1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "SymbolTableListTraitsImpl.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CallSite.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/GlobalValue.h" 32 #include "llvm/IR/InstIterator.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Metadata.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/IR/SymbolTableListTraits.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/IR/Use.h" 44 #include "llvm/IR/User.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/IR/ValueSymbolTable.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstddef> 53 #include <cstdint> 54 #include <cstring> 55 #include <string> 56 57 using namespace llvm; 58 using ProfileCount = Function::ProfileCount; 59 60 // Explicit instantiations of SymbolTableListTraits since some of the methods 61 // are not in the public header file... 62 template class llvm::SymbolTableListTraits<BasicBlock>; 63 64 //===----------------------------------------------------------------------===// 65 // Argument Implementation 66 //===----------------------------------------------------------------------===// 67 68 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 69 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 70 setName(Name); 71 } 72 73 void Argument::setParent(Function *parent) { 74 Parent = parent; 75 } 76 77 bool Argument::hasNonNullAttr() const { 78 if (!getType()->isPointerTy()) return false; 79 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 80 return true; 81 else if (getDereferenceableBytes() > 0 && 82 !NullPointerIsDefined(getParent(), 83 getType()->getPointerAddressSpace())) 84 return true; 85 return false; 86 } 87 88 bool Argument::hasByValAttr() const { 89 if (!getType()->isPointerTy()) return false; 90 return hasAttribute(Attribute::ByVal); 91 } 92 93 bool Argument::hasSwiftSelfAttr() const { 94 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 95 } 96 97 bool Argument::hasSwiftErrorAttr() const { 98 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 99 } 100 101 bool Argument::hasInAllocaAttr() const { 102 if (!getType()->isPointerTy()) return false; 103 return hasAttribute(Attribute::InAlloca); 104 } 105 106 bool Argument::hasByValOrInAllocaAttr() const { 107 if (!getType()->isPointerTy()) return false; 108 AttributeList Attrs = getParent()->getAttributes(); 109 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 110 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); 111 } 112 113 unsigned Argument::getParamAlignment() const { 114 assert(getType()->isPointerTy() && "Only pointers have alignments"); 115 return getParent()->getParamAlignment(getArgNo()); 116 } 117 118 uint64_t Argument::getDereferenceableBytes() const { 119 assert(getType()->isPointerTy() && 120 "Only pointers have dereferenceable bytes"); 121 return getParent()->getParamDereferenceableBytes(getArgNo()); 122 } 123 124 uint64_t Argument::getDereferenceableOrNullBytes() const { 125 assert(getType()->isPointerTy() && 126 "Only pointers have dereferenceable bytes"); 127 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 128 } 129 130 bool Argument::hasNestAttr() const { 131 if (!getType()->isPointerTy()) return false; 132 return hasAttribute(Attribute::Nest); 133 } 134 135 bool Argument::hasNoAliasAttr() const { 136 if (!getType()->isPointerTy()) return false; 137 return hasAttribute(Attribute::NoAlias); 138 } 139 140 bool Argument::hasNoCaptureAttr() const { 141 if (!getType()->isPointerTy()) return false; 142 return hasAttribute(Attribute::NoCapture); 143 } 144 145 bool Argument::hasStructRetAttr() const { 146 if (!getType()->isPointerTy()) return false; 147 return hasAttribute(Attribute::StructRet); 148 } 149 150 bool Argument::hasReturnedAttr() const { 151 return hasAttribute(Attribute::Returned); 152 } 153 154 bool Argument::hasZExtAttr() const { 155 return hasAttribute(Attribute::ZExt); 156 } 157 158 bool Argument::hasSExtAttr() const { 159 return hasAttribute(Attribute::SExt); 160 } 161 162 bool Argument::onlyReadsMemory() const { 163 AttributeList Attrs = getParent()->getAttributes(); 164 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 165 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 166 } 167 168 void Argument::addAttrs(AttrBuilder &B) { 169 AttributeList AL = getParent()->getAttributes(); 170 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 171 getParent()->setAttributes(AL); 172 } 173 174 void Argument::addAttr(Attribute::AttrKind Kind) { 175 getParent()->addParamAttr(getArgNo(), Kind); 176 } 177 178 void Argument::addAttr(Attribute Attr) { 179 getParent()->addParamAttr(getArgNo(), Attr); 180 } 181 182 void Argument::removeAttr(Attribute::AttrKind Kind) { 183 getParent()->removeParamAttr(getArgNo(), Kind); 184 } 185 186 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 187 return getParent()->hasParamAttribute(getArgNo(), Kind); 188 } 189 190 //===----------------------------------------------------------------------===// 191 // Helper Methods in Function 192 //===----------------------------------------------------------------------===// 193 194 LLVMContext &Function::getContext() const { 195 return getType()->getContext(); 196 } 197 198 unsigned Function::getInstructionCount() { 199 unsigned NumInstrs = 0; 200 for (BasicBlock &BB : BasicBlocks) 201 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 202 BB.instructionsWithoutDebug().end()); 203 return NumInstrs; 204 } 205 206 void Function::removeFromParent() { 207 getParent()->getFunctionList().remove(getIterator()); 208 } 209 210 void Function::eraseFromParent() { 211 getParent()->getFunctionList().erase(getIterator()); 212 } 213 214 //===----------------------------------------------------------------------===// 215 // Function Implementation 216 //===----------------------------------------------------------------------===// 217 218 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 219 Module *ParentModule) 220 : GlobalObject(Ty, Value::FunctionVal, 221 OperandTraits<Function>::op_begin(this), 0, Linkage, name), 222 NumArgs(Ty->getNumParams()) { 223 assert(FunctionType::isValidReturnType(getReturnType()) && 224 "invalid return type"); 225 setGlobalObjectSubClassData(0); 226 227 // We only need a symbol table for a function if the context keeps value names 228 if (!getContext().shouldDiscardValueNames()) 229 SymTab = make_unique<ValueSymbolTable>(); 230 231 // If the function has arguments, mark them as lazily built. 