xref: /llvm-project/llvm/lib/IR/Function.cpp (revision f5890e4e4317c1bb9a25f29a44ab009604f09e4b)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Function.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/CallSite.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Metadata.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/SymbolTableListTraits.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/IR/ValueSymbolTable.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstddef>
53 #include <cstdint>
54 #include <cstring>
55 #include <string>
56 
57 using namespace llvm;
58 using ProfileCount = Function::ProfileCount;
59 
60 // Explicit instantiations of SymbolTableListTraits since some of the methods
61 // are not in the public header file...
62 template class llvm::SymbolTableListTraits<BasicBlock>;
63 
64 //===----------------------------------------------------------------------===//
65 // Argument Implementation
66 //===----------------------------------------------------------------------===//
67 
68 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
69     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
70   setName(Name);
71 }
72 
73 void Argument::setParent(Function *parent) {
74   Parent = parent;
75 }
76 
77 bool Argument::hasNonNullAttr() const {
78   if (!getType()->isPointerTy()) return false;
79   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
80     return true;
81   else if (getDereferenceableBytes() > 0 &&
82            getType()->getPointerAddressSpace() == 0)
83     return true;
84   return false;
85 }
86 
87 bool Argument::hasByValAttr() const {
88   if (!getType()->isPointerTy()) return false;
89   return hasAttribute(Attribute::ByVal);
90 }
91 
92 bool Argument::hasSwiftSelfAttr() const {
93   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
94 }
95 
96 bool Argument::hasSwiftErrorAttr() const {
97   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
98 }
99 
100 bool Argument::hasInAllocaAttr() const {
101   if (!getType()->isPointerTy()) return false;
102   return hasAttribute(Attribute::InAlloca);
103 }
104 
105 bool Argument::hasByValOrInAllocaAttr() const {
106   if (!getType()->isPointerTy()) return false;
107   AttributeList Attrs = getParent()->getAttributes();
108   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
109          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
110 }
111 
112 unsigned Argument::getParamAlignment() const {
113   assert(getType()->isPointerTy() && "Only pointers have alignments");
114   return getParent()->getParamAlignment(getArgNo());
115 }
116 
117 uint64_t Argument::getDereferenceableBytes() const {
118   assert(getType()->isPointerTy() &&
119          "Only pointers have dereferenceable bytes");
120   return getParent()->getParamDereferenceableBytes(getArgNo());
121 }
122 
123 uint64_t Argument::getDereferenceableOrNullBytes() const {
124   assert(getType()->isPointerTy() &&
125          "Only pointers have dereferenceable bytes");
126   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
127 }
128 
129 bool Argument::hasNestAttr() const {
130   if (!getType()->isPointerTy()) return false;
131   return hasAttribute(Attribute::Nest);
132 }
133 
134 bool Argument::hasNoAliasAttr() const {
135   if (!getType()->isPointerTy()) return false;
136   return hasAttribute(Attribute::NoAlias);
137 }
138 
139 bool Argument::hasNoCaptureAttr() const {
140   if (!getType()->isPointerTy()) return false;
141   return hasAttribute(Attribute::NoCapture);
142 }
143 
144 bool Argument::hasStructRetAttr() const {
145   if (!getType()->isPointerTy()) return false;
146   return hasAttribute(Attribute::StructRet);
147 }
148 
149 bool Argument::hasReturnedAttr() const {
150   return hasAttribute(Attribute::Returned);
151 }
152 
153 bool Argument::hasZExtAttr() const {
154   return hasAttribute(Attribute::ZExt);
155 }
156 
157 bool Argument::hasSExtAttr() const {
158   return hasAttribute(Attribute::SExt);
159 }
160 
161 bool Argument::onlyReadsMemory() const {
162   AttributeList Attrs = getParent()->getAttributes();
163   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
164          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
165 }
166 
167 void Argument::addAttrs(AttrBuilder &B) {
168   AttributeList AL = getParent()->getAttributes();
169   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
170   getParent()->setAttributes(AL);
171 }
172 
173 void Argument::addAttr(Attribute::AttrKind Kind) {
174   getParent()->addParamAttr(getArgNo(), Kind);
175 }
176 
177 void Argument::addAttr(Attribute Attr) {
178   getParent()->addParamAttr(getArgNo(), Attr);
179 }
180 
181 void Argument::removeAttr(Attribute::AttrKind Kind) {
182   getParent()->removeParamAttr(getArgNo(), Kind);
183 }
184 
185 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
186   return getParent()->hasParamAttribute(getArgNo(), Kind);
187 }
188 
189 //===----------------------------------------------------------------------===//
190 // Helper Methods in Function
191 //===----------------------------------------------------------------------===//
192 
193 LLVMContext &Function::getContext() const {
194   return getType()->getContext();
195 }
196 
197 unsigned Function::getInstructionCount() {
198   unsigned NumInstrs = 0;
199   for (BasicBlock &BB : BasicBlocks)
200     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
201                                BB.instructionsWithoutDebug().end());
202   return NumInstrs;
203 }
204 
205 void Function::removeFromParent() {
206   getParent()->getFunctionList().remove(getIterator());
207 }
208 
209 void Function::eraseFromParent() {
210   getParent()->getFunctionList().erase(getIterator());
211 }
212 
213 //===----------------------------------------------------------------------===//
214 // Function Implementation
215 //===----------------------------------------------------------------------===//
216 
217 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
218                    Module *ParentModule)
219     : GlobalObject(Ty, Value::FunctionVal,
220                    OperandTraits<Function>::op_begin(this), 0, Linkage, name),
221       NumArgs(Ty->getNumParams()) {
222   assert(FunctionType::isValidReturnType(getReturnType()) &&
223          "invalid return type");
224   setGlobalObjectSubClassData(0);
225 
226   // We only need a symbol table for a function if the context keeps value names
227   if (!getContext().shouldDiscardValueNames())
228     SymTab = make_unique<ValueSymbolTable>();
229 
230   // If the function has arguments, mark them as lazily built.
