeIITType(NextElt, Infos, Info, OutputTable); 1015 return; 1016 } 1017 case IIT_ARG: { 1018 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1019 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1020 return; 1021 } 1022 case IIT_EXTEND_ARG: { 1023 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1024 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1025 ArgInfo)); 1026 return; 1027 } 1028 case IIT_TRUNC_ARG: { 1029 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1030 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1031 ArgInfo)); 1032 return; 1033 } 1034 case IIT_HALF_VEC_ARG: { 1035 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1036 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1037 ArgInfo)); 1038 return; 1039 } 1040 case IIT_SAME_VEC_WIDTH_ARG: { 1041 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1042 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1043 ArgInfo)); 1044 return; 1045 } 1046 case IIT_PTR_TO_ARG: { 1047 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1048 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 1049 ArgInfo)); 1050 return; 1051 } 1052 case IIT_PTR_TO_ELT: { 1053 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1054 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 1055 return; 1056 } 1057 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1058 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1059 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1060 OutputTable.push_back( 1061 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1062 return; 1063 } 1064 case IIT_EMPTYSTRUCT: 1065 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1066 return; 1067 case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH; 1068 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 1069 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 1070 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 1071 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 1072 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 1073 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 1074 case IIT_STRUCT2: { 1075 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1076 1077 for (unsigned i = 0; i != StructElts; ++i) 1078 DecodeIITType(NextElt, Infos, Info, OutputTable); 1079 return; 1080 } 1081 case IIT_SUBDIVIDE2_ARG: { 1082 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1083 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1084 ArgInfo)); 1085 return; 1086 } 1087 case IIT_SUBDIVIDE4_ARG: { 1088 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1089 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1090 ArgInfo)); 1091 return; 1092 } 1093 case IIT_VEC_ELEMENT: { 1094 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1095 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1096 ArgInfo)); 1097 return; 1098 } 1099 case IIT_SCALABLE_VEC: { 1100 DecodeIITType(NextElt, Infos, Info, OutputTable); 1101 return; 1102 } 1103 case IIT_VEC_OF_BITCASTS_TO_INT: { 1104 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1105 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1106 ArgInfo)); 1107 return; 1108 } 1109 } 1110 llvm_unreachable("unhandled"); 1111 } 1112 1113 #define GET_INTRINSIC_GENERATOR_GLOBAL 1114 #include "llvm/IR/IntrinsicImpl.inc" 1115 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1116 1117 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1118 SmallVectorImpl<IITDescriptor> &T){ 1119 // Check to see if the intrinsic's type was expressible by the table. 1120 unsigned TableVal = IIT_Table[id-1]; 1121 1122 // Decode the TableVal into an array of IITValues. 1123 SmallVector<unsigned char, 8> IITValues; 1124 ArrayRef<unsigned char> IITEntries; 1125 unsigned NextElt = 0; 1126 if ((TableVal >> 31) != 0) { 1127 // This is an offset into the IIT_LongEncodingTable. 1128 IITEntries = IIT_LongEncodingTable; 1129 1130 // Strip sentinel bit. 1131 NextElt = (TableVal << 1) >> 1; 1132 } else { 1133 // Decode the TableVal into an array of IITValues. If the entry was encoded 1134 // into a single word in the table itself, decode it now. 1135 do { 1136 IITValues.push_back(TableVal & 0xF); 1137 TableVal >>= 4; 1138 } while (TableVal); 1139 1140 IITEntries = IITValues; 1141 NextElt = 0; 1142 } 1143 1144 // Okay, decode the table into the output vector of IITDescriptors. 