1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "SymbolTableListTraitsImpl.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/CodeGen/ValueTypes.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/GlobalValue.h" 33 #include "llvm/IR/InstIterator.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Metadata.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/SymbolTableListTraits.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/Use.h" 45 #include "llvm/IR/User.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/IR/ValueSymbolTable.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstddef> 54 #include <cstdint> 55 #include <cstring> 56 #include <string> 57 58 using namespace llvm; 59 60 // Explicit instantiations of SymbolTableListTraits since some of the methods 61 // are not in the public header file... 62 template class llvm::SymbolTableListTraits<BasicBlock>; 63 64 //===----------------------------------------------------------------------===// 65 // Argument Implementation 66 //===----------------------------------------------------------------------===// 67 68 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 69 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 70 setName(Name); 71 } 72 73 void Argument::setParent(Function *parent) { 74 Parent = parent; 75 } 76 77 bool Argument::hasNonNullAttr() const { 78 if (!getType()->isPointerTy()) return false; 79 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 80 return true; 81 else if (getDereferenceableBytes() > 0 && 82 getType()->getPointerAddressSpace() == 0) 83 return true; 84 return false; 85 } 86 87 bool Argument::hasByValAttr() const { 88 if (!getType()->isPointerTy()) return false; 89 return hasAttribute(Attribute::ByVal); 90 } 91 92 bool Argument::hasSwiftSelfAttr() const { 93 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 94 } 95 96 bool Argument::hasSwiftErrorAttr() const { 97 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 98 } 99 100 bool Argument::hasInAllocaAttr() const { 101 if (!getType()->isPointerTy()) return false; 102 return hasAttribute(Attribute::InAlloca); 103 } 104 105 bool Argument::hasByValOrInAllocaAttr() const { 106 if (!getType()->isPointerTy()) return false; 107 AttributeList Attrs = getParent()->getAttributes(); 108 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 109 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); 110 } 111 112 unsigned Argument::getParamAlignment() const { 113 assert(getType()->isPointerTy() && "Only pointers have alignments"); 114 return getParent()->getParamAlignment(getArgNo()); 115 } 116 117 uint64_t Argument::getDereferenceableBytes() const { 118 assert(getType()->isPointerTy() && 119 "Only pointers have dereferenceable bytes"); 120 return getParent()->getParamDereferenceableBytes(getArgNo()); 121 } 122 123 uint64_t Argument::getDereferenceableOrNullBytes() const { 124 assert(getType()->isPointerTy() && 125 "Only pointers have dereferenceable bytes"); 126 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 127 } 128 129 bool Argument::hasNestAttr() const { 130 if (!getType()->isPointerTy()) return false; 131 return hasAttribute(Attribute::Nest); 132 } 133 134 bool Argument::hasNoAliasAttr() const { 135 if (!getType()->isPointerTy()) return false; 136 return hasAttribute(Attribute::NoAlias); 137 } 138 139 bool Argument::hasNoCaptureAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 return hasAttribute(Attribute::NoCapture); 142 } 143 144 bool Argument::hasStructRetAttr() const { 145 if (!getType()->isPointerTy()) return false; 146 return hasAttribute(Attribute::StructRet); 147 } 148 149 bool Argument::hasReturnedAttr() const { 150 return hasAttribute(Attribute::Returned); 151 } 152 153 bool Argument::hasZExtAttr() const { 154 return hasAttribute(Attribute::ZExt); 155 } 156 157 bool Argument::hasSExtAttr() const { 158 return hasAttribute(Attribute::SExt); 159 } 160 161 bool Argument::onlyReadsMemory() const { 162 AttributeList Attrs = getParent()->getAttributes(); 163 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 164 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 165 } 166 167 void Argument::addAttrs(AttrBuilder &B) { 168 AttributeList AL = getParent()->getAttributes(); 169 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 170 getParent()->setAttributes(AL); 171 } 172 173 void Argument::addAttr(Attribute::AttrKind Kind) { 174 getParent()->addParamAttr(getArgNo(), Kind); 175 } 176 177 void Argument::addAttr(Attribute Attr) { 178 getParent()->addParamAttr(getArgNo(), Attr); 179 } 180 181 void Argument::removeAttr(Attribute::AttrKind Kind) { 182 getParent()->removeParamAttr(getArgNo(), Kind); 183 } 184 185 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 186 return getParent()->hasParamAttribute(getArgNo(), Kind); 187 } 188 189 //===----------------------------------------------------------------------===// 190 // Helper Methods in Function 191 //===----------------------------------------------------------------------===// 192 193 LLVMContext &Function::getContext() const { 194 return getType()->getContext(); 195 } 196 197 void Function::removeFromParent() { 198 getParent()->getFunctionList().remove(getIterator()); 199 } 200 201 void Function::eraseFromParent() { 202 getParent()->getFunctionList().erase(getIterator()); 203 } 204 205 //===----------------------------------------------------------------------===// 206 // Function Implementation 207 //===----------------------------------------------------------------------===// 208 209 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 210 Module *ParentModule) 211 : GlobalObject(Ty, Value::FunctionVal, 212 OperandTraits<Function>::op_begin(this), 0, Linkage, name), 213 NumArgs(Ty->getNumParams()) { 214 assert(FunctionType::isValidReturnType(getReturnType()) && 215 "invalid return type"); 216 setGlobalObjectSubClassData(0); 217 218 // We only need a symbol table for a function if the context keeps value names 219 if (!getContext().shouldDiscardValueNames()) 220 SymTab = make_unique<ValueSymbolTable>(); 221 222 // If the function has arguments, mark them as lazily built. 