231   if (Ty->getNumParams())
232     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
233 
234   if (ParentModule)
235     ParentModule->getFunctionList().push_back(this);
236 
237   HasLLVMReservedName = getName().startswith("llvm.");
238   // Ensure intrinsics have the right parameter attributes.
239   // Note, the IntID field will have been set in Value::setName if this function
240   // name is a valid intrinsic ID.
241   if (IntID)
242     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
243 }
244 
245 Function::~Function() {
246   dropAllReferences();    // After this it is safe to delete instructions.
247 
248   // Delete all of the method arguments and unlink from symbol table...
249   if (Arguments)
250     clearArguments();
251 
252   // Remove the function from the on-the-side GC table.
253   clearGC();
254 }
255 
256 void Function::BuildLazyArguments() const {
257   // Create the arguments vector, all arguments start out unnamed.
258   auto *FT = getFunctionType();
259   if (NumArgs > 0) {
260     Arguments = std::allocator<Argument>().allocate(NumArgs);
261     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
262       Type *ArgTy = FT->getParamType(i);
263       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
264       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
265     }
266   }
267 
268   // Clear the lazy arguments bit.
269   unsigned SDC = getSubclassDataFromValue();
270   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
271   assert(!hasLazyArguments());
272 }
273 
274 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
275   return MutableArrayRef<Argument>(Args, Count);
276 }
277 
278 void Function::clearArguments() {
279   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
280     A.setName("");
281     A.~Argument();
282   }
283   std::allocator<Argument>().deallocate(Arguments, NumArgs);
284   Arguments = nullptr;
285 }
286 
287 void Function::stealArgumentListFrom(Function &Src) {
288   assert(isDeclaration() && "Expected no references to current arguments");
289 
290   // Drop the current arguments, if any, and set the lazy argument bit.
291   if (!hasLazyArguments()) {
292     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
293                         [](const Argument &A) { return A.use_empty(); }) &&
294            "Expected arguments to be unused in declaration");
295     clearArguments();
296     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
297   }
298 
299   // Nothing to steal if Src has lazy arguments.
300   if (Src.hasLazyArguments())
301     return;
302 
303   // Steal arguments from Src, and fix the lazy argument bits.
304   assert(arg_size() == Src.arg_size());
305   Arguments = Src.Arguments;
306   Src.Arguments = nullptr;
307   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
308     // FIXME: This does the work of transferNodesFromList inefficiently.
309     SmallString<128> Name;
310     if (A.hasName())
311       Name = A.getName();
312     if (!Name.empty())
313       A.setName("");
314     A.setParent(this);
315     if (!Name.empty())
316       A.setName(Name);
317   }
318 
319   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
320   assert(!hasLazyArguments());
321   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
322 }
323 
324 // dropAllReferences() - This function causes all the subinstructions to "let
325 // go" of all references that they are maintaining.  This allows one to
326 // 'delete' a whole class at a time, even though there may be circular
327 // references... first all references are dropped, and all use counts go to
328 // zero.  Then everything is deleted for real.  Note that no operations are
329 // valid on an object that has "dropped all references", except operator
330 // delete.
331 //
332 void Function::dropAllReferences() {
333   setIsMaterializable(false);
334 
335   for (BasicBlock &BB : *this)
336     BB.dropAllReferences();
337 
338   // Delete all basic blocks. They are now unused, except possibly by
339   // blockaddresses, but BasicBlock's destructor takes care of those.
340   while (!BasicBlocks.empty())
341     BasicBlocks.begin()->eraseFromParent();
342 
343   // Drop uses of any optional data (real or placeholder).
344   if (getNumOperands()) {
345     User::dropAllReferences();
346     setNumHungOffUseOperands(0);
347     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
348   }
349 
350   // Metadata is stored in a side-table.