1145 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1146 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1147 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1148 } 1149 1150 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1151 ArrayRef<Type*> Tys, LLVMContext &Context) { 1152 using namespace Intrinsic; 1153 1154 IITDescriptor D = Infos.front(); 1155 Infos = Infos.slice(1); 1156 1157 switch (D.Kind) { 1158 case IITDescriptor::Void: return Type::getVoidTy(Context); 1159 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1160 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1161 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1162 case IITDescriptor::Token: return Type::getTokenTy(Context); 1163 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1164 case IITDescriptor::Half: return Type::getHalfTy(Context); 1165 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1166 case IITDescriptor::Float: return Type::getFloatTy(Context); 1167 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1168 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1169 1170 case IITDescriptor::Integer: 1171 return IntegerType::get(Context, D.Integer_Width); 1172 case IITDescriptor::Vector: 1173 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1174 D.Vector_Width); 1175 case IITDescriptor::Pointer: 1176 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1177 D.Pointer_AddressSpace); 1178 case IITDescriptor::Struct: { 1179 SmallVector<Type *, 8> Elts; 1180 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1181 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1182 return StructType::get(Context, Elts); 1183 } 1184 case IITDescriptor::Argument: 1185 return Tys[D.getArgumentNumber()]; 1186 case IITDescriptor::ExtendArgument: { 1187 Type *Ty = Tys[D.getArgumentNumber()]; 1188 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1189 return VectorType::getExtendedElementVectorType(VTy); 1190 1191 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1192 } 1193 case IITDescriptor::TruncArgument: { 1194 Type *Ty = Tys[D.getArgumentNumber()]; 1195 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1196 return VectorType::getTruncatedElementVectorType(VTy); 1197 1198 IntegerType *ITy = cast<IntegerType>(Ty); 1199 assert(ITy->getBitWidth() % 2 == 0); 1200 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1201 } 1202 case IITDescriptor::Subdivide2Argument: 1203 case IITDescriptor::Subdivide4Argument: { 1204 Type *Ty = Tys[D.getArgumentNumber()]; 1205 VectorType *VTy = dyn_cast<VectorType>(Ty); 1206 assert(VTy && "Expected an argument of Vector Type"); 1207 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1208 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1209 } 1210 case IITDescriptor::HalfVecArgument: 1211 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1212 Tys[D.getArgumentNumber()])); 1213 case IITDescriptor::SameVecWidthArgument: { 1214 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1215 Type *Ty = Tys[D.getArgumentNumber()]; 1216 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1217 return VectorType::get(EltTy, VTy->getElementCount()); 1218 return EltTy; 1219 } 1220 case IITDescriptor::PtrToArgument: { 1221 Type *Ty = Tys[D.getArgumentNumber()]; 1222 return PointerType::getUnqual(Ty); 1223 } 1224 case IITDescriptor::PtrToElt: { 1225 Type *Ty = Tys[D.getArgumentNumber()]; 1226 VectorType *VTy = dyn_cast<VectorType>(Ty); 1227 if (!VTy) 1228 llvm_unreachable("Expected an argument of Vector Type"); 1229 Type *EltTy = VTy->getElementType(); 1230 return PointerType::getUnqual(EltTy); 1231 } 1232 case IITDescriptor::VecElementArgument: { 1233 Type *Ty = Tys[D.getArgumentNumber()]; 1234 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1235 return VTy->getElementType(); 1236 llvm_unreachable("Expected an argument of Vector Type"); 1237 } 1238 case IITDescriptor::VecOfBitcastsToInt: { 1239 Type *Ty = Tys[D.getArgumentNumber()]; 1240 VectorType *VTy = dyn_cast<VectorType>(Ty); 1241 assert(VTy && "Expected an argument of Vector Type"); 1242 return VectorType::getInteger(VTy); 1243 } 1244 case IITDescriptor::VecOfAnyPtrsToElt: 1245 // Return the overloaded type (which determines the