223 if (Ty->getNumParams()) 224 setValueSubclassData(1); // Set the "has lazy arguments" bit. 225 226 if (ParentModule) 227 ParentModule->getFunctionList().push_back(this); 228 229 HasLLVMReservedName = getName().startswith("llvm."); 230 // Ensure intrinsics have the right parameter attributes. 231 // Note, the IntID field will have been set in Value::setName if this function 232 // name is a valid intrinsic ID. 233 if (IntID) 234 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 235 } 236 237 Function::~Function() { 238 dropAllReferences(); // After this it is safe to delete instructions. 239 240 // Delete all of the method arguments and unlink from symbol table... 241 if (Arguments) 242 clearArguments(); 243 244 // Remove the function from the on-the-side GC table. 245 clearGC(); 246 } 247 248 void Function::BuildLazyArguments() const { 249 // Create the arguments vector, all arguments start out unnamed. 250 auto *FT = getFunctionType(); 251 if (NumArgs > 0) { 252 Arguments = std::allocator<Argument>().allocate(NumArgs); 253 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 254 Type *ArgTy = FT->getParamType(i); 255 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 256 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 257 } 258 } 259 260 // Clear the lazy arguments bit. 261 unsigned SDC = getSubclassDataFromValue(); 262 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 263 assert(!hasLazyArguments()); 264 } 265 266 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 267 return MutableArrayRef<Argument>(Args, Count); 268 } 269 270 void Function::clearArguments() { 271 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 272 A.setName(""); 273 A.~Argument(); 274 } 275 std::allocator<Argument>().deallocate(Arguments, NumArgs); 276 Arguments = nullptr; 277 } 278 279 void Function::stealArgumentListFrom(Function &Src) { 280 assert(isDeclaration() && "Expected no references to current arguments"); 281 282 // Drop the current arguments, if any, and set the lazy argument bit. 283 if (!hasLazyArguments()) { 284 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 285 [](const Argument &A) { return A.use_empty(); }) && 286 "Expected arguments to be unused in declaration"); 287 clearArguments(); 288 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 289 } 290 291 // Nothing to steal if Src has lazy arguments. 292 if (Src.hasLazyArguments()) 293 return; 294 295 // Steal arguments from Src, and fix the lazy argument bits. 296 assert(arg_size() == Src.arg_size()); 297 Arguments = Src.Arguments; 298 Src.Arguments = nullptr; 299 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 300 // FIXME: This does the work of transferNodesFromList inefficiently. 301 SmallString<128> Name; 302 if (A.hasName()) 303 Name = A.getName(); 304 if (!Name.empty()) 305 A.setName(""); 306 A.setParent(this); 307 if (!Name.empty()) 308 A.setName(Name); 309 } 310 311 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 312 assert(!hasLazyArguments()); 313 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 314 } 315 316 // dropAllReferences() - This function causes all the subinstructions to "let 317 // go" of all references that they are maintaining. This allows one to 318 // 'delete' a whole class at a time, even though there may be circular 319 // references... first all references are dropped, and all use counts go to 320 // zero. Then everything is deleted for real. Note that no operations are 321 // valid on an object that has "dropped all references", except operator 322 // delete. 323 // 324 void Function::dropAllReferences() { 325 setIsMaterializable(false); 326 327 for (BasicBlock &BB : *this) 328 BB.dropAllReferences(); 329 330 // Delete all basic blocks. They are now unused, except possibly by 331 // blockaddresses, but BasicBlock's destructor takes care of those. 332 while (!BasicBlocks.empty()) 333 BasicBlocks.begin()->eraseFromParent(); 334 335 // Drop uses of any optional data (real or placeholder). 336 if (getNumOperands()) { 337 User::dropAllReferences(); 338 setNumHungOffUseOperands(0); 339 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 340 } 341 342 // Metadata is stored in a side-table. 343 clearMetadata(); 344 } 345 346 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 347 AttributeList PAL = getAttributes(); 348 PAL = PAL.addAttribute(getContext(), i, Kind); 349 setAttributes(PAL); 350 } 351 352 void Function::addAttribute(unsigned i, Attribute Attr) { 353 AttributeList PAL = getAttributes(); 354 PAL = PAL.addAttribute(getContext(), i, Attr); 355 setAttributes(PAL); 356 } 357 358 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 359 AttributeList PAL = getAttributes(); 360 PAL = PAL.addAttributes(getContext(), i, Attrs); 361 setAttributes(PAL); 362 } 363 364 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 365 AttributeList PAL = getAttributes(); 366 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 367 setAttributes(PAL); 368 } 369 370 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 371 AttributeList PAL = getAttributes(); 372 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 373 setAttributes(PAL); 374 } 375 376 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 377 AttributeList PAL = getAttributes(); 378 