1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/AbstractCallSite.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/IntrinsicsAArch64.h" 36 #include "llvm/IR/IntrinsicsAMDGPU.h" 37 #include "llvm/IR/IntrinsicsARM.h" 38 #include "llvm/IR/IntrinsicsBPF.h" 39 #include "llvm/IR/IntrinsicsHexagon.h" 40 #include "llvm/IR/IntrinsicsMips.h" 41 #include "llvm/IR/IntrinsicsNVPTX.h" 42 #include "llvm/IR/IntrinsicsPowerPC.h" 43 #include "llvm/IR/IntrinsicsR600.h" 44 #include "llvm/IR/IntrinsicsRISCV.h" 45 #include "llvm/IR/IntrinsicsS390.h" 46 #include "llvm/IR/IntrinsicsWebAssembly.h" 47 #include "llvm/IR/IntrinsicsX86.h" 48 #include "llvm/IR/IntrinsicsXCore.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/SymbolTableListTraits.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Use.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstddef> 65 #include <cstdint> 66 #include <cstring> 67 #include <string> 68 69 using namespace llvm; 70 using ProfileCount = Function::ProfileCount; 71 72 // Explicit instantiations of SymbolTableListTraits since some of the methods 73 // are not in the public header file... 74 template class llvm::SymbolTableListTraits<BasicBlock>; 75 76 //===----------------------------------------------------------------------===// 77 // Argument Implementation 78 //===----------------------------------------------------------------------===// 79 80 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 81 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 82 setName(Name); 83 } 84 85 void Argument::setParent(Function *parent) { 86 Parent = parent; 87 } 88 89 bool Argument::hasNonNullAttr() const { 90 if (!getType()->isPointerTy()) return false; 91 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 92 return true; 93 else if (getDereferenceableBytes() > 0 && 94 !NullPointerIsDefined(getParent(), 95 getType()->getPointerAddressSpace())) 96 return true; 97 return false; 98 } 99 100 bool Argument::hasByValAttr() const { 101 if (!getType()->isPointerTy()) return false; 102 return hasAttribute(Attribute::ByVal); 103 } 104 105 bool Argument::hasByRefAttr() const { 106 if (!getType()->isPointerTy()) 107 return false; 108 return hasAttribute(Attribute::ByRef); 109 } 110 111 bool Argument::hasSwiftSelfAttr() const { 112 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 113 } 114 115 bool Argument::hasSwiftErrorAttr() const { 116 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 117 } 118 119 bool Argument::hasInAllocaAttr() const { 120 if (!getType()->isPointerTy()) return false; 121 return hasAttribute(Attribute::InAlloca); 122 } 123 124 bool Argument::hasPreallocatedAttr() const { 125 if (!getType()->isPointerTy()) 126 return false; 127 return hasAttribute(Attribute::Preallocated); 128 } 129 130 bool Argument::hasPassPointeeByValueCopyAttr() const { 131 if (!getType()->isPointerTy()) return false; 132 AttributeList Attrs = getParent()->getAttributes(); 133 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 134 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 135 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated); 136 } 137 138 bool Argument::hasPointeeInMemoryValueAttr() const { 139 if (!getType()->isPointerTy()) 140 return false; 141 AttributeList Attrs = getParent()->getAttributes(); 142 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 143 Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) || 144 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 145 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) || 146 Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef); 147 } 148 149 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 150 /// parameter type. 151 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) { 152 // FIXME: All the type carrying attributes are mutually exclusive, so there 153 // should be a single query to get the stored type that handles any of them. 154 if (Type *ByValTy = ParamAttrs.getByValType()) 155 return ByValTy; 156 if (Type *ByRefTy = ParamAttrs.getByRefType()) 157 return ByRefTy; 158 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 159 return PreAllocTy; 160 161 // FIXME: sret and inalloca always depends on pointee element type. It's also 162 // possible for byval to miss it. 163 if (ParamAttrs.hasAttribute(Attribute::InAlloca) || 164 ParamAttrs.hasAttribute(Attribute::ByVal) || 165 ParamAttrs.hasAttribute(Attribute::StructRet) || 166 ParamAttrs.hasAttribute(Attribute::Preallocated)) 167 return cast<PointerType>(ArgTy)->getElementType(); 168 169 return nullptr; 170 } 171 172 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 173 AttributeSet ParamAttrs = 174 getParent()->getAttributes().getParamAttributes(getArgNo()); 175 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType())) 176 return DL.getTypeAllocSize(MemTy); 177 return 0; 178 } 179 180 Type *Argument::getPointeeInMemoryValueType() const { 181 AttributeSet ParamAttrs = 182 getParent()->getAttributes().getParamAttributes(getArgNo()); 183 return getMemoryParamAllocType(ParamAttrs, getType()); 184 } 185 186 unsigned Argument::getParamAlignment() const { 187 assert(getType()->isPointerTy() && "Only pointers have alignments"); 188 return getParent()->getParamAlignment(getArgNo()); 189 } 190 191 MaybeAlign Argument::getParamAlign() const { 192 assert(getType()->isPointerTy() && "Only pointers have alignments"); 193 return getParent()->getParamAlign(getArgNo()); 194 } 195 196 Type *Argument::getParamByValType() const { 197 assert(getType()->isPointerTy() && "Only pointers have byval types"); 198 return getParent()->getParamByValType(getArgNo()); 199 } 200 201 Type *Argument::getParamStructRetType() const { 202 assert(getType()->isPointerTy() && "Only pointers have sret types"); 203 return getParent()->getParamStructRetType(getArgNo()); 204 } 205 206 Type *Argument::getParamByRefType() const { 207 assert(getType()->isPointerTy() && "Only pointers have byval types"); 208 return getParent()->getParamByRefType(getArgNo()); 209 } 210 211 uint64_t Argument::getDereferenceableBytes() const { 212 assert(getType()->isPointerTy() && 213 "Only pointers have dereferenceable bytes"); 214 return getParent()->getParamDereferenceableBytes(getArgNo()); 215 } 216 217 uint64_t Argument::getDereferenceableOrNullBytes() const { 218 assert(getType()->isPointerTy() && 219 "Only pointers have dereferenceable bytes"); 220 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 221 } 222 223 bool Argument::hasNestAttr() const { 224 if (!getType()->isPointerTy()) return false; 225 return hasAttribute(Attribute::Nest); 226 } 227 228 bool Argument::hasNoAliasAttr() const { 229 if (!getType()->isPointerTy()) return false; 230 return hasAttribute(Attribute::NoAlias); 231 } 232 233 bool Argument::hasNoCaptureAttr() const { 234 if (!getType()->isPointerTy()) return false; 235 return hasAttribute(Attribute::NoCapture); 236 } 237 238 bool Argument::hasStructRetAttr() const { 239 if (!getType()->isPointerTy()) return false; 240 return hasAttribute(Attribute::StructRet); 241 } 242 243 bool Argument::hasInRegAttr() const { 244 return hasAttribute(Attribute::InReg); 245 } 246 247 bool Argument::hasReturnedAttr() const { 248 return hasAttribute(Attribute::Returned); 249 } 250 251 bool Argument::hasZExtAttr() const { 252 return hasAttribute(Attribute::ZExt); 253 } 254 255 bool Argument::hasSExtAttr() const { 256 return hasAttribute(Attribute::SExt); 257 } 258 259 bool