pointers address space) 1246 return Tys[D.getOverloadArgNumber()]; 1247 } 1248 llvm_unreachable("unhandled"); 1249 } 1250 1251 FunctionType *Intrinsic::getType(LLVMContext &Context, 1252 ID id, ArrayRef<Type*> Tys) { 1253 SmallVector<IITDescriptor, 8> Table; 1254 getIntrinsicInfoTableEntries(id, Table); 1255 1256 ArrayRef<IITDescriptor> TableRef = Table; 1257 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1258 1259 SmallVector<Type*, 8> ArgTys; 1260 while (!TableRef.empty()) 1261 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1262 1263 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1264 // If we see void type as the type of the last argument, it is vararg intrinsic 1265 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1266 ArgTys.pop_back(); 1267 return FunctionType::get(ResultTy, ArgTys, true); 1268 } 1269 return FunctionType::get(ResultTy, ArgTys, false); 1270 } 1271 1272 bool Intrinsic::isOverloaded(ID id) { 1273 #define GET_INTRINSIC_OVERLOAD_TABLE 1274 #include "llvm/IR/IntrinsicImpl.inc" 1275 #undef GET_INTRINSIC_OVERLOAD_TABLE 1276 } 1277 1278 bool Intrinsic::isLeaf(ID id) { 1279 switch (id) { 1280 default: 1281 return true; 1282 1283 case Intrinsic::experimental_gc_statepoint: 1284 case Intrinsic::experimental_patchpoint_void: 1285 case Intrinsic::experimental_patchpoint_i64: 1286 return false; 1287 } 1288 } 1289 1290 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1291 #define GET_INTRINSIC_ATTRIBUTES 1292 #include "llvm/IR/IntrinsicImpl.inc" 1293 #undef GET_INTRINSIC_ATTRIBUTES 1294 1295 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1296 // There can never be multiple globals with the same name of different types, 1297 // because intrinsics must be a specific type. 1298 auto *FT = getType(M->getContext(), id, Tys); 1299 return cast<Function>( 1300 M->getOrInsertFunction(Tys.empty() ? getName(id) 1301 : getName(id, Tys, M, FT), 1302 getType(M->getContext(), id, Tys)) 1303 .getCallee()); 1304 } 1305 1306 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1307 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1308 #include "llvm/IR/IntrinsicImpl.inc" 1309 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1310 1311 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1312 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1313 #include "llvm/IR/IntrinsicImpl.inc" 1314 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1315 1316 using DeferredIntrinsicMatchPair = 1317 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1318 1319 static bool matchIntrinsicType( 1320 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1321 SmallVectorImpl<Type *> &ArgTys, 1322 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1323 bool IsDeferredCheck) { 1324 using namespace Intrinsic; 1325 1326 // If we ran out of descriptors, there are too many arguments. 1327 if (Infos.empty()) return true; 1328 1329 // Do this before slicing off the 'front' part 1330 auto InfosRef = Infos; 1331 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1332 DeferredChecks.emplace_back(T, InfosRef); 1333 return false; 1334 }; 1335 1336 IITDescriptor D = Infos.front(); 1337 Infos = Infos.slice(1); 1338 1339 switch (D.Kind) { 1340 case IITDescriptor::Void: return !Ty->isVoidTy(); 1341 case IITDescriptor::VarArg: return true; 1342 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1343 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1344 case IITDescriptor::Token: return !Ty->isTokenTy(); 1345 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1346 case IITDescriptor::Half: return !Ty->isHalfTy(); 1347 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1348 case IITDescriptor::Float: return !Ty->isFloatTy(); 1349 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1350 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1351 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1352 case IITDescriptor::Vector: { 1353 VectorType *VT = dyn_cast<VectorType>(Ty); 1354 return !VT || VT->getElementCount() != D.Vector_Width || 1355 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1356 DeferredChecks, IsDeferredCheck); 1357 } 1358 case IITDescriptor::Pointer: { 1359 PointerType *PT = dyn_cast<PointerType>(Ty); 1360 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1361 matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1362 DeferredChecks, IsDeferredCheck); 1363 } 1364 1365 case IITDescriptor::Struct: { 1366 StructType *ST = dyn_cast<StructType>(Ty); 1367 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1368 return true; 1369 1370 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1371 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1372 DeferredChecks, IsDeferredCheck)) 1373 return true; 1374 return false; 1375 } 1376 1377 case IITDescriptor::Argument: 1378 // If this is the second occurrence of an argument, 1379 // verify that the later instance matches the previous instance. 