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 379 setAttributes(PAL); 380 } 381 382 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 383 AttributeList PAL = getAttributes(); 384 PAL = PAL.removeAttribute(getContext(), i, Kind); 385 setAttributes(PAL); 386 } 387 388 void Function::removeAttribute(unsigned i, StringRef Kind) { 389 AttributeList PAL = getAttributes(); 390 PAL = PAL.removeAttribute(getContext(), i, Kind); 391 setAttributes(PAL); 392 } 393 394 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 395 AttributeList PAL = getAttributes(); 396 PAL = PAL.removeAttributes(getContext(), i, Attrs); 397 setAttributes(PAL); 398 } 399 400 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 401 AttributeList PAL = getAttributes(); 402 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 403 setAttributes(PAL); 404 } 405 406 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 407 AttributeList PAL = getAttributes(); 408 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 409 setAttributes(PAL); 410 } 411 412 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 413 AttributeList PAL = getAttributes(); 414 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 415 setAttributes(PAL); 416 } 417 418 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 419 AttributeList PAL = getAttributes(); 420 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 421 setAttributes(PAL); 422 } 423 424 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 425 AttributeList PAL = getAttributes(); 426 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 427 setAttributes(PAL); 428 } 429 430 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 431 AttributeList PAL = getAttributes(); 432 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 433 setAttributes(PAL); 434 } 435 436 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 437 uint64_t Bytes) { 438 AttributeList PAL = getAttributes(); 439 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 440 setAttributes(PAL); 441 } 442 443 const std::string &Function::getGC() const { 444 assert(hasGC() && "Function has no collector"); 445 return getContext().getGC(*this); 446 } 447 448 void Function::setGC(std::string Str) { 449 setValueSubclassDataBit(14, !Str.empty()); 450 getContext().setGC(*this, std::move(Str)); 451 } 452 453 void Function::clearGC() { 454 if (!hasGC()) 455 return; 456 getContext().deleteGC(*this); 457 setValueSubclassDataBit(14, false); 458 } 459 460 /// Copy all additional attributes (those not needed to create a Function) from 461 /// the Function Src to this one. 462 void Function::copyAttributesFrom(const Function *Src) { 463 GlobalObject::copyAttributesFrom(Src); 464 setCallingConv(Src->getCallingConv()); 465 setAttributes(Src->getAttributes()); 466 if (Src->hasGC()) 467 setGC(Src->getGC()); 468 else 469 clearGC(); 470 if (Src->hasPersonalityFn()) 471 setPersonalityFn(Src->getPersonalityFn()); 472 if (Src->hasPrefixData()) 473 setPrefixData(Src->getPrefixData()); 474 if (Src->hasPrologueData()) 475 setPrologueData(Src->getPrologueData()); 476 } 477 478 /// Table of string intrinsic names indexed by enum value. 479 static const char * const IntrinsicNameTable[] = { 480 "not_intrinsic", 481 #define GET_INTRINSIC_NAME_TABLE 482 #include "llvm/IR/Intrinsics.gen" 483 #undef GET_INTRINSIC_NAME_TABLE 484 }; 485 486 /// Table of per-target intrinsic name tables. 487 #define GET_INTRINSIC_TARGET_DATA 488 #include "llvm/IR/Intrinsics.gen" 489 #undef GET_INTRINSIC_TARGET_DATA 490 491 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 492 /// target as \c Name, or the generic table if \c Name is not target specific. 493 /// 494 /// Returns the relevant slice of \c IntrinsicNameTable 495 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 496 assert(Name.startswith("llvm.")); 497 498 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 499 // Drop "llvm." and take the first dotted component. That will be the target 500 // if this is target specific. 501 StringRef Target = Name.drop_front(5).split('.').first; 502 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 503 [](const IntrinsicTargetInfo &TI, 504 StringRef Target) { return TI.Name < Target; }); 505 // We've either found the target or just fall back to the generic set, which 506 // is always first. 507 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 508 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 509 } 510 511 /// \brief This does the actual lookup of an intrinsic ID which 512 /// matches the given function name. 513 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 514 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 515 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 516 if (Idx == -1) 517 return Intrinsic::not_intrinsic; 518 519 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 520 // an index into a sub-table. 521 int Adjust = NameTable.data() - IntrinsicNameTable; 522 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 523 524 // If the intrinsic is not overloaded, require an exact match. If it is 525 // overloaded, require a prefix match. 