351   clearMetadata();
352 }
353 
354 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
355   AttributeList PAL = getAttributes();
356   PAL = PAL.addAttribute(getContext(), i, Kind);
357   setAttributes(PAL);
358 }
359 
360 void Function::addAttribute(unsigned i, Attribute Attr) {
361   AttributeList PAL = getAttributes();
362   PAL = PAL.addAttribute(getContext(), i, Attr);
363   setAttributes(PAL);
364 }
365 
366 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
367   AttributeList PAL = getAttributes();
368   PAL = PAL.addAttributes(getContext(), i, Attrs);
369   setAttributes(PAL);
370 }
371 
372 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
373   AttributeList PAL = getAttributes();
374   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
375   setAttributes(PAL);
376 }
377 
378 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
379   AttributeList PAL = getAttributes();
380   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
381   setAttributes(PAL);
382 }
383 
384 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
385   AttributeList PAL = getAttributes();
386   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
387   setAttributes(PAL);
388 }
389 
390 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
391   AttributeList PAL = getAttributes();
392   PAL = PAL.removeAttribute(getContext(), i, Kind);
393   setAttributes(PAL);
394 }
395 
396 void Function::removeAttribute(unsigned i, StringRef Kind) {
397   AttributeList PAL = getAttributes();
398   PAL = PAL.removeAttribute(getContext(), i, Kind);
399   setAttributes(PAL);
400 }
401 
402 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
403   AttributeList PAL = getAttributes();
404   PAL = PAL.removeAttributes(getContext(), i, Attrs);
405   setAttributes(PAL);
406 }
407 
408 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
409   AttributeList PAL = getAttributes();
410   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
411   setAttributes(PAL);
412 }
413 
414 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
415   AttributeList PAL = getAttributes();
416   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
417   setAttributes(PAL);
418 }
419 
420 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
421   AttributeList PAL = getAttributes();
422   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
423   setAttributes(PAL);
424 }
425 
426 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
427   AttributeList PAL = getAttributes();
428   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
429   setAttributes(PAL);
430 }
431 
432 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
433   AttributeList PAL = getAttributes();
434   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
435   setAttributes(PAL);
436 }
437 
438 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
439   AttributeList PAL = getAttributes();
440   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
441   setAttributes(PAL);
442 }
443 
444 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
445                                                  uint64_t Bytes) {
446   AttributeList PAL = getAttributes();
447   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
448   setAttributes(PAL);
449 }
450 
451 const std::string &Function::getGC() const {
452   assert(hasGC() && "Function has no collector");
453   return getContext().getGC(*this);
454 }
455 
456 void Function::setGC(std::string Str) {
457   setValueSubclassDataBit(14, !Str.empty());
458   getContext().setGC(*this, std::move(Str));
459 }
460 
461 void Function::clearGC() {
462   if (!hasGC())
463     return;
464   getContext().deleteGC(*this);
465   setValueSubclassDataBit(14, false);
466 }
467 
468 /// Copy all additional attributes (those not needed to create a Function) from
469 /// the Function Src to this one.
470 void Function::copyAttributesFrom(const Function *Src) {
471   GlobalObject::copyAttributesFrom(Src);
472   setCallingConv(Src->getCallingConv());
473   setAttributes(Src->getAttributes());
474   if (Src->hasGC())
475     setGC(Src->getGC());
476   else
477     clearGC();
478   if (Src->hasPersonalityFn())
479     setPersonalityFn(Src->getPersonalityFn());
480   if (Src->hasPrefixData())
481     setPrefixData(Src->getPrefixData());
482   if (Src->hasPrologueData())
483     setPrologueData(Src->getPrologueData());
484 }
485 
486 /// Table of string intrinsic names indexed by enum value.
487 static const char * const IntrinsicNameTable[] = {
488   "not_intrinsic",
489 #define GET_INTRINSIC_NAME_TABLE
490 #include "llvm/IR/IntrinsicImpl.inc"
491 #undef GET_INTRINSIC_NAME_TABLE
492 };
493 
494 /// Table of per-target intrinsic name tables.
495 #define GET_INTRINSIC_TARGET_DATA
496 #include "llvm/IR/IntrinsicImpl.inc"
497 #undef GET_INTRINSIC_TARGET_DATA
498 
499 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
500 /// target as \c Name, or the generic table if \c Name is not target specific.
501 ///
502 /// Returns the relevant slice of \c IntrinsicNameTable
503 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
504   assert(Name.startswith("llvm."));
505 
506   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
507   // Drop "llvm." and take the first dotted component. That will be the target
508   // if this is target specific.
509   StringRef Target = Name.drop_front(5).split('.').first;
510   auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
511                              [](const IntrinsicTargetInfo &TI,
512                                 StringRef Target) { return TI.Name < Target; });
513   // We've either found the target or just fall back to the generic set, which
514   // is always first.
515   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
516   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
517 }
518 
519 /// This does the actual lookup of an intrinsic ID which
520 /// matches the given function name.
521 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
522   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
523   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
524   if (Idx == -1)
525     return Intrinsic::not_intrinsic;
526 
527   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
528   // an index into a sub-table.
529   int Adjust = NameTable.data() - IntrinsicNameTable;
530   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
531 
532   // If the intrinsic is not overloaded, require an exact match. If it is
533   // overloaded, require either exact or prefix match.
534   const auto MatchSize = strlen(NameTable[Idx]);
535   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
536   bool IsExactMatch = Name.size() == MatchSize;
537   return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
538 }
539 
540 void Function::recalculateIntrinsicID() {
541   StringRef Name = getName();
542   if (!Name.startswith("llvm.")) {
543     HasLLVMReservedName = false;
544     IntID = Intrinsic::not_intrinsic;
545     return;
546   }
547   HasLLVMReservedName = true;
548   IntID = lookupIntrinsicID(Name);
549 }
550 
551 /// Returns a stable mangling for the type specified for use in the name
552 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
553 /// of named types is simply their name.  Manglings for unnamed types consist
554 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
555 /// combined with the mangling of their component types.  A vararg function
556 /// type will have a suffix of 'vararg'.  Since function types can contain
557 /// other function types, we close a function type mangling with suffix 'f'
558 /// which can't be confused with it's prefix.  This ensures we don't have
559 /// collisions between two unrelated function types. Otherwise, you might
560 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
561 ///
562 static std::string getMangledTypeStr(Type* Ty) {
563   std::string Result;
564   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
565     Result += "p" + utostr(PTyp->getAddressSpace()) +
566       getMangledTypeStr(PTyp->getElementType());
567   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
568     Result += "a" + utostr(ATyp->getNumElements()) +
569       getMangledTypeStr(ATyp->getElementType());
570   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
571     if (!STyp->isLiteral()) {
572       Result += "s_";
573       Result += STyp->getName();
574     } else {
575       Result += "sl_";
576       for (auto Elem : STyp->elements())
577         Result += getMangledTypeStr(Elem);
578     }
579     // Ensure nested structs are distinguishable.