1380 if (D.getArgumentNumber() < ArgTys.size()) 1381 return Ty != ArgTys[D.getArgumentNumber()]; 1382 1383 if (D.getArgumentNumber() > ArgTys.size() || 1384 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1385 return IsDeferredCheck || DeferCheck(Ty); 1386 1387 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1388 "Table consistency error"); 1389 ArgTys.push_back(Ty); 1390 1391 switch (D.getArgumentKind()) { 1392 case IITDescriptor::AK_Any: return false; // Success 1393 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1394 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1395 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1396 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1397 default: break; 1398 } 1399 llvm_unreachable("all argument kinds not covered"); 1400 1401 case IITDescriptor::ExtendArgument: { 1402 // If this is a forward reference, defer the check for later. 1403 if (D.getArgumentNumber() >= ArgTys.size()) 1404 return IsDeferredCheck || DeferCheck(Ty); 1405 1406 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1407 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1408 NewTy = VectorType::getExtendedElementVectorType(VTy); 1409 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1410 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1411 else 1412 return true; 1413 1414 return Ty != NewTy; 1415 } 1416 case IITDescriptor::TruncArgument: { 1417 // If this is a forward reference, defer the check for later. 1418 if (D.getArgumentNumber() >= ArgTys.size()) 1419 return IsDeferredCheck || DeferCheck(Ty); 1420 1421 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1422 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1423 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1424 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1425 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1426 else 1427 return true; 1428 1429 return Ty != NewTy; 1430 } 1431 case IITDescriptor::HalfVecArgument: 1432 // If this is a forward reference, defer the check for later. 1433 if (D.getArgumentNumber() >= ArgTys.size()) 1434 return IsDeferredCheck || DeferCheck(Ty); 1435 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1436 VectorType::getHalfElementsVectorType( 1437 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1438 case IITDescriptor::SameVecWidthArgument: { 1439 if (D.getArgumentNumber() >= ArgTys.size()) { 1440 // Defer check and subsequent check for the vector element type. 1441 Infos = Infos.slice(1); 1442 return IsDeferredCheck || DeferCheck(Ty); 1443 } 1444 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1445 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1446 // Both must be vectors of the same number of elements or neither. 1447 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1448 return true; 1449 Type *EltTy = Ty; 1450 if (ThisArgType) { 1451 if (ReferenceType->getElementCount() != 1452 ThisArgType->getElementCount()) 1453 return true; 1454 EltTy = ThisArgType->getElementType(); 1455 } 1456 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1457 IsDeferredCheck); 1458 } 1459 case IITDescriptor::PtrToArgument: { 1460 if (D.getArgumentNumber() >= ArgTys.size()) 1461 return IsDeferredCheck || DeferCheck(Ty); 1462 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1463 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1464 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1465 } 1466 case IITDescriptor::PtrToElt: { 1467 if (D.getArgumentNumber() >= ArgTys.size()) 1468 return IsDeferredCheck || DeferCheck(Ty); 1469 VectorType * ReferenceType = 1470 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1471 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1472 1473 return (!ThisArgType || !ReferenceType || 1474 ThisArgType->getElementType() != ReferenceType->getElementType()); 1475 } 1476 case IITDescriptor::VecOfAnyPtrsToElt: { 1477 unsigned RefArgNumber = D.getRefArgNumber(); 1478 if (RefArgNumber >= ArgTys.size()) { 1479 if (IsDeferredCheck) 1480 return true; 1481 // If forward referencing, already add the pointer-vector type and 1482 // defer the checks for later. 