1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/CodeGen/ValueTypes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/MDBuilder.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 using namespace llvm; 30 31 // Explicit instantiations of SymbolTableListTraits since some of the methods 32 // are not in the public header file... 33 template class llvm::SymbolTableListTraits<BasicBlock>; 34 35 //===----------------------------------------------------------------------===// 36 // Argument Implementation 37 //===----------------------------------------------------------------------===// 38 39 void Argument::anchor() { } 40 41 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 42 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 43 setName(Name); 44 } 45 46 void Argument::setParent(Function *parent) { 47 Parent = parent; 48 } 49 50 bool Argument::hasNonNullAttr() const { 51 if (!getType()->isPointerTy()) return false; 52 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 53 return true; 54 else if (getDereferenceableBytes() > 0 && 55 getType()->getPointerAddressSpace() == 0) 56 return true; 57 return false; 58 } 59 60 bool Argument::hasByValAttr() const { 61 if (!getType()->isPointerTy()) return false; 62 return hasAttribute(Attribute::ByVal); 63 } 64 65 bool Argument::hasSwiftSelfAttr() const { 66 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 67 } 68 69 bool Argument::hasSwiftErrorAttr() const { 70 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 71 } 72 73 bool Argument::hasInAllocaAttr() const { 74 if (!getType()->isPointerTy()) return false; 75 return hasAttribute(Attribute::InAlloca); 76 } 77 78 bool Argument::hasByValOrInAllocaAttr() const { 79 if (!getType()->isPointerTy()) return false; 80 AttributeList Attrs = getParent()->getAttributes(); 81 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 82 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); 83 } 84 85 unsigned Argument::getParamAlignment() const { 86 assert(getType()->isPointerTy() && "Only pointers have alignments"); 87 return getParent()->getParamAlignment(getArgNo()); 88 } 89 90 uint64_t Argument::getDereferenceableBytes() const { 91 assert(getType()->isPointerTy() && 92 "Only pointers have dereferenceable bytes"); 93 return getParent()->getDereferenceableBytes(getArgNo()+1); 94 } 95 96 uint64_t Argument::getDereferenceableOrNullBytes() const { 97 assert(getType()->isPointerTy() && 98 "Only pointers have dereferenceable bytes"); 99 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 100 } 101 102 bool Argument::hasNestAttr() const { 103 if (!getType()->isPointerTy()) return false; 104 return hasAttribute(Attribute::Nest); 105 } 106 107 bool Argument::hasNoAliasAttr() const { 108 if (!getType()->isPointerTy()) return false; 109 return hasAttribute(Attribute::NoAlias); 110 } 111 112 bool Argument::hasNoCaptureAttr() const { 113 if (!getType()->isPointerTy()) return false; 114 return hasAttribute(Attribute::NoCapture); 115 } 116 117 bool Argument::hasStructRetAttr() const { 118 if (!getType()->isPointerTy()) return false; 119 return hasAttribute(Attribute::StructRet); 120 } 121 122 bool Argument::hasReturnedAttr() const { 123 return hasAttribute(Attribute::Returned); 124 } 125 126 bool Argument::hasZExtAttr() const { 127 return hasAttribute(Attribute::ZExt); 128 } 129 130 bool Argument::hasSExtAttr() const { 131 return hasAttribute(Attribute::SExt); 132 } 133 134 bool Argument::onlyReadsMemory() const { 135 AttributeList Attrs = getParent()->getAttributes(); 136 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 137 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 138 } 139 140 void Argument::addAttrs(AttrBuilder &B) { 141 AttributeList AL = getParent()->getAttributes(); 142 AL = AL.addAttributes(Parent->getContext(), getArgNo() + 1, B); 143 getParent()->setAttributes(AL); 144 } 145 146 void Argument::addAttr(Attribute::AttrKind Kind) { 147 getParent()->addAttribute(getArgNo() + 1, Kind); 148 } 149 150 void Argument::addAttr(Attribute Attr) { 151 getParent()->addAttribute(getArgNo() + 1, Attr); 152 } 153 154 void Argument::removeAttr(Attribute::AttrKind Kind) { 155 getParent()->removeAttribute(getArgNo() + 1, Kind); 156 } 157 158 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 159 return getParent()->hasParamAttribute(getArgNo(), Kind); 160 } 161 162 //===----------------------------------------------------------------------===// 163 // Helper Methods in Function 164 //===----------------------------------------------------------------------===// 165 166 LLVMContext &Function::getContext() const { 167 return getType()->getContext(); 168 } 169 170 void Function::removeFromParent() { 171 getParent()->getFunctionList().remove(getIterator()); 172 } 173 174 void Function::eraseFromParent() { 175 getParent()->getFunctionList().erase(getIterator()); 176 } 177 178 //===----------------------------------------------------------------------===// 179 // Function Implementation 180 //===----------------------------------------------------------------------===// 181 182 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 183 Module *ParentModule) 184 : GlobalObject(Ty, Value::FunctionVal, 185 OperandTraits<Function>::op_begin(this), 0, Linkage, name), 186 Arguments(nullptr), NumArgs(Ty->getNumParams()) { 187 assert(FunctionType::isValidReturnType(getReturnType()) && 188 "invalid return type"); 189 setGlobalObjectSubClassData(0); 190 191 // We only need a symbol table for a function if the context keeps value names 192 if (!getContext().shouldDiscardValueNames()) 193 SymTab = make_unique<ValueSymbolTable>(); 194 195 // If the function has arguments, mark them as lazily built. 