526 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 527 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 528 } 529 530 void Function::recalculateIntrinsicID() { 531 StringRef Name = getName(); 532 if (!Name.startswith("llvm.")) { 533 HasLLVMReservedName = false; 534 IntID = Intrinsic::not_intrinsic; 535 return; 536 } 537 HasLLVMReservedName = true; 538 IntID = lookupIntrinsicID(Name); 539 } 540 541 /// Returns a stable mangling for the type specified for use in the name 542 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 543 /// of named types is simply their name. Manglings for unnamed types consist 544 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 545 /// combined with the mangling of their component types. A vararg function 546 /// type will have a suffix of 'vararg'. Since function types can contain 547 /// other function types, we close a function type mangling with suffix 'f' 548 /// which can't be confused with it's prefix. This ensures we don't have 549 /// collisions between two unrelated function types. Otherwise, you might 550 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 551 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 552 /// cases) fall back to the MVT codepath, where they could be mangled to 553 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 554 /// everything. 555 static std::string getMangledTypeStr(Type* Ty) { 556 std::string Result; 557 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 558 Result += "p" + utostr(PTyp->getAddressSpace()) + 559 getMangledTypeStr(PTyp->getElementType()); 560 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 561 Result += "a" + utostr(ATyp->getNumElements()) + 562 getMangledTypeStr(ATyp->getElementType()); 563 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 564 if (!STyp->isLiteral()) { 565 Result += "s_"; 566 Result += STyp->getName(); 567 } else { 568 Result += "sl_"; 569 for (auto Elem : STyp->elements()) 570 Result += getMangledTypeStr(Elem); 571 } 572 // Ensure nested structs are distinguishable. 573 Result += "s"; 574 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 575 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 576 for (size_t i = 0; i < FT->getNumParams(); i++) 577 Result += getMangledTypeStr(FT->getParamType(i)); 578 if (FT->isVarArg()) 579 Result += "vararg"; 580 // Ensure nested function types are distinguishable. 581 Result += "f"; 582 } else if (isa<VectorType>(Ty)) 583 Result += "v" + utostr(Ty->getVectorNumElements()) + 584 getMangledTypeStr(Ty->getVectorElementType()); 585 else if (Ty) 586 Result += EVT::getEVT(Ty).getEVTString(); 587 return Result; 588 } 589 590 StringRef Intrinsic::getName(ID id) { 591 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 592 assert(!isOverloaded(id) && 593 "This version of getName does not support overloading"); 594 return IntrinsicNameTable[id]; 595 } 596 597 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 598 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 599 std::string Result(IntrinsicNameTable[id]); 600 for (Type *Ty : Tys) { 601 Result += "." + getMangledTypeStr(Ty); 602 } 603 return Result; 604 } 605 606 /// IIT_Info - These are enumerators that describe the entries returned by the 607 /// getIntrinsicInfoTableEntries function. 608 /// 609 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 610 enum IIT_Info { 611 // Common values should be encoded with 0-15. 612 IIT_Done = 0, 613 IIT_I1 = 1, 614 IIT_I8 = 2, 615 IIT_I16 = 3, 616 IIT_I32 = 4, 617 IIT_I64 = 5, 618 IIT_F16 = 6, 619 IIT_F32 = 7, 620 IIT_F64 = 8, 621 IIT_V2 = 9, 622 IIT_V4 = 10, 623 IIT_V8 = 11, 624 IIT_V16 = 12, 625 IIT_V32 = 13, 626 IIT_PTR = 14, 627 IIT_ARG = 15, 628 629 // Values from 16+ are only encodable with the inefficient encoding. 630 IIT_V64 = 16, 631 IIT_MMX = 17, 632 IIT_TOKEN = 18, 633 IIT_METADATA = 19, 634 IIT_EMPTYSTRUCT = 20, 635 IIT_STRUCT2 = 21, 636 IIT_STRUCT3 = 22, 637 IIT_STRUCT4 = 23, 638 IIT_STRUCT5 = 24, 639 IIT_EXTEND_ARG = 25, 640 IIT_TRUNC_ARG = 26, 641 IIT_ANYPTR = 27, 642 IIT_V1 = 28, 643 IIT_VARARG = 29, 644 IIT_HALF_VEC_ARG = 30, 645 IIT_SAME_VEC_WIDTH_ARG = 31, 646 IIT_PTR_TO_ARG = 32, 647 IIT_PTR_TO_ELT = 33, 648 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 649 IIT_I128 = 35, 650 IIT_V512 = 36, 651 IIT_V1024 = 37, 652 IIT_STRUCT6 = 38, 653 IIT_STRUCT7 = 39, 654 IIT_STRUCT8 = 40 655 }; 656 657 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 658 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 659 using namespace Intrinsic; 660 661 IIT_Info Info = IIT_Info(Infos[NextElt++]); 662 unsigned StructElts = 2; 663 664 switch (Info) { 665 case IIT_Done: 666 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 667 return; 668 case IIT_VARARG: 669 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 670 return; 671 case IIT_MMX: 672 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 673 return; 674 case IIT_TOKEN: 675 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 676 return; 677 case IIT_METADATA: 678 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 679 return; 680 case IIT_F16: 681 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 682 return; 683 case IIT_F32: 684 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 685 return; 686 case IIT_F64: 687 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 688 return; 689 case IIT_I1: 690 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 691 return; 692 case IIT_I8: 693 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 694 return; 695 case IIT_I16: 696 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 697 return; 698 case IIT_I32: 699 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 700 return; 701 case IIT_I64: 702 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 703 return; 704 case IIT_I128: 705 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 706 return; 707 case IIT_V1: 708 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 709 DecodeIITType(NextElt, Infos, OutputTable); 710 return; 711 case IIT_V2: 712 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 713 DecodeIITType(NextElt, Infos, OutputTable); 714 return; 715 case IIT_V4: 716 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 717 DecodeIITType(NextElt, Infos, OutputTable); 718 return; 719 case IIT_V8: 720 