Argument::onlyReadsMemory() const { 260 AttributeList Attrs = getParent()->getAttributes(); 261 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 262 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 263 } 264 265 void Argument::addAttrs(AttrBuilder &B) { 266 AttributeList AL = getParent()->getAttributes(); 267 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 268 getParent()->setAttributes(AL); 269 } 270 271 void Argument::addAttr(Attribute::AttrKind Kind) { 272 getParent()->addParamAttr(getArgNo(), Kind); 273 } 274 275 void Argument::addAttr(Attribute Attr) { 276 getParent()->addParamAttr(getArgNo(), Attr); 277 } 278 279 void Argument::removeAttr(Attribute::AttrKind Kind) { 280 getParent()->removeParamAttr(getArgNo(), Kind); 281 } 282 283 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 284 return getParent()->hasParamAttribute(getArgNo(), Kind); 285 } 286 287 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 288 return getParent()->getParamAttribute(getArgNo(), Kind); 289 } 290 291 //===----------------------------------------------------------------------===// 292 // Helper Methods in Function 293 //===----------------------------------------------------------------------===// 294 295 LLVMContext &Function::getContext() const { 296 return getType()->getContext(); 297 } 298 299 unsigned Function::getInstructionCount() const { 300 unsigned NumInstrs = 0; 301 for (const BasicBlock &BB : BasicBlocks) 302 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 303 BB.instructionsWithoutDebug().end()); 304 return NumInstrs; 305 } 306 307 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 308 const Twine &N, Module &M) { 309 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 310 } 311 312 void Function::removeFromParent() { 313 getParent()->getFunctionList().remove(getIterator()); 314 } 315 316 void Function::eraseFromParent() { 317 getParent()->getFunctionList().erase(getIterator()); 318 } 319 320 //===----------------------------------------------------------------------===// 321 // Function Implementation 322 //===----------------------------------------------------------------------===// 323 324 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 325 // If AS == -1 and we are passed a valid module pointer we place the function 326 // in the program address space. Otherwise we default to AS0. 327 if (AddrSpace == static_cast<unsigned>(-1)) 328 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 329 return AddrSpace; 330 } 331 332 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 333 const Twine &name, Module *ParentModule) 334 : GlobalObject(Ty, Value::FunctionVal, 335 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 336 computeAddrSpace(AddrSpace, ParentModule)), 337 NumArgs(Ty->getNumParams()) { 338 assert(FunctionType::isValidReturnType(getReturnType()) && 339 "invalid return type"); 340 setGlobalObjectSubClassData(0); 341 342 // We only need a symbol table for a function if the context keeps value names 343 if (!getContext().shouldDiscardValueNames()) 344 SymTab = std::make_unique<ValueSymbolTable>(); 345 346 // If the function has arguments, mark them as lazily built. 347 if (Ty->getNumParams()) 348 setValueSubclassData(1); // Set the "has lazy arguments" bit. 349 350 if (ParentModule) 351 ParentModule->getFunctionList().push_back(this); 352 353 HasLLVMReservedName = getName().startswith("llvm."); 354 // Ensure intrinsics have the right parameter attributes. 355 // Note, the IntID field will have been set in Value::setName if this function 356 // name is a valid intrinsic ID. 357 if (IntID) 358 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 359 } 360 361 Function::~Function() { 362 dropAllReferences(); // After this it is safe to delete instructions. 363 364 // Delete all of the method arguments and unlink from symbol table... 365 if (Arguments) 366 clearArguments(); 367 368 // Remove the function from the on-the-side GC table. 369 clearGC(); 370 } 371 372 void Function::BuildLazyArguments() const { 373 // Create the arguments vector, all arguments start out unnamed. 374 auto *FT = getFunctionType(); 375 if (NumArgs > 0) { 376 Arguments = std::allocator<Argument>().allocate(NumArgs); 377 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 378 Type *ArgTy = FT->getParamType(i); 379 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 380 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 381 } 382 } 383 384 // Clear the lazy arguments bit. 385 unsigned SDC = getSubclassDataFromValue(); 386 SDC &= ~(1 << 0); 387 const_cast<Function*>(this)->setValueSubclassData(SDC); 388 assert(!hasLazyArguments()); 389 } 390 391 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 392 return MutableArrayRef<Argument>(Args, Count); 393 } 394 395 bool Function::isConstrainedFPIntrinsic() const { 396 switch (getIntrinsicID()) { 397 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 398 case Intrinsic::INTRINSIC: 399 #include "llvm/IR/ConstrainedOps.def" 400 return true; 401 #undef INSTRUCTION 402 default: 403 return false; 404 } 405 } 406 407 void Function::clearArguments() { 408 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 409 A.setName(""); 410 A.~Argument(); 411 } 412 std::allocator<Argument>().deallocate(Arguments, NumArgs); 413 Arguments = nullptr; 414 } 415 416 void Function::stealArgumentListFrom(Function &Src) { 417 assert(isDeclaration() && "Expected no references to current arguments"); 418 419 // Drop the current arguments, if any, and set the lazy argument bit. 420 if (!hasLazyArguments()) { 421 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 422 [](const Argument &A) { return A.use_empty(); }) && 423 "Expected arguments to be unused in declaration"); 424 clearArguments(); 425 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 426 } 427 428 // Nothing to steal if Src has lazy arguments. 429 if (Src.hasLazyArguments()) 430 return; 431 432 // Steal arguments from Src, and fix the lazy argument bits. 433 assert(arg_size() == Src.arg_size()); 434 Arguments = Src.Arguments; 435 Src.Arguments = nullptr; 436 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 437 // FIXME: This does the work of transferNodesFromList inefficiently. 438 SmallString<128> Name; 439 if (A.hasName()) 440 Name = A.getName(); 441 if (!Name.empty()) 442 A.setName(""); 443 A.setParent(this); 444 if (!Name.empty()) 445 A.setName(Name); 446 } 447 448 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 449 assert(!hasLazyArguments()); 450 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 451 } 452 453 // dropAllReferences() - This function causes all the subinstructions to "let 454 // go" of all references that they are maintaining. This allows one to 455 // 'delete' a whole class at a time, even though there may be circular 456 // references... first all references are dropped, and all use counts go to 457 // zero. Then everything is deleted for real. Note that no operations are 458 // valid on an object that has "dropped all references", except operator 459 // delete. 460 // 461 void Function::dropAllReferences() { 462 setIsMaterializable(false); 463 464 for (BasicBlock &BB : *this) 465 BB.dropAllReferences(); 466 467 // Delete all basic blocks. They are now unused, except possibly by 468 // blockaddresses, but BasicBlock's destructor takes care of those. 469 while (!BasicBlocks.empty()) 470 BasicBlocks.begin()->eraseFromParent(); 471 472 // Drop uses of any optional data (real or placeholder). 