196 if (Ty->getNumParams()) 197 setValueSubclassData(1); // Set the "has lazy arguments" bit. 198 199 if (ParentModule) 200 ParentModule->getFunctionList().push_back(this); 201 202 HasLLVMReservedName = getName().startswith("llvm."); 203 // Ensure intrinsics have the right parameter attributes. 204 // Note, the IntID field will have been set in Value::setName if this function 205 // name is a valid intrinsic ID. 206 if (IntID) 207 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 208 } 209 210 Function::~Function() { 211 dropAllReferences(); // After this it is safe to delete instructions. 212 213 // Delete all of the method arguments and unlink from symbol table... 214 if (Arguments) 215 clearArguments(); 216 217 // Remove the function from the on-the-side GC table. 218 clearGC(); 219 } 220 221 void Function::BuildLazyArguments() const { 222 // Create the arguments vector, all arguments start out unnamed. 223 auto *FT = getFunctionType(); 224 if (NumArgs > 0) { 225 Arguments = std::allocator<Argument>().allocate(NumArgs); 226 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 227 Type *ArgTy = FT->getParamType(i); 228 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 229 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 230 } 231 } 232 233 // Clear the lazy arguments bit. 234 unsigned SDC = getSubclassDataFromValue(); 235 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 236 assert(!hasLazyArguments()); 237 } 238 239 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 240 return MutableArrayRef<Argument>(Args, Count); 241 } 242 243 void Function::clearArguments() { 244 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 245 A.setName(""); 246 A.~Argument(); 247 } 248 std::allocator<Argument>().deallocate(Arguments, NumArgs); 249 Arguments = nullptr; 250 } 251 252 void Function::stealArgumentListFrom(Function &Src) { 253 assert(isDeclaration() && "Expected no references to current arguments"); 254 255 // Drop the current arguments, if any, and set the lazy argument bit. 256 if (!hasLazyArguments()) { 257 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 258 [](const Argument &A) { return A.use_empty(); }) && 259 "Expected arguments to be unused in declaration"); 260 clearArguments(); 261 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 262 } 263 264 // Nothing to steal if Src has lazy arguments. 265 if (Src.hasLazyArguments()) 266 return; 267 268 // Steal arguments from Src, and fix the lazy argument bits. 269 assert(arg_size() == Src.arg_size()); 270 Arguments = Src.Arguments; 271 Src.Arguments = nullptr; 272 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 273 // FIXME: This does the work of transferNodesFromList inefficiently. 274 SmallString<128> Name; 275 if (A.hasName()) 276 Name = A.getName(); 277 if (!Name.empty()) 278 A.setName(""); 279 A.setParent(this); 280 if (!Name.empty()) 281 A.setName(Name); 282 } 283 284 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 285 assert(!hasLazyArguments()); 286 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 287 } 288 289 // dropAllReferences() - This function causes all the subinstructions to "let 290 // go" of all references that they are maintaining. This allows one to 291 // 'delete' a whole class at a time, even though there may be circular 292 // references... first all references are dropped, and all use counts go to 293 // zero. Then everything is deleted for real. Note that no operations are 294 // valid on an object that has "dropped all references", except operator 295 // delete. 296 // 297 void Function::dropAllReferences() { 298 setIsMaterializable(false); 299 300 for (BasicBlock &BB : *this) 301 BB.dropAllReferences(); 302 303 // Delete all basic blocks. They are now unused, except possibly by 304 // blockaddresses, but BasicBlock's destructor takes care of those. 305 while (!BasicBlocks.empty()) 306 BasicBlocks.begin()->eraseFromParent(); 307 308 // Drop uses of any optional data (real or placeholder). 309 if (getNumOperands()) { 310 User::dropAllReferences(); 311 setNumHungOffUseOperands(0); 312 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 313 } 314 315 // Metadata is stored in a side-table. 316 clearMetadata(); 317 } 318 319 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 320 AttributeList PAL = getAttributes(); 321 PAL = PAL.addAttribute(getContext(), i, Kind); 322 setAttributes(PAL); 323 } 324 325 void Function::addAttribute(unsigned i, Attribute Attr) { 326 AttributeList PAL = getAttributes(); 327 PAL = PAL.addAttribute(getContext(), i, Attr); 328 setAttributes(PAL); 329 } 330 331 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 332 AttributeList PAL = getAttributes(); 333 PAL = PAL.addAttributes(getContext(), i, Attrs); 334 setAttributes(PAL); 335 } 336 337 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 338 AttributeList PAL = getAttributes(); 339 PAL = PAL.removeAttribute(getContext(), i, Kind); 340 setAttributes(PAL); 341 } 342 343 void Function::removeAttribute(unsigned i, StringRef Kind) { 344 AttributeList PAL = getAttributes(); 345 PAL = PAL.removeAttribute(getContext(), i, Kind); 346 setAttributes(PAL); 347 } 348 349 