232 if (Ty->getNumParams()) 233 setValueSubclassData(1); // Set the "has lazy arguments" bit. 234 235 if (ParentModule) 236 ParentModule->getFunctionList().push_back(this); 237 238 HasLLVMReservedName = getName().startswith("llvm."); 239 // Ensure intrinsics have the right parameter attributes. 240 // Note, the IntID field will have been set in Value::setName if this function 241 // name is a valid intrinsic ID. 242 if (IntID) 243 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 244 } 245 246 Function::~Function() { 247 dropAllReferences(); // After this it is safe to delete instructions. 248 249 // Delete all of the method arguments and unlink from symbol table... 250 if (Arguments) 251 clearArguments(); 252 253 // Remove the function from the on-the-side GC table. 254 clearGC(); 255 } 256 257 void Function::BuildLazyArguments() const { 258 // Create the arguments vector, all arguments start out unnamed. 259 auto *FT = getFunctionType(); 260 if (NumArgs > 0) { 261 Arguments = std::allocator<Argument>().allocate(NumArgs); 262 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 263 Type *ArgTy = FT->getParamType(i); 264 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 265 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 266 } 267 } 268 269 // Clear the lazy arguments bit. 270 unsigned SDC = getSubclassDataFromValue(); 271 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 272 assert(!hasLazyArguments()); 273 } 274 275 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 276 return MutableArrayRef<Argument>(Args, Count); 277 } 278 279 void Function::clearArguments() { 280 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 281 A.setName(""); 282 A.~Argument(); 283 } 284 std::allocator<Argument>().deallocate(Arguments, NumArgs); 285 Arguments = nullptr; 286 } 287 288 void Function::stealArgumentListFrom(Function &Src) { 289 assert(isDeclaration() && "Expected no references to current arguments"); 290 291 // Drop the current arguments, if any, and set the lazy argument bit. 292 if (!hasLazyArguments()) { 293 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 294 [](const Argument &A) { return A.use_empty(); }) && 295 "Expected arguments to be unused in declaration"); 296 clearArguments(); 297 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 298 } 299 300 // Nothing to steal if Src has lazy arguments. 301 if (Src.hasLazyArguments()) 302 return; 303 304 // Steal arguments from Src, and fix the lazy argument bits. 305 assert(arg_size() == Src.arg_size()); 306 Arguments = Src.Arguments; 307 Src.Arguments = nullptr; 308 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 309 // FIXME: This does the work of transferNodesFromList inefficiently. 310 SmallString<128> Name; 311 if (A.hasName()) 312 Name = A.getName(); 313 if (!Name.empty()) 314 A.setName(""); 315 A.setParent(this); 316 if (!Name.empty()) 317 A.setName(Name); 318 } 319 320 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 321 assert(!hasLazyArguments()); 322 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 323 } 324 325 // dropAllReferences() - This function causes all the subinstructions to "let 326 // go" of all references that they are maintaining. This allows one to 327 // 'delete' a whole class at a time, even though there may be circular 328 // references... first all references are dropped, and all use counts go to 329 // zero. Then everything is deleted for real. Note that no operations are 330 // valid on an object that has "dropped all references", except operator 331 // delete. 332 // 333 void Function::dropAllReferences() { 334 setIsMaterializable(false); 335 336 for (BasicBlock &BB : *this) 337 BB.dropAllReferences(); 338 339 // Delete all basic blocks. They are now unused, except possibly by 340 // blockaddresses, but BasicBlock's destructor takes care of those. 341 while (!BasicBlocks.empty()) 342 BasicBlocks.begin()->eraseFromParent(); 343 344 // Drop uses of any optional data (real or placeholder). 345 if (getNumOperands()) { 346 User::dropAllReferences(); 347 setNumHungOffUseOperands(0); 348 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 349 } 350 351 // Metadata is stored in a side-table. 352 clearMetadata(); 353 } 354 355 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 356 AttributeList PAL = getAttributes(); 357 PAL = PAL.addAttribute(getContext(), i, Kind); 358 setAttributes(PAL); 359 } 360 361 void Function::addAttribute(unsigned i, Attribute Attr) { 362 AttributeList PAL = getAttributes(); 363 PAL = PAL.addAttribute(getContext(), i, Attr); 364 setAttributes(PAL); 365 } 366 367 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 368 AttributeList PAL = getAttributes(); 369 PAL = PAL.addAttributes(getContext(), i, Attrs); 370 setAttributes(PAL); 371 } 372 373 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 374 AttributeList PAL = getAttributes(); 375 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 376 setAttributes(PAL); 377 } 378 379 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 380 AttributeList PAL = getAttributes(); 381 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 382 setAttributes(PAL); 383 } 384 385 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 386 AttributeList PAL = getAttributes(); 387 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 388 setAttributes(PAL); 389 } 390 391 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 392 AttributeList PAL = getAttributes(); 393 PAL = PAL.removeAttribute(getContext(), i, Kind); 394 