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 721 DecodeIITType(NextElt, Infos, OutputTable); 722 return; 723 case IIT_V16: 724 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 725 DecodeIITType(NextElt, Infos, OutputTable); 726 return; 727 case IIT_V32: 728 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 729 DecodeIITType(NextElt, Infos, OutputTable); 730 return; 731 case IIT_V64: 732 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 733 DecodeIITType(NextElt, Infos, OutputTable); 734 return; 735 case IIT_V512: 736 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 737 DecodeIITType(NextElt, Infos, OutputTable); 738 return; 739 case IIT_V1024: 740 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 741 DecodeIITType(NextElt, Infos, OutputTable); 742 return; 743 case IIT_PTR: 744 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 745 DecodeIITType(NextElt, Infos, OutputTable); 746 return; 747 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 748 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 749 Infos[NextElt++])); 750 DecodeIITType(NextElt, Infos, OutputTable); 751 return; 752 } 753 case IIT_ARG: { 754 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 755 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 756 return; 757 } 758 case IIT_EXTEND_ARG: { 759 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 760 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 761 ArgInfo)); 762 return; 763 } 764 case IIT_TRUNC_ARG: { 765 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 766 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 767 ArgInfo)); 768 return; 769 } 770 case IIT_HALF_VEC_ARG: { 771 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 772 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 773 ArgInfo)); 774 return; 775 } 776 case IIT_SAME_VEC_WIDTH_ARG: { 777 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 778 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 779 ArgInfo)); 780 return; 781 } 782 case IIT_PTR_TO_ARG: { 783 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 784 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 785 ArgInfo)); 786 return; 787 } 788 case IIT_PTR_TO_ELT: { 789 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 790 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 791 return; 792 } 793 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 794 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 795 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 796 OutputTable.push_back( 797 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 798 return; 799 } 800 case IIT_EMPTYSTRUCT: 801 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 802 return; 803 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 804 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 805 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 806 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 807 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 808 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 809 case IIT_STRUCT2: { 810 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 811 812 for (unsigned i = 0; i != StructElts; ++i) 813 DecodeIITType(NextElt, Infos, OutputTable); 814 return; 815 } 816 } 817 llvm_unreachable("unhandled"); 818 } 819 820 #define GET_INTRINSIC_GENERATOR_GLOBAL 821 #include "llvm/IR/Intrinsics.gen" 822 #undef GET_INTRINSIC_GENERATOR_GLOBAL 823 824 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 825 SmallVectorImpl<IITDescriptor> &T){ 826 // Check to see if the intrinsic's type was expressible by the table. 827 unsigned TableVal = IIT_Table[id-1]; 828 829 // Decode the TableVal into an array of IITValues. 830 SmallVector<unsigned char, 8> IITValues; 831 ArrayRef<unsigned char> IITEntries; 832 unsigned NextElt = 0; 833 if ((TableVal >> 31) != 0) { 834 // This is an offset into the IIT_LongEncodingTable. 835 IITEntries = IIT_LongEncodingTable; 836 837 // Strip sentinel bit. 838 NextElt = (TableVal << 1) >> 1; 839 } else { 840 // Decode the TableVal into an array of IITValues. If the entry was encoded 841 // into a single word in the table itself, decode it now. 842 do { 843 IITValues.push_back(TableVal & 0xF); 844 TableVal >>= 4; 845 } while (TableVal); 846 847 IITEntries = IITValues; 848 NextElt = 0; 849 } 850 851 // Okay, decode the table into the output vector of IITDescriptors. 852 DecodeIITType(NextElt, IITEntries, T); 853 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 854 DecodeIITType(NextElt, IITEntries, T); 855 } 856 857 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 858 ArrayRef<Type*> Tys, LLVMContext &Context) { 859 using namespace Intrinsic; 860 861 IITDescriptor D = Infos.front(); 862 Infos = Infos.slice(1); 863 864 switch (D.Kind) { 865 case IITDescriptor::Void: return Type::getVoidTy(Context); 866 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 867 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 868 case IITDescriptor::Token: return Type::getTokenTy(Context); 869 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 870 case IITDescriptor::Half: return Type::getHalfTy(Context); 871 case IITDescriptor::Float: return Type::getFloatTy(Context); 872 case IITDescriptor::Double: return Type::getDoubleTy(Context); 873 874 case IITDescriptor::Integer: 875 return IntegerType::get(Context, D.Integer_Width); 876 case IITDescriptor::Vector: 877 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 878 case IITDescriptor::Pointer: 879 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 880 D.Pointer_AddressSpace); 881 case IITDescriptor::Struct: { 882 SmallVector<Type *, 8> Elts; 883 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 