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 350 AttributeList PAL = getAttributes(); 351 PAL = PAL.removeAttributes(getContext(), i, Attrs); 352 setAttributes(PAL); 353 } 354 355 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 356 AttributeList PAL = getAttributes(); 357 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 358 setAttributes(PAL); 359 } 360 361 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 362 AttributeList PAL = getAttributes(); 363 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 364 setAttributes(PAL); 365 } 366 367 const std::string &Function::getGC() const { 368 assert(hasGC() && "Function has no collector"); 369 return getContext().getGC(*this); 370 } 371 372 void Function::setGC(std::string Str) { 373 setValueSubclassDataBit(14, !Str.empty()); 374 getContext().setGC(*this, std::move(Str)); 375 } 376 377 void Function::clearGC() { 378 if (!hasGC()) 379 return; 380 getContext().deleteGC(*this); 381 setValueSubclassDataBit(14, false); 382 } 383 384 /// Copy all additional attributes (those not needed to create a Function) from 385 /// the Function Src to this one. 386 void Function::copyAttributesFrom(const GlobalValue *Src) { 387 GlobalObject::copyAttributesFrom(Src); 388 const Function *SrcF = dyn_cast<Function>(Src); 389 if (!SrcF) 390 return; 391 392 setCallingConv(SrcF->getCallingConv()); 393 setAttributes(SrcF->getAttributes()); 394 if (SrcF->hasGC()) 395 setGC(SrcF->getGC()); 396 else 397 clearGC(); 398 if (SrcF->hasPersonalityFn()) 399 setPersonalityFn(SrcF->getPersonalityFn()); 400 if (SrcF->hasPrefixData()) 401 setPrefixData(SrcF->getPrefixData()); 402 if (SrcF->hasPrologueData()) 403 setPrologueData(SrcF->getPrologueData()); 404 } 405 406 /// Table of string intrinsic names indexed by enum value. 407 static const char * const IntrinsicNameTable[] = { 408 "not_intrinsic", 409 #define GET_INTRINSIC_NAME_TABLE 410 #include "llvm/IR/Intrinsics.gen" 411 #undef GET_INTRINSIC_NAME_TABLE 412 }; 413 414 /// Table of per-target intrinsic name tables. 415 #define GET_INTRINSIC_TARGET_DATA 416 #include "llvm/IR/Intrinsics.gen" 417 #undef GET_INTRINSIC_TARGET_DATA 418 419 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 420 /// target as \c Name, or the generic table if \c Name is not target specific. 421 /// 422 /// Returns the relevant slice of \c IntrinsicNameTable 423 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 424 assert(Name.startswith("llvm.")); 425 426 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 427 // Drop "llvm." and take the first dotted component. That will be the target 428 // if this is target specific. 429 StringRef Target = Name.drop_front(5).split('.').first; 430 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 431 [](const IntrinsicTargetInfo &TI, 432 StringRef Target) { return TI.Name < Target; }); 433 // We've either found the target or just fall back to the generic set, which 434 // is always first. 435 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 436 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 437 } 438 439 /// \brief This does the actual lookup of an intrinsic ID which 440 /// matches the given function name. 441 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 442 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 443 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 444 if (Idx == -1) 445 return Intrinsic::not_intrinsic; 446 447 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 448 // an index into a sub-table. 449 int Adjust = NameTable.data() - IntrinsicNameTable; 450 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 451 452 // If the intrinsic is not overloaded, require an exact match. If it is 453 // overloaded, require a prefix match. 454 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 455 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 456 } 457 458 void Function::recalculateIntrinsicID() { 459 StringRef Name = getName(); 460 if (!Name.startswith("llvm.")) { 461 HasLLVMReservedName = false; 462 IntID = Intrinsic::not_intrinsic; 463 return; 464 } 465 HasLLVMReservedName = true; 466 IntID = lookupIntrinsicID(Name); 467 } 468 469 /// Returns a stable mangling for the type specified for use in the name 470 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 471 /// of named types is simply their name. Manglings for unnamed types consist 472 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 473 /// combined with the mangling of their component types. A vararg function 474 /// type will have a suffix of 'vararg'. Since function types can contain 475 /// other function types, we close a function type mangling with suffix 'f' 476 /// which can't be confused with it's prefix. This ensures we don't have 477 /// collisions between two unrelated function types. Otherwise, you might 478 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 479 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 480 /// cases) fall back to the MVT codepath, where they could be mangled to 481 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 482 /// everything. 483 static std::string getMangledTypeStr(Type* Ty) { 484 std::string Result; 485 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 486 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 487 getMangledTypeStr(PTyp->getElementType()); 488 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 489 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 490 getMangledTypeStr(ATyp->getElementType()); 491 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 492 if (!STyp->isLiteral()) { 493 Result += "s_"; 494 Result += STyp->getName(); 495 } else { 496 Result += "sl_"; 497 for (auto Elem : STyp->elements()) 498 Result += getMangledTypeStr(Elem); 499 } 500 // Ensure nested structs are distinguishable. 