1483 ArgTys.push_back(Ty); 1484 return DeferCheck(Ty); 1485 } 1486 1487 if (!IsDeferredCheck){ 1488 assert(D.getOverloadArgNumber() == ArgTys.size() && 1489 "Table consistency error"); 1490 ArgTys.push_back(Ty); 1491 } 1492 1493 // Verify the overloaded type "matches" the Ref type. 1494 // i.e. Ty is a vector with the same width as Ref. 1495 // Composed of pointers to the same element type as Ref. 1496 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1497 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1498 if (!ThisArgVecTy || !ReferenceType || 1499 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1500 return true; 1501 PointerType *ThisArgEltTy = 1502 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1503 if (!ThisArgEltTy) 1504 return true; 1505 return ThisArgEltTy->getElementType() != ReferenceType->getElementType(); 1506 } 1507 case IITDescriptor::VecElementArgument: { 1508 if (D.getArgumentNumber() >= ArgTys.size()) 1509 return IsDeferredCheck ? true : DeferCheck(Ty); 1510 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1511 return !ReferenceType || Ty != ReferenceType->getElementType(); 1512 } 1513 case IITDescriptor::Subdivide2Argument: 1514 case IITDescriptor::Subdivide4Argument: { 1515 // If this is a forward reference, defer the check for later. 1516 if (D.getArgumentNumber() >= ArgTys.size()) 1517 return IsDeferredCheck || DeferCheck(Ty); 1518 1519 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1520 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1521 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1522 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1523 return Ty != NewTy; 1524 } 1525 return true; 1526 } 1527 case IITDescriptor::VecOfBitcastsToInt: { 1528 if (D.getArgumentNumber() >= ArgTys.size()) 1529 return IsDeferredCheck || DeferCheck(Ty); 1530 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1531 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1532 if (!ThisArgVecTy || !ReferenceType) 1533 return true; 1534 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1535 } 1536 } 1537 llvm_unreachable("unhandled"); 1538 } 1539 1540 Intrinsic::MatchIntrinsicTypesResult 1541 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1542 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1543 SmallVectorImpl<Type *> &ArgTys) { 1544 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1545 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1546 false)) 1547 return MatchIntrinsicTypes_NoMatchRet; 1548 1549 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1550 1551 for (auto Ty : FTy->params()) 1552 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1553 return MatchIntrinsicTypes_NoMatchArg; 1554 1555 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1556 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1557 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1558 true)) 1559 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1560 : MatchIntrinsicTypes_NoMatchArg; 1561 } 1562 1563 return MatchIntrinsicTypes_Match; 1564 } 1565 1566 bool 1567 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1568 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1569 // If there are no descriptors left, then it can't be a vararg. 1570 if (Infos.empty()) 1571 return isVarArg; 1572 1573 // There should be only one descriptor remaining at this point. 1574 if (Infos.size() != 1) 1575 return true; 1576 1577 // Check and verify the descriptor. 