884 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 885 return StructType::get(Context, Elts); 886 } 887 case IITDescriptor::Argument: 888 return Tys[D.getArgumentNumber()]; 889 case IITDescriptor::ExtendArgument: { 890 Type *Ty = Tys[D.getArgumentNumber()]; 891 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 892 return VectorType::getExtendedElementVectorType(VTy); 893 894 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 895 } 896 case IITDescriptor::TruncArgument: { 897 Type *Ty = Tys[D.getArgumentNumber()]; 898 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 899 return VectorType::getTruncatedElementVectorType(VTy); 900 901 IntegerType *ITy = cast<IntegerType>(Ty); 902 assert(ITy->getBitWidth() % 2 == 0); 903 return IntegerType::get(Context, ITy->getBitWidth() / 2); 904 } 905 case IITDescriptor::HalfVecArgument: 906 return VectorType::getHalfElementsVectorType(cast<VectorType>( 907 Tys[D.getArgumentNumber()])); 908 case IITDescriptor::SameVecWidthArgument: { 909 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 910 Type *Ty = Tys[D.getArgumentNumber()]; 911 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 912 return VectorType::get(EltTy, VTy->getNumElements()); 913 } 914 llvm_unreachable("unhandled"); 915 } 916 case IITDescriptor::PtrToArgument: { 917 Type *Ty = Tys[D.getArgumentNumber()]; 918 return PointerType::getUnqual(Ty); 919 } 920 case IITDescriptor::PtrToElt: { 921 Type *Ty = Tys[D.getArgumentNumber()]; 922 VectorType *VTy = dyn_cast<VectorType>(Ty); 923 if (!VTy) 924 llvm_unreachable("Expected an argument of Vector Type"); 925 Type *EltTy = VTy->getVectorElementType(); 926 return PointerType::getUnqual(EltTy); 927 } 928 case IITDescriptor::VecOfAnyPtrsToElt: 929 // Return the overloaded type (which determines the pointers address space) 930 return Tys[D.getOverloadArgNumber()]; 931 } 932 llvm_unreachable("unhandled"); 933 } 934 935 FunctionType *Intrinsic::getType(LLVMContext &Context, 936 ID id, ArrayRef<Type*> Tys) { 937 SmallVector<IITDescriptor, 8> Table; 938 getIntrinsicInfoTableEntries(id, Table); 939 940 ArrayRef<IITDescriptor> TableRef = Table; 941 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 942 943 SmallVector<Type*, 8> ArgTys; 944 while (!TableRef.empty()) 945 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 946 947 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 948 // If we see void type as the type of the last argument, it is vararg intrinsic 949 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 950 ArgTys.pop_back(); 951 return FunctionType::get(ResultTy, ArgTys, true); 952 } 953 return FunctionType::get(ResultTy, ArgTys, false); 954 } 955 956 bool Intrinsic::isOverloaded(ID id) { 957 #define GET_INTRINSIC_OVERLOAD_TABLE 958 #include "llvm/IR/Intrinsics.gen" 959 #undef GET_INTRINSIC_OVERLOAD_TABLE 960 } 961 962 bool Intrinsic::isLeaf(ID id) { 963 switch (id) { 964 default: 965 return true; 966 967 case Intrinsic::experimental_gc_statepoint: 968 case Intrinsic::experimental_patchpoint_void: 969 case Intrinsic::experimental_patchpoint_i64: 970 return false; 971 } 972 } 973 974 /// This defines the "Intrinsic::getAttributes(ID id)" method. 975 #define GET_INTRINSIC_ATTRIBUTES 976 #include "llvm/IR/Intrinsics.gen" 977 #undef GET_INTRINSIC_ATTRIBUTES 978 979 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 980 // There can never be multiple globals with the same name of different types, 981 // because intrinsics must be a specific type. 982 return 983 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 984 getType(M->getContext(), id, Tys))); 985 } 986 987 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 988 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 989 #include "llvm/IR/Intrinsics.gen" 990 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 991 992 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 993 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 994 #include "llvm/IR/Intrinsics.gen" 995 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 996 997 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 998 SmallVectorImpl<Type*> &ArgTys) { 999 using namespace Intrinsic; 1000 1001 // If we ran out of descriptors, there are too many arguments. 1002 if (Infos.empty()) return true; 1003 IITDescriptor D = Infos.front(); 1004 Infos = Infos.slice(1); 1005 1006 switch (D.Kind) { 1007 case IITDescriptor::Void: return !Ty->isVoidTy(); 1008 case IITDescriptor::VarArg: return true; 1009 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1010 case IITDescriptor::Token: return !Ty->isTokenTy(); 1011 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1012 case IITDescriptor::Half: return !Ty->isHalfTy(); 1013 case IITDescriptor::Float: return !Ty->isFloatTy(); 1014 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1015 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1016 case IITDescriptor::Vector: { 1017 VectorType *VT = dyn_cast<VectorType>(Ty); 1018 return !VT || VT->getNumElements() != D.Vector_Width || 1019 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 1020 } 1021 case IITDescriptor::Pointer: { 1022 PointerType *PT = dyn_cast<PointerType>(Ty); 1023 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1024 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 1025 } 1026 1027 case IITDescriptor::Struct: { 1028 StructType *ST = dyn_cast<StructType>(Ty); 1029 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1030 return true; 1031 1032 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1033 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 1034 return true; 1035 return false; 1036 } 1037 1038 case IITDescriptor::Argument: 1039 // Two cases here - If this is the second occurrence of an argument, verify 1040 // that the later instance matches the previous instance. 