580     Result += "s";
581   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
582     Result += "f_" + getMangledTypeStr(FT->getReturnType());
583     for (size_t i = 0; i < FT->getNumParams(); i++)
584       Result += getMangledTypeStr(FT->getParamType(i));
585     if (FT->isVarArg())
586       Result += "vararg";
587     // Ensure nested function types are distinguishable.
588     Result += "f";
589   } else if (isa<VectorType>(Ty)) {
590     Result += "v" + utostr(Ty->getVectorNumElements()) +
591       getMangledTypeStr(Ty->getVectorElementType());
592   } else if (Ty) {
593     switch (Ty->getTypeID()) {
594     default: llvm_unreachable("Unhandled type");
595     case Type::VoidTyID:      Result += "isVoid";   break;
596     case Type::MetadataTyID:  Result += "Metadata"; break;
597     case Type::HalfTyID:      Result += "f16";      break;
598     case Type::FloatTyID:     Result += "f32";      break;
599     case Type::DoubleTyID:    Result += "f64";      break;
600     case Type::X86_FP80TyID:  Result += "f80";      break;
601     case Type::FP128TyID:     Result += "f128";     break;
602     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
603     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
604     case Type::IntegerTyID:
605       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
606       break;
607     }
608   }
609   return Result;
610 }
611 
612 StringRef Intrinsic::getName(ID id) {
613   assert(id < num_intrinsics && "Invalid intrinsic ID!");
614   assert(!isOverloaded(id) &&
615          "This version of getName does not support overloading");
616   return IntrinsicNameTable[id];
617 }
618 
619 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
620   assert(id < num_intrinsics && "Invalid intrinsic ID!");
621   std::string Result(IntrinsicNameTable[id]);
622   for (Type *Ty : Tys) {
623     Result += "." + getMangledTypeStr(Ty);
624   }
625   return Result;
626 }
627 
628 /// IIT_Info - These are enumerators that describe the entries returned by the
629 /// getIntrinsicInfoTableEntries function.
630 ///
631 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
632 enum IIT_Info {
633   // Common values should be encoded with 0-15.
634   IIT_Done = 0,
635   IIT_I1   = 1,
636   IIT_I8   = 2,
637   IIT_I16  = 3,
638   IIT_I32  = 4,
639   IIT_I64  = 5,
640   IIT_F16  = 6,
641   IIT_F32  = 7,
642   IIT_F64  = 8,
643   IIT_V2   = 9,
644   IIT_V4   = 10,
645   IIT_V8   = 11,
646   IIT_V16  = 12,
647   IIT_V32  = 13,
648   IIT_PTR  = 14,
649   IIT_ARG  = 15,
650 
651   // Values from 16+ are only encodable with the inefficient encoding.
652   IIT_V64  = 16,
653   IIT_MMX  = 17,
654   IIT_TOKEN = 18,
655   IIT_METADATA = 19,
656   IIT_EMPTYSTRUCT = 20,
657   IIT_STRUCT2 = 21,
658   IIT_STRUCT3 = 22,
659   IIT_STRUCT4 = 23,
660   IIT_STRUCT5 = 24,
661   IIT_EXTEND_ARG = 25,
662   IIT_TRUNC_ARG = 26,
663   IIT_ANYPTR = 27,
664   IIT_V1   = 28,
665   IIT_VARARG = 29,
666   IIT_HALF_VEC_ARG = 30,
667   IIT_SAME_VEC_WIDTH_ARG = 31,
668   IIT_PTR_TO_ARG = 32,
669   IIT_PTR_TO_ELT = 33,
670   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
671   IIT_I128 = 35,
672   IIT_V512 = 36,
673   IIT_V1024 = 37,
674   IIT_STRUCT6 = 38,
675   IIT_STRUCT7 = 39,
676   IIT_STRUCT8 = 40
677 };
678 
679 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
680                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
681   using namespace Intrinsic;
682 
683   IIT_Info Info = IIT_Info(Infos[NextElt++]);
684   unsigned StructElts = 2;
685 
686   switch (Info) {
687   case IIT_Done:
688     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
689     return;
690   case IIT_VARARG:
691     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
692     return;
693   case IIT_MMX:
694     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
695     return;
696   case IIT_TOKEN:
697     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
698     return;
699   case IIT_METADATA:
700     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
701     return;
702   case IIT_F16:
703     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
704     return;
705   case IIT_F32:
706     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
707     return;
708   case IIT_F64:
709     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
710     return;
711   case IIT_I1:
712     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
713     return;
714   case IIT_I8:
715     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
716     return;
717   case IIT_I16:
718     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
719     return;
720   case IIT_I32:
721     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
722     return;
723   case IIT_I64:
724     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
725     return;
726   case IIT_I128:
727     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
728     return;
729   case IIT_V1:
730     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
731     DecodeIITType(NextElt, Infos, OutputTable);
732     return;
733   case IIT_V2:
734     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
735     DecodeIITType(NextElt, Infos, OutputTable);
736     return;
737   case IIT_V4:
738     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
739     DecodeIITType(NextElt, Infos, OutputTable);
740     return;
741   case IIT_V8:
742     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
743     DecodeIITType(NextElt, Infos, OutputTable);
744     return;
745   case IIT_V16:
746     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
747     DecodeIITType(NextElt, Infos, OutputTable);
748     return;
749   case IIT_V32:
750     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
751     DecodeIITType(NextElt, Infos, OutputTable);
752     return;
753   case IIT_V64:
754     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
755     DecodeIITType(NextElt, Infos, OutputTable);
756     return;
757   case IIT_V512:
758     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
759     DecodeIITType(NextElt, Infos, OutputTable);
760     return;
761   case IIT_V1024:
762     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
763     DecodeIITType(NextElt, Infos, OutputTable);
764     return;
765   case IIT_PTR:
766     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
767     DecodeIITType(NextElt, Infos, OutputTable);
768     return;