setAttributes(PAL); 395 } 396 397 void Function::removeAttribute(unsigned i, StringRef Kind) { 398 AttributeList PAL = getAttributes(); 399 PAL = PAL.removeAttribute(getContext(), i, Kind); 400 setAttributes(PAL); 401 } 402 403 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 404 AttributeList PAL = getAttributes(); 405 PAL = PAL.removeAttributes(getContext(), i, Attrs); 406 setAttributes(PAL); 407 } 408 409 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 410 AttributeList PAL = getAttributes(); 411 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 412 setAttributes(PAL); 413 } 414 415 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 416 AttributeList PAL = getAttributes(); 417 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 418 setAttributes(PAL); 419 } 420 421 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 422 AttributeList PAL = getAttributes(); 423 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 424 setAttributes(PAL); 425 } 426 427 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 428 AttributeList PAL = getAttributes(); 429 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 430 setAttributes(PAL); 431 } 432 433 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 434 AttributeList PAL = getAttributes(); 435 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 436 setAttributes(PAL); 437 } 438 439 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 440 AttributeList PAL = getAttributes(); 441 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 442 setAttributes(PAL); 443 } 444 445 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 446 uint64_t Bytes) { 447 AttributeList PAL = getAttributes(); 448 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 449 setAttributes(PAL); 450 } 451 452 const std::string &Function::getGC() const { 453 assert(hasGC() && "Function has no collector"); 454 return getContext().getGC(*this); 455 } 456 457 void Function::setGC(std::string Str) { 458 setValueSubclassDataBit(14, !Str.empty()); 459 getContext().setGC(*this, std::move(Str)); 460 } 461 462 void Function::clearGC() { 463 if (!hasGC()) 464 return; 465 getContext().deleteGC(*this); 466 setValueSubclassDataBit(14, false); 467 } 468 469 /// Copy all additional attributes (those not needed to create a Function) from 470 /// the Function Src to this one. 471 void Function::copyAttributesFrom(const Function *Src) { 472 GlobalObject::copyAttributesFrom(Src); 473 setCallingConv(Src->getCallingConv()); 474 setAttributes(Src->getAttributes()); 475 if (Src->hasGC()) 476 setGC(Src->getGC()); 477 else 478 clearGC(); 479 if (Src->hasPersonalityFn()) 480 setPersonalityFn(Src->getPersonalityFn()); 481 if (Src->hasPrefixData()) 482 setPrefixData(Src->getPrefixData()); 483 if (Src->hasPrologueData()) 484 setPrologueData(Src->getPrologueData()); 485 } 486 487 /// Table of string intrinsic names indexed by enum value. 488 static const char * const IntrinsicNameTable[] = { 489 "not_intrinsic", 490 #define GET_INTRINSIC_NAME_TABLE 491 #include "llvm/IR/IntrinsicImpl.inc" 492 #undef GET_INTRINSIC_NAME_TABLE 493 }; 494 495 /// Table of per-target intrinsic name tables. 496 #define GET_INTRINSIC_TARGET_DATA 497 #include "llvm/IR/IntrinsicImpl.inc" 498 #undef GET_INTRINSIC_TARGET_DATA 499 500 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 501 /// target as \c Name, or the generic table if \c Name is not target specific. 502 /// 503 /// Returns the relevant slice of \c IntrinsicNameTable 504 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 505 assert(Name.startswith("llvm.")); 506 507 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 508 // Drop "llvm." and take the first dotted component. That will be the target 509 // if this is target specific. 510 StringRef Target = Name.drop_front(5).split('.').first; 511 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 512 [](const IntrinsicTargetInfo &TI, 513 StringRef Target) { return TI.Name < Target; }); 514 // We've either found the target or just fall back to the generic set, which 515 // is always first. 516 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 517 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 518 } 519 520 /// This does the actual lookup of an intrinsic ID which 521 /// matches the given function name. 522 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 523 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 524 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 525 if (Idx == -1) 526 return Intrinsic::not_intrinsic; 527 528 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 529 // an index into a sub-table. 530 int Adjust = NameTable.data() - IntrinsicNameTable; 531 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 532 533 // If the intrinsic is not overloaded, require an exact match. If it is 534 // overloaded, require either exact or prefix match. 535 const auto MatchSize = strlen(NameTable[Idx]); 536 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 537 bool IsExactMatch = Name.size() == MatchSize; 538 return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 539 } 540 541 void Function::recalculateIntrinsicID() { 542 StringRef Name = getName(); 543 if (!Name.startswith("llvm.")) { 544 HasLLVMReservedName = false; 545 IntID = Intrinsic::not_intrinsic; 546 return; 547 } 548 HasLLVMReservedName = true; 549 IntID = lookupIntrinsicID(Name); 550 } 551 552 /// Returns a stable mangling for the type specified for use in the name 553 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 554 /// of named types is simply their name. Manglings for unnamed types consist 555 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 556 /// combined with the mangling of their component types. A vararg function 557 /// type will have a suffix of 'vararg'. Since function types can contain 558 /// other function types, we close a function type mangling with suffix 'f' 559 /// which can't be confused with it's prefix. This ensures we don't have 560 /// collisions between two unrelated function types. Otherwise, you might 561 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 562 /// 563 static std::string getMangledTypeStr(Type* Ty) { 564 std::string Result; 565 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 566 Result += "p" + utostr(PTyp->getAddressSpace()) + 567 getMangledTypeStr(PTyp->getElementType()); 568 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 569 Result += "a" + utostr(ATyp->getNumElements()) + 570 getMangledTypeStr(ATyp->getElementType()); 571 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 572 if (!STyp->isLiteral()) { 573 Result += "s_"; 574 Result += STyp->getName(); 575 } else { 576 Result += "sl_"; 577 for (auto Elem : STyp->elements()) 578 Result += getMangledTypeStr(Elem); 579 } 580 // Ensure nested structs are distinguishable. 