473 if (getNumOperands()) { 474 User::dropAllReferences(); 475 setNumHungOffUseOperands(0); 476 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 477 } 478 479 // Metadata is stored in a side-table. 480 clearMetadata(); 481 } 482 483 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 484 AttributeList PAL = getAttributes(); 485 PAL = PAL.addAttribute(getContext(), i, Kind); 486 setAttributes(PAL); 487 } 488 489 void Function::addAttribute(unsigned i, Attribute Attr) { 490 AttributeList PAL = getAttributes(); 491 PAL = PAL.addAttribute(getContext(), i, Attr); 492 setAttributes(PAL); 493 } 494 495 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 496 AttributeList PAL = getAttributes(); 497 PAL = PAL.addAttributes(getContext(), i, Attrs); 498 setAttributes(PAL); 499 } 500 501 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 502 AttributeList PAL = getAttributes(); 503 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 504 setAttributes(PAL); 505 } 506 507 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 508 AttributeList PAL = getAttributes(); 509 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 510 setAttributes(PAL); 511 } 512 513 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 514 AttributeList PAL = getAttributes(); 515 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 516 setAttributes(PAL); 517 } 518 519 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 520 AttributeList PAL = getAttributes(); 521 PAL = PAL.removeAttribute(getContext(), i, Kind); 522 setAttributes(PAL); 523 } 524 525 void Function::removeAttribute(unsigned i, StringRef Kind) { 526 AttributeList PAL = getAttributes(); 527 PAL = PAL.removeAttribute(getContext(), i, Kind); 528 setAttributes(PAL); 529 } 530 531 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 532 AttributeList PAL = getAttributes(); 533 PAL = PAL.removeAttributes(getContext(), i, Attrs); 534 setAttributes(PAL); 535 } 536 537 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 538 AttributeList PAL = getAttributes(); 539 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 540 setAttributes(PAL); 541 } 542 543 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 544 AttributeList PAL = getAttributes(); 545 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 546 setAttributes(PAL); 547 } 548 549 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 550 AttributeList PAL = getAttributes(); 551 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 552 setAttributes(PAL); 553 } 554 555 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 556 AttributeList PAL = getAttributes(); 557 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 558 setAttributes(PAL); 559 } 560 561 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 562 AttributeList PAL = getAttributes(); 563 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 564 setAttributes(PAL); 565 } 566 567 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 568 AttributeList PAL = getAttributes(); 569 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 570 setAttributes(PAL); 571 } 572 573 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 574 uint64_t Bytes) { 575 AttributeList PAL = getAttributes(); 576 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 577 setAttributes(PAL); 578 } 579 580 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 581 if (&FPType == &APFloat::IEEEsingle()) { 582 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 583 StringRef Val = Attr.getValueAsString(); 584 if (!Val.empty()) 585 return parseDenormalFPAttribute(Val); 586 587 // If the f32 variant of the attribute isn't specified, try to use the 588 // generic one. 589 } 590 591 Attribute Attr = getFnAttribute("denormal-fp-math"); 592 return parseDenormalFPAttribute(Attr.getValueAsString()); 593 } 594 595 const std::string &Function::getGC() const { 596 assert(hasGC() && "Function has no collector"); 597 return getContext().getGC(*this); 598 } 599 600 void Function::setGC(std::string Str) { 601 setValueSubclassDataBit(14, !Str.empty()); 602 getContext().setGC(*this, std::move(Str)); 603 } 604 605 void Function::clearGC() { 606 if (!hasGC()) 607 return; 608 getContext().deleteGC(*this); 609 setValueSubclassDataBit(14, false); 610 } 611 612 /// Copy all additional attributes (those not needed to create a Function) from 613 /// the Function Src to this one. 614 void Function::copyAttributesFrom(const Function *Src) { 615 GlobalObject::copyAttributesFrom(Src); 616 setCallingConv(Src->getCallingConv()); 617 setAttributes(Src->getAttributes()); 618 if (Src->hasGC()) 619 setGC(Src->getGC()); 620 else 621 clearGC(); 622 if (Src->hasPersonalityFn()) 623 setPersonalityFn(Src->getPersonalityFn()); 624 if (Src->hasPrefixData()) 625 setPrefixData(Src->getPrefixData()); 626 if (Src->hasPrologueData()) 627 setPrologueData(Src->getPrologueData()); 628 } 629 630 /// Table of string intrinsic names indexed by enum value. 631 static const char * const IntrinsicNameTable[] = { 632 "not_intrinsic", 633 #define GET_INTRINSIC_NAME_TABLE 634 #include "llvm/IR/IntrinsicImpl.inc" 635 #undef GET_INTRINSIC_NAME_TABLE 636 }; 637 638 /// Table of per-target intrinsic name tables. 639 #define GET_INTRINSIC_TARGET_DATA 640 #include "llvm/IR/IntrinsicImpl.inc" 641 #undef GET_INTRINSIC_TARGET_DATA 642 643 bool Function::isTargetIntrinsic() const { 644 return IntID > TargetInfos[0].Count; 645 } 646 647 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 648 /// target as \c Name, or the generic table if \c Name is not target specific. 649 /// 650 /// Returns the relevant slice of \c IntrinsicNameTable 651 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 652 assert(Name.startswith("llvm.")); 653 654 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 655 // Drop "llvm." and take the first dotted component. That will be the target 656 // if this is target specific. 657 StringRef Target = Name.drop_front(5).split('.').first; 658 auto It = partition_point( 659 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 660 // We've either found the target or just fall back to the generic set, which 661 // is always first. 662 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 663 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 664 } 665 666 /// This does the actual lookup of an intrinsic ID which 667 /// matches the given function name. 668 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 669 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 670 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 671 if (Idx == -1) 672 return Intrinsic::not_intrinsic; 673 674 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 675 // an index into a sub-table. 676 int Adjust = NameTable.data() - IntrinsicNameTable; 677 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 678 679 // If the intrinsic is not overloaded, require an exact match. If it is 680 // overloaded, require either exact or prefix match. 