1578 IITDescriptor D = Infos.front(); 1579 Infos = Infos.slice(1); 1580 if (D.Kind == IITDescriptor::VarArg) 1581 return !isVarArg; 1582 1583 return true; 1584 } 1585 1586 bool Intrinsic::getIntrinsicSignature(Function *F, 1587 SmallVectorImpl<Type *> &ArgTys) { 1588 Intrinsic::ID ID = F->getIntrinsicID(); 1589 if (!ID) 1590 return false; 1591 1592 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1593 getIntrinsicInfoTableEntries(ID, Table); 1594 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1595 1596 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1597 ArgTys) != 1598 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1599 return false; 1600 } 1601 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1602 TableRef)) 1603 return false; 1604 return true; 1605 } 1606 1607 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1608 SmallVector<Type *, 4> ArgTys; 1609 if (!getIntrinsicSignature(F, ArgTys)) 1610 return None; 1611 1612 Intrinsic::ID ID = F->getIntrinsicID(); 1613 StringRef Name = F->getName(); 1614 if (Name == 1615 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType())) 1616 return None; 1617 1618 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1619 NewDecl->setCallingConv(F->getCallingConv()); 1620 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1621 "Shouldn't change the signature"); 1622 return NewDecl; 1623 } 1624 1625 /// hasAddressTaken - returns true if there are any uses of this function 1626 /// other than direct calls or invokes to it. Optionally ignores callback 1627 /// uses, assume like pointer annotation calls, and references in llvm.used 1628 /// and llvm.compiler.used variables. 1629 bool Function::hasAddressTaken(const User **PutOffender, 1630 bool IgnoreCallbackUses, 1631 bool IgnoreAssumeLikeCalls, 1632 bool IgnoreLLVMUsed) const { 1633 for (const Use &U : uses()) { 1634 const User *FU = U.getUser(); 1635 if (isa<BlockAddress>(FU)) 1636 continue; 1637 1638 if (IgnoreCallbackUses) { 1639 AbstractCallSite ACS(&U); 1640 if (ACS && ACS.isCallbackCall()) 1641 continue; 1642 } 1643 1644 const auto *Call = dyn_cast<CallBase>(FU); 1645 if (!Call) { 1646 if (IgnoreAssumeLikeCalls) { 1647 if (const auto *FI = dyn_cast<Instruction>(FU)) { 1648 if (FI->isCast() && !FI->user_empty() && 1649 llvm::all_of(FU->users(), [](const User *U) { 1650 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1651 return I->isAssumeLikeIntrinsic(); 1652 return false; 1653 })) 1654 continue; 1655 } 1656 } 1657 if (IgnoreLLVMUsed && !FU->user_empty()) { 1658 const User *FUU = FU; 1659 if (isa<BitCastOperator>(FU) && FU->hasOneUse() && 1660 !FU->user_begin()->user_empty()) 1661 FUU = *FU->user_begin(); 1662 if (llvm::all_of(FUU->users(), [](const User *U) { 1663 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1664 return GV->hasName() && 1665 (GV->getName().equals("llvm.compiler.used") || 1666 GV->getName().equals("llvm.used")); 1667 return false; 1668 })) 1669 continue; 1670 } 1671 if (PutOffender) 1672 *PutOffender = FU; 1673 return true; 1674 } 1675 if (!Call->isCallee(&U)) { 1676 if (PutOffender) 1677 *PutOffender = FU; 1678 return true; 1679 } 1680 } 1681 return false; 1682 } 1683 1684 bool Function::isDefTriviallyDead() const { 1685 // Check the linkage 1686 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1687 !hasAvailableExternallyLinkage()) 1688 return false; 1689 1690 // Check if the function is used by anything other than a blockaddress. 1691 for (const User *U : users()) 1692 if (!isa<BlockAddress>(U)) 1693 return false; 1694 1695 return true; 1696 } 1697 1698 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1699 /// setjmp or other function that gcc recognizes as "returning twice". 1700 bool Function::callsFunctionThatReturnsTwice() const { 1701 for (const Instruction &I : instructions(this)) 1702 if (const auto *Call = dyn_cast<CallBase>(&I)) 1703 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1704 return true; 1705 1706 return false; 1707 } 1708 1709 Constant *Function::getPersonalityFn() const { 1710 assert(hasPersonalityFn() && getNumOperands()); 1711 return cast<Constant>(Op<0>()); 1712 } 1713 1714 void Function::setPersonalityFn(Constant *Fn) { 1715 setHungoffOperand<0>(Fn); 1716 setValueSubclassDataBit(3, Fn != nullptr); 1717 } 1718 1719 Constant *Function::getPrefixData() const { 1720 assert(hasPrefixData() && getNumOperands()); 1721 return cast<Constant>(Op<1>()); 1722 } 1723 1724 void Function::setPrefixData(Constant *PrefixData) { 1725 setHungoffOperand<1>(PrefixData); 1726 setValueSubclassDataBit(1, PrefixData != nullptr); 1727 } 1728 1729 Constant *Function::getPrologueData() const { 1730 assert(hasPrologueData() && getNumOperands()); 1731 return cast<Constant>(Op<2>()); 1732 } 1733 1734 void Function::setPrologueData(Constant *PrologueData) { 1735 setHungoffOperand<2>(PrologueData); 1736 setValueSubclassDataBit(2, PrologueData != nullptr); 1737 } 1738 1739 void Function::allocHungoffUselist() { 1740 // If we've already allocated a uselist, stop here. 1741 if (getNumOperands()) 1742 return; 1743 1744 allocHungoffUses(3, /*IsPhi=*/ false); 1745 setNumHungOffUseOperands(3); 1746 1747 // Initialize the uselist with placeholder operands to allow traversal. 