581 Result += "s"; 582 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 583 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 584 for (size_t i = 0; i < FT->getNumParams(); i++) 585 Result += getMangledTypeStr(FT->getParamType(i)); 586 if (FT->isVarArg()) 587 Result += "vararg"; 588 // Ensure nested function types are distinguishable. 589 Result += "f"; 590 } else if (isa<VectorType>(Ty)) { 591 Result += "v" + utostr(Ty->getVectorNumElements()) + 592 getMangledTypeStr(Ty->getVectorElementType()); 593 } else if (Ty) { 594 switch (Ty->getTypeID()) { 595 default: llvm_unreachable("Unhandled type"); 596 case Type::VoidTyID: Result += "isVoid"; break; 597 case Type::MetadataTyID: Result += "Metadata"; break; 598 case Type::HalfTyID: Result += "f16"; break; 599 case Type::FloatTyID: Result += "f32"; break; 600 case Type::DoubleTyID: Result += "f64"; break; 601 case Type::X86_FP80TyID: Result += "f80"; break; 602 case Type::FP128TyID: Result += "f128"; break; 603 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 604 case Type::X86_MMXTyID: Result += "x86mmx"; break; 605 case Type::IntegerTyID: 606 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 607 break; 608 } 609 } 610 return Result; 611 } 612 613 StringRef Intrinsic::getName(ID id) { 614 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 615 assert(!isOverloaded(id) && 616 "This version of getName does not support overloading"); 617 return IntrinsicNameTable[id]; 618 } 619 620 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 621 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 622 std::string Result(IntrinsicNameTable[id]); 623 for (Type *Ty : Tys) { 624 Result += "." + getMangledTypeStr(Ty); 625 } 626 return Result; 627 } 628 629 /// IIT_Info - These are enumerators that describe the entries returned by the 630 /// getIntrinsicInfoTableEntries function. 631 /// 632 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 633 enum IIT_Info { 634 // Common values should be encoded with 0-15. 635 IIT_Done = 0, 636 IIT_I1 = 1, 637 IIT_I8 = 2, 638 IIT_I16 = 3, 639 IIT_I32 = 4, 640 IIT_I64 = 5, 641 IIT_F16 = 6, 642 IIT_F32 = 7, 643 IIT_F64 = 8, 644 IIT_V2 = 9, 645 IIT_V4 = 10, 646 IIT_V8 = 11, 647 IIT_V16 = 12, 648 IIT_V32 = 13, 649 IIT_PTR = 14, 650 IIT_ARG = 15, 651 652 // Values from 16+ are only encodable with the inefficient encoding. 653 IIT_V64 = 16, 654 IIT_MMX = 17, 655 IIT_TOKEN = 18, 656 IIT_METADATA = 19, 657 IIT_EMPTYSTRUCT = 20, 658 IIT_STRUCT2 = 21, 659 IIT_STRUCT3 = 22, 660 IIT_STRUCT4 = 23, 661 IIT_STRUCT5 = 24, 662 IIT_EXTEND_ARG = 25, 663 IIT_TRUNC_ARG = 26, 664 IIT_ANYPTR = 27, 665 IIT_V1 = 28, 666 IIT_VARARG = 29, 667 IIT_HALF_VEC_ARG = 30, 668 IIT_SAME_VEC_WIDTH_ARG = 31, 669 IIT_PTR_TO_ARG = 32, 670 IIT_PTR_TO_ELT = 33, 671 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 672 IIT_I128 = 35, 673 IIT_V512 = 36, 674 IIT_V1024 = 37, 675 IIT_STRUCT6 = 38, 676 IIT_STRUCT7 = 39, 677 IIT_STRUCT8 = 40, 678 IIT_F128 = 41 679 }; 680 681 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 682 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 683 using namespace Intrinsic; 684 685 IIT_Info Info = IIT_Info(Infos[NextElt++]); 686 unsigned StructElts = 2; 687 688 switch (Info) { 689 case IIT_Done: 690 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 691 return; 692 case IIT_VARARG: 693 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 694 return; 695 case IIT_MMX: 696 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 697 return; 698 case IIT_TOKEN: 699 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 700 return; 701 case IIT_METADATA: 702 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 703 return; 704 case IIT_F16: 705 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 706 return; 707 case IIT_F32: 708 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 709 return; 710 case IIT_F64: 711 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 712 return; 713 case IIT_F128: 714 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 715 return; 716 case IIT_I1: 717 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 718 return; 719 case IIT_I8: 720 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 721 return; 722 case IIT_I16: 723 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 724 return; 725 case IIT_I32: 726 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 727 return; 728 case IIT_I64: 729 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 730 return; 731 case IIT_I128: 732 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 733 return; 734 case IIT_V1: 735 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 736 DecodeIITType(NextElt, Infos, OutputTable); 737 return; 738 case IIT_V2: 739 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 740 DecodeIITType(NextElt, Infos, OutputTable); 741 return; 742 case IIT_V4: 743 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 744 DecodeIITType(NextElt, Infos, OutputTable); 745 return; 746 case IIT_V8: 747 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 748 DecodeIITType(NextElt, Infos, OutputTable); 749 return; 750 case IIT_V16: 751 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 