501 Result += "s"; 502 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 503 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 504 for (size_t i = 0; i < FT->getNumParams(); i++) 505 Result += getMangledTypeStr(FT->getParamType(i)); 506 if (FT->isVarArg()) 507 Result += "vararg"; 508 // Ensure nested function types are distinguishable. 509 Result += "f"; 510 } else if (isa<VectorType>(Ty)) 511 Result += "v" + utostr(Ty->getVectorNumElements()) + 512 getMangledTypeStr(Ty->getVectorElementType()); 513 else if (Ty) 514 Result += EVT::getEVT(Ty).getEVTString(); 515 return Result; 516 } 517 518 StringRef Intrinsic::getName(ID id) { 519 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 520 assert(!isOverloaded(id) && 521 "This version of getName does not support overloading"); 522 return IntrinsicNameTable[id]; 523 } 524 525 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 526 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 527 std::string Result(IntrinsicNameTable[id]); 528 for (Type *Ty : Tys) { 529 Result += "." + getMangledTypeStr(Ty); 530 } 531 return Result; 532 } 533 534 535 /// IIT_Info - These are enumerators that describe the entries returned by the 536 /// getIntrinsicInfoTableEntries function. 537 /// 538 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 539 enum IIT_Info { 540 // Common values should be encoded with 0-15. 541 IIT_Done = 0, 542 IIT_I1 = 1, 543 IIT_I8 = 2, 544 IIT_I16 = 3, 545 IIT_I32 = 4, 546 IIT_I64 = 5, 547 IIT_F16 = 6, 548 IIT_F32 = 7, 549 IIT_F64 = 8, 550 IIT_V2 = 9, 551 IIT_V4 = 10, 552 IIT_V8 = 11, 553 IIT_V16 = 12, 554 IIT_V32 = 13, 555 IIT_PTR = 14, 556 IIT_ARG = 15, 557 558 // Values from 16+ are only encodable with the inefficient encoding. 559 IIT_V64 = 16, 560 IIT_MMX = 17, 561 IIT_TOKEN = 18, 562 IIT_METADATA = 19, 563 IIT_EMPTYSTRUCT = 20, 564 IIT_STRUCT2 = 21, 565 IIT_STRUCT3 = 22, 566 IIT_STRUCT4 = 23, 567 IIT_STRUCT5 = 24, 568 IIT_EXTEND_ARG = 25, 569 IIT_TRUNC_ARG = 26, 570 IIT_ANYPTR = 27, 571 IIT_V1 = 28, 572 IIT_VARARG = 29, 573 IIT_HALF_VEC_ARG = 30, 574 IIT_SAME_VEC_WIDTH_ARG = 31, 575 IIT_PTR_TO_ARG = 32, 576 IIT_PTR_TO_ELT = 33, 577 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 578 IIT_I128 = 35, 579 IIT_V512 = 36, 580 IIT_V1024 = 37 581 }; 582 583 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 584 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 585 IIT_Info Info = IIT_Info(Infos[NextElt++]); 586 unsigned StructElts = 2; 587 using namespace Intrinsic; 588 589 switch (Info) { 590 case IIT_Done: 591 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 592 return; 593 case IIT_VARARG: 594 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 595 return; 596 case IIT_MMX: 597 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 598 return; 599 case IIT_TOKEN: 600 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 601 return; 602 case IIT_METADATA: 603 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 604 return; 605 case IIT_F16: 606 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 607 return; 608 case IIT_F32: 609 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 610 return; 611 case IIT_F64: 612 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 613 return; 614 case IIT_I1: 615 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 616 return; 617 case IIT_I8: 618 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 619 return; 620 case IIT_I16: 621 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 622 return; 623 case IIT_I32: 624 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 625 return; 626 case IIT_I64: 627 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 628 return; 629 case IIT_I128: 630 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 631 return; 632 case IIT_V1: 633 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 634 DecodeIITType(NextElt, Infos, OutputTable); 635 return; 636 case IIT_V2: 637 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 638 DecodeIITType(NextElt, Infos, OutputTable); 639 return; 640 case IIT_V4: 641 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 642 DecodeIITType(NextElt, Infos, OutputTable); 643 return; 644 case IIT_V8: 645 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 646 DecodeIITType(NextElt, Infos, OutputTable); 647 return; 648 case IIT_V16: 649 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 650 DecodeIITType(NextElt, Infos, OutputTable); 651 return; 652 case IIT_V32: 653 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 654 DecodeIITType(NextElt, Infos, OutputTable); 655 return; 656 case IIT_V64: 657 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 658 DecodeIITType(NextElt, Infos, OutputTable); 659 return; 660 case IIT_V512: 661 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 662 DecodeIITType(NextElt, Infos, OutputTable); 663 return; 664 case IIT_V1024: 665 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 666 DecodeIITType(NextElt, Infos, OutputTable); 667 return; 668 case IIT_PTR: 669 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 670 