769   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
770     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
771                                              Infos[NextElt++]));
772     DecodeIITType(NextElt, Infos, OutputTable);
773     return;
774   }
775   case IIT_ARG: {
776     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
777     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
778     return;
779   }
780   case IIT_EXTEND_ARG: {
781     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
782     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
783                                              ArgInfo));
784     return;
785   }
786   case IIT_TRUNC_ARG: {
787     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
788     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
789                                              ArgInfo));
790     return;
791   }
792   case IIT_HALF_VEC_ARG: {
793     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
794     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
795                                              ArgInfo));
796     return;
797   }
798   case IIT_SAME_VEC_WIDTH_ARG: {
799     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
800     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
801                                              ArgInfo));
802     return;
803   }
804   case IIT_PTR_TO_ARG: {
805     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
806     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
807                                              ArgInfo));
808     return;
809   }
810   case IIT_PTR_TO_ELT: {
811     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
812     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
813     return;
814   }
815   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
816     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
817     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
818     OutputTable.push_back(
819         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
820     return;
821   }
822   case IIT_EMPTYSTRUCT:
823     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
824     return;
825   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
826   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
827   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
828   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
829   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
830   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
831   case IIT_STRUCT2: {
832     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
833 
834     for (unsigned i = 0; i != StructElts; ++i)
835       DecodeIITType(NextElt, Infos, OutputTable);
836     return;
837   }
838   }
839   llvm_unreachable("unhandled");
840 }
841 
842 #define GET_INTRINSIC_GENERATOR_GLOBAL
843 #include "llvm/IR/IntrinsicImpl.inc"
844 #undef GET_INTRINSIC_GENERATOR_GLOBAL
845 
846 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
847                                              SmallVectorImpl<IITDescriptor> &T){
848   // Check to see if the intrinsic's type was expressible by the table.
849   unsigned TableVal = IIT_Table[id-1];
850 
851   // Decode the TableVal into an array of IITValues.
852   SmallVector<unsigned char, 8> IITValues;
853   ArrayRef<unsigned char> IITEntries;
854   unsigned NextElt = 0;
855   if ((TableVal >> 31) != 0) {
856     // This is an offset into the IIT_LongEncodingTable.
857     IITEntries = IIT_LongEncodingTable;
858 
859     // Strip sentinel bit.
860     NextElt = (TableVal << 1) >> 1;
861   } else {
862     // Decode the TableVal into an array of IITValues.  If the entry was encoded
863     // into a single word in the table itself, decode it now.
864     do {
865       IITValues.push_back(TableVal & 0xF);
866       TableVal >>= 4;
867     } while (TableVal);
868 
869     IITEntries = IITValues;
870     NextElt = 0;
871   }
872 
873   // Okay, decode the table into the output vector of IITDescriptors.
874   DecodeIITType(NextElt, IITEntries, T);
875   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
876     DecodeIITType(NextElt, IITEntries, T);
877 }
878 
879 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
880                              ArrayRef<Type*> Tys, LLVMContext &Context) {
881   using namespace Intrinsic;
882 
883   IITDescriptor D = Infos.front();
884   Infos = Infos.slice(1);
885 
886   switch (D.Kind) {
887   case IITDescriptor::Void: return Type::getVoidTy(Context);
888   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
889   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
890   case IITDescriptor::Token: return Type::getTokenTy(Context);
891   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
892   case IITDescriptor::Half: return Type::getHalfTy(Context);
893   case IITDescriptor::Float: return Type::getFloatTy(Context);
894   case IITDescriptor::Double: return Type::getDoubleTy(Context);
895 
896   case IITDescriptor::Integer:
897     return IntegerType::get(Context, D.Integer_Width);
898   case IITDescriptor::Vector:
899     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
900   case IITDescriptor::Pointer:
901     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
902                             D.Pointer_AddressSpace);
903   case IITDescriptor::Struct: {
904     SmallVector<Type *, 8> Elts;
905     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
906       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
907     return StructType::get(Context, Elts);
908   }
909   case IITDescriptor::Argument:
910     return Tys[D.getArgumentNumber()];
911   case IITDescriptor::ExtendArgument: {
912     Type *Ty = Tys[D.getArgumentNumber()];
913     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
914       return VectorType::getExtendedElementVectorType(VTy);
915 
916     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
917   }
918   case IITDescriptor::TruncArgument: {
919     Type *Ty = Tys[D.getArgumentNumber()];
920     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
921       return VectorType::getTruncatedElementVectorType(VTy);
922 
923     IntegerType *ITy = cast<IntegerType>(Ty);
924     assert(ITy->getBitWidth() % 2 == 0);
925     return IntegerType::get(Context, ITy->getBitWidth() / 2);
926   }
927   case IITDescriptor::HalfVecArgument:
928     return VectorType::getHalfElementsVectorType(cast<VectorType>(