752 DecodeIITType(NextElt, Infos, OutputTable); 753 return; 754 case IIT_V32: 755 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 756 DecodeIITType(NextElt, Infos, OutputTable); 757 return; 758 case IIT_V64: 759 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 760 DecodeIITType(NextElt, Infos, OutputTable); 761 return; 762 case IIT_V512: 763 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 764 DecodeIITType(NextElt, Infos, OutputTable); 765 return; 766 case IIT_V1024: 767 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 768 DecodeIITType(NextElt, Infos, OutputTable); 769 return; 770 case IIT_PTR: 771 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 772 DecodeIITType(NextElt, Infos, OutputTable); 773 return; 774 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 775 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 776 Infos[NextElt++])); 777 DecodeIITType(NextElt, Infos, OutputTable); 778 return; 779 } 780 case IIT_ARG: { 781 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 782 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 783 return; 784 } 785 case IIT_EXTEND_ARG: { 786 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 787 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 788 ArgInfo)); 789 return; 790 } 791 case IIT_TRUNC_ARG: { 792 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 793 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 794 ArgInfo)); 795 return; 796 } 797 case IIT_HALF_VEC_ARG: { 798 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 799 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 800 ArgInfo)); 801 return; 802 } 803 case IIT_SAME_VEC_WIDTH_ARG: { 804 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 805 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 806 ArgInfo)); 807 return; 808 } 809 case IIT_PTR_TO_ARG: { 810 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 811 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 812 ArgInfo)); 813 return; 814 } 815 case IIT_PTR_TO_ELT: { 816 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 817 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 818 return; 819 } 820 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 821 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 822 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 823 OutputTable.push_back( 824 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 825 return; 826 } 827 case IIT_EMPTYSTRUCT: 828 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 829 return; 830 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 831 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 832 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 833 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 834 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 835 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 836 case IIT_STRUCT2: { 837 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 838 839 for (unsigned i = 0; i != StructElts; ++i) 840 DecodeIITType(NextElt, Infos, OutputTable); 841 return; 842 } 843 } 844 llvm_unreachable("unhandled"); 845 } 846 847 #define GET_INTRINSIC_GENERATOR_GLOBAL 848 #include "llvm/IR/IntrinsicImpl.inc" 849 #undef GET_INTRINSIC_GENERATOR_GLOBAL 850 851 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 852 SmallVectorImpl<IITDescriptor> &T){ 853 // Check to see if the intrinsic's type was expressible by the table. 854 unsigned TableVal = IIT_Table[id-1]; 855 856 // Decode the TableVal into an array of IITValues. 857 SmallVector<unsigned char, 8> IITValues; 858 ArrayRef<unsigned char> IITEntries; 859 unsigned NextElt = 0; 860 if ((TableVal >> 31) != 0) { 861 // This is an offset into the IIT_LongEncodingTable. 862 IITEntries = IIT_LongEncodingTable; 863 864 // Strip sentinel bit. 865 NextElt = (TableVal << 1) >> 1; 866 } else { 867 // Decode the TableVal into an array of IITValues. If the entry was encoded 868 // into a single word in the table itself, decode it now. 869 do { 870 IITValues.push_back(TableVal & 0xF); 871 TableVal >>= 4; 872 } while (TableVal); 873 874 IITEntries = IITValues; 875 NextElt = 0; 876 } 877 878 // Okay, decode the table into the output vector of IITDescriptors. 879 DecodeIITType(NextElt, IITEntries, T); 880 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 881 DecodeIITType(NextElt, IITEntries, T); 882 } 883 884 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 885 ArrayRef<Type*> Tys, LLVMContext &Context) { 886 using namespace Intrinsic; 887 888 IITDescriptor D = Infos.front(); 889 Infos = Infos.slice(1); 890 891 switch (D.Kind) { 892 case IITDescriptor::Void: return Type::getVoidTy(Context); 893 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 894 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 895 case IITDescriptor::Token: return Type::getTokenTy(Context); 896 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 897 case IITDescriptor::Half: return Type::getHalfTy(Context); 898 case IITDescriptor::Float: return Type::getFloatTy(Context); 899 case IITDescriptor::Double: return Type::getDoubleTy(Context); 900 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 901 902 case IITDescriptor::Integer: 903 return IntegerType::get(Context, D.Integer_Width); 904 case IITDescriptor::Vector: 905 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 906 case IITDescriptor::Pointer: 907 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 908 D.Pointer_AddressSpace); 909 case IITDescriptor::Struct: { 910 SmallVector<Type *, 8> Elts; 911 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 912 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 913 return StructType::get(Context, Elts); 914 } 915 case IITDescriptor::Argument: 916 return Tys[D.getArgumentNumber()]; 917 case IITDescriptor::ExtendArgument: { 918 Type *Ty = Tys[D.getArgumentNumber()]; 919 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 920 return VectorType::getExtendedElementVectorType(VTy); 