DecodeIITType(NextElt, Infos, OutputTable); 671 return; 672 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 673 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 674 Infos[NextElt++])); 675 DecodeIITType(NextElt, Infos, OutputTable); 676 return; 677 } 678 case IIT_ARG: { 679 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 680 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 681 return; 682 } 683 case IIT_EXTEND_ARG: { 684 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 685 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 686 ArgInfo)); 687 return; 688 } 689 case IIT_TRUNC_ARG: { 690 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 691 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 692 ArgInfo)); 693 return; 694 } 695 case IIT_HALF_VEC_ARG: { 696 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 697 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 698 ArgInfo)); 699 return; 700 } 701 case IIT_SAME_VEC_WIDTH_ARG: { 702 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 703 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 704 ArgInfo)); 705 return; 706 } 707 case IIT_PTR_TO_ARG: { 708 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 709 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 710 ArgInfo)); 711 return; 712 } 713 case IIT_PTR_TO_ELT: { 714 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 715 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 716 return; 717 } 718 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 719 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 720 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 721 OutputTable.push_back( 722 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 723 return; 724 } 725 case IIT_EMPTYSTRUCT: 726 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 727 return; 728 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 729 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 730 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 731 case IIT_STRUCT2: { 732 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 733 734 for (unsigned i = 0; i != StructElts; ++i) 735 DecodeIITType(NextElt, Infos, OutputTable); 736 return; 737 } 738 } 739 llvm_unreachable("unhandled"); 740 } 741 742 743 #define GET_INTRINSIC_GENERATOR_GLOBAL 744 #include "llvm/IR/Intrinsics.gen" 745 #undef GET_INTRINSIC_GENERATOR_GLOBAL 746 747 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 748 SmallVectorImpl<IITDescriptor> &T){ 749 // Check to see if the intrinsic's type was expressible by the table. 750 unsigned TableVal = IIT_Table[id-1]; 751 752 // Decode the TableVal into an array of IITValues. 753 SmallVector<unsigned char, 8> IITValues; 754 ArrayRef<unsigned char> IITEntries; 755 unsigned NextElt = 0; 756 if ((TableVal >> 31) != 0) { 757 // This is an offset into the IIT_LongEncodingTable. 758 IITEntries = IIT_LongEncodingTable; 759 760 // Strip sentinel bit. 761 NextElt = (TableVal << 1) >> 1; 762 } else { 763 // Decode the TableVal into an array of IITValues. If the entry was encoded 764 // into a single word in the table itself, decode it now. 765 do { 766 IITValues.push_back(TableVal & 0xF); 767 TableVal >>= 4; 768 } while (TableVal); 769 770 IITEntries = IITValues; 771 NextElt = 0; 772 } 773 774 // Okay, decode the table into the output vector of IITDescriptors. 775 DecodeIITType(NextElt, IITEntries, T); 776 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 777 DecodeIITType(NextElt, IITEntries, T); 778 } 779 780 781 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 782 ArrayRef<Type*> Tys, LLVMContext &Context) { 783 using namespace Intrinsic; 784 IITDescriptor D = Infos.front(); 785 Infos = Infos.slice(1); 786 787 switch (D.Kind) { 788 case IITDescriptor::Void: return Type::getVoidTy(Context); 789 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 790 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 791 case IITDescriptor::Token: return Type::getTokenTy(Context); 792 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 793 case IITDescriptor::Half: return Type::getHalfTy(Context); 794 case IITDescriptor::Float: return Type::getFloatTy(Context); 795 case IITDescriptor::Double: return Type::getDoubleTy(Context); 796 797 case IITDescriptor::Integer: 798 return IntegerType::get(Context, D.Integer_Width); 799 case IITDescriptor::Vector: 800 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 801 case IITDescriptor::Pointer: 802 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 803 D.Pointer_AddressSpace); 804 case IITDescriptor::Struct: { 805 Type *Elts[5]; 806 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 807 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 808 Elts[i] = DecodeFixedType(Infos, Tys, Context); 809 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 810 } 811 case IITDescriptor::Argument: 812 return Tys[D.getArgumentNumber()]; 813 case IITDescriptor::ExtendArgument: { 814 Type *Ty = Tys[D.getArgumentNumber()]; 815 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 816 return VectorType::getExtendedElementVectorType(VTy); 817 818 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 819 } 820 case IITDescriptor::TruncArgument: { 821 Type *Ty = Tys[D.getArgumentNumber()]; 822 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 823 return VectorType::getTruncatedElementVectorType(VTy); 824 825 IntegerType *ITy = cast<IntegerType>(Ty); 826 assert(ITy->getBitWidth() % 2 == 