681 const auto MatchSize = strlen(NameTable[Idx]); 682 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 683 bool IsExactMatch = Name.size() == MatchSize; 684 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 685 : Intrinsic::not_intrinsic; 686 } 687 688 void Function::recalculateIntrinsicID() { 689 StringRef Name = getName(); 690 if (!Name.startswith("llvm.")) { 691 HasLLVMReservedName = false; 692 IntID = Intrinsic::not_intrinsic; 693 return; 694 } 695 HasLLVMReservedName = true; 696 IntID = lookupIntrinsicID(Name); 697 } 698 699 /// Returns a stable mangling for the type specified for use in the name 700 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 701 /// of named types is simply their name. Manglings for unnamed types consist 702 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 703 /// combined with the mangling of their component types. A vararg function 704 /// type will have a suffix of 'vararg'. Since function types can contain 705 /// other function types, we close a function type mangling with suffix 'f' 706 /// which can't be confused with it's prefix. This ensures we don't have 707 /// collisions between two unrelated function types. Otherwise, you might 708 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 709 /// 710 static std::string getMangledTypeStr(Type* Ty) { 711 std::string Result; 712 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 713 Result += "p" + utostr(PTyp->getAddressSpace()) + 714 getMangledTypeStr(PTyp->getElementType()); 715 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 716 Result += "a" + utostr(ATyp->getNumElements()) + 717 getMangledTypeStr(ATyp->getElementType()); 718 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 719 if (!STyp->isLiteral()) { 720 Result += "s_"; 721 Result += STyp->getName(); 722 } else { 723 Result += "sl_"; 724 for (auto Elem : STyp->elements()) 725 Result += getMangledTypeStr(Elem); 726 } 727 // Ensure nested structs are distinguishable. 728 Result += "s"; 729 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 730 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 731 for (size_t i = 0; i < FT->getNumParams(); i++) 732 Result += getMangledTypeStr(FT->getParamType(i)); 733 if (FT->isVarArg()) 734 Result += "vararg"; 735 // Ensure nested function types are distinguishable. 736 Result += "f"; 737 } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) { 738 ElementCount EC = VTy->getElementCount(); 739 if (EC.isScalable()) 740 Result += "nx"; 741 Result += "v" + utostr(EC.getKnownMinValue()) + 742 getMangledTypeStr(VTy->getElementType()); 743 } else if (Ty) { 744 switch (Ty->getTypeID()) { 745 default: llvm_unreachable("Unhandled type"); 746 case Type::VoidTyID: Result += "isVoid"; break; 747 case Type::MetadataTyID: Result += "Metadata"; break; 748 case Type::HalfTyID: Result += "f16"; break; 749 case Type::BFloatTyID: Result += "bf16"; break; 750 case Type::FloatTyID: Result += "f32"; break; 751 case Type::DoubleTyID: Result += "f64"; break; 752 case Type::X86_FP80TyID: Result += "f80"; break; 753 case Type::FP128TyID: Result += "f128"; break; 754 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 755 case Type::X86_MMXTyID: Result += "x86mmx"; break; 756 case Type::IntegerTyID: 757 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 758 break; 759 } 760 } 761 return Result; 762 } 763 764 StringRef Intrinsic::getName(ID id) { 765 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 766 assert(!Intrinsic::isOverloaded(id) && 767 "This version of getName does not support overloading"); 768 return IntrinsicNameTable[id]; 769 } 770 771 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 772 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 773 std::string Result(IntrinsicNameTable[id]); 774 for (Type *Ty : Tys) { 775 Result += "." + getMangledTypeStr(Ty); 776 } 777 return Result; 778 } 779 780 /// IIT_Info - These are enumerators that describe the entries returned by the 781 /// getIntrinsicInfoTableEntries function. 782 /// 783 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 784 enum IIT_Info { 785 // Common values should be encoded with 0-15. 786 IIT_Done = 0, 787 IIT_I1 = 1, 788 IIT_I8 = 2, 789 IIT_I16 = 3, 790 IIT_I32 = 4, 791 IIT_I64 = 5, 792 IIT_F16 = 6, 793 IIT_F32 = 7, 794 IIT_F64 = 8, 795 IIT_V2 = 9, 796 IIT_V4 = 10, 797 IIT_V8 = 11, 798 IIT_V16 = 12, 799 IIT_V32 = 13, 800 IIT_PTR = 14, 801 IIT_ARG = 15, 802 803 // Values from 16+ are only encodable with the inefficient encoding. 804 IIT_V64 = 16, 805 IIT_MMX = 17, 806 IIT_TOKEN = 18, 807 IIT_METADATA = 19, 808 IIT_EMPTYSTRUCT = 20, 809 IIT_STRUCT2 = 21, 810 IIT_STRUCT3 = 22, 811 IIT_STRUCT4 = 23, 812 IIT_STRUCT5 = 24, 813 IIT_EXTEND_ARG = 25, 814 IIT_TRUNC_ARG = 26, 815 IIT_ANYPTR = 27, 816 IIT_V1 = 28, 817 IIT_VARARG = 29, 818 IIT_HALF_VEC_ARG = 30, 819 IIT_SAME_VEC_WIDTH_ARG = 31, 820 IIT_PTR_TO_ARG = 32, 821 IIT_PTR_TO_ELT = 33, 822 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 823 IIT_I128 = 35, 824 IIT_V512 = 36, 825 IIT_V1024 = 37, 826 IIT_STRUCT6 = 38, 827 IIT_STRUCT7 = 39, 828 IIT_STRUCT8 = 40, 829 IIT_F128 = 41, 830 IIT_VEC_ELEMENT = 42, 831 IIT_SCALABLE_VEC = 43, 832 IIT_SUBDIVIDE2_ARG = 44, 833 IIT_SUBDIVIDE4_ARG = 45, 834 IIT_VEC_OF_BITCASTS_TO_INT = 46, 835 IIT_V128 = 47, 836 IIT_BF16 = 48, 837 IIT_STRUCT9 = 49, 838 IIT_V256 = 50 839 }; 840 841 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 842 IIT_Info LastInfo, 843 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 844 using namespace Intrinsic; 845 846 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 847 848 IIT_Info Info = IIT_Info(Infos[NextElt++]); 849 unsigned StructElts = 2; 850 851 switch (Info) { 852 case IIT_Done: 853 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 854 return; 855 case IIT_VARARG: 856 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 857 return; 858 case IIT_MMX: 859 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 860 return; 861 case IIT_TOKEN: 862 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 863 return; 864 case IIT_METADATA: 865 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 866 return; 867 case IIT_F16: 868 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 869 return; 870 case IIT_BF16: 871 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 872 return; 873 case IIT_F32: 874 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 875 return; 876 case IIT_F64: 877 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 878 return; 879 case IIT_F128: 880 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 881 return; 882 case IIT_I1: 883 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 884 return; 885 case IIT_I8: 886 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 887 return; 888 case IIT_I16: 889 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 890 return; 891 case IIT_I32: 892 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 893 return; 894 case IIT_I64: 895 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 896 return; 897 case IIT_I128: 898 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 899 return; 900 case IIT_V1: 901 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 902 DecodeIITType(NextElt, Infos, Info, OutputTable); 903 return; 904 case IIT_V2: 905 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 906 DecodeIITType(NextElt, Infos, Info, OutputTable); 907 return; 908 case IIT_V4: 909 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 910 DecodeIITType(NextElt, Infos, Info, OutputTable); 911 return; 912 case IIT_V8: 913 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 914 DecodeIITType(NextElt, Infos, Info, OutputTable); 915 return; 916 case IIT_V16: 917 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 918 DecodeIITType(NextElt, Infos, Info, OutputTable); 919 return; 920 case IIT_V32: 921 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 