921 922 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 923 } 924 case IITDescriptor::TruncArgument: { 925 Type *Ty = Tys[D.getArgumentNumber()]; 926 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 927 return VectorType::getTruncatedElementVectorType(VTy); 928 929 IntegerType *ITy = cast<IntegerType>(Ty); 930 assert(ITy->getBitWidth() % 2 == 0); 931 return IntegerType::get(Context, ITy->getBitWidth() / 2); 932 } 933 case IITDescriptor::HalfVecArgument: 934 return VectorType::getHalfElementsVectorType(cast<VectorType>( 935 Tys[D.getArgumentNumber()])); 936 case IITDescriptor::SameVecWidthArgument: { 937 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 938 Type *Ty = Tys[D.getArgumentNumber()]; 939 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 940 return VectorType::get(EltTy, VTy->getNumElements()); 941 } 942 llvm_unreachable("unhandled"); 943 } 944 case IITDescriptor::PtrToArgument: { 945 Type *Ty = Tys[D.getArgumentNumber()]; 946 return PointerType::getUnqual(Ty); 947 } 948 case IITDescriptor::PtrToElt: { 949 Type *Ty = Tys[D.getArgumentNumber()]; 950 VectorType *VTy = dyn_cast<VectorType>(Ty); 951 if (!VTy) 952 llvm_unreachable("Expected an argument of Vector Type"); 953 Type *EltTy = VTy->getVectorElementType(); 954 return PointerType::getUnqual(EltTy); 955 } 956 case IITDescriptor::VecOfAnyPtrsToElt: 957 // Return the overloaded type (which determines the pointers address space) 958 return Tys[D.getOverloadArgNumber()]; 959 } 960 llvm_unreachable("unhandled"); 961 } 962 963 FunctionType *Intrinsic::getType(LLVMContext &Context, 964 ID id, ArrayRef<Type*> Tys) { 965 SmallVector<IITDescriptor, 8> Table; 966 getIntrinsicInfoTableEntries(id, Table); 967 968 ArrayRef<IITDescriptor> TableRef = Table; 969 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 970 971 SmallVector<Type*, 8> ArgTys; 972 while (!TableRef.empty()) 973 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 974 975 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 976 // If we see void type as the type of the last argument, it is vararg intrinsic 977 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 978 ArgTys.pop_back(); 979 return FunctionType::get(ResultTy, ArgTys, true); 980 } 981 return FunctionType::get(ResultTy, ArgTys, false); 982 } 983 984 bool Intrinsic::isOverloaded(ID id) { 985 #define GET_INTRINSIC_OVERLOAD_TABLE 986 #include "llvm/IR/IntrinsicImpl.inc" 987 #undef GET_INTRINSIC_OVERLOAD_TABLE 988 } 989 990 bool Intrinsic::isLeaf(ID id) { 991 switch (id) { 992 default: 993 return true; 994 995 case Intrinsic::experimental_gc_statepoint: 996 case Intrinsic::experimental_patchpoint_void: 997 case Intrinsic::experimental_patchpoint_i64: 998 return false; 999 } 1000 } 1001 1002 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1003 #define GET_INTRINSIC_ATTRIBUTES 1004 #include "llvm/IR/IntrinsicImpl.inc" 1005 #undef GET_INTRINSIC_ATTRIBUTES 1006 1007 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1008 // There can never be multiple globals with the same name of different types, 1009 // because intrinsics must be a specific type. 1010 return 1011 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 1012 getType(M->getContext(), id, Tys))); 1013 } 1014 1015 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1016 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1017 #include "llvm/IR/IntrinsicImpl.inc" 1018 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1019 1020 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1021 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1022 #include "llvm/IR/IntrinsicImpl.inc" 1023 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1024 1025 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1026 SmallVectorImpl<Type*> &ArgTys) { 1027 using namespace Intrinsic; 1028 1029 // If we ran out of descriptors, there are too many arguments. 1030 if (Infos.empty()) return true; 1031 IITDescriptor D = Infos.front(); 1032 Infos = Infos.slice(1); 1033 1034 switch (D.Kind) { 1035 case IITDescriptor::Void: return !Ty->isVoidTy(); 1036 case IITDescriptor::VarArg: return true; 1037 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1038 case IITDescriptor::Token: return !Ty->isTokenTy(); 1039 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1040 case IITDescriptor::Half: return !Ty->isHalfTy(); 1041 case IITDescriptor::Float: return !Ty->isFloatTy(); 1042 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1043 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1044 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1045 case IITDescriptor::Vector: { 1046 VectorType *VT = dyn_cast<VectorType>(Ty); 1047 return !VT || VT->getNumElements() != D.Vector_Width || 1048 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 1049 } 1050 case IITDescriptor::Pointer: { 1051 PointerType *PT = dyn_cast<PointerType>(Ty); 1052 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1053 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 1054 } 1055 1056 case IITDescriptor::Struct: { 1057 StructType *ST = dyn_cast<StructType>(Ty); 1058 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1059 return true; 1060 1061 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1062 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 1063 return true; 1064 return false; 1065 } 1066 1067 case IITDescriptor::Argument: 1068 // Two cases here - If this is the second occurrence of an argument, verify 1069 // that the later instance matches the previous instance. 1070 if (D.getArgumentNumber() < ArgTys.size()) 1071 return Ty != ArgTys[D.getArgumentNumber()]; 1072 1073 // Otherwise, if this is the first instance of an argument, record it and 1074 // verify the "Any" kind. 1075 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 1076 ArgTys.push_back(Ty); 1077 1078 switch (D.getArgumentKind()) { 1079 case IITDescriptor::AK_Any: return false; // Success 1080 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1081 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1082 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1083 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1084 } 1085 llvm_unreachable("all argument kinds not covered"); 1086 1087 case IITDescriptor::ExtendArgument: { 1088 // This may only be used when referring to a previous vector argument. 