0); 827 return IntegerType::get(Context, ITy->getBitWidth() / 2); 828 } 829 case IITDescriptor::HalfVecArgument: 830 return VectorType::getHalfElementsVectorType(cast<VectorType>( 831 Tys[D.getArgumentNumber()])); 832 case IITDescriptor::SameVecWidthArgument: { 833 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 834 Type *Ty = Tys[D.getArgumentNumber()]; 835 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 836 return VectorType::get(EltTy, VTy->getNumElements()); 837 } 838 llvm_unreachable("unhandled"); 839 } 840 case IITDescriptor::PtrToArgument: { 841 Type *Ty = Tys[D.getArgumentNumber()]; 842 return PointerType::getUnqual(Ty); 843 } 844 case IITDescriptor::PtrToElt: { 845 Type *Ty = Tys[D.getArgumentNumber()]; 846 VectorType *VTy = dyn_cast<VectorType>(Ty); 847 if (!VTy) 848 llvm_unreachable("Expected an argument of Vector Type"); 849 Type *EltTy = VTy->getVectorElementType(); 850 return PointerType::getUnqual(EltTy); 851 } 852 case IITDescriptor::VecOfAnyPtrsToElt: 853 // Return the overloaded type (which determines the pointers address space) 854 return Tys[D.getOverloadArgNumber()]; 855 } 856 llvm_unreachable("unhandled"); 857 } 858 859 860 861 FunctionType *Intrinsic::getType(LLVMContext &Context, 862 ID id, ArrayRef<Type*> Tys) { 863 SmallVector<IITDescriptor, 8> Table; 864 getIntrinsicInfoTableEntries(id, Table); 865 866 ArrayRef<IITDescriptor> TableRef = Table; 867 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 868 869 SmallVector<Type*, 8> ArgTys; 870 while (!TableRef.empty()) 871 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 872 873 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 874 // If we see void type as the type of the last argument, it is vararg intrinsic 875 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 876 ArgTys.pop_back(); 877 return FunctionType::get(ResultTy, ArgTys, true); 878 } 879 return FunctionType::get(ResultTy, ArgTys, false); 880 } 881 882 bool Intrinsic::isOverloaded(ID id) { 883 #define GET_INTRINSIC_OVERLOAD_TABLE 884 #include "llvm/IR/Intrinsics.gen" 885 #undef GET_INTRINSIC_OVERLOAD_TABLE 886 } 887 888 bool Intrinsic::isLeaf(ID id) { 889 switch (id) { 890 default: 891 return true; 892 893 case Intrinsic::experimental_gc_statepoint: 894 case Intrinsic::experimental_patchpoint_void: 895 case Intrinsic::experimental_patchpoint_i64: 896 return false; 897 } 898 } 899 900 /// This defines the "Intrinsic::getAttributes(ID id)" method. 901 #define GET_INTRINSIC_ATTRIBUTES 902 #include "llvm/IR/Intrinsics.gen" 903 #undef GET_INTRINSIC_ATTRIBUTES 904 905 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 906 // There can never be multiple globals with the same name of different types, 907 // because intrinsics must be a specific type. 908 return 909 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 910 getType(M->getContext(), id, Tys))); 911 } 912 913 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 914 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 915 #include "llvm/IR/Intrinsics.gen" 916 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 917 918 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 919 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 920 #include "llvm/IR/Intrinsics.gen" 921 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 922 923 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 924 SmallVectorImpl<Type*> &ArgTys) { 925 using namespace Intrinsic; 926 927 // If we ran out of descriptors, there are too many arguments. 928 if (Infos.empty()) return true; 929 IITDescriptor D = Infos.front(); 930 Infos = Infos.slice(1); 931 932 switch (D.Kind) { 933 case IITDescriptor::Void: return !Ty->isVoidTy(); 934 case IITDescriptor::VarArg: return true; 935 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 936 case IITDescriptor::Token: return !Ty->isTokenTy(); 937 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 938 case IITDescriptor::Half: return !Ty->isHalfTy(); 939 case IITDescriptor::Float: return !Ty->isFloatTy(); 940 case IITDescriptor::Double: return !Ty->isDoubleTy(); 941 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 942 case IITDescriptor::Vector: { 943 VectorType *VT = dyn_cast<VectorType>(Ty); 944 return !VT || VT->getNumElements() != D.Vector_Width || 945 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 946 } 947 case IITDescriptor::Pointer: { 948 PointerType *PT = dyn_cast<PointerType>(Ty); 949 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 950 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 951 } 952 953 case IITDescriptor::Struct: { 954 StructType *ST = dyn_cast<StructType>(Ty); 955 if (!ST || ST->getNumElements() != D.Struct_NumElements) 956 return true; 957 958 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 959 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 960 return true; 961 return false; 962 } 963 964 case IITDescriptor::Argument: 965 // Two cases here - If this is the second occurrence of an argument, verify 966 // that the later instance matches the previous instance. 