922 DecodeIITType(NextElt, Infos, Info, OutputTable); 923 return; 924 case IIT_V64: 925 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 926 DecodeIITType(NextElt, Infos, Info, OutputTable); 927 return; 928 case IIT_V128: 929 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 930 DecodeIITType(NextElt, Infos, Info, OutputTable); 931 return; 932 case IIT_V256: 933 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 934 DecodeIITType(NextElt, Infos, Info, OutputTable); 935 return; 936 case IIT_V512: 937 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 938 DecodeIITType(NextElt, Infos, Info, OutputTable); 939 return; 940 case IIT_V1024: 941 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 942 DecodeIITType(NextElt, Infos, Info, OutputTable); 943 return; 944 case IIT_PTR: 945 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 946 DecodeIITType(NextElt, Infos, Info, OutputTable); 947 return; 948 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 949 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 950 Infos[NextElt++])); 951 DecodeIITType(NextElt, Infos, Info, OutputTable); 952 return; 953 } 954 case IIT_ARG: { 955 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 956 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 957 return; 958 } 959 case IIT_EXTEND_ARG: { 960 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 961 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 962 ArgInfo)); 963 return; 964 } 965 case IIT_TRUNC_ARG: { 966 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 967 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 968 ArgInfo)); 969 return; 970 } 971 case IIT_HALF_VEC_ARG: { 972 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 973 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 974 ArgInfo)); 975 return; 976 } 977 case IIT_SAME_VEC_WIDTH_ARG: { 978 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 979 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 980 ArgInfo)); 981 return; 982 } 983 case IIT_PTR_TO_ARG: { 984 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 985 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 986 ArgInfo)); 987 return; 988 } 989 case IIT_PTR_TO_ELT: { 990 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 991 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 992 return; 993 } 994 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 995 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 996 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 997 OutputTable.push_back( 998 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 999 return; 1000 } 1001 case IIT_EMPTYSTRUCT: 1002 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1003 return; 1004 case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH; 1005 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 1006 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 1007 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 1008 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 1009 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 1010 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 1011 case IIT_STRUCT2: { 1012 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1013 1014 for (unsigned i = 0; i != StructElts; ++i) 1015 DecodeIITType(NextElt, Infos, Info, OutputTable); 1016 return; 1017 } 1018 case IIT_SUBDIVIDE2_ARG: { 1019 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1020 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1021 ArgInfo)); 1022 return; 1023 } 1024 case IIT_SUBDIVIDE4_ARG: { 1025 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1026 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1027 ArgInfo)); 1028 return; 1029 } 1030 case IIT_VEC_ELEMENT: { 1031 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1032 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1033 ArgInfo)); 1034 return; 1035 } 1036 case IIT_SCALABLE_VEC: { 1037 DecodeIITType(NextElt, Infos, Info, OutputTable); 1038 return; 1039 } 1040 case IIT_VEC_OF_BITCASTS_TO_INT: { 1041 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1042 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1043 ArgInfo)); 1044 return; 1045 } 1046 } 1047 llvm_unreachable("unhandled"); 1048 } 1049 1050 #define GET_INTRINSIC_GENERATOR_GLOBAL 1051 #include "llvm/IR/IntrinsicImpl.inc" 1052 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1053 1054 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1055 SmallVectorImpl<IITDescriptor> &T){ 1056 // Check to see if the intrinsic's type was expressible by the table. 1057 unsigned TableVal = IIT_Table[id-1]; 1058 1059 // Decode the TableVal into an array of IITValues. 1060 SmallVector<unsigned char, 8> IITValues; 1061 ArrayRef<unsigned char> IITEntries; 1062 unsigned NextElt = 0; 1063 if ((TableVal >> 31) != 0) { 1064 // This is an offset into the IIT_LongEncodingTable. 1065 IITEntries = IIT_LongEncodingTable; 1066 1067 // Strip sentinel bit. 1068 NextElt = (TableVal << 1) >> 1; 1069 } else { 1070 // Decode the TableVal into an array of IITValues. If the entry was encoded 1071 // into a single word in the table itself, decode it now. 1072 do { 1073 IITValues.push_back(TableVal & 0xF); 1074 TableVal >>= 4; 1075 } while (TableVal); 1076 1077 IITEntries = IITValues; 1078 NextElt = 0; 1079 } 1080 1081 // Okay, decode the table into the output vector of IITDescriptors. 1082 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1083 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1084 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1085 } 1086 1087 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1088 ArrayRef<Type*> Tys, LLVMContext &Context) { 1089 using namespace Intrinsic; 1090 1091 IITDescriptor D = Infos.front(); 1092 Infos = Infos.slice(1); 1093 1094 switch (D.Kind) { 1095 case IITDescriptor::Void: return Type::getVoidTy(Context); 1096 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1097 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1098 case IITDescriptor::Token: return Type::getTokenTy(Context); 1099 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1100 case IITDescriptor::Half: return Type::getHalfTy(Context); 1101 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1102 case IITDescriptor::Float: return Type::getFloatTy(Context); 1103 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1104 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1105 1106 case IITDescriptor::Integer: 1107 return IntegerType::get(Context, D.Integer_Width); 1108 case IITDescriptor::Vector: 1109 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1110 D.Vector_Width); 1111 case IITDescriptor::Pointer: 1112 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1113 D.Pointer_AddressSpace); 1114 case IITDescriptor::Struct: { 1115 SmallVector<Type *, 8> Elts; 1116 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1117 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1118 return StructType::get(Context, Elts); 1119 } 1120 case IITDescriptor::Argument: 1121 return Tys[D.getArgumentNumber()]; 1122 case IITDescriptor::ExtendArgument: { 1123 Type *Ty = Tys[D.getArgumentNumber()]; 1124 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1125 return VectorType::getExtendedElementVectorType(VTy); 1126 1127 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1128 } 1129 case IITDescriptor::TruncArgument: { 1130 Type *Ty = Tys[D.getArgumentNumber()]; 1131 