1089 if (D.getArgumentNumber() >= ArgTys.size()) 1090 return true; 1091 1092 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1093 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1094 NewTy = VectorType::getExtendedElementVectorType(VTy); 1095 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1096 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1097 else 1098 return true; 1099 1100 return Ty != NewTy; 1101 } 1102 case IITDescriptor::TruncArgument: { 1103 // This may only be used when referring to a previous vector argument. 1104 if (D.getArgumentNumber() >= ArgTys.size()) 1105 return true; 1106 1107 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1108 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1109 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1110 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1111 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1112 else 1113 return true; 1114 1115 return Ty != NewTy; 1116 } 1117 case IITDescriptor::HalfVecArgument: 1118 // This may only be used when referring to a previous vector argument. 1119 return D.getArgumentNumber() >= ArgTys.size() || 1120 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1121 VectorType::getHalfElementsVectorType( 1122 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1123 case IITDescriptor::SameVecWidthArgument: { 1124 if (D.getArgumentNumber() >= ArgTys.size()) 1125 return true; 1126 VectorType * ReferenceType = 1127 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1128 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1129 if (!ThisArgType || !ReferenceType || 1130 (ReferenceType->getVectorNumElements() != 1131 ThisArgType->getVectorNumElements())) 1132 return true; 1133 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1134 Infos, ArgTys); 1135 } 1136 case IITDescriptor::PtrToArgument: { 1137 if (D.getArgumentNumber() >= ArgTys.size()) 1138 return true; 1139 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1140 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1141 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1142 } 1143 case IITDescriptor::PtrToElt: { 1144 if (D.getArgumentNumber() >= ArgTys.size()) 1145 return true; 1146 VectorType * ReferenceType = 1147 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1148 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1149 1150 return (!ThisArgType || !ReferenceType || 1151 ThisArgType->getElementType() != ReferenceType->getElementType()); 1152 } 1153 case IITDescriptor::VecOfAnyPtrsToElt: { 1154 unsigned RefArgNumber = D.getRefArgNumber(); 1155 1156 // This may only be used when referring to a previous argument. 1157 if (RefArgNumber >= ArgTys.size()) 1158 return true; 1159 1160 // Record the overloaded type 1161 assert(D.getOverloadArgNumber() == ArgTys.size() && 1162 "Table consistency error"); 1163 ArgTys.push_back(Ty); 1164 1165 // Verify the overloaded type "matches" the Ref type. 1166 // i.e. Ty is a vector with the same width as Ref. 1167 // Composed of pointers to the same element type as Ref. 1168 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1169 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1170 if (!ThisArgVecTy || !ReferenceType || 1171 (ReferenceType->getVectorNumElements() != 1172 ThisArgVecTy->getVectorNumElements())) 1173 return true; 1174 PointerType *ThisArgEltTy = 1175 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1176 if (!ThisArgEltTy) 1177 return true; 1178 return ThisArgEltTy->getElementType() != 1179 ReferenceType->getVectorElementType(); 1180 } 1181 } 1182 llvm_unreachable("unhandled"); 1183 } 1184 1185 bool 1186 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1187 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1188 // If there are no descriptors left, then it can't be a vararg. 1189 if (Infos.empty()) 1190 return isVarArg; 1191 1192 // There should be only one descriptor remaining at this point. 1193 if (Infos.size() != 1) 1194 return true; 1195 1196 // Check and verify the descriptor. 1197 IITDescriptor D = Infos.front(); 1198 Infos = Infos.slice(1); 1199 if (D.Kind == IITDescriptor::VarArg) 1200 return !isVarArg; 1201 1202 return true; 1203 } 1204 1205 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1206 Intrinsic::ID ID = F->getIntrinsicID(); 1207 if (!ID) 1208 return None; 1209 1210 FunctionType *FTy = F->getFunctionType(); 1211 // Accumulate an array of overloaded types for the given intrinsic 1212 SmallVector<Type *, 4> ArgTys; 1213 { 1214 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1215 getIntrinsicInfoTableEntries(ID, Table); 1216 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1217 1218 // If we encounter any problems matching the signature with the descriptor 1219 // just give up remangling. It's up to verifier to report the discrepancy. 1220 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1221 return None; 1222 for (auto Ty : FTy->params()) 1223 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1224 return None; 1225 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1226 return None; 1227 } 1228 1229 StringRef Name = F->getName(); 1230 if (Name == Intrinsic::getName(ID, ArgTys)) 1231 return None; 1232 1233 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1234 NewDecl->setCallingConv(F->getCallingConv()); 1235 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1236 return NewDecl; 1237 } 1238 1239 /// hasAddressTaken - returns true if there are any uses of this function 1240 /// other than direct calls or invokes to it. 1241 bool Function::hasAddressTaken(const User* *PutOffender) const { 1242 for (const Use &U : uses()) { 1243 const User *FU = U.getUser(); 1244 if (isa<BlockAddress>(FU)) 1245 continue; 1246 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1247 if (PutOffender) 1248 *PutOffender = FU; 1249 return true; 1250 } 1251 ImmutableCallSite CS(cast<Instruction>(FU)); 1252 if (!CS.isCallee(&U)) { 1253 if (PutOffender) 1254 *PutOffender = FU; 1255 return true; 1256 } 1257 } 1258 return false; 1259 } 1260 1261 bool Function::isDefTriviallyDead() const { 1262 // Check the linkage 1263 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1264 !hasAvailableExternallyLinkage()) 1265 return false; 1266 1267 // Check if the function is used by anything other than a blockaddress. 