929                                                   Tys[D.getArgumentNumber()]));
930   case IITDescriptor::SameVecWidthArgument: {
931     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
932     Type *Ty = Tys[D.getArgumentNumber()];
933     if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
934       return VectorType::get(EltTy, VTy->getNumElements());
935     }
936     llvm_unreachable("unhandled");
937   }
938   case IITDescriptor::PtrToArgument: {
939     Type *Ty = Tys[D.getArgumentNumber()];
940     return PointerType::getUnqual(Ty);
941   }
942   case IITDescriptor::PtrToElt: {
943     Type *Ty = Tys[D.getArgumentNumber()];
944     VectorType *VTy = dyn_cast<VectorType>(Ty);
945     if (!VTy)
946       llvm_unreachable("Expected an argument of Vector Type");
947     Type *EltTy = VTy->getVectorElementType();
948     return PointerType::getUnqual(EltTy);
949   }
950   case IITDescriptor::VecOfAnyPtrsToElt:
951     // Return the overloaded type (which determines the pointers address space)
952     return Tys[D.getOverloadArgNumber()];
953   }
954   llvm_unreachable("unhandled");
955 }
956 
957 FunctionType *Intrinsic::getType(LLVMContext &Context,
958                                  ID id, ArrayRef<Type*> Tys) {
959   SmallVector<IITDescriptor, 8> Table;
960   getIntrinsicInfoTableEntries(id, Table);
961 
962   ArrayRef<IITDescriptor> TableRef = Table;
963   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
964 
965   SmallVector<Type*, 8> ArgTys;
966   while (!TableRef.empty())
967     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
968 
969   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
970   // If we see void type as the type of the last argument, it is vararg intrinsic
971   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
972     ArgTys.pop_back();
973     return FunctionType::get(ResultTy, ArgTys, true);
974   }
975   return FunctionType::get(ResultTy, ArgTys, false);
976 }
977 
978 bool Intrinsic::isOverloaded(ID id) {
979 #define GET_INTRINSIC_OVERLOAD_TABLE
980 #include "llvm/IR/IntrinsicImpl.inc"
981 #undef GET_INTRINSIC_OVERLOAD_TABLE
982 }
983 
984 bool Intrinsic::isLeaf(ID id) {
985   switch (id) {
986   default:
987     return true;
988 
989   case Intrinsic::experimental_gc_statepoint:
990   case Intrinsic::experimental_patchpoint_void:
991   case Intrinsic::experimental_patchpoint_i64:
992     return false;
993   }
994 }
995 
996 /// This defines the "Intrinsic::getAttributes(ID id)" method.
997 #define GET_INTRINSIC_ATTRIBUTES
998 #include "llvm/IR/IntrinsicImpl.inc"
999 #undef GET_INTRINSIC_ATTRIBUTES
1000 
1001 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1002   // There can never be multiple globals with the same name of different types,
1003   // because intrinsics must be a specific type.
1004   return
1005     cast<Function>(M->getOrInsertFunction(getName(id, Tys),
1006                                           getType(M->getContext(), id, Tys)));
1007 }
1008 
1009 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1010 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1011 #include "llvm/IR/IntrinsicImpl.inc"
1012 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1013 
1014 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1015 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1016 #include "llvm/IR/IntrinsicImpl.inc"
1017 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1018 
1019 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1020                                    SmallVectorImpl<Type*> &ArgTys) {
1021   using namespace Intrinsic;
1022 
1023   // If we ran out of descriptors, there are too many arguments.
1024   if (Infos.empty()) return true;
1025   IITDescriptor D = Infos.front();
1026   Infos = Infos.slice(1);
1027 
1028   switch (D.Kind) {
1029     case IITDescriptor::Void: return !Ty->isVoidTy();
1030     case IITDescriptor::VarArg: return true;
1031     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1032     case IITDescriptor::Token: return !Ty->isTokenTy();
1033     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1034     case IITDescriptor::Half: return !Ty->isHalfTy();
1035     case IITDescriptor::Float: return !Ty->isFloatTy();
1036     case IITDescriptor::Double: return !Ty->isDoubleTy();
1037     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1038     case IITDescriptor::Vector: {
1039       VectorType *VT = dyn_cast<VectorType>(Ty);
1040       return !VT || VT->getNumElements() != D.Vector_Width ||
1041              matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
1042     }
1043     case IITDescriptor::Pointer: {
1044       PointerType *PT = dyn_cast<PointerType>(Ty);
1045       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1046              matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
1047     }
1048 
1049     case IITDescriptor::Struct: {
1050       StructType *ST = dyn_cast<StructType>(Ty);
1051       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1052         return true;
1053 
1054       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1055         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
1056           return true;
1057       return false;
1058     }
1059 
1060     case IITDescriptor::Argument:
1061       // Two cases here - If this is the second occurrence of an argument, verify
1062       // that the later instance matches the previous instance.
1063       if (D.getArgumentNumber() < ArgTys.size())
1064         return Ty != ArgTys[D.getArgumentNumber()];
1065 
1066           // Otherwise, if this is the first instance of an argument, record it and
1067           // verify the "Any" kind.
1068           assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
1069           ArgTys.push_back(Ty);
1070 
1071           switch (D.getArgumentKind()) {
1072             case IITDescriptor::AK_Any:        return false; // Success
1073             case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1074             case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1075             case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1076             case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1077           }
1078           llvm_unreachable("all argument kinds not covered");
1079 
1080     case IITDescriptor::ExtendArgument: {
1081       // This may only be used when referring to a previous vector argument.