967 if (D.getArgumentNumber() < ArgTys.size()) 968 return Ty != ArgTys[D.getArgumentNumber()]; 969 970 // Otherwise, if this is the first instance of an argument, record it and 971 // verify the "Any" kind. 972 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 973 ArgTys.push_back(Ty); 974 975 switch (D.getArgumentKind()) { 976 case IITDescriptor::AK_Any: return false; // Success 977 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 978 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 979 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 980 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 981 } 982 llvm_unreachable("all argument kinds not covered"); 983 984 case IITDescriptor::ExtendArgument: { 985 // This may only be used when referring to a previous vector argument. 986 if (D.getArgumentNumber() >= ArgTys.size()) 987 return true; 988 989 Type *NewTy = ArgTys[D.getArgumentNumber()]; 990 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 991 NewTy = VectorType::getExtendedElementVectorType(VTy); 992 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 993 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 994 else 995 return true; 996 997 return Ty != NewTy; 998 } 999 case IITDescriptor::TruncArgument: { 1000 // This may only be used when referring to a previous vector argument. 1001 if (D.getArgumentNumber() >= ArgTys.size()) 1002 return true; 1003 1004 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1005 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1006 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1007 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1008 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1009 else 1010 return true; 1011 1012 return Ty != NewTy; 1013 } 1014 case IITDescriptor::HalfVecArgument: 1015 // This may only be used when referring to a previous vector argument. 1016 return D.getArgumentNumber() >= ArgTys.size() || 1017 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1018 VectorType::getHalfElementsVectorType( 1019 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1020 case IITDescriptor::SameVecWidthArgument: { 1021 if (D.getArgumentNumber() >= ArgTys.size()) 1022 return true; 1023 VectorType * ReferenceType = 1024 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1025 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1026 if (!ThisArgType || !ReferenceType || 1027 (ReferenceType->getVectorNumElements() != 1028 ThisArgType->getVectorNumElements())) 1029 return true; 1030 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1031 Infos, ArgTys); 1032 } 1033 case IITDescriptor::PtrToArgument: { 1034 if (D.getArgumentNumber() >= ArgTys.size()) 1035 return true; 1036 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1037 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1038 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1039 } 1040 case IITDescriptor::PtrToElt: { 1041 if (D.getArgumentNumber() >= ArgTys.size()) 1042 return true; 1043 VectorType * ReferenceType = 1044 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1045 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1046 1047 return (!ThisArgType || !ReferenceType || 1048 ThisArgType->getElementType() != ReferenceType->getElementType()); 1049 } 1050 case IITDescriptor::VecOfAnyPtrsToElt: { 1051 unsigned RefArgNumber = D.getRefArgNumber(); 1052 1053 // This may only be used when referring to a previous argument. 1054 if (RefArgNumber >= ArgTys.size()) 1055 return true; 1056 1057 // Record the overloaded type 1058 assert(D.getOverloadArgNumber() == ArgTys.size() && 1059 "Table consistency error"); 1060 ArgTys.push_back(Ty); 1061 1062 // Verify the overloaded type "matches" the Ref type. 1063 // i.e. Ty is a vector with the same width as Ref. 1064 // Composed of pointers to the same element type as Ref. 1065 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1066 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1067 if (!ThisArgVecTy || !ReferenceType || 1068 (ReferenceType->getVectorNumElements() != 1069 ThisArgVecTy->getVectorNumElements())) 1070 return true; 1071 PointerType *ThisArgEltTy = 1072 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1073 if (!ThisArgEltTy) 1074 return true; 1075 return ThisArgEltTy->getElementType() != 1076 ReferenceType->getVectorElementType(); 1077 } 1078 } 1079 llvm_unreachable("unhandled"); 1080 } 1081 1082 bool 1083 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1084 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1085 // If there are no descriptors left, then it can't be a vararg. 1086 if (Infos.empty()) 1087 return isVarArg; 1088 1089 // There should be only one descriptor remaining at this point. 1090 if (Infos.size() != 1) 1091 return true; 1092 1093 // Check and verify the descriptor. 1094 IITDescriptor D = Infos.front(); 1095 Infos = Infos.slice(1); 1096 if (D.Kind == IITDescriptor::VarArg) 1097 return !isVarArg; 1098 1099 return true; 1100 } 1101 1102 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1103 Intrinsic::ID ID = F->getIntrinsicID(); 1104 if (!ID) 1105 return None; 1106 1107 FunctionType *FTy = F->getFunctionType(); 1108 // Accumulate an array of overloaded types for the given intrinsic 1109 SmallVector<Type *, 4> ArgTys; 1110 { 1111 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1112 getIntrinsicInfoTableEntries(ID, Table); 1113 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1114 1115 // If we encounter any problems matching the signature with the descriptor 1116 // just give up remangling. It's up to verifier to report the discrepancy. 