1041 if (D.getArgumentNumber() < ArgTys.size()) 1042 return Ty != ArgTys[D.getArgumentNumber()]; 1043 1044 // Otherwise, if this is the first instance of an argument, record it and 1045 // verify the "Any" kind. 1046 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 1047 ArgTys.push_back(Ty); 1048 1049 switch (D.getArgumentKind()) { 1050 case IITDescriptor::AK_Any: return false; // Success 1051 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1052 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1053 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1054 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1055 } 1056 llvm_unreachable("all argument kinds not covered"); 1057 1058 case IITDescriptor::ExtendArgument: { 1059 // This may only be used when referring to a previous vector argument. 1060 if (D.getArgumentNumber() >= ArgTys.size()) 1061 return true; 1062 1063 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1064 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1065 NewTy = VectorType::getExtendedElementVectorType(VTy); 1066 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1067 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1068 else 1069 return true; 1070 1071 return Ty != NewTy; 1072 } 1073 case IITDescriptor::TruncArgument: { 1074 // This may only be used when referring to a previous vector argument. 1075 if (D.getArgumentNumber() >= ArgTys.size()) 1076 return true; 1077 1078 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1079 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1080 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1081 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1082 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1083 else 1084 return true; 1085 1086 return Ty != NewTy; 1087 } 1088 case IITDescriptor::HalfVecArgument: 1089 // This may only be used when referring to a previous vector argument. 1090 return D.getArgumentNumber() >= ArgTys.size() || 1091 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1092 VectorType::getHalfElementsVectorType( 1093 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1094 case IITDescriptor::SameVecWidthArgument: { 1095 if (D.getArgumentNumber() >= ArgTys.size()) 1096 return true; 1097 VectorType * ReferenceType = 1098 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1099 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1100 if (!ThisArgType || !ReferenceType || 1101 (ReferenceType->getVectorNumElements() != 1102 ThisArgType->getVectorNumElements())) 1103 return true; 1104 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1105 Infos, ArgTys); 1106 } 1107 case IITDescriptor::PtrToArgument: { 1108 if (D.getArgumentNumber() >= ArgTys.size()) 1109 return true; 1110 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1111 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1112 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1113 } 1114 case IITDescriptor::PtrToElt: { 1115 if (D.getArgumentNumber() >= ArgTys.size()) 1116 return true; 1117 VectorType * ReferenceType = 1118 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1119 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1120 1121 return (!ThisArgType || !ReferenceType || 1122 ThisArgType->getElementType() != ReferenceType->getElementType()); 1123 } 1124 case IITDescriptor::VecOfAnyPtrsToElt: { 1125 unsigned RefArgNumber = D.getRefArgNumber(); 1126 1127 // This may only be used when referring to a previous argument. 1128 if (RefArgNumber >= ArgTys.size()) 1129 return true; 1130 1131 // Record the overloaded type 1132 assert(D.getOverloadArgNumber() == ArgTys.size() && 1133 "Table consistency error"); 1134 ArgTys.push_back(Ty); 1135 1136 // Verify the overloaded type "matches" the Ref type. 1137 // i.e. Ty is a vector with the same width as Ref. 1138 // Composed of pointers to the same element type as Ref. 1139 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1140 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1141 if (!ThisArgVecTy || !ReferenceType || 1142 (ReferenceType->getVectorNumElements() != 1143 ThisArgVecTy->getVectorNumElements())) 1144 return true; 1145 PointerType *ThisArgEltTy = 1146 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1147 if (!ThisArgEltTy) 1148 return true; 1149 return ThisArgEltTy->getElementType() != 1150 ReferenceType->getVectorElementType(); 1151 } 1152 } 1153 llvm_unreachable("unhandled"); 1154 } 1155 1156 bool 1157 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1158 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1159 // If there are no descriptors left, then it can't be a vararg. 1160 if (Infos.empty()) 1161 return isVarArg; 1162 1163 // There should be only one descriptor remaining at this point. 1164 if (Infos.size() != 1) 1165 return true; 1166 1167 // Check and verify the descriptor. 1168 IITDescriptor D = Infos.front(); 1169 Infos = Infos.slice(1); 1170 if (D.Kind == IITDescriptor::VarArg) 1171 return !isVarArg; 1172 1173 return true; 1174 } 1175 1176 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1177 Intrinsic::ID ID = F->getIntrinsicID(); 1178 if (!ID) 1179 return None; 1180 1181 FunctionType *FTy = F->getFunctionType(); 1182 // Accumulate an array of overloaded types for the given intrinsic 1183 SmallVector<Type *, 4> ArgTys; 1184 { 1185 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1186 getIntrinsicInfoTableEntries(ID, Table); 1187 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1188 1189 // If we encounter any problems matching the signature with the descriptor 1190 // just give up remangling. It's up to verifier to report the discrepancy. 