1082       if (D.getArgumentNumber() >= ArgTys.size())
1083         return true;
1084 
1085       Type *NewTy = ArgTys[D.getArgumentNumber()];
1086       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1087         NewTy = VectorType::getExtendedElementVectorType(VTy);
1088       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1089         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1090       else
1091         return true;
1092 
1093       return Ty != NewTy;
1094     }
1095     case IITDescriptor::TruncArgument: {
1096       // This may only be used when referring to a previous vector argument.
1097       if (D.getArgumentNumber() >= ArgTys.size())
1098         return true;
1099 
1100       Type *NewTy = ArgTys[D.getArgumentNumber()];
1101       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1102         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1103       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1104         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1105       else
1106         return true;
1107 
1108       return Ty != NewTy;
1109     }
1110     case IITDescriptor::HalfVecArgument:
1111       // This may only be used when referring to a previous vector argument.
1112       return D.getArgumentNumber() >= ArgTys.size() ||
1113              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1114              VectorType::getHalfElementsVectorType(
1115                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1116     case IITDescriptor::SameVecWidthArgument: {
1117       if (D.getArgumentNumber() >= ArgTys.size())
1118         return true;
1119       VectorType * ReferenceType =
1120         dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1121       VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
1122       if (!ThisArgType || !ReferenceType ||
1123           (ReferenceType->getVectorNumElements() !=
1124            ThisArgType->getVectorNumElements()))
1125         return true;
1126       return matchIntrinsicType(ThisArgType->getVectorElementType(),
1127                                 Infos, ArgTys);
1128     }
1129     case IITDescriptor::PtrToArgument: {
1130       if (D.getArgumentNumber() >= ArgTys.size())
1131         return true;
1132       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1133       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1134       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1135     }
1136     case IITDescriptor::PtrToElt: {
1137       if (D.getArgumentNumber() >= ArgTys.size())
1138         return true;
1139       VectorType * ReferenceType =
1140         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1141       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1142 
1143       return (!ThisArgType || !ReferenceType ||
1144               ThisArgType->getElementType() != ReferenceType->getElementType());
1145     }
1146     case IITDescriptor::VecOfAnyPtrsToElt: {
1147       unsigned RefArgNumber = D.getRefArgNumber();
1148 
1149       // This may only be used when referring to a previous argument.
1150       if (RefArgNumber >= ArgTys.size())
1151         return true;
1152 
1153       // Record the overloaded type
1154       assert(D.getOverloadArgNumber() == ArgTys.size() &&
1155              "Table consistency error");
1156       ArgTys.push_back(Ty);
1157 
1158       // Verify the overloaded type "matches" the Ref type.
1159       // i.e. Ty is a vector with the same width as Ref.
1160       // Composed of pointers to the same element type as Ref.
1161       VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1162       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1163       if (!ThisArgVecTy || !ReferenceType ||
1164           (ReferenceType->getVectorNumElements() !=
1165            ThisArgVecTy->getVectorNumElements()))
1166         return true;
1167       PointerType *ThisArgEltTy =
1168               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1169       if (!ThisArgEltTy)
1170         return true;
1171       return ThisArgEltTy->getElementType() !=
1172              ReferenceType->getVectorElementType();
1173     }
1174   }
1175   llvm_unreachable("unhandled");
1176 }
1177 
1178 bool
1179 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1180                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1181   // If there are no descriptors left, then it can't be a vararg.
1182   if (Infos.empty())
1183     return isVarArg;
1184 
1185   // There should be only one descriptor remaining at this point.
1186   if (Infos.size() != 1)
1187     return true;
1188 
1189   // Check and verify the descriptor.
1190   IITDescriptor D = Infos.front();
1191   Infos = Infos.slice(1);
1192   if (D.Kind == IITDescriptor::VarArg)
1193     return !isVarArg;
1194 
1195   return true;
1196 }
1197 
1198 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1199   Intrinsic::ID ID = F->getIntrinsicID();
1200   if (!ID)
1201     return None;
1202 
1203   FunctionType *FTy = F->getFunctionType();
1204   // Accumulate an array of overloaded types for the given intrinsic
1205   SmallVector<Type *, 4> ArgTys;
1206   {
1207     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1208     getIntrinsicInfoTableEntries(ID, Table);
1209     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1210 
1211     // If we encounter any problems matching the signature with the descriptor
1212     // just give up remangling. It's up to verifier to report the discrepancy.
1213     if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1214       return None;
1215     for (auto Ty : FTy->params())
1216       if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1217         return None;
1218     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1219       return None;
1220   }
1221 
1222   StringRef Name = F->getName();
1223   if (Name == Intrinsic::getName(ID, ArgTys))
1224     return None;
1225 
1226   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1227   NewDecl->setCallingConv(F->getCallingConv());
1228   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1229   return NewDecl;
1230 }
1231 
1232 /// hasAddressTaken - returns true if there are any uses of this function
1233 /// other than direct calls or invokes to it.