1748 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1749 Op<0>().set(CPN); 1750 Op<1>().set(CPN); 1751 Op<2>().set(CPN); 1752 } 1753 1754 template <int Idx> 1755 void Function::setHungoffOperand(Constant *C) { 1756 if (C) { 1757 allocHungoffUselist(); 1758 Op<Idx>().set(C); 1759 } else if (getNumOperands()) { 1760 Op<Idx>().set( 1761 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1762 } 1763 } 1764 1765 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1766 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1767 if (On) 1768 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1769 else 1770 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1771 } 1772 1773 void Function::setEntryCount(ProfileCount Count, 1774 const DenseSet<GlobalValue::GUID> *S) { 1775 assert(Count.hasValue()); 1776 #if !defined(NDEBUG) 1777 auto PrevCount = getEntryCount(); 1778 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1779 #endif 1780 1781 auto ImportGUIDs = getImportGUIDs(); 1782 if (S == nullptr && ImportGUIDs.size()) 1783 S = &ImportGUIDs; 1784 1785 MDBuilder MDB(getContext()); 1786 setMetadata( 1787 LLVMContext::MD_prof, 1788 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1789 } 1790 1791 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1792 const DenseSet<GlobalValue::GUID> *Imports) { 1793 setEntryCount(ProfileCount(Count, Type), Imports); 1794 } 1795 1796 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1797 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1798 if (MD && MD->getOperand(0)) 1799 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1800 if (MDS->getString().equals("function_entry_count")) { 1801 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1802 uint64_t Count = CI->getValue().getZExtValue(); 1803 // A value of -1 is used for SamplePGO when there were no samples. 1804 // Treat this the same as unknown. 1805 if (Count == (uint64_t)-1) 1806 return ProfileCount::getInvalid(); 1807 return ProfileCount(Count, PCT_Real); 1808 } else if (AllowSynthetic && 1809 MDS->getString().equals("synthetic_function_entry_count")) { 1810 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1811 uint64_t Count = CI->getValue().getZExtValue(); 1812 return ProfileCount(Count, PCT_Synthetic); 1813 } 1814 } 1815 return ProfileCount::getInvalid(); 1816 } 1817 1818 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1819 DenseSet<GlobalValue::GUID> R; 1820 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1821 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1822 if (MDS->getString().equals("function_entry_count")) 1823 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1824 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1825 ->getValue() 1826 .getZExtValue()); 1827 return R; 1828 } 1829 1830 void Function::setSectionPrefix(StringRef Prefix) { 1831 MDBuilder MDB(getContext()); 1832 setMetadata(LLVMContext::MD_section_prefix, 1833 MDB.createFunctionSectionPrefix(Prefix)); 1834 } 1835 1836 Optional<StringRef> Function::getSectionPrefix() const { 1837 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1838 assert(cast<MDString>(MD->getOperand(0)) 1839 ->getString() 1840 .equals("function_section_prefix") && 1841 "Metadata not match"); 1842 return cast<MDString>(MD->getOperand(1))->getString(); 1843 } 1844 return None; 1845 } 1846 1847 bool Function::nullPointerIsDefined() const { 1848 return hasFnAttribute(Attribute::NullPointerIsValid); 1849 } 1850 1851 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1852 if (F && F->nullPointerIsDefined()) 1853 return true; 1854 1855 if (AS != 0) 1856 return true; 1857 1858 return false; 1859 } 1860