1268 for (const User *U : users()) 1269 if (!isa<BlockAddress>(U)) 1270 return false; 1271 1272 return true; 1273 } 1274 1275 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1276 /// setjmp or other function that gcc recognizes as "returning twice". 1277 bool Function::callsFunctionThatReturnsTwice() const { 1278 for (const_inst_iterator 1279 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1280 ImmutableCallSite CS(&*I); 1281 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1282 return true; 1283 } 1284 1285 return false; 1286 } 1287 1288 Constant *Function::getPersonalityFn() const { 1289 assert(hasPersonalityFn() && getNumOperands()); 1290 return cast<Constant>(Op<0>()); 1291 } 1292 1293 void Function::setPersonalityFn(Constant *Fn) { 1294 setHungoffOperand<0>(Fn); 1295 setValueSubclassDataBit(3, Fn != nullptr); 1296 } 1297 1298 Constant *Function::getPrefixData() const { 1299 assert(hasPrefixData() && getNumOperands()); 1300 return cast<Constant>(Op<1>()); 1301 } 1302 1303 void Function::setPrefixData(Constant *PrefixData) { 1304 setHungoffOperand<1>(PrefixData); 1305 setValueSubclassDataBit(1, PrefixData != nullptr); 1306 } 1307 1308 Constant *Function::getPrologueData() const { 1309 assert(hasPrologueData() && getNumOperands()); 1310 return cast<Constant>(Op<2>()); 1311 } 1312 1313 void Function::setPrologueData(Constant *PrologueData) { 1314 setHungoffOperand<2>(PrologueData); 1315 setValueSubclassDataBit(2, PrologueData != nullptr); 1316 } 1317 1318 void Function::allocHungoffUselist() { 1319 // If we've already allocated a uselist, stop here. 1320 if (getNumOperands()) 1321 return; 1322 1323 allocHungoffUses(3, /*IsPhi=*/ false); 1324 setNumHungOffUseOperands(3); 1325 1326 // Initialize the uselist with placeholder operands to allow traversal. 1327 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1328 Op<0>().set(CPN); 1329 Op<1>().set(CPN); 1330 Op<2>().set(CPN); 1331 } 1332 1333 template <int Idx> 1334 void Function::setHungoffOperand(Constant *C) { 1335 if (C) { 1336 allocHungoffUselist(); 1337 Op<Idx>().set(C); 1338 } else if (getNumOperands()) { 1339 Op<Idx>().set( 1340 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1341 } 1342 } 1343 1344 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1345 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1346 if (On) 1347 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1348 else 1349 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1350 } 1351 1352 void Function::setEntryCount(ProfileCount Count, 1353 const DenseSet<GlobalValue::GUID> *S) { 1354 assert(Count.hasValue()); 1355 #if !defined(NDEBUG) 1356 auto PrevCount = getEntryCount(); 1357 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1358 #endif 1359 MDBuilder MDB(getContext()); 1360 setMetadata( 1361 LLVMContext::MD_prof, 1362 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1363 } 1364 1365 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1366 const DenseSet<GlobalValue::GUID> *Imports) { 1367 setEntryCount(ProfileCount(Count, Type), Imports); 1368 } 1369 1370 ProfileCount Function::getEntryCount() const { 1371 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1372 if (MD && MD->getOperand(0)) 1373 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1374 if (MDS->getString().equals("function_entry_count")) { 1375 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1376 uint64_t Count = CI->getValue().getZExtValue(); 1377 // A value of -1 is used for SamplePGO when there were no samples. 1378 // Treat this the same as unknown. 1379 if (Count == (uint64_t)-1) 1380 return ProfileCount::getInvalid(); 1381 return ProfileCount(Count, PCT_Real); 1382 } else if (MDS->getString().equals("synthetic_function_entry_count")) { 1383 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1384 uint64_t Count = CI->getValue().getZExtValue(); 1385 return ProfileCount(Count, PCT_Synthetic); 1386 } 1387 } 1388 return ProfileCount::getInvalid(); 1389 } 1390 1391 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1392 DenseSet<GlobalValue::GUID> R; 1393 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1394 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1395 if (MDS->getString().equals("function_entry_count")) 1396 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1397 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1398 ->getValue() 1399 .getZExtValue()); 1400 return R; 1401 } 1402 1403 void Function::setSectionPrefix(StringRef Prefix) { 1404 MDBuilder MDB(getContext()); 1405 setMetadata(LLVMContext::MD_section_prefix, 1406 MDB.createFunctionSectionPrefix(Prefix)); 1407 } 1408 1409 Optional<StringRef> Function::getSectionPrefix() const { 1410 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1411 assert(cast<MDString>(MD->getOperand(0)) 1412 ->getString() 1413 .equals("function_section_prefix") && 1414 "Metadata not match"); 1415 return cast<MDString>(MD->getOperand(1))->getString(); 1416 } 1417 return None; 1418 } 1419 1420 bool Function::nullPointerIsDefined() const { 1421 return getFnAttribute("null-pointer-is-valid") 1422 .getValueAsString() 1423 .equals("true"); 1424 } 1425 1426 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1427 if (F && F->nullPointerIsDefined()) 1428 return true; 1429 1430 if (AS != 0) 1431 return true; 1432 1433 return false; 1434 } 1435