1234 bool Function::hasAddressTaken(const User* *PutOffender) const {
1235   for (const Use &U : uses()) {
1236     const User *FU = U.getUser();
1237     if (isa<BlockAddress>(FU))
1238       continue;
1239     if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
1240       if (PutOffender)
1241         *PutOffender = FU;
1242       return true;
1243     }
1244     ImmutableCallSite CS(cast<Instruction>(FU));
1245     if (!CS.isCallee(&U)) {
1246       if (PutOffender)
1247         *PutOffender = FU;
1248       return true;
1249     }
1250   }
1251   return false;
1252 }
1253 
1254 bool Function::isDefTriviallyDead() const {
1255   // Check the linkage
1256   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1257       !hasAvailableExternallyLinkage())
1258     return false;
1259 
1260   // Check if the function is used by anything other than a blockaddress.
1261   for (const User *U : users())
1262     if (!isa<BlockAddress>(U))
1263       return false;
1264 
1265   return true;
1266 }
1267 
1268 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1269 /// setjmp or other function that gcc recognizes as "returning twice".
1270 bool Function::callsFunctionThatReturnsTwice() const {
1271   for (const_inst_iterator
1272          I = inst_begin(this), E = inst_end(this); I != E; ++I) {
1273     ImmutableCallSite CS(&*I);
1274     if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
1275       return true;
1276   }
1277 
1278   return false;
1279 }
1280 
1281 Constant *Function::getPersonalityFn() const {
1282   assert(hasPersonalityFn() && getNumOperands());
1283   return cast<Constant>(Op<0>());
1284 }
1285 
1286 void Function::setPersonalityFn(Constant *Fn) {
1287   setHungoffOperand<0>(Fn);
1288   setValueSubclassDataBit(3, Fn != nullptr);
1289 }
1290 
1291 Constant *Function::getPrefixData() const {
1292   assert(hasPrefixData() && getNumOperands());
1293   return cast<Constant>(Op<1>());
1294 }
1295 
1296 void Function::setPrefixData(Constant *PrefixData) {
1297   setHungoffOperand<1>(PrefixData);
1298   setValueSubclassDataBit(1, PrefixData != nullptr);
1299 }
1300 
1301 Constant *Function::getPrologueData() const {
1302   assert(hasPrologueData() && getNumOperands());
1303   return cast<Constant>(Op<2>());
1304 }
1305 
1306 void Function::setPrologueData(Constant *PrologueData) {
1307   setHungoffOperand<2>(PrologueData);
1308   setValueSubclassDataBit(2, PrologueData != nullptr);
1309 }
1310 
1311 void Function::allocHungoffUselist() {
1312   // If we've already allocated a uselist, stop here.
1313   if (getNumOperands())
1314     return;
1315 
1316   allocHungoffUses(3, /*IsPhi=*/ false);
1317   setNumHungOffUseOperands(3);
1318 
1319   // Initialize the uselist with placeholder operands to allow traversal.
1320   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1321   Op<0>().set(CPN);
1322   Op<1>().set(CPN);
1323   Op<2>().set(CPN);
1324 }
1325 
1326 template <int Idx>
1327 void Function::setHungoffOperand(Constant *C) {
1328   if (C) {
1329     allocHungoffUselist();
1330     Op<Idx>().set(C);
1331   } else if (getNumOperands()) {
1332     Op<Idx>().set(
1333         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1334   }
1335 }
1336 
1337 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1338   assert(Bit < 16 && "SubclassData contains only 16 bits");
1339   if (On)
1340     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1341   else
1342     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1343 }
1344 
1345 void Function::setEntryCount(ProfileCount Count,
1346                              const DenseSet<GlobalValue::GUID> *S) {
1347   assert(Count.hasValue());
1348 #if !defined(NDEBUG)
1349   auto PrevCount = getEntryCount();
1350   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1351 #endif
1352   MDBuilder MDB(getContext());
1353   setMetadata(
1354       LLVMContext::MD_prof,
1355       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1356 }
1357 
1358 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1359                              const DenseSet<GlobalValue::GUID> *Imports) {
1360   setEntryCount(ProfileCount(Count, Type), Imports);
1361 }
1362 
1363 ProfileCount Function::getEntryCount() const {
1364   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1365   if (MD && MD->getOperand(0))
1366     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1367       if (MDS->getString().equals("function_entry_count")) {
1368         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1369         uint64_t Count = CI->getValue().getZExtValue();
1370         // A value of -1 is used for SamplePGO when there were no samples.
1371         // Treat this the same as unknown.
1372         if (Count == (uint64_t)-1)
1373           return ProfileCount::getInvalid();
1374         return ProfileCount(Count, PCT_Real);
1375       } else if (MDS->getString().equals("synthetic_function_entry_count")) {
1376         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1377         uint64_t Count = CI->getValue().getZExtValue();
1378         return ProfileCount(Count, PCT_Synthetic);
1379       }
1380     }
1381   return ProfileCount::getInvalid();
1382 }
1383 
1384 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1385   DenseSet<GlobalValue::GUID> R;
1386   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1387     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1388       if (MDS->getString().equals("function_entry_count"))
1389         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1390           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1391                        ->getValue()
1392                        .getZExtValue());
1393   return R;
1394 }
1395 
1396 void Function::setSectionPrefix(StringRef Prefix) {
1397   MDBuilder MDB(getContext());
1398   setMetadata(LLVMContext::MD_section_prefix,
1399               MDB.createFunctionSectionPrefix(Prefix));
1400 }
1401 
1402 Optional<StringRef> Function::getSectionPrefix() const {
1403   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1404     assert(cast<MDString>(MD->getOperand(0))
1405                ->getString()
1406                .equals("function_section_prefix") &&
1407            "Metadata not match");
1408     return cast<MDString>(MD->getOperand(1))->getString();
1409   }
1410   return None;
1411 }
1412