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1132 return VectorType::getTruncatedElementVectorType(VTy); 1133 1134 IntegerType *ITy = cast<IntegerType>(Ty); 1135 assert(ITy->getBitWidth() % 2 == 0); 1136 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1137 } 1138 case IITDescriptor::Subdivide2Argument: 1139 case IITDescriptor::Subdivide4Argument: { 1140 Type *Ty = Tys[D.getArgumentNumber()]; 1141 VectorType *VTy = dyn_cast<VectorType>(Ty); 1142 assert(VTy && "Expected an argument of Vector Type"); 1143 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1144 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1145 } 1146 case IITDescriptor::HalfVecArgument: 1147 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1148 Tys[D.getArgumentNumber()])); 1149 case IITDescriptor::SameVecWidthArgument: { 1150 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1151 Type *Ty = Tys[D.getArgumentNumber()]; 1152 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1153 return VectorType::get(EltTy, VTy->getElementCount()); 1154 return EltTy; 1155 } 1156 case IITDescriptor::PtrToArgument: { 1157 Type *Ty = Tys[D.getArgumentNumber()]; 1158 return PointerType::getUnqual(Ty); 1159 } 1160 case IITDescriptor::PtrToElt: { 1161 Type *Ty = Tys[D.getArgumentNumber()]; 1162 VectorType *VTy = dyn_cast<VectorType>(Ty); 1163 if (!VTy) 1164 llvm_unreachable("Expected an argument of Vector Type"); 1165 Type *EltTy = VTy->getElementType(); 1166 return PointerType::getUnqual(EltTy); 1167 } 1168 case IITDescriptor::VecElementArgument: { 1169 Type *Ty = Tys[D.getArgumentNumber()]; 1170 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1171 return VTy->getElementType(); 1172 llvm_unreachable("Expected an argument of Vector Type"); 1173 } 1174 case IITDescriptor::VecOfBitcastsToInt: { 1175 Type *Ty = Tys[D.getArgumentNumber()]; 1176 VectorType *VTy = dyn_cast<VectorType>(Ty); 1177 assert(VTy && "Expected an argument of Vector Type"); 1178 return VectorType::getInteger(VTy); 1179 } 1180 case IITDescriptor::VecOfAnyPtrsToElt: 1181 // Return the overloaded type (which determines the pointers address space) 1182 return Tys[D.getOverloadArgNumber()]; 1183 } 1184 llvm_unreachable("unhandled"); 1185 } 1186 1187 FunctionType *Intrinsic::getType(LLVMContext &Context, 1188 ID id, ArrayRef<Type*> Tys) { 1189 SmallVector<IITDescriptor, 8> Table; 1190 getIntrinsicInfoTableEntries(id, Table); 1191 1192 ArrayRef<IITDescriptor> TableRef = Table; 1193 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1194 1195 SmallVector<Type*, 8> ArgTys; 1196 while (!TableRef.empty()) 1197 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1198 1199 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1200 // If we see void type as the type of the last argument, it is vararg intrinsic 1201 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1202 ArgTys.pop_back(); 1203 return FunctionType::get(ResultTy, ArgTys, true); 1204 } 1205 return FunctionType::get(ResultTy, ArgTys, false); 1206 } 1207 1208 bool Intrinsic::isOverloaded(ID id) { 1209 #define GET_INTRINSIC_OVERLOAD_TABLE 1210 #include "llvm/IR/IntrinsicImpl.inc" 1211 #undef GET_INTRINSIC_OVERLOAD_TABLE 1212 } 1213 1214 bool Intrinsic::isLeaf(ID id) { 1215 switch (id) { 1216 default: 1217 return true; 1218 1219 case Intrinsic::experimental_gc_statepoint: 1220 case Intrinsic::experimental_patchpoint_void: 1221 case Intrinsic::experimental_patchpoint_i64: 1222 return false; 1223 } 1224 } 1225 1226 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1227 #define GET_INTRINSIC_ATTRIBUTES 1228 #include "llvm/IR/IntrinsicImpl.inc" 1229 #undef GET_INTRINSIC_ATTRIBUTES 1230 1231 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1232 // There can never be multiple globals with the same name of different types, 1233 // because intrinsics must be a specific type. 1234 return cast<Function>( 1235 M->getOrInsertFunction(getName(id, Tys), 1236 getType(M->getContext(), id, Tys)) 1237 .getCallee()); 1238 } 1239 1240 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1241 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1242 #include "llvm/IR/IntrinsicImpl.inc" 1243 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1244 1245 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1246 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1247 #include "llvm/IR/IntrinsicImpl.inc" 1248 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1249 1250 using DeferredIntrinsicMatchPair = 1251 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1252 1253 static bool matchIntrinsicType( 1254 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1255 SmallVectorImpl<Type *> &ArgTys, 1256 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1257 bool IsDeferredCheck) { 1258 using namespace Intrinsic; 1259 1260 // If we ran out of descriptors, there are too many arguments. 1261 if (Infos.empty()) return true; 1262 1263 // Do this before slicing off the 'front' part 1264 auto InfosRef = Infos; 1265 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1266 DeferredChecks.emplace_back(T, InfosRef); 1267 return false; 1268 }; 1269 1270 IITDescriptor D = Infos.front(); 1271 Infos = Infos.slice(1); 1272 1273 switch (D.Kind) { 1274 case IITDescriptor::Void: return !Ty->isVoidTy(); 1275 case IITDescriptor::VarArg: return true; 1276 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1277 case IITDescriptor::Token: return !Ty->isTokenTy(); 1278 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1279 case IITDescriptor::Half: return !Ty->isHalfTy(); 1280 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1281 case IITDescriptor::Float: return !Ty->isFloatTy(); 1282 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1283 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1284 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1285 case IITDescriptor::Vector: { 1286 VectorType *VT = dyn_cast<VectorType>(Ty); 1287 return !VT || VT->getElementCount() != D.Vector_Width || 1288 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1289 DeferredChecks, IsDeferredCheck); 1290 } 1291 case IITDescriptor::Pointer: { 1292 PointerType *PT = dyn_cast<PointerType>(Ty); 1293 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1294 matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1295 DeferredChecks, IsDeferredCheck); 1296 } 1297 1298 case IITDescriptor::Struct: { 1299 StructType *ST = dyn_cast<StructType>(Ty); 1300 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1301 return true; 1302 1303 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1304 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1305 DeferredChecks, IsDeferredCheck)) 1306 return true; 1307 return false; 1308 } 1309 1310 case IITDescriptor::Argument: 1311 // If this is the second occurrence of an argument, 1312 // verify that the later instance matches the previous instance. 1313 if (D.getArgumentNumber() < ArgTys.size()) 1314 return Ty != ArgTys[D.getArgumentNumber()]; 1315 1316 if (D.getArgumentNumber() > ArgTys.size() || 1317 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1318 return IsDeferredCheck || DeferCheck(Ty); 1319 1320 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1321 "Table consistency error"); 1322 ArgTys.push_back(Ty); 1323 1324 switch (D.getArgumentKind()) { 1325 case IITDescriptor::AK_Any: return false; // Success 1326 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1327 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1328 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1329 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1330 default: break; 1331 } 1332 llvm_unreachable("all argument kinds not covered"); 1333 1334 case IITDescriptor::ExtendArgument: { 1335 // If this is a forward reference, defer the check for later. 