1117 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1118 return None; 1119 for (auto Ty : FTy->params()) 1120 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1121 return None; 1122 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1123 return None; 1124 } 1125 1126 StringRef Name = F->getName(); 1127 if (Name == Intrinsic::getName(ID, ArgTys)) 1128 return None; 1129 1130 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1131 NewDecl->setCallingConv(F->getCallingConv()); 1132 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1133 return NewDecl; 1134 } 1135 1136 /// hasAddressTaken - returns true if there are any uses of this function 1137 /// other than direct calls or invokes to it. 1138 bool Function::hasAddressTaken(const User* *PutOffender) const { 1139 for (const Use &U : uses()) { 1140 const User *FU = U.getUser(); 1141 if (isa<BlockAddress>(FU)) 1142 continue; 1143 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1144 if (PutOffender) 1145 *PutOffender = FU; 1146 return true; 1147 } 1148 ImmutableCallSite CS(cast<Instruction>(FU)); 1149 if (!CS.isCallee(&U)) { 1150 if (PutOffender) 1151 *PutOffender = FU; 1152 return true; 1153 } 1154 } 1155 return false; 1156 } 1157 1158 bool Function::isDefTriviallyDead() const { 1159 // Check the linkage 1160 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1161 !hasAvailableExternallyLinkage()) 1162 return false; 1163 1164 // Check if the function is used by anything other than a blockaddress. 1165 for (const User *U : users()) 1166 if (!isa<BlockAddress>(U)) 1167 return false; 1168 1169 return true; 1170 } 1171 1172 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1173 /// setjmp or other function that gcc recognizes as "returning twice". 1174 bool Function::callsFunctionThatReturnsTwice() const { 1175 for (const_inst_iterator 1176 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1177 ImmutableCallSite CS(&*I); 1178 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1179 return true; 1180 } 1181 1182 return false; 1183 } 1184 1185 Constant *Function::getPersonalityFn() const { 1186 assert(hasPersonalityFn() && getNumOperands()); 1187 return cast<Constant>(Op<0>()); 1188 } 1189 1190 void Function::setPersonalityFn(Constant *Fn) { 1191 setHungoffOperand<0>(Fn); 1192 setValueSubclassDataBit(3, Fn != nullptr); 1193 } 1194 1195 Constant *Function::getPrefixData() const { 1196 assert(hasPrefixData() && getNumOperands()); 1197 return cast<Constant>(Op<1>()); 1198 } 1199 1200 void Function::setPrefixData(Constant *PrefixData) { 1201 setHungoffOperand<1>(PrefixData); 1202 setValueSubclassDataBit(1, PrefixData != nullptr); 1203 } 1204 1205 Constant *Function::getPrologueData() const { 1206 assert(hasPrologueData() && getNumOperands()); 1207 return cast<Constant>(Op<2>()); 1208 } 1209 1210 void Function::setPrologueData(Constant *PrologueData) { 1211 setHungoffOperand<2>(PrologueData); 1212 setValueSubclassDataBit(2, PrologueData != nullptr); 1213 } 1214 1215 void Function::allocHungoffUselist() { 1216 // If we've already allocated a uselist, stop here. 1217 if (getNumOperands()) 1218 return; 1219 1220 allocHungoffUses(3, /*IsPhi=*/ false); 1221 setNumHungOffUseOperands(3); 1222 1223 // Initialize the uselist with placeholder operands to allow traversal. 1224 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1225 Op<0>().set(CPN); 1226 Op<1>().set(CPN); 1227 Op<2>().set(CPN); 1228 } 1229 1230 template <int Idx> 1231 void Function::setHungoffOperand(Constant *C) { 1232 if (C) { 1233 allocHungoffUselist(); 1234 Op<Idx>().set(C); 1235 } else if (getNumOperands()) { 1236 Op<Idx>().set( 1237 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1238 } 1239 } 1240 1241 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1242 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1243 if (On) 1244 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1245 else 1246 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1247 } 1248 1249 void Function::setEntryCount(uint64_t Count, 1250 const DenseSet<GlobalValue::GUID> *S) { 1251 MDBuilder MDB(getContext()); 1252 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count, S)); 1253 } 1254 1255 Optional<uint64_t> Function::getEntryCount() const { 1256 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1257 if (MD && MD->getOperand(0)) 1258 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1259 if (MDS->getString().equals("function_entry_count")) { 1260 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1261 uint64_t Count = CI->getValue().getZExtValue(); 1262 if (Count == 0) 1263 return None; 1264 return Count; 1265 } 1266 return None; 1267 } 1268 1269 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1270 DenseSet<GlobalValue::GUID> R; 1271 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1272 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1273 if (MDS->getString().equals("function_entry_count")) 1274 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1275 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1276 ->getValue() 1277 .getZExtValue()); 1278 return R; 1279 } 1280 1281 void Function::setSectionPrefix(StringRef Prefix) { 1282 MDBuilder MDB(getContext()); 1283 setMetadata(LLVMContext::MD_section_prefix, 1284 MDB.createFunctionSectionPrefix(Prefix)); 1285 } 1286 1287 Optional<StringRef> Function::getSectionPrefix() const { 1288 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1289 assert(dyn_cast<MDString>(MD->getOperand(0)) 1290 ->getString() 1291 .equals("function_section_prefix") && 1292 "Metadata not match"); 1293 return dyn_cast<MDString>(MD->getOperand(1))->getString(); 1294 } 1295 return None; 1296 } 1297