1191 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1192 return None; 1193 for (auto Ty : FTy->params()) 1194 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1195 return None; 1196 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1197 return None; 1198 } 1199 1200 StringRef Name = F->getName(); 1201 if (Name == Intrinsic::getName(ID, ArgTys)) 1202 return None; 1203 1204 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1205 NewDecl->setCallingConv(F->getCallingConv()); 1206 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1207 return NewDecl; 1208 } 1209 1210 /// hasAddressTaken - returns true if there are any uses of this function 1211 /// other than direct calls or invokes to it. 1212 bool Function::hasAddressTaken(const User* *PutOffender) const { 1213 for (const Use &U : uses()) { 1214 const User *FU = U.getUser(); 1215 if (isa<BlockAddress>(FU)) 1216 continue; 1217 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1218 if (PutOffender) 1219 *PutOffender = FU; 1220 return true; 1221 } 1222 ImmutableCallSite CS(cast<Instruction>(FU)); 1223 if (!CS.isCallee(&U)) { 1224 if (PutOffender) 1225 *PutOffender = FU; 1226 return true; 1227 } 1228 } 1229 return false; 1230 } 1231 1232 bool Function::isDefTriviallyDead() const { 1233 // Check the linkage 1234 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1235 !hasAvailableExternallyLinkage()) 1236 return false; 1237 1238 // Check if the function is used by anything other than a blockaddress. 1239 for (const User *U : users()) 1240 if (!isa<BlockAddress>(U)) 1241 return false; 1242 1243 return true; 1244 } 1245 1246 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1247 /// setjmp or other function that gcc recognizes as "returning twice". 1248 bool Function::callsFunctionThatReturnsTwice() const { 1249 for (const_inst_iterator 1250 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1251 ImmutableCallSite CS(&*I); 1252 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1253 return true; 1254 } 1255 1256 return false; 1257 } 1258 1259 Constant *Function::getPersonalityFn() const { 1260 assert(hasPersonalityFn() && getNumOperands()); 1261 return cast<Constant>(Op<0>()); 1262 } 1263 1264 void Function::setPersonalityFn(Constant *Fn) { 1265 setHungoffOperand<0>(Fn); 1266 setValueSubclassDataBit(3, Fn != nullptr); 1267 } 1268 1269 Constant *Function::getPrefixData() const { 1270 assert(hasPrefixData() && getNumOperands()); 1271 return cast<Constant>(Op<1>()); 1272 } 1273 1274 void Function::setPrefixData(Constant *PrefixData) { 1275 setHungoffOperand<1>(PrefixData); 1276 setValueSubclassDataBit(1, PrefixData != nullptr); 1277 } 1278 1279 Constant *Function::getPrologueData() const { 1280 assert(hasPrologueData() && getNumOperands()); 1281 return cast<Constant>(Op<2>()); 1282 } 1283 1284 void Function::setPrologueData(Constant *PrologueData) { 1285 setHungoffOperand<2>(PrologueData); 1286 setValueSubclassDataBit(2, PrologueData != nullptr); 1287 } 1288 1289 void Function::allocHungoffUselist() { 1290 // If we've already allocated a uselist, stop here. 1291 if (getNumOperands()) 1292 return; 1293 1294 allocHungoffUses(3, /*IsPhi=*/ false); 1295 setNumHungOffUseOperands(3); 1296 1297 // Initialize the uselist with placeholder operands to allow traversal. 1298 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1299 Op<0>().set(CPN); 1300 Op<1>().set(CPN); 1301 Op<2>().set(CPN); 1302 } 1303 1304 template <int Idx> 1305 void Function::setHungoffOperand(Constant *C) { 1306 if (C) { 1307 allocHungoffUselist(); 1308 Op<Idx>().set(C); 1309 } else if (getNumOperands()) { 1310 Op<Idx>().set( 1311 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1312 } 1313 } 1314 1315 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1316 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1317 if (On) 1318 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1319 else 1320 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1321 } 1322 1323 void Function::setEntryCount(uint64_t Count, 1324 const DenseSet<GlobalValue::GUID> *S) { 1325 MDBuilder MDB(getContext()); 1326 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count, S)); 1327 } 1328 1329 Optional<uint64_t> Function::getEntryCount() const { 1330 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1331 if (MD && MD->getOperand(0)) 1332 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1333 if (MDS->getString().equals("function_entry_count")) { 1334 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1335 uint64_t Count = CI->getValue().getZExtValue(); 1336 if (Count == 0) 1337 return None; 1338 return Count; 1339 } 1340 return None; 1341 } 1342 1343 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1344 DenseSet<GlobalValue::GUID> R; 1345 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1346 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1347 if (MDS->getString().equals("function_entry_count")) 1348 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1349 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1350 ->getValue() 1351 .getZExtValue()); 1352 return R; 1353 } 1354 1355 void Function::setSectionPrefix(StringRef Prefix) { 1356 MDBuilder MDB(getContext()); 1357 setMetadata(LLVMContext::MD_section_prefix, 1358 MDB.createFunctionSectionPrefix(Prefix)); 1359 } 1360 1361 Optional<StringRef> Function::getSectionPrefix() const { 1362 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1363 assert(dyn_cast<MDString>(MD->getOperand(0)) 1364 ->getString() 1365 .equals("function_section_prefix") && 1366 "Metadata not match"); 1367 return dyn_cast<MDString>(MD->getOperand(1))->getString(); 1368 } 1369 return None; 1370 } 1371