1336 if (D.getArgumentNumber() >= ArgTys.size()) 1337 return IsDeferredCheck || DeferCheck(Ty); 1338 1339 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1340 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1341 NewTy = VectorType::getExtendedElementVectorType(VTy); 1342 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1343 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1344 else 1345 return true; 1346 1347 return Ty != NewTy; 1348 } 1349 case IITDescriptor::TruncArgument: { 1350 // If this is a forward reference, defer the check for later. 1351 if (D.getArgumentNumber() >= ArgTys.size()) 1352 return IsDeferredCheck || DeferCheck(Ty); 1353 1354 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1355 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1356 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1357 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1358 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1359 else 1360 return true; 1361 1362 return Ty != NewTy; 1363 } 1364 case IITDescriptor::HalfVecArgument: 1365 // If this is a forward reference, defer the check for later. 1366 if (D.getArgumentNumber() >= ArgTys.size()) 1367 return IsDeferredCheck || DeferCheck(Ty); 1368 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1369 VectorType::getHalfElementsVectorType( 1370 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1371 case IITDescriptor::SameVecWidthArgument: { 1372 if (D.getArgumentNumber() >= ArgTys.size()) { 1373 // Defer check and subsequent check for the vector element type. 1374 Infos = Infos.slice(1); 1375 return IsDeferredCheck || DeferCheck(Ty); 1376 } 1377 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1378 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1379 // Both must be vectors of the same number of elements or neither. 1380 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1381 return true; 1382 Type *EltTy = Ty; 1383 if (ThisArgType) { 1384 if (ReferenceType->getElementCount() != 1385 ThisArgType->getElementCount()) 1386 return true; 1387 EltTy = ThisArgType->getElementType(); 1388 } 1389 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1390 IsDeferredCheck); 1391 } 1392 case IITDescriptor::PtrToArgument: { 1393 if (D.getArgumentNumber() >= ArgTys.size()) 1394 return IsDeferredCheck || DeferCheck(Ty); 1395 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1396 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1397 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1398 } 1399 case IITDescriptor::PtrToElt: { 1400 if (D.getArgumentNumber() >= ArgTys.size()) 1401 return IsDeferredCheck || DeferCheck(Ty); 1402 VectorType * ReferenceType = 1403 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1404 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1405 1406 return (!ThisArgType || !ReferenceType || 1407 ThisArgType->getElementType() != ReferenceType->getElementType()); 1408 } 1409 case IITDescriptor::VecOfAnyPtrsToElt: { 1410 unsigned RefArgNumber = D.getRefArgNumber(); 1411 if (RefArgNumber >= ArgTys.size()) { 1412 if (IsDeferredCheck) 1413 return true; 1414 // If forward referencing, already add the pointer-vector type and 1415 // defer the checks for later. 1416 ArgTys.push_back(Ty); 1417 return DeferCheck(Ty); 1418 } 1419 1420 if (!IsDeferredCheck){ 1421 assert(D.getOverloadArgNumber() == ArgTys.size() && 1422 "Table consistency error"); 1423 ArgTys.push_back(Ty); 1424 } 1425 1426 // Verify the overloaded type "matches" the Ref type. 1427 // i.e. Ty is a vector with the same width as Ref. 1428 // Composed of pointers to the same element type as Ref. 1429 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1430 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1431 if (!ThisArgVecTy || !ReferenceType || 1432 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1433 return true; 1434 PointerType *ThisArgEltTy = 1435 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1436 if (!ThisArgEltTy) 1437 return true; 1438 return ThisArgEltTy->getElementType() != ReferenceType->getElementType(); 1439 } 1440 case IITDescriptor::VecElementArgument: { 1441 if (D.getArgumentNumber() >= ArgTys.size()) 1442 return IsDeferredCheck ? true : DeferCheck(Ty); 1443 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1444 return !ReferenceType || Ty != ReferenceType->getElementType(); 1445 } 1446 case IITDescriptor::Subdivide2Argument: 1447 case IITDescriptor::Subdivide4Argument: { 1448 // If this is a forward reference, defer the check for later. 1449 if (D.getArgumentNumber() >= ArgTys.size()) 1450 return IsDeferredCheck || DeferCheck(Ty); 1451 1452 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1453 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1454 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1455 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1456 return Ty != NewTy; 1457 } 1458 return true; 1459 } 1460 case IITDescriptor::VecOfBitcastsToInt: { 1461 if (D.getArgumentNumber() >= ArgTys.size()) 1462 return IsDeferredCheck || DeferCheck(Ty); 1463 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1464 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1465 if (!ThisArgVecTy || !ReferenceType) 1466 return true; 1467 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1468 } 1469 } 1470 llvm_unreachable("unhandled"); 1471 } 1472 1473 Intrinsic::MatchIntrinsicTypesResult 1474 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1475 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1476 SmallVectorImpl<Type *> &ArgTys) { 1477 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1478 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1479 false)) 1480 return MatchIntrinsicTypes_NoMatchRet; 1481 1482 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1483 1484 for (auto Ty : FTy->params()) 1485 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1486 return MatchIntrinsicTypes_NoMatchArg; 1487 1488 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1489 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1490 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1491 true)) 1492 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1493 : MatchIntrinsicTypes_NoMatchArg; 1494 } 1495 1496 return MatchIntrinsicTypes_Match; 1497 } 1498 1499 bool 1500 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1501 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1502 // If there are no descriptors left, then it can't be a vararg. 1503 if (Infos.empty()) 1504 return isVarArg; 1505 1506 // There should be only one descriptor remaining at this point. 1507 if (Infos.size() != 1) 1508 return true; 1509 1510 // Check and verify the descriptor. 1511 IITDescriptor D = Infos.front(); 1512 Infos = Infos.slice(1); 1513 if (D.Kind == IITDescriptor::VarArg) 1514 return !isVarArg; 1515 1516 return true; 1517 } 1518 1519 bool Intrinsic::getIntrinsicSignature(Function *F, 1520 SmallVectorImpl<Type *> &ArgTys) { 1521 Intrinsic::ID ID = F->getIntrinsicID(); 1522 if (!ID) 1523 return false; 1524 1525 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1526 getIntrinsicInfoTableEntries(ID, Table); 1527 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1528 1529 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1530 ArgTys) != 1531 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1532 return false; 1533 } 1534 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1535 TableRef)) 1536 return false; 1537 return true; 1538 } 1539 1540 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1541 SmallVector<Type *, 4> ArgTys; 1542 if (!getIntrinsicSignature(F, ArgTys)) 1543 return None; 1544 1545 Intrinsic::ID ID = F->getIntrinsicID(); 1546 StringRef Name = F->getName(); 1547 if (Name == Intrinsic::getName(ID, ArgTys)) 1548 return None; 1549 1550 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1551 NewDecl->setCallingConv(F->getCallingConv()); 1552 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1553 "Shouldn't change the signature"); 1554 return NewDecl; 1555 } 1556 1557 /// hasAddressTaken - returns true if there are any uses of this function 1558 /// other than direct calls or invokes to it. Optionally ignores callback 1559 /// uses. 1560 bool Function::hasAddressTaken(const User **PutOffender, 1561 bool IgnoreCallbackUses) const { 1562 for (const Use &U : uses()) { 1563 const User *FU = U.getUser(); 1564 if (isa<BlockAddress>(FU)) 1565 continue; 1566 1567 if (IgnoreCallbackUses) { 1568 AbstractCallSite ACS(&U); 1569 if (ACS && ACS.isCallbackCall()) 1570 continue; 1571 } 1572 1573 const auto *Call = dyn_cast<CallBase>(FU); 1574 if (!Call) { 1575 if (PutOffender) 1576 *PutOffender = FU; 1577 return true; 1578 } 1579 if (!Call->isCallee(&U)) { 1580 if (PutOffender) 1581 *PutOffender = FU; 1582 return true; 1583 } 1584 } 1585 return false; 1586 } 1587 1588 bool Function::isDefTriviallyDead() const { 1589 // Check the linkage 1590 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1591 !hasAvailableExternallyLinkage()) 1592 return false; 1593 1594 // Check if the function is used by anything other than a blockaddress. 1595 for (const User *U : users()) 1596 if (!isa<BlockAddress>(U)) 1597 return false; 1598 1599 return true; 1600 } 1601 1602 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1603 /// setjmp or other function that gcc recognizes as "returning twice". 1604 bool Function::callsFunctionThatReturnsTwice() const { 1605 for (const Instruction &I : instructions(this)) 1606 if (const auto *Call = dyn_cast<CallBase>(&I)) 1607 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1608 return true; 1609 1610 return false; 1611 } 1612 1613 Constant *Function::getPersonalityFn() const { 1614 assert(hasPersonalityFn() && getNumOperands()); 1615 return cast<Constant>(Op<0>()); 1616 } 1617 1618 void Function::setPersonalityFn(Constant *Fn) { 1619 setHungoffOperand<0>(Fn); 1620 setValueSubclassDataBit(3, Fn != nullptr); 1621 } 1622 1623 Constant *Function::getPrefixData() const { 1624 assert(hasPrefixData() && getNumOperands()); 1625 return cast<Constant>(Op<1>()); 1626 } 1627 1628 void Function::setPrefixData(Constant *PrefixData) { 1629 setHungoffOperand<1>(PrefixData); 1630 setValueSubclassDataBit(1, PrefixData != nullptr); 1631 } 1632 1633 Constant *Function::getPrologueData() const { 1634 assert(hasPrologueData() && getNumOperands()); 1635 return cast<Constant>(Op<2>()); 1636 } 1637 1638 void Function::setPrologueData(Constant *PrologueData) { 1639 setHungoffOperand<2>(PrologueData); 1640 setValueSubclassDataBit(2, PrologueData != nullptr); 1641 } 1642 1643 void Function::allocHungoffUselist() { 1644 // If we've already allocated a uselist, stop here. 1645 if (getNumOperands()) 1646 return; 1647 1648 allocHungoffUses(3, /*IsPhi=*/ false); 1649 setNumHungOffUseOperands(3); 1650 1651 // Initialize the uselist with placeholder operands to allow traversal. 1652 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1653 Op<0>().set(CPN); 1654 Op<1>().set(CPN); 1655 Op<2>().set(CPN); 1656 } 1657 1658 template <int Idx> 1659 void Function::setHungoffOperand(Constant *C) { 1660 if (C) { 1661 allocHungoffUselist(); 1662 Op<Idx>().set(C); 1663 } else if (getNumOperands()) { 1664 Op<Idx>().set( 1665 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1666 } 1667 } 1668 1669 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1670 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1671 if (On) 1672 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1673 else 1674 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1675 } 1676 1677 void Function::setEntryCount(ProfileCount Count, 1678 const DenseSet<GlobalValue::GUID> *S) { 1679 assert(Count.hasValue()); 1680 #if !defined(NDEBUG) 1681 auto PrevCount = getEntryCount(); 1682 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1683 #endif 1684 1685 auto ImportGUIDs = getImportGUIDs(); 1686 if (S == nullptr && ImportGUIDs.size()) 1687 S = &ImportGUIDs; 1688 1689 MDBuilder MDB(getContext()); 1690 setMetadata( 1691 LLVMContext::MD_prof, 1692 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1693 } 1694 1695 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1696 const DenseSet<GlobalValue::GUID> *Imports) { 1697 setEntryCount(ProfileCount(Count, Type), Imports); 1698 } 1699 1700 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1701 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1702 if (MD && MD->getOperand(0)) 1703 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1704 if (MDS->getString().equals("function_entry_count")) { 1705 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1706 uint64_t Count = CI->getValue().getZExtValue(); 1707 // A value of -1 is used for SamplePGO when there were no samples. 1708 // Treat this the same as unknown. 1709 if (Count == (uint64_t)-1) 1710 return ProfileCount::getInvalid(); 1711 return ProfileCount(Count, PCT_Real); 1712 } else if (AllowSynthetic && 1713 MDS->getString().equals("synthetic_function_entry_count")) { 1714 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1715 uint64_t Count = CI->getValue().getZExtValue(); 1716 return ProfileCount(Count, PCT_Synthetic); 1717 } 1718 } 1719 return ProfileCount::getInvalid(); 1720 } 1721 1722 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1723 DenseSet<GlobalValue::GUID> R; 1724 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1725 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1726 if (MDS->getString().equals("function_entry_count")) 1727 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1728 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1729 ->getValue() 1730 .getZExtValue()); 1731 return R; 1732 } 1733 1734 void Function::setSectionPrefix(StringRef Prefix) { 1735 MDBuilder MDB(getContext()); 1736 setMetadata(LLVMContext::MD_section_prefix, 1737 MDB.createFunctionSectionPrefix(Prefix)); 1738 } 1739 1740 Optional<StringRef> Function::getSectionPrefix() const { 1741 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1742 assert(cast<MDString>(MD->getOperand(0)) 1743 ->getString() 1744 .equals("function_section_prefix") && 1745 "Metadata not match"); 1746 return cast<MDString>(MD->getOperand(1))->getString(); 1747 } 1748 return None; 1749 } 1750 1751 bool Function::nullPointerIsDefined() const { 1752 return hasFnAttribute(Attribute::NullPointerIsValid); 1753 } 1754 1755 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1756 if (F && F->nullPointerIsDefined()) 1757 return true; 1758 1759